
Private Information Storage

Rafail Ostrovsky

�

Victor Shoup

y

April 10, 1996

*** Extended Abstract ***

Abstract

We consider the setting of hiding information through the use of multiple databases

that do not interact with one another. In this setting, there are k � 2 \databases" which

can be accessed by some \users". Users do not keep any state information, but wish to

access O(n) bits of \data". Previously, in this setting solutions for retrieval of data in

the e�cient manner were given, where a user achieves this by interacting with all the

databases. We consider the case of both writing and reading . While the case of reading was

well studied before, the case of writing was previously completely open. In this paper, we

show how to implement both read and write operations, with the following strong security

guarantees: all the information about the read/write operation is information-theoretically

hidden from all the databases (i.e. both the value of the bit and the address of the bit).

As in the previous papers, we measure, as a function of k and n the amount of communi-

cation required between a user and all the databases for a single read/write operation, and

achieve e�cient read/write schemes. Moreover, we show a general reduction from reading

database scheme to reading and writing database scheme, with the following guarantees:

for any k, given a retrieval only k-database scheme with communication complexity R(k; n)

we show a (k + 1) reading and writing database scheme with total communication com-

plexity O

�

R(k; n) � (logn)

O(1)

�

. Our general reduction in combination with the paper of

[Chor,Goldreich,Kushilevtiz,Sudan] yields:

� a 3-database scheme with read/write communication complexity

of O

�

n

1=3

� (logn)

3

�

;

� for all constants k � 2, a (k + 1)-database scheme with read/write

communication complexity of O

�

n

1=k

� (logn)

3

�

;

� O(logn)-database scheme with read/write communication

complexity of O

�

(logn)

3

�

.

It should be stressed that prior to the current paper no trivial (i.e. sub-linear) bounds

for private information storage were known. Moreover, our result yields a solution to

the problem of information-theoretically secure Oblivious RAM simulation with poly-log

overhead in the above setting. Our result also implies that e�cient instance-hiding schemes

where the state can be altered are possible.

�

Bellcore, e-mail: rafail@bellcore.com

y

Bellcore, e-mail: shoup@bellcore.com

1



1 Introduction

1.1 The Problem

Consider a user who wants to access a database, performing both query (read) operations and

update (write) operations. Furthermore, suppose that she wants to protect her privacy, keeping

private the address of the data being accessed, as well as the data itself, in the case of updates.

Under complexity-theoretic assumptions, and assuming that the user keeps small amount of state

information herself, this is in fact possible with a single database [G-87, Ost-90, GO-96]. In this

paper, we do not wish to rely on any complexity assumptions, wish to achieve information-

theoretic security, and require that users do not keep any state information (which would allow

di�erent users to access the database). Can such very strong requirements be achieved? We

show that this is in fact possible, when relying on several databases, instead of one.

While a single database (or a player) may not be trustworthy, the suggestion to rely on

several databases (or players) to achieve greater security has been suggested in many di�erent

settings, including previous work on reading from multiple databases of [CGKS-95], U.S. govern-

ment Clipper chip proposal [U.S.-93], Micali's\fair cryptosystems" [M-92], secret sharing schemes

[B-79, S-79], and instance hiding schemes of [RAD-78, AFK-89, BF-90, BFKL-90]. The sugges-

tion to rely on several, distributed agents is especially relevant due to the explosive growth of the

internet and the advent of small, cheap \network computers". In this scenario, data will routinely

be stored on remote servers, and accessed by the small, cheap computers via the internet.

Now, let us make the problem more precise. Suppose there are k � 2 databases which

can store information. That is, we envision the actual database to be stored in a distributed

manner consisting of two or more component databases that are not allowed to communicate with

one another. The databases communicate with a user, responding to both \store(addr,value)"

and \fetch(addr)" commands in the standard manner. The view of each individual constituent

database is the transcript of all \store" and \fetch" commands issued to it. Databases are

deterministic, but we assume that users are randomized and can ip coins. We stress that we do

not assume that users have access to a random oracle, solely that users can ip coins as needed,

and that users do not keep any state information. That is, a user can ip some small number

of coins during read/write operation, but then a di�erent user can perform another read/write

operation without any interaction with the �rst user.

In its simplest form, a database is a bit-vector D 2 B

n

, where B = f0; 1g: The database D

is represented by keeping data in k constituent databases that do not talk to one another. A

private query is an interactive protocol that allows any user to obtain a bit D

i

for an address

i 2 f0; : : : ; n� 1g of the user's choice; the protocol is such that each constituent database's view

of the interaction is independent of the address i. A private update is an interactive protocol that

allows the user to set D

i

to b, where the address i 2 f0; : : : ; n � 1g and the bit b 2 B are of

the user's choice; the protocol is such that each individual database's view of the interaction is

independent of the address i and the bit b. The user or users are not required to maintain any

state information between database accesses. We allow queries and updates to be interleaved in

an arbitrary manner and measure the total number of bits transmitted as a function of k (the

total number of constituent databases) and n (the size of the actual database).

1.2 Our Contribution

We show two general reductions:

Theorem 1 For any k � 2, given any retrieval k-database scheme for n data bits with communica-

tion complexity R(k; n) there exists storage and retrieval (k+1)-database scheme with communication

complexity O (R(k; n) � k � (log n)

3

), where each constituent database holds O(kn) bits.

2



Theorem 2 For any k � 2, given any retrieval k-database scheme for n data bits with communica-

tion complexity R(k; n) there exists storage and retrieval (2k)-database scheme with communication

complexity O (R(k; n) � (log n)

3

), where each constituent database holds O(n) bits.

REMARKS:

� For both theorems above, the communication complexity bounds are independent of the

order of reading and writing. In fact, it is information-theoretically hidden from each

database if this is a reading or writing command.

� Notice that the di�erence when going from (k+1) databases to (2k) databases in our two

results is a k multiplicative factor in the communication complexity and the size of each

constituent database. For the number of databases between k+1 and 2k simple tradeo�s

can be achieved.

� For reading schemes where privately reading a contiguous block of l bits has smaller

communication complexity them reading l single bits (as in [CGKS-95]), out reductions

are more e�cient, and the poly-log exponent can be further reduced. Moreover, the

savings on reading schemes for blocks could be used to achieve savings in our schemes

when reading/writing blocks of bits.

� Using secret sharing [S-79], our results could be adopted to the case where coalitions

of databases are allowed to communicate. Moreover, we can adopt our solution to the

malicious case, in the sense of certifying (with overwhelming probability) if data has been

tampered with, as long as there exists at least one non-corrupted database.

� In case of writing, one can consider the number of bits not to be �xed, but grow as a

function of time. In this case, we get poly-log overhead results as well. For example, we

get an analog of information-theoretically secure Oblivious RAM simulation (see [G-87,

Ost-90, GO-96]), where t steps of the original program can be simulated in an oblivious

manner using O(R(k; t) � (log t)

3

) overhead per step using k databases. Moreover, all the

solutions for the Oblivious RAM model are amortized, where as all our solutions are not.

Combining our general reductions with reading schemes of [CGKS-95], we get the following

corollaries:

Corollary 3 There are private information storage and retrieval schemes for n bits of data, with

the following parameters:

� a 3-database scheme with read/write communication complexity of O

�

n

1=3

� (log n)

3

�

;

� for all constants k � 2, a (k + 1)-database scheme with read/write communication complexity

of O

�

n

1=k

� (log n)

3

�

;

� O(log n)-database scheme with read/write communication complexity of O ((log n)

3

).

REMARK: Notice that we show a general reduction from reading to reading and writing, with

only poly-log overhead. Hence, due to the general nature of our reduction, any improvement in

the e�ciency of reading schemes would yield a more e�cient reading and writing scheme as well.

3



1.3 Comparison with Previous Work

Closely related to the private query/update problem is the oblivious RAM simulation problem,

studied in [G-87, Ost-90, GO-96]. The problem is to simulate a random-access machine (RAM)

with another so that the memory contents and access patterns of the latter machine are indepen-

dent of the input. In the oblivious RAM simulation problem, the central processing unit (CPU)

plays the role of the user, and the main memory plays the role of the database. It is perhaps

worth pointing out the technical di�erences between these two problems: Unlike the main mem-

ory of the RAM, the databases are distributed; Privacy in the database problem is required to be

information theoretic, whereas in the oblivious RAM simulation problem, complexity-theoretic

assumptions are used and only computational privacy is achieved (or an access to a random

oracle is required, which we do not allow, making the problem much harder); Unlike the CPU,

the user does not maintain any state, again making the problem harder.

The problem of performing private database queries with multiple databases which do not

interact with one other was studied in two di�erent settings: in instance hiding schemes of [BF-90,

BFKL-90] and on private database queries of [CGKS-95]. In this paper we build on the work

of [CGKS-95] which deals exclusively with private queries and show schemes which can perform

both private queries and updates. Again, let us point out the technical di�erences with our work.

In the instance-hiding schemes of [BF-90, BFKL-90] they deal with exponential-size databases

and polynomial number of (trusted) oracles. In [CGKS-95] the approach is scaled down to liner

copies of database and sub-linear, down to poly-log number of databases. We are dealing with

the same setting. On the other hand, for both the instance hiding schemes of [BF-90, BFKL-90]

and private information reading of [CGKS-95], they assume that all oracles/databases contain

the same information. In our case, we relax this requirement and allow di�erent databases to

contain di�erent bit-strings and allow individual databases to store more then n bits of data

each, while still trying to keep this parameter as small as possible.

1.4 Organization

In x2 we show three elementary solutions, as means of illustrating several techniques used in

our general reduction and also presenting relevant de�nitions. These elementary solutions are

asymptotically inferior to our general reduction and are not used there, however we use them to

preset some techniques. In particular, in subsection x2.1 we present a two-database trivial linear

solution and in subsection x2.2 we show a 4-database solution where we separate reading from

writing (i.e. writing still takes O(n) steps but reading takes O(n

1=3

) steps. Then, in subsection

2.3 we show the elementary 8-database scheme with writing communication complexity O(n

1=2

)

and reading communication complexity of O(n

1=3

).

Having developed necessary de�nitions and techniques, we then show our �rst general reduction

in section x3. Namely, we show how given a k database reading scheme with communication

complexity R(k; n) we show how to construct a reading and writing scheme with 2k databases

and communication complexity O (R(k; n) � (log n)

3

) per read/write operation and O(n) storage

per database. In section x4 we show how to extend this solution in order to reduce the number

of databases down to k + 1 at the price of additional multiplicative k per read/write operation

and additional multiplicative k in the size of each constituent database. Finally, in section x5 we

present conclusions, additional remarks and open problems.

4



2 Elementary methods and de�nitions

2.1 Elementary linear solution

As a �rst simple example, one can build a distributed database consisting of two component

databases that supports private queries and updates as follows. The idea is to use a very rudi-

mentary form of secret sharing: a bit b 2 B can be split into two shares r and r � b, where

r 2 B is random. Each individual share is random and independent of b. At any time, for each

i 2 f0; : : : ; n� 1g, each constituent database holds one share of D

i

. To perform a private query,

each database simply sends all of its shares to the user, who then combines the two shares of the

bit he is actually interested in. To perform a private update, the user will sequentially read and

re-write the entire database, changing only the bit of his choice. When writing, the user creates

new random shares for each individual bit, sending these to the constituent databases. While

this scheme is simple, it is obviously quite impractical for large databases, as it requires O(n)

bits of communication for every private access (i.e. for both reading and writing).

The above method of representing each bit as an xor of two bits in two di�erent databases

allows users to hide from each database the value of each bit that is being stored. Thus, one

can think of this operation as \encrypting" data so that each database sees the access pattern

(just scanning the database from left to right) but does not see the actual values of the bits, and

hence does not know which bit was re-written. We de�ne a write operation where the writing

access pattern is visible to each constituent database but the value being written as not visible

as a semi-private update.

2.2 Separating writing from reading

In this subsection we show how the above elementary scheme for writing could be augmented to

have e�cient reading with four databases. Recall that [CGKS-95] show that with two databases

which contain identical n bits of data, it is possible to privately read a bit with O(n

1=3

) commu-

nication complexity. Notice, however, that in the two-database scheme presented in the previous

subsection, the two databases contain di�erent data, since every bit is represented as an xor of

two corresponding bits from two databases of subsection x2.1. The idea is very simple: using

four databases, maintain two identical copies of each database of previous subsection x2.1. Now,

writing still takes O(n) steps, since we still must re-write the entire database, and in fact main-

tain two copies, but reading could be done in O(n

1=3

) steps just by reading the appropriate bit

from both identical pairs of databases using twice the reading scheme of [CGKS-95] and then

just xoring these two bits.

2.3 Elementary Square-root solution

In this section, we present an elementary 8-database scheme for private queries and updates with

a communication complexity of O(n

1=2

) for writing and O(n

1=3

) for reading. The idea will be an

extension of the solution of the previous section, but with more e�cient writing. Every data bit

will be represented an an exclusive-or of four bits, from four di�erent databases. Then we will

duplicate each of these four databases in order to achieve e�cient reading (so, using all together

8 databases). The advantage of this scheme will be that writing can also be done more e�ciently.

We now show how this can be done.

Assume we have 4 databases, D

st

(s; t 2 B), each of which supports private queries (i.e.

in which reading could be done e�ciently). At any point in time, each bit in the database is

represented as the exclusive-or of the four corresponding bits in the constituent databases. We

5



now show how to privately toggle a particular bit in the database. Let d = dn

1=2

e. For any

address i 2 f0; : : : ; n� 1g, we can write

i = jd+ k (0 � j < d; 0 � k < d):

To toggle bit i, the user generates two random bit-vectors v;w 2 B

d

. To each component

database D

st

, the user sends vectors v

0

; w

0

2 B

d

where

v

0

l

=

�

v

l

if l 6= j,

v

l

� s if l = j,

for 0 � l < d, and

w

0

m

=

�

w

m

if m 6= k,

w

m

� t if m = k,

for 0 � m < d. Upon receiving vectors v

0

; w

0

, the database D

st

toggles all bits whose address is

of the form ld+m, where v

0

l

= 1 and w

0

m

= 1.

Consider the e�ect of this operation on an arbitrary bit in the database whose address is

ld+m:

D

ld+m

= D

00

ld+m

�D

01

ld+m

�D

10

ld+m

�D

11

ld+m

: (1)

Case 1. If l = j and m = k, then exactly 1 term in (1) are toggled, e�ectively toggling the sum.

Case 2. If l 6= j and m 6= k, then either none or all of the terms in (1) are toggled, leaving the

sum unchanged.

Case 3. If l 6= j or m 6= k, but not both, then either 0 or 2 of the terms in (1) are toggled, again

leaving the sum unchanged.

From the above discussion, it is clear that this operation has the e�ect of toggling bit i in

the database. Moreover, each constituent database receives two random bit-vectors that are

independent of i. Thus, the update operation is private. The communication complexity is

O(n

1=2

). To complete the discussion, we observe that each of the four constituent databases,

which support private queries, can be implemented using a pair of identical, ordinary databases.

Using the results of [CGKS-95], a private query can then be implemented with communication

complexity O(n

1=3

). Putting all of this together, we get an 8-database scheme where private

queries have a communication complexity of O(n

1=3

), and private updates have a communication

complexity of O(n

1=2

).

REMARK: The above method could be naturally extended to higher dimensions, similar to

[CGKS-95] approach for constant k. However, our general reductions in the next two sections

yield asymptotically better results, and thus we do not present this simple extension.

3 Proof of theorem 2.

In this section, we present the proof of theorem 2. That is, we assume that we are given a

retrieval k-database schemes with communication complexityR(k; n) and we show a storage and

retrieval 2k database scheme with communication complexity O (R(k; n) � (log n)

3

).

First, we reduce the problem of reading and writing to the problem of oblivious writing only,

i.e. where reading is already private and writing is semi-private (recall that we sat that writing

is semi-private if every constituent database sees which memory locations users writes into, but

not there content).

6



3.1 Reduction to oblivious writing

We reduce the problem of private reading and writing to the problem of oblivious writing, where

we need to hide the writing access pattern only. That is, we show how to construct a distributed

database that supports private queries and semi-private updates (for the de�nition of semi-private

updates see section x2.1).

The idea is to combine the secret-sharing, mentioned in subsection x2.1 and private reading

schemes for k databases with complexity R(k; n), similar to subsection x2.2. Thus, we utilize a

k-database scheme for private queries. Each bit in the database is split into two random bits,

or \shares," whose exclusive-or is the value of the bit. The database is partitioned into two

components, and each share is stored in one component. Each component is then distributed

and replicated k times, and the k-database scheme for private queries is then used for reading bits

in one component. This gives rise to a 2k-database scheme for private queries and semi-private

updates whose communication complexity is bounded by a constant times that of the underlying

k-database private query scheme. The size of each of the 2k databases is O(n).

3.2 Solving oblivious writing via simulation

We assume that we have a database that supports private queries and semi-private updates,

that is, updates such that the database's view of the interaction is independent of the data, but

not necessarily the address, of the the update. Using a single such database, we show how to

implement private queries and updates, where each private access requires (log n)

O(1)

accesses to

the underlying database. The underlying database itself stores O(n) bits.

We make use of a variant of the memory-hierarchy idea used in [Ost-90, GO-96] for the obliv-

ious RAM simulation problem. However, there are several obstacles which we must overcome:

� in the oblivious RAM simulation solution, the user (i.e. CPU) uses random oracle (or

pseudo-random functions), where as in our case the user is allowed to ip coins, but he

does not has access to a random oracle;

� in the oblivious RAM simulation solution, user has local storage, where as in our case user

is completely memoryless (from one read/write operation to the next) and does not have

any local storage;

� the solution presented in [Ost-90, GO-96] is amortized while here we do not allow any

amortization.

On the other hand, in our case we assume that reading could be done privately already, and

hence we have to hide the access pattern for the writing only. Hence, we show how using a

somewhat similar data-structure to the one in [Ost-90, GO-96], and a new algorithm for this

data-structure we can overcome all this di�culties for both reading and writing. We �rst give

an overview of the algorithm, and then the details will follow.

OVERVIEW OF THE ALGORITHM:

| The database is represented as a memory hierarchy with l levels 0; 1; : : : ;m, where m is

chosen so that 2

m

� n= log n. At each level l, the database stores a set of address/value

pairs (i; b), where i 2 f0; : : : ; n� 1g and b 2 B. The number of such pairs stored at level

l at any given time is either 0, 2

l

, or 2

l+1

. The pairs are stored in sorted order, by its

actual address i. There is also a level m+ 1 which contains a bit vector of length n. The

same address may appear in several levels, but the current value of a bit i is de�ned by

the lowest (i.e. smallest) level containing i, if such a level exists; otherwise, the value is

de�ned by location i of the bit vector at level m+ 1.

7



| To perform a private query, each level (from smallest to largest) is searched (using binary

search) in turn until the desired address is found (dummy access are performed after this,

to guarantee that the number of accesses is always constant.) Notice that since reading

is private, binary search is implemented simply using O ((log n)

2

) calls to private reading.

To update location i to the value b, a new pair (i; b) is inserted at level 0. As updates are

performed, individual levels become full, and the data will ow from low levels to higher

(i.e. bigger) levels. This is done in a gradual manner using merge-sort: for each level we

perform two operations of the merge-sort, where we (privately) read two entries of the

lower-level sorted data vectors and insert (in sorted order) into next level bu�er.

Now the details. At a particular level l in the memory hierarchy, where 0 � l � m, there will

be three vectors, each of which stores 2

l

address/value pairs, stored in sorted order of increasing

address.

At any time, one of these vectors act as a \bu�er," and the other two act as \data" vectors.

Each of the two data vectors are either \empty" or \full." If both are full, one is designated

as \primary." The roles of the vectors will change over time, which requires a small (constant)

amount of state information, which is stored at this level as well.

�

�



�

�

�

!

$

!

$

!

$

L

L

�

�

��

L

L

L

L

�

�

�

��

data vectors

data vectors

data vectors

merge-sort, two records at a time

bu�er

bu�er

bu�er

merge-sort, two records at a time

level ( l+2 )

level ( l+1 )

level ( l )

To perform a private query, the user searches for the desired address in levels 0 through m

in turn. The search is done by performing a binary search on the data vectors, searching in the

primary data vector �rst. If the address is not found at any of these levels, the value is taken

from the vector at level m + 1. Since the underlying database supports private queries, these

query operations are private, provided the user makes a number of \dummy" queries on the

underlying database so that the total number of such queries is always the same.

We now describe how private updates are performed. This will involve placing an ad-

dress/value pair in the bu�er at level 0. Now consider an arbitrary level l. By design, once

every 2

l

steps (update operations), the bu�er at level l will become full, and level l will �ll the

8



bu�er at level l + 1 once every 2

l+1

steps. Suppose level l's bu�er has just become full. If both

of the data vectors are full, then by design their contents has just been copied into the bu�er at

level l + 1. At this point, the old bu�er becomes a full data vector, one of the old data vectors

becomes the bu�er, and the other an empty data vector. Otherwise, if at least one of the data

vectors is empty, the old bu�er becomes a full data vector, and the empty data vector becomes

the bu�er. If now both data vectors are full, level l will have 2

l

steps before its bu�er gets

�lled again, and it uses these 2

l

steps to merge and copy its two data vectors into the bu�er

at level l + 1. This is done by executing two of the basic steps in the standard algorithm for

merging sorted lists (as used in the merge-sort algorithm). This requires that three pointers are

maintained at level l, two point to the current \front" of each of the two full data vectors, and

one points to the \tail" of the partially full bu�er at level l+1. An address that appears in both

data vectors is easily detected, and only the address/value pair in the primary data vector is

copied to the bu�er|the other is e�ectively discarded (this requires that some \dummy" copies

are performed to maintain privacy). Levels m and m+ 1 require special treatment. When both

data vectors at level m are full, then with each step, about log n successive positions at level

m+ 1 are updated. This is easily accomplished in a private manner using the list-merging idea

above.

To see that these updates are private, recall that the value of the data stored in the underlying

database is assumed private, and observe that the order in which locations in the database are

updated is not data dependent, depending only on the number of private updates performed

so far. One easily veri�es that the underlying database stores O(n) bits, and that each private

query or update requires O((log n)

3

) operations on the underlying database. This concludes the

proof of theorem 2.

4 Proof of Theorem 1.

In this section, we present the proof of theorem 1. The approach presented in the previous

section requires 2k databases to reduce reading to writing. Here, we show how to do this using

only k+1 databases. Again suppose that we utilize a k-database scheme for private queries. To

build our database for private queries and semi-private updates, we use k + 1 databases. Each

bit in the database is split into k+1 random bits, or \shares," whose exclusive-or is the value of

the bit. Number the databases and shares 1 through k+1. Then share i is given to all databases

except database i. Thus, each database contains only k of the shares, which keeps the value of

the bit private. To read a bit from the database, one needs to obtain all k+1 shares. To obtain

share i, one uses the k-database scheme for private queries on all databases other than database

i. This gives rise to a (k+1)-database scheme for private queries and semi-private updates whose

communication complexity is O(k) times that of the underlying k-database scheme for private

queries. Notice also that the sizes of each of the k + 1 databases is O(kn).

Combining the above observations with the results in the previous section, we obtain the

results for private queries and updates for theorem 1.

5 Conclusion

We have given several constructions for distributed databases that support private queries and

updates and essentially shown that private information storage is within poly-log factors from

private information retrieval. One of our schemes achieves a bit complexity of O

�

n

1=3

(log n)

O(1)

�

using just three databases. An open question is whether a sub-linear read/write communication

complexity can be achieved with just two databases, the minimal number of databases for which

private updates are at all possible.

9



References

[AFK-89] Abadai M., J. Feigenbaum, and J. Kilian \On Hiding Information from an Oracle"

JCSS, Vol 39, No 1, 1989, pp.21-50.

[N-89] Adam N., and J. Wortmann \"security Control Methods for Statistical Databases':

A Comparative Study" ACM Computing Surveys, Vp; 21. No. 4, pp. 515-555, 1989.

[BF-90] Beaver D., and J. Feigenbaum \Hiding Instances in Multioracle queries" Proc. of

7'th STACS, Springer-Verlag LNCS, Vol. 415, pp.37-48, 1990.

[BFKL-90] Beaver D., J. Feigenbaum, J. Kilian and P. Rogaway \Security with Low Commu-

nication Overhead" Crypto 1990.

[B-79] Blakley G. R. \Safeguarding Cryptographic Keys", Proc. NCC AFIPS 1979, pp.

313-317, 1979.

[CGKS-95] B. Chor, O. Goldreich, E. Kushilevitz and M. Sudan, \Private Information Re-

trieval" Proc. of 36'th IEEE conference on the Foundations of Commuter Science

(FOCS), pp. 41-50, October 1995. (Journal version submitted to JACM in January

1996)

[RAD-78] Rivest R.L., L. Adleman, and M.L. Dertouzos, \On Data Banks and Privacy Homo-

morshims", Foundations of Secure Computation (eds., R. DeMillo, D. Dobkin, A.

Jones, and R. Lipton). Academic Press, 1978.

[G-87] Goldreich, O. \Towards a Theory of Software Protection and simulation by Oblivious

RAMs" STOC 87 .

[GO-92] Goldreich, O. and R. Ostrovsky \Comprehensive Software Protection System" U.S.

Patent No. 5,123,045 (issued Jun. 16th 1992).

[GO-96] Goldreich, O. and R. Ostrovsky \Software Protection and Simulation by Oblivious

RAMs" Manuscript, accepted to JACM (to appear in 1996).

[M-92] Micali, S. \Fair Public-Key Cryptosystems" Crypto 92, LNCS Vol 740, pp. 113-138.

[Ost-90] Ostrovsky, R. \Software Protection and Simulation on Oblivious RAMs" M.I.T.

Ph.D. thesis in Computer Science, June 1992. Preliminary version in STOC, 1990.

[S-79] \How to Share a Secret", Comm. ACM, Vol 22, 1979, pp. 612-613.

[U.S.-93] Clipper Chip, U.S. Clinton administration government announcement, 1993.

10


