
Linear Zero-Knowledge - A Note on E�cient

Zero-Knowledge Proofs and Arguments

Ivan Damg�ard, Aarhus University, BRICS (ivan@daimi.aau.dk) and

Ronald Cramer, CWI (cramer@cwi.nl)

Mar. 12, 1996

Abstract

We present a zero-knowledge proof system [19] for any NP language

L, which allows showing that x 2 L with error probability less than 2

�k

using communication corresponding to O(jxj

c

) + k bit commitments,

where c is a constant depending only on L. The proof can be based

on any bit commitment scheme with a particular set of properties. We

suggest an e�cient implementation based on factoring.

We also present a 4-move perfect zero-knowledge interactive argu-

ment for any NP-language L. On input x 2 L, the communication

complexity is O(jxj

c

) �max(k; l) bits, where l is the security parameter

for the prover

1

. Again, the protocol can be based on any bit commit-

ment scheme with a particular set of properties. We suggest e�cient

implementations based on discrete logarithms or factoring.

We present an application of our techniques to multiparty computa-

tions, allowing for example t committed oblivious transfers with error

probability 2

�k

to be done simultaneously using O(t+k) commitments.

Results for general computations follow from this.

As a function of the security parameters, our protocols have the

smallest known asymptotic communication complexity among general

proofs or arguments for NP. Moreover, the constants involved are small

enough for the protocols to be practical in a realistic situation: both

protocols are based on a Boolean formula � containing and-, or- and

not-operators which veri�es an NP-witness of membership in L. Let n

be the number of times this formula reads an input variable. Then the

communication complexity of the protocols when using our concrete

commitment schemes can be more precisely stated as at most 4n+k+1

1

The meaning of l is that if the prover is unable to solve an instance of a hard problem

of size l before the protocol is �nished, he can cheat with probability at most 2

�k

1



commitments for the interactive proof and at most 5nl+5l bits for the

argument (assuming k � l). Thus, if we use k = n, the number of

commitments required for the proof is linear in n.

Both protocols are also proofs of knowledge of an NP-witness of

membership in the language involved.

1 Introduction

Most known zero-knowledge interactive proofs or arguments for a general

NP language (such as [12] and [3]) are built from a basic step allowing the

prover to cheat with some constant probability, e.g. 1/2. In order to achieve

a smaller error probability, the obvious method is to iterate this basic step

k times to get error probability at most 2

�k

. If one adopts the often used

convention of setting k equal to the size of the input, such a method would

require 
(n

2

) commitments to show e.g. satis�ability of a Boolean circuit

of size n.

Several methods have been suggested for achieving the security ampli-

�cation more e�ciently than by the naive method. Boyar et al.[1] was the

�rst to �nd a "sub-quadratic" zero-knowledge protocol for circuit satis�abil-

ity, and their results were later extended by Killian [15]. Killian obtained,

using the probabilistically checkable proofs (PCP) of [4], a zero-knowledge

interactive proof that x is in NP language L using O(jxj

c

1

) + O(log

c

2

(jxj)k

ideal bit commitments and having error probability 2

�k

.

Results were also given on interactive arguments, that used a similar

technique, plus a collision intractable hash function. This result was further

improved in [16], resulting in an interactive argument with communication

complexity O(l log(l)k) bits. Here, and in the following, l is the security

parameter for the prover, i.e. in order to cheat with probability larger than

2

�k

, the prover must solve an instance of size l of a hard computational

problem, such as �nding a discrete logarithm modulo an l-bit prime

2

.

In this work, we show that these communication complexities can be

further improved, if one uses bit commitments with particular properties.

Of course, any bit commitment scheme must commit the prover, uncondi-

tionally or not, to a particular bit, and it must be impossible for the veri�er,

unconditionally or not, to �nd the bit committed to from a commitment.

The additional properties we need can be informally described as follows:

2

More precisely, one can show that if a prover can argue a false statement with success

probability � > 2

�k

, then he can solve the hard problem in time O(1=(�� 2

�k

))

2



� Given any commitment C containing the bit b, the veri�er can (on his

own) compute a commitment C

0

that contains the bit 1� b.

� Given a commitment C that contains a 1-bit, the prover must be able

to convince the veri�er that this is the case, using an honest veri�er

zero-knowledge protocol. This protocol must be a 3-move Arthur-

Merlin game, it must have exponentially small error pobability, and

have communication complexity corresponding to a constant number

of commitments.

As detailed later, these conditions can be met by commitments based on the

factoring problem, or the discrete logarithm problem in a group of prime

order.

The second property may seem unnecessary: if the prover wants to

demonstrate that C contains a 1, why not just open the commitment? How-

ever, since the above involves a zero-knowledge protocol, it can allow simu-

lation of a "proof" that C contains a 1, even if it actually contains a 0. This

technicality will be of crucial importance later (more precisely, in the proof

of Theorem 3.1).

We do not use PCP's to build our protocols, in stead we use a new

proof technique that may be of independent interest: We start from any

Boolean formula � for checking an NP-witness for the language in question,

and reduce the problem of showing that � is satis�able to showing that

a monotone formula constructed from � is satis�ed by inputs contained

in a given set of commitments. We then apply a technique derived from

the "proofs of partial knowledge" introduced by Cramer et al. [7] (and

independently in [18]).

This results in zero-knowledge interactive proofs for NP with error prob-

ability 2

�k

and communication complexity corresponding to O(jxj

c

) + k

commitments; and in interactive arguments for NP with communication

complexity O(jxj

c

) �max(k; l) bits (we count commitments for the proof and

bits for the argument to facilitate comparison with [15, 16]).

Comparing this to [15], [16] which were the best results so far, we see

that for interactive proofs, the term depending on k has been reduced from

O(log

c

jxj)k to k. For arguments, our result is inferior to [16] when viewed as

a function of jxj, but superior as a function of the security parameters k and

l. Note that our interactive argument has no need for a collision-intractable

hash function, we only need commitments with the right properties. Hence

our cryptographic assumption is potentially weaker than the ones needed in

3



[16]

3

.

The constants involved in our communication complexities are small

enough for the protocols to be practical in a realistic situation: let n be the

number of times the formula � reads an input variable. Then the commu-

nication complexity of the protocols when using our concrete commitment

schemes can be more precisely stated as at most 4n+k+1 commitments for

the interactive proof and at most 5nl + 5l bits for the argument (assuming

k � l). By contrast, the PCP-based methods of [15], [16] hardly have any

practical relevance because of the elaborate reductions needed to build a

PCP.

Given a circuit C of size m, one can easily build a formula of size O(m)

that is satis�able precisely if C is. Hence our result implies an interactive

proof that proves satis�ability of a circuit of size m with error probability

2

�m

using O(m) commitments, adopting again the convention of setting the

security parameter equal to the input size. Even if an extremely small PCP

would exist, the protocol in [15] would use 
(m log

c

m) commitments to

solve the same problem. To the best of our knowledge, our protocol is the

�rst to acheive "linear zero-knowledge" in this sense. For arguments, we get

O(m

2

) bits using l = k = m, where [16] would be O(m

2

logm).

As a further application of our techniques, we show a connection to mul-

tiparty computations, allowing for example t committed oblivious transfers

with error probability 2

�k

to be done simultaneously using O(t + k) com-

mitments. Improved results for the communication complexity of general

computations follow from this.

Remark

For the case of interactive proofs, we have, like [15], ignored in the statement

of results the communication needed to set up the commitment scheme

4

.

This is reasonable, as the same commitment scheme can be reused in many

proofs. For arguments, however, an attractive point is that cheating is only

possible if the intractability assumption used is broken while the protocol is

running

5

. This, however, is only true if a new instance of the commitment

3

although no example is currently known that would support our needs, and not si-

multaneously imply a collision intractable hash function

4

In any real implementation, the veri�er needs to receive some public parameters of the

commitment scheme, and possibly a zero-knowledge proof that they were chosen correctly

5

in contrast to the situation for proofs, where breaking the assumption at any later

time can cause problems

4



scheme is chosen in every run of the protocol. Our communication com-

plexity for arguments therefore includes communication for setting up the

commitment scheme.

We also remark that in all our protocols, the veri�er only sends random

bits, so they can be made non-interactive using the Fiat-Shamir heuristic.

2 Notation and Properties for Bit Commitment

Schemes

This section introduces some notation for bit commitments and states a little

more precisely the properties we need. In this extended abstract, there will

not be enough space for a full formal statement. For de�nitions of interactive

poof systems and zero-knowledge, please refer to [19].

We will think of a bit commitment scheme as de�ned by a probabilistic

polynomial time algorithm G called a key generator. It takes as input 1

l

,

where l is a security parameter. It produces a description of two functions c :

f0; 1g

l

r

�f0; 1g ! f0; 1g

l

and v : f0; 1g

l

�f0; 1g

l

r

�f0; 1g! faccept; rejectg.

Here, l

r

polynomially bounded in l. We refer to these functions as the public

key of the commitment scheme.

To commit to a bit b, the prover (P ) chooses r at random and sends

c(r; b) to the veri�er (V ). To open a commitment, P sends r; b to V , who

computes v(c(r; b); r; b) and accepts or rejects the opening, depending on the

outcome.

This is certainly not the most general description possible of a commit-

ment scheme, but it will cover all the cases we consider here.

For interactive proofs, we will need commitments that are uncondition-

ally binding: b is uniquely determined from c(r; b); and computationally

hiding: the distributions of c(r; 1) and of c(r; 0), where r is random, are

computationally indistinguishable (refer to [19] for details). For such a com-

mitment, P will run G, send the result to V , and possibly convince V that

the result was computed correctly.

For interactive arguments we need the dual poperties, namely that com-

mitments are unconditionally hiding: the distributions of c(r; 1) and of

c(r; 0), where r is random, are equal; and computationally binding: consider

any probabilistic polynomial time algorithm that receives c; v as generated

by G on input 1

l

and produces x; r

0

; r

1

as output. Then the probability that

v(x; r

0

; 0) = v(x; r

1

; 1) = accept is superpolynomially small in l. For such a

commitment, V will run G, send the result to P , and possibly convince P

5



that the result was computed correctly.

Unconditionally hiding commitment may in addition be trapdoor, or

chameleon [3]. For a trapdoor commitment, the generator G outputs in ad-

dition a string T called the trapdoor information. Given the trapdoor, one

can cheat the commitment scheme, i.e. there is a polynomial time algorithm

that on input T will produce pairs r

0

; r

1

such that c(r

0

; 0) = c(r

1

; 1) = C,

v(C; r

0

; 0) = v(C; r

1

; 1) = accept, and the distribution of C is the same as

that of c(r; b) for random r. We will assume that, on the other hand, given

C and any pair r

0

; r

1

such that v(C; r

0

; 0) = v(C; r

1

; 1) = accept, it is easy

to compute T .

2.1 Special Properties Needed

We now explain three extra properties that we will need our bit commitment

to possess (two of them su�ce for unconditionally binding commitments).

De�nition 2.1 Let a bit commitment scheme be given. We say that com-

mitments can be negated if, when given a commitment C = c(r; b), V can

(on his own) compute e�ciently a commitment C

0

, such that there is an r

0

for which C

0

= c(r

0

; 1 � b); moreover P can e�ciently compute r

0

from r,

and vice versa. ut

The second special property we need is that the scheme has an e�cient

proof of contents, i.e. a protocol of a special form, that P can use to convince

V that a commitment contains a 1.

De�nition 2.2 A bit commitment scheme has an e�cient proof of con-

tents if there is a pair of probabilistic polynomial time interactive Turing

machines (A;B), that receive a commitment C as common input and have

the following properties:

� (A;B) is a 3-move Arthur-Merlin game, i.e. conversations have the

form (a; e; z), where a; z are generated by A, and e is chosen by B

at random in f0; 1g

t

, for some t depending on l. At the end of the

protocol, B evaluates a predicate � on input C; a; e; z and accepts if

and only if �(C; a; e; z) = 1. B always accepts if A know to open C as

a 1.

� Some technical conditions are needed for our main results: The com-

munication complexity of (A;B) is O(l) bits and t must be linear in l;

6



for unconditionally binding schemes we will always choose l such that

t � k, where 2

�k

is the error probability we want for the interactive

proof in which the scheme will be used.

� Given two accepting conversations of form (a; e; z), (a; e

0

; z

0

) (where

e 6= e

0

), one can e�ciently compute r, such that v(C; r; 1) = accept.

That is, (A;B) is a proof of knowledge that A knows how to open C as

a 1 (satisfying a particularly strong version of knowledge soundness).

� (A;B) is honest veri�er perfect zero-knowledge, with a simulator that

on input C; e produces a conversation (a; e; z) such that �(C; a; e; z) =

1. We assume for simplicity that the simulator will always produce an

accepting conversation, even on input a commitment containing a 0

(this is true of our concrete examples)

6

.

ut

Finally, for an unconditionally hiding trapdoor commmitment scheme,

we will need that the the scheme has an e�cient proof of knowledge of the

trapdoor, i.e. there is a constant round witness hiding proof of knowledge

(see [10]), with communication complexity linear in l, that V can use to

demonstrate that he knows the trapdoor of the commitment scheme. This

will be necessary to prove that our argument is perfect zero-knowledge.

Examples of commitments that have these properties, based on either

factoring or the discrete log problem can be found in Section 6.

3 A General Framework

In this section, we give a general method for demonstrating that a word

x is in a language L 2 NP . The same high level method works for both

proofs and arguments, the only di�erence being the type of bit commitment

scheme used.

The resulting protocol will only be honest veri�er zero-knowledge. Then

in the following two sections, we show how to obtain zero-knowledge in

general for interactive proof, resp. arguments.

We assume in this section that a bit commitment scheme satisfying Def-

initions 2.1 and 2.2 is already set up, so that we have functions c; v for com-

mitting and verifying. By Cook's theorem, there exists a Boolean formula �

6

Note that since commitments containing 0's are assumed to be indistinguishable from

1-commitments, the simulator would in general, except with negligible probability, produce

an accepting conversation on input a random 0-commitment

7



of size polynomial in jxj that can verify an NP-witness of membership of x in

L. In fact, any formula that does the veri�cation will do - and usually a for-

mula constructed ad hoc can be much smaller than one constructed through

the machinery of Cook's theorem. Without loss of generality, assume that

� contains only and-, or- and not operators, and that all negations occur at

the inputs.

Let m be the number of di�erent input variables to �, and n be the

number of times � reads an input variable. Thus m � n. Let �

0

denote

the monotone formula obtained from � by removing all the negations and

renaming the input variables, so that all n references to the input refer to

di�erent variables. For example, if � = (a ^ b) _ (:a ^ :b), then we would

have �

0

= (a ^ b) _ (c ^ d).

Let 	 be a monotone formula on n input variables, and let a set of

commitments D

1

; ::; D

n

be given. Then we say that the set of strings

r

1

; :::; r

n

	-opens D

1

; :::; D

n

if 	(


1

; :::; 


n

) = 1, where 


i

= 1 if and only if

v(D

i

; r

i

; 1) = accept.

To describe the general method, we will need the following theorem:

Theorem 3.1 Suppose we are given a bit commitment scheme which has an

e�cient proof of contents (A;B) according to De�nition 2.2. Let commit-

ments D

1

; :::; D

n

and a monotone Boolean formula 	 on n inputs be given,

where 	 uses each input bit only once. Then there exists a protocol (A

0

; B

0

)

with the following properties: (A

0

; B

0

) is a 3-move Arthur-Merlin game, is

honest veri�er perfect zero-knowledge, and has communication complexity

t bits plus n times that of (A;B). Furthermore, from 2 conversations of

(A

0

; B

0

) of form (a; e; z); (a; e

0

; z

0

), where e 6= e

0

one can e�ciently compute

a set of strings that 	-opens D

1

; :::; D

n

.

Very roughly speaking, what (A

0

; B

0

) does is to execute (A;B) n times

in parallel, using D

i

as input to the i'th instance. Here, A

0

is to allowed

to choose himself the challenge to be answered in each instance, however

the challenge values must obey some constraints de�ned in terms of 	 and

a random value chosen by the veri�er. The full proof of the theorem uses

methods derived from [7] and can be found in Appendix A. This leads to the

following protocol for showing that � is satis�able, with error probability at

most 2

�k

:

Protocol (P; V )

1. Let b

1

; ::; b

m

be a set of input bits that satisfy �. For i = 1::m, P now

makes a commitment C

i

to b

i

, and sends them to V .

8



2. For i = 1:::m, V computes from C

i

a commitment C

0

i

containing 1�b

i

.

3. Number the positions in � where an input bit is used from 1 through

n. For j = 1::n, let D

j

= C

i

, if the bit b

i

is used at this position, and

let D

j

= C

0

i

if the bit 1� b

i

is used.

4. Using the protocol (A

0

; B

0

) guaranteed by Theorem 3.1, P now con-

vinces V that D

1

; :::; D

n

can be �

0

-opened, i.e. that the bits contained

in D

1

; :::; D

n

satisfy the monotone formula �

0

. The protocol (A

0

; B

0

)

is repeated w times in parallel, where w is minimal so that wt � k.

The protocol is sound and complete

Completeness is trivial. For soundness, observe that if V accepts with prob-

ability > 2

�k

then the prover must be able to answer at least two di�erent

challenges in some instance of (A

0

; B

0

). By Theorem 3.1, this gives us a way

to �

0

-open D

1

; :::; D

n

. Let S be the set of commitments we can open. Note

that each D

j

is either C

i

or C

0

i

for some i. By assumption on the commit-

ment scheme, we can then open all the C

i

's for which C

i

or C

0

i

is in S. In

fact, if � reads the same variable several times, we may have several values

for each bit in C

i

and its complement. However, depending on the type

of bit commitment, inconsistencies are either impossible or allow breaking

the intractability assumption. But if there are no inconsistencies, we can

make a string of bits b

1

; :::; b

m

that will satisfy � by choosing b

i

to be the

bit contained in C

i

if C

i

or C

0

i

is in S, and use an arbitrary value otherwise.

This works since by choice of the b

i

's corresponding to elements in S, we

have ensured that �

0

will receive enough 1 bits to be satis�ed, and hence

by monotonicity of �

0

, the arbitrary choice of the rest of the bits does not

a�ect the output.

The protocol is honest veri�er zero-knowledge

To simulate, we construct the C

i

's as a set of all-0 commitments, and com-

pute the C

0

i

's from this. We then invoke w times the honest veri�er simulator

of (A

0

; B

0

). This simulation is perfect for unconditionally hiding commit-

ments, and is computationally indistinguishable for unconditionally binding

commitments.

4 Interactive Proofs for NP

To make a zero-knowledge interactive proof from (P; V ), we use an un-

conditionally binding commitment scheme. The problem that (P; V ) is only

honest veri�er zero-knowledge can be solved using a method due to Okamoto

9



[9], namely to let the veri�er's challenge be determined by a two party coin-


ipping protocol:

1. The prover sends the �rst message of protocol (P; V ).

2. For i = 1 to k do: the prover commits to a bit p

i

, the veri�er chooses

a random bit v

i

, and the prover opens the commitment to p

i

.

3. The prover sends P 's �nal message in protocol (P; V ), taking the ver-

i�er's challenge to be p

1

� v

1

; :::; p

k

� v

k

.

When the veri�er is honest, the challenge is still uniformly chosen, so the

error probability is still 2

�k

. Moreover, the protocol can now be simulated

against a general veri�er since by rewinding the veri�er, the simulator can

force the challenge to be a particular value of its choice, and hence the

honest veri�er simulator we already had is enough to simulate the rest of

the conversation. The coin
ipping step costs k commitments. Note also

that we have set up the bit commitments such that the parameter t is equal

to k, and hence only 1 iteration of the protocol (A

0

; B

0

) is needed. Now by

simple inspection of (P; V ), we get

Theorem 4.1 Suppose there exists an unconditionally binding bit commit-

ment scheme, in which commitments can be negated, and which has an e�-

cient proof of contents. Then any L 2 NP has a zero-knowledge interactive

proof system that proves x 2 L with error probability at most 2

�k

using a

total of O(jxj

c

)+k commitments, for some constant c depending only on L.

5 Interactive Arguments for NP

To build a zero-knowledge interactive argument from (P; V ), we use an un-

conditionally hiding trapdoor bit commitment scheme:

1. The veri�er runs the key generator G, sends the resulting public key

for the commitment scheme to the prover, and keeps the trapdoor

private.

2. The veri�er gives a witness hiding proof of knowledge of the trapdoor.

3. Protocol (P; V ) is executed using the commitment scheme instance

just generated.

10



The idea is taken from [11]. The protocol as shown here has 6 moves,

but this can be condensed to 4 moves in the same way as in [11]. The prover

must compute the trapdoor information in order to cheat the commitment

scheme, and the veri�er's witness hiding proof does not help him to do that.

Hence the soundness of (P; V ) is preserved. Furthermore, the protocol is now

zero-knowledge, since the simulator can use the knowledge extractor for the

veri�er's proof of knowledge to get the trapdoor information

7

. Given the

trapdoor, simulation of the rest of the protocol is trivial. The witness hiding

proof costs, by assumption on the commitment scheme, a communication

complexity that is O(l) bits. We then get the following by inspection of

(P; V ):

Theorem 5.1 Suppose there exists an unconditionally hiding trapdoor bit

commitment scheme, in which commitments can be negated, and which has

an e�cient proof of contents and an e�cient witness hiding proof of knowl-

edge of the trapdoor. Then any L 2 NP has a perfect zero-knowledge interac-

tive argument that x 2 L with communication complexity O(jxj

c

) �max(k; l)

bits, where c is a constant depending only on L, and if the prover can cheat

with probability � > 2

�k

, the prover can �nd the trapdoor of an instance of

the commitment scheme of size l in time O(1=(�� 2

�k

)).

6 Practical Implementation and Optimizations

This section contains material related to practical implementation of our

protocols. We present examples of commitments with the properties we

need and compute the concrete communication complexities that result.

6.1 An Unconditionally Binding Bit Commitment Scheme

This scheme is based on the factoring problem, and is derived from the

identi�cation scheme of Goulliou and Quisquater [14].

The key generator for this scheme chooses an l bit integer n as the

product of two primes p

1

; p

2

, such that there is an odd prime q that divides

p

1

� 1, but not p

2

� 1 (easily done by choosing q; p

2

�rst and then looking

for a prime of form 2jq + 1 for some j). Then a constant w is chosen as a

7

Although this by itself may not produce the trapdoor with absolute certainty, the

simulator can run an exhaustive search for the trapdoor in parallel with the extractor.

This will then produce the trapdoor in those exponentially few cases where the extractor

fails, while the expected running time remains polynomial

11



random number in Z

�

n

which is not a q'th power modulo n. The public key

is now n; q; w. The functions c and v are de�ned by

c(r; b) = r

q

w

�(b)

mod n

where r is random in Z

�

n

; and

v(C; r; b) = accept if and only if C = r

q

w

�(b)

mod n;

where � is de�ned as in the previous subsection.

Uisng the fact that 2 and q are relatively prime, it is not hard to show

that we can have wr

q

= w

�1

r

0q

mod n if and only if w is a q'th power, and

the scheme is therefore unconditionally binding. After choosing the public

key, P should convince V in zero-knowledge that w does not have a q'th root.

This is easily done using a variant of the protocol from [19] for quadratic

non-residuosity - note that it is easy for P to test if a number y has a q'th root

by testing if y

�(n)=q

mod n = 1. Finding the bit contained in a commitment

C is precisely the problem of distinguishing cosets of the subgroup of q'th

powers in Z

�

n

, a variant of the quadratic residuosity problem. This is a

well-known problem, believed to be hard, if factoring is hard.

Hence we conjecture that the scheme is computationally hiding under the

q'th residuosity assumption: the distributions of r

q

w mod n and r

q

w

�1

mod

n are computationally indistinguishable, when r is random in Z

�

n

and the

length of q is linear in the length of n.

Commitments can be negated: if C = c(r; b), then anyone can easily

compute C

0

= C

�1

mod n = c(r

�1

; 1� b).

Finally, the following protocol (A;B) is an e�cient proof of contents:

1. Let y = C=w mod n, where C = wr

q

mod n is the input commitment.

Now A chooses f at random in Z

�

n

and sends a = f

q

mod n to B.

2. B chooses e 2 f0; 1g

t

at random (where t is maximal, such that 2

t

< q)

and sends it to A.

3. A sends to B z = f � r

e

mod n

4. B checks that z

q

= a � y

e

mod n

6.2 Two Unconditionally Hiding Bit Commitment Schemes

As a �rst example, we observe that the scheme from the previous section

can trivially be turned into an unconditionally hiding scheme, by letting in

12



stead the veri�er run the key generator, but choose w to be a q'th power.

Then any commitment is a random q'th power, and the trapdoor is a q'th

root of w.

The second example is based on the discrete logarithm problem in a

group of prime order q. For concreteness, we think here of this group as a

subgroup of Z

�

p

, where p is a prime, and q divides p � 1. But any group of

order q would do, e.g. on an elliptic curve. The scheme is derived from the

identi�cation scheme of Okamoto [17].

To generate the public key of the scheme, choose an l-bit prime p, such

that the prime q divides p� 1 (this is easily done by picking q �rst of length

slightly smaller than l and then searching for p). Also �nd two elements

g

1

; g

2

2 Z

�

p

of order q. Then choose s

1

; s

2

at random modulo q and let

w = g

s

1

1

g

s

2

2

mod p. The public information is now p; q; g

1

; g

2

; w.

Let the function � be de�ned by �(0) = �1 and �(1) = 1. Then the

functions c and v are de�ned by

c((r

1

; r

2

); b) = g

r

1

1

g

r

2

2

w

�(b)

mod p

where r

1

; r

2

are random in Z

q

; and

v(C; (r

1

; r

2

); b) = accept if and only if C = g

r

1

1

g

r

2

2

w

�(b)

mod p:

This scheme is unconditionally hiding, since any commitment is a random

element in the group of order q, independently of b. It is computationally

binding if discrete logs in the subgroup of order q are hard to compute, since

being able to open a commitment both ways trivially implies that you can

compute u

1

; u

2

such that w = g

u

1

1

g

u

2

2

mod p, and solving this problem for

given p; q; g

1

; g

2

; w is well known to be equivalent to �nding discrete logs in

the group generated by g

i

.

It is also clearly a trapdoor scheme, where the trapdoor can be any pair

u

1

; u

2

such that w = g

u

1

1

g

u

2

2

mod p.

Commitments can be negated: given C = c((r

1

; r

2

); b), then C

0

= C

�1

mod

p = c((�r

1

;�r

2

); 1� b) contains 1� b.

The scheme has the following e�cient proof of contents (A;B):

1. Let y = C � w

�1

, where C = g

r

1

1

g

r

2

2

w mod p is the input commitment.

Now A chooses f

1

; f

2

at random in Z

q

and sends a = g

f

1

1

g

f

2

2

mod p to

B.

2. B chooses e 2 f0; 1g

t

at random (where t is maximal, such that 2

t

< q)

and sends it to A.

13



3. A sends to B: z

1

= f

1

+ er

1

mod q and z

2

= f

2

+ er

2

mod q

4. B checks that g

z

1

1

g

z

2

2

= ay

e

mod p

It is trivial to verify that this protocol has the required properties. Note

that the protocol is actually a proof of knowledge that A knows how to

express y as a product of powers of g

1

; g

2

. For this problem, there are

many witnesses (i.e. pairs of exponents for g

1

; g

2

), but it is easy to see that

the protocol is witness indistinguishable. And since computing from one

witness any other one is as hard as computing the discrete log of g

1

base

g

2

, it follows from [10] that the protocol is witness hiding, if discrete log is

hard. The same protocol can therefore be used to prove knowledge of the

trapdoor - as required above, it is constant round and witness hiding.

6.3 Concrete Communication Complexities

Due to space limitations we state only the result (details are in Appendix

B):

Proposition 6.1 Suppose the protocols from Theorem 4.1, resp. 5.1 are

executed using the commitment schemes from Section 6.1, resp. 6.2, then

assuming that l > k, the communication complexities will be at most 4n +

k + 1 commitments, resp. 5nl + 5l bits, where n is the number of times a

Boolean formula for verifying an NP witness for L reads an input variable.

7 Applying our Technique to Multiparty Com-

putations

Loosely speaking, the multiparty computation problem is de�ned by a func-

tion f with p arguments and p participants such that the i'th participant

owns a value x

i

of the i'th argument to f . The goal is to design a protocol

such that all participants learn the value of f(x

1

; :::; x

p

), but no coalition of

participants can - even by deviating from the protocol - learn more about

the inputs than what is implied by their own inputs and the result.

The classical protocols for solving this problem in the broadcast model

(where only broadcast and no private channels are available) can be found

in [13, 20], with e�ciency improvements e.g. in [6]. A much more substan-

tial improvement can be obtained by using the commitment scheme from

Section 6.1 to implement directly a fundamental primitive for multiparty

14



computation known as committed oblivious transfer. Committed oblivious

transfer is su�cient to implement general multiparty computations, a con-

crete reduction can be found in [8]. We have the following:

Proposition 7.1 Under the q'th residuosity assumption, there is a protocol

for executing t committed oblivious transfers with error probability 2

�k

using

communication corresponding to O(t+ k) commitments.

A committed oblivious transfer takes part between two parties A and B.

Initially A has made two commitments C

0

; C

1

to bits a

0

; a

1

, and B has made

a commitment D to bit b. The purpose of the protocol is that B should end

up making a commitment T to a

b

. This must be done under the conditions

that A does not learn b, and that B does not learn a

1�b

.

Due to space limitations in this extended abstract, we sketch here only

our protocol for a single transfer without any formal proof.

1. Let n be the modulus used in A's commitments. Then B chooses

s 2 Z

�

n

and � = +1 or �1 at random. Then sends S = C

�

b

s

q

mod n to

A.

2. B proves in zero-knowledge the following statement: (D contains 0

AND B knows a q'th root of C

0

S OR C

0

S

�1

) OR (D contains 1 AND

B knows a q'th root of C

1

S OR C

1

S

�1

). This can be done by a

straightforward variant of the protocol (P; V ) presented earlier.

3. If the above proof was successful, A opens the commitment S to reveal

the bit c.

4. B makes the commitment T = c(r; a

b

) using that if � = 1, then c =

a

b

, else c = 1 � a

b

. B proves in zero-knowledge that the formula

((b = 1) ^ (a

b

= a

1

)) _ ((b = 0) ^ (a

b

= a

0

)) holds, where a

0

; a

1

; b; a

b

refer to the bits contained in the commitments C

0

; C

1

; D; T . Again,

it is straigtforward to devise a protocol for this based on the (P; V )-

protocol.

It is clear that if B plays honestly, the protocol conveys no information

about b since S is distributed independently from C

0

; C

1

; and B will never

accept an incorrect value of a

b

since commitments are unconditionally bind-

ing. On the other hand, if A plays honestly then except with probability

negligible in k, B learns the value of a

b

and nothing about a

1�b

(by the proof

in step 2) and T contains the correct value (by the proof in step 4). The

15



communication complexity amounts to O(1) commitments for the proofs

themselves and O(k) commitments to generate the challenges for the proofs

mutually at random. But several transfers done in parallel can all use the

same challenge values, and the proposition above follows.

If one demands that the probability that a protocol for multiparty com-

putation produces an incorrect result be exponentially small in the parame-

ter k, earlier solutions need communication corresponding to 
(np

2

k) com-

mitments, where n is the size of a Boolean circuit computing f . Using the

method above together with e.g. the framework from [6], we get

Proposition 7.2 Under the q'th residuosity assumption, there is a protocol

for doing secure p-party computation in a circuit of size n that requires

communication corresponding to O(np

2

) +O(pk) commitments.

In this result, the O(np

2

) contribution accounts for the total size of

the proofs that must be given, while the O(pk) contribution accounts for

the commitments needed to generate mutually random challenges for the

interactive proofs.

References

[1] J.Boyar, G.Brassard and R.Peralta: Subquadratic Zero-Knowledge,

Journal of the ACM, November 1995.

[2] J.Boyar and R.Peralta: Short Discreet Proofs, Proc. of EuroCrypt 96.

[3] G.Brassard, D.Chaum and C.Cr�epeau: Minimum Disclosure Proofs of

Knowledge, JCSS, vol.37, 1988.

[4] L.Babai, L.Fortnow, L.Levin and M.Szegedi: Checking Computations

in Poly-logarithmic Time, Proc. of STOC 91.

[5] J. Benaloh and J. Leichter: Generalized Secret Sharing and Monotone

Functions, Proc. of Crypto 88, Springer Verlag LNCS series, 25{35.

[6] D.Chaum, I.Damg�ard and J. van de Graaf: Multiparty Computations

ensuring Privacy of each Party's Input and Correctness of the Result,

Proc. of Crypto 87.

[7] R.Cramer, I.Damgaard, and B.Schoenmakers: Proofs of partial knowl-

edge and simpli�ed design of witness hiding protocols, proc. of Crypto

94.

16



[8] C.Cr�epeau, J. van de Graaf and A. Tapp: Committed Oblivious Transfer

and Private Multiparty Computation, Proc. of Crypto 95.

[9] I.Damg�ard, O.Goldreich, T.Okamoto and A.Wigderson: Honest Veri-

�er vs. Dishonest Veri�er in Public Coin Zero-Knowledge Proofs, Proc.

of Crypto 95.

[10] U. Feige and A. Shamir: Witness Indistinguishable and Witness Hiding

Protocols, Proc. of STOC 90.

[11] U. Feige and A. Shamir: Zero-Knowledg Proofs of Knowledge in Two

Rounds, Proc. of Crypto 89.

[12] O.Goldreich, S.Micali and A.Wigderson: Proofs that yield Nothing but

their Validity and a Methodology of Cryptographic Protocol Design,

Proc. of FOCS 86.

[13] O.Goldreich, S.Micali and A.Wigderson: How to play any mental game,

Proc. of FOCS 87.

[14] L.Guillou and J.J.Quisquater: A Practical Zero-Knowledge Protocol

Fitted to Security Microprocessor Minimizing both Transmission and

Memory, Proc. of EuroCrypt 88.

[15] J.Killian: A note on E�cient Proofs and Arguments, Proc. of STOC

92.

[16] J.Killian: E�cient Interactive Arguments, Proc. of Crypto 95.

[17] T.Okamoto: Provably Secure and Practical Identi�cation Schemes and

Corresponding Signature Schemes, Proc. of Crypto 92.

[18] A.De Santis, G Di Crescenzo, G. Persiano and M.Yung: On Monotone

Formula Closure of SKZ, Proc. of FOCS 94.

[19] S.Goldwasser, S.Micali and C.Racko�: The Knowledge Complexity of

Interactive Proof Systems, SIAM J.Computing, Vol.18, pp.186-208,

1989.

[20] A. Yao: How to generate and exchange secrets, Proc. of FOCS 86.

17



A Proof of Theorem 3.1

For convenience, we restate the result proved in this appendix:

Theorem A.1 Suppose we are given a bit commitment scheme which has

an e�cient proof of contents (A;B) according to De�nition 2.2. Let commit-

ments D

1

; :::; D

n

and a monotone Boolean formula 	 on n inputs be given,

where 	 uses each input bit only once. Then there exists a protocol (A

0

; B

0

)

with the following properties: (A

0

; B

0

) is a 3-move Arthur-Merlin game, is

honest veri�er perfect zero-knowledge, and has communication complexity

t bits plus n times that of (A;B). Furthermore, from 2 conversations of

(A

0

; B

0

) of form (a; e; z); (a; e

0

; z

0

), where e 6= e

0

one can e�ciently compute

a set of strings that 	-opens D

1

; :::; D

n

.

For the proof, we need a result of Benaloh and Leichter [5]. They showed

how to construct a perfect secret sharing scheme based on any monotone

Boolean formula 	. The scheme can be thought of as a probabilistic algo-

rithm which we will call BL. It takes as input any monotone formula and

any bitstring s (the secret) of �nite length, say t. It outputs a set of bit

strings, shares s

1

; :::; s

n

, where n is the number of variables in 	. In our

case, where 	 reads every variable once, the length of each share is t.

If I is a set of indices between 1 and n, we can de�ne a bit string

�

1

; : : : ; �

n

in a natural way by �

i

= 1 i� i 2 I . De�ne 	(I) = 	(�

1

; : : : ; �

n

).

We can then describe the properties of the output distribution of BL:

� Given fs

i

j i 2 Ig where 	(I) = 1, it is easy to compute s.

� The distribution of any set fs

i

j i 2 Ig where 	(I) = 0, is independent

of s.

If 	(I) = 0, we let D

I

denote the distribution of fs

i

j i 2 Ig (it can

depend only on I). It can easily be proved that given a secret s, a set

of shares fs

i

j i 2 Ig, distributed according to D

I

, can always e�ciently

completed to a full set of shares consistent with s, i.e. distributed according

to the output distribution of DL on input 	; s.

In the following, let S denote the honest veri�er simulator for the proof of

contents. Initially, the prover is given n commitments D

i

= c(�

i

; �

i

) to bits

�

i

, where �

i

and �

i

are private input to the prover. Furthermore, �

1

; : : : ; �

n

	-opens D

1

; : : : ; D

n

. Let W be the set of indices for which �

i

= 1, and let

W

0

be the complement of W .

The following protocol has the properties claimed by the theorem.

18



1. A

0

chooses a random bitstring s 2 f0; 1g

t

and runs BL on input 	

�

and s

8

. Let s

1

; : : : ; s

n

denote the resulting shares.

For i 2 W , A

0

discards the share s

i

(and also the string s. He now

computes for each D

i

a �rst message a

i

following the algorithm of A.

For i 2W

0

, A

0

runs the simulator S on input ofD

i

and s

i

. This results

in accepting conversations a

i

; s

i

; z

i

, i.e. �(D

i

; a

i

; s

i

; z

i

) = 1.

A

0

sends all a

i

's to B

0

.

2. The veri�er sends a random challenge e 2 f0; 1g

t

to the prover.

3. The prover interprets e as a secret in the sharing scheme and completes

shares s

i

with i 2 W

0

to a full set of shares s

1

; : : : ; s

n

consistent with e.

Next, for i 2 W he completes the conversation by computing z

i

such

that �(D

i

; a

i

; s

i

; z

i

) = 1. Note that here the shares s

i

are now inter-

preted as challenges. Finally, the prover sends s

1

; : : : ; s

n

and z

1

; : : : ; z

n

to the B

0

, who accepts i� the set of shares is consistent with c and if

all n conversations a

i

; s

i

; z

i

are accepting, i.e., �(D

i

; a

i

; s

i

; z

i

) = 1.

Completeness:

Trivial by the assumptions on the proof of contents and by the properties

of the secret sharing scheme BL.

Soundness:

Suppose we are given two conversations fa

i

g; e; (fs

i

g; fz

i

g) and fa

i

g; c

0

; (fs

0

i

g; fz

0

i

g)

(i = 1 : : :n) with e 6= e

0

. Let S denote the set of i such that s

i

6= s

0

i

,

and S

0

the complement. Then for i 2 S we can compute r

i

such that

v(D

i

; r

i

; 1) = accept. This follows from the assumptions on (A;B) (De�ni-

tion 2.2). By monotonicity of 	, it is now su�cient to prove that 	(S) = 1.

Note that if we had 	

�

(S

0

) = 1, then the fs

i

g and the fs

0

i

g would be deter-

mine the same secret (challenge value), which contradicts e 6= e

0

(recall that

we are working with a secret sharing scheme for 	

�

). Therefore 	(S) = 1,

by de�nition of the dual.

Honest veri�er zero-knowledge:

Given commitments D

1

; : : : ; D

n

, the simulator runs as follows.

1. Choose c at random from f0; 1g

t

and run BL on input 	

�

and c. Let

s

1

; : : : ; s

n

denote the output.

8

	

�

denotes the dual of 	, which is a monotone Boolean formula as well. By de�nition,

for x 2 f0; 1g

n

, 	

�

(x) = 1 i� 	(x� 1) = 0 and 	

�

(x) = 0 otherwise.

19



2. For i = 1 : : :n, run the simulator S on input D

i

and s

i

. Output the

conversations a

i

; s

i

; z

i

.

First note that the s

i

are distributed exactly as in the protocol. For i 2 W

0

,

we are following exactly A

0

's algorithm for generating the rest of the conver-

sations a

i

; s

i

; z

i

. For i 2 W , note that we have assumed that the simulator

S can sample perfectly conversations with a given challenge value (De�ni-

tion 2.2), and so also in this case the conversations a

i

; s

i

; z

i

are distributed

exactly as in the protocol.

Communication Complexity:

By inspection of the protocol.

B Concrete Communication Complexities

Assume we use one of the two example commitment schemes shown above

to implement our protocols. To evaluate their practical potential, we com-

pute the exact communication complexities that result. In general we can

say that in the worst case, the formula � uses every input bit and its com-

plement exactly once, so that no reuse of commitments is possible. Hence,

in the (A

0

; B

0

) protocol, for each input bit we use at most the commitment

containing the bit, and the proof of contents done w.r.t. this bit.

For both commitments schemes, we have to choose the parameter l such

that either factoring or discrete log is infeasible, which means that l should

be 700 � 1000. To ensure a chance of at most 1 in a billion of cheating it

su�ces that k = 30, so we reasonably assume that k � l in any practical

situation.

From the description of the scheme from Section 6.1 based on factoring,

we see that the proof of contents requires communication equivalent to two

commitments, plus a challenge value that will allways be of length at most 1

commitment (in fact usually much shorter). One proof of contents therefore

needs communication corresponding to at most 3 commitments.

From the description of the scheme from Section 6.2 based on discrete

log, we see that the proof of contents communicates numbers corresponding

to at most 5l bits (3 numbers plus 1 challenge).

For both the commitment schemes, it is clear that (P; V ) will only need

1 iteration of (A

0

; B

0

). Thus we have:

Proposition B.1 Suppose the protocols from Theorem 4.1, resp. 5.1 are

executed using the commitment schemes from Section 6.1, resp. 6.2, then

20



assuming that l � k, the communication complexities will be at most 4n +

k + 1 commitments, resp. 5nl + 5l bits, where n is the number of times a

Boolean formula for verifying an NP witness for L reads an input variable.

A simple computation shows that with for example about 3 Mbyte of

communication, and using k = 50; l = 768, n can be up to about 10.000.

This might be enough to prove e.g. that you know a DES key encrypting a

given cleartext block to a given ciphertext block.

In a similar case, the short discreet proofs of Boyar and Peralta [2] use

signi�cantly less communication, about 0.3 Mbyte, but much more computa-

tion - a factor of very roughly k=10 logn more than our protocol

9

. However,

it is currently an open problem to prove anything about the soundness and

"discreteness" of the proofs from [2], even assuming hardness of factoring or

discrete log. Thus the factor 10 in communication seems to be the price we

currently have to pay for provable security.

We note that in general, our protocol may be signi�cantly optimized by

building ad hoc as small a formula � as possible for the problem. Further-

more it may be possible to �nd a smaller monotone formula computing the

same function as the one constructed directly from �.

For the interactive proofs, k "extra" commitments are needed to make

the proof simulatable against a general veri�er. Some of these can be saved

by comitting to a logarithmic number of bits in one commitment, thus doing

the two-party coin
ip on a logarithmic number of bits simultaneously.

9

This is due to the fact that many randomly generated commitments must be used for

every gate. These commitments can be generated from a short random seed, and do not

have to be communicated. They do have to be computed on by both parties, however.

21


