
On the Construction of Pseudo-Random Permutations:

Luby-Racko� Revisited

Moni Naor

�

Omer Reingold

y

Abstract

Luby and Racko� [27] showed a method for constructing a pseudo-random permutation from

a pseudo-random function. The method is based on composing four (or three for weakened se-

curity) so called Feistel permutations, each of which requires the evaluation of a pseudo-random

function. We reduce somewhat the complexity of the construction and simplify its proof of security

by showing that two Feistel permutations are su�cient together with initial and �nal pair-wise in-

dependent permutations. The revised construction and proof provide a framework in which similar

constructions may be brought up and their security can be easily proved. We demonstrate this by

presenting some additional adjustments of the construction that achieve the following:

� Reduce the success probability of the adversary.

� Provide a construction of pseudo-random permutations with large input size using pseudo-

random functions with small input size.

�

Incumbent of the Morris and Rose Goldman Career Development Chair, Dept. of Applied Mathematics and

Computer Science, Weizmann Institute of Science, Rehovot 76100, Israel. Research supported by grant no. 356/94

from the Israel Science Foundation administered by the Israeli Academy of Sciences and by BSF grant no. 94-00032.

E-mail: naor@wisdom.weizmann.ac.il.

y

Dept. of Applied Mathematics and Computer Science, Weizmann Institute of Science, Rehovot 76100, Israel.

Part of this research was supported by a Clore Scholars award. E-mail: reingold@wisdom.weizmann.ac.il.

1 Introduction

Pseudo-random permutations, which were introduced by Luby and Racko� [27], formalize the well

established cryptographic notion of block ciphers. Block ciphers are private-key encryption schemes

such that the encryption of every plaintext-block is a single ciphertext-block of the same length.

Therefore we can think of the private key as determining a permutation on strings of the length of

the block. A highly in
uential example of a block cipher is the Data Encryption Standard (DES)

[33].

The advantage of block ciphers (compared to using pseudo-random functions for private-key

encryption) is that the plaintext and ciphertext are of the same length. This property saves

on memory and prevents wasting communication bandwidth. Furthermore, it enables the easy

incorporation of the encryption scheme into existing protocols or hardware components.

Luby and Racko� de�ned the security of pseudo-random permutations in analogy to the di�erent

attacks considered in the context of block ciphers:

� Pseudo-random permutations can be interpreted as block ciphers that are secure against an

adaptive chosen-plaintext attack. Informally, this means that an (e�cient) adversary, with

access to the encryptions of messages of its choice, cannot tell apart those encryptions from

the values of a truly random permutation.

� Strong pseudo-random permutations can be interpreted as block ciphers that are secure

against an adaptive chosen plaintext and ciphertext attack. Here, the adversary has the

additional power to ask for the decryption of ciphertexts of its choice.

Pseudo-random permutations are closely related (both in de�nition and in their construction)

to the earlier concept of pseudo-random functions which was de�ned by Goldreich, Goldwasser and

Micali [17]. These are e�ciently samplable and computable functions that are indistinguishable

from random functions under all (e�cient) black-box attacks (see Section 2 for a formal de�nition).

Pseudo-random functions play a major role in private-key cryptography and have many additional

applications (for some of these applications, see [11, 18, 26]).

Luby and Racko� [27] provided a construction of strong pseudo-random permutations, (LR-

Construction) which was motivated by the structure of DES. The basic building block is the so

called Feistel permutation

1

based on a pseudo-random function de�ned by the key. Their construc-

tion consists of four rounds of Feistel permutations (or three rounds, for pseudo-random permuta-

tions) each round involves an application of a (di�erent) pseudo-random function (see Figure 1.a for

an illustration). The LR-Construction's main source of attraction is, most probably, its elegance.

Goldreich, Goldwasser and Micali [17] showed a construction of pseudo-random functions from

pseudo-random generators [10, 51]. Thus, the construction of pseudo-random permutations reduces

to the construction of pseudo-random generators. Recently a di�erent construction of pseudo-

random functions was introduced by Naor and Reingold [32]; this is a parallel construction based

on a new primitive called a pseudo-random synthesizer that in particular can be constructed from

any trapdoor permutation. This implies a parallel construction of pseudo-random permutations.

Nevertheless, all known constructions of pseudo-random functions involve non-trivial (though of

course polynomial time) computation, so it makes sense to attempt to minimize the number of

invocations of pseudo-random functions.

1

A Feistel permutation for a function f : f0; 1g

n

7! f0; 1g

n

is a permutation on f0; 1g

2n

de�ned by D

f

(L;R)

def

=

(R;L � f(R)), where jLj = jRj = n. Each of the 16 rounds of DES involves a Feistel permutation of a function

determined by the 56 key bits.

1

Alongside cryptographic pseudo-randomness the last two decades saw the development of the

notion of limited independence in various setting and formulations [3, 4, 13, 14, 25, 31, 50]. For a

family of functions F to have some sort of (limited) independence means that if we consider the

value of a function f , chosen uniformly at random from F , at each point as a random variable

(in the probability space de�ned by choosing f) then these random variables possess the promised

independence property. Thus, a family of permutations on f0; 1g

n

is pair-wise independent if for

all x 6= y the values of f(x) and f(y) are uniformly distributed over strings (a; b) 2 f0; 1g

2n

such

that a 6= b. Functions of limited independence are typically much simpler to construct and easier

to compute than (cryptographic) pseudo-random functions.

1.1 New Results and Organization

The goal of this paper is to provide a better understanding of the LR-Construction and as a result

improve the construction in several respects. Our main observation is that the di�erent rounds of

the LR-Construction serve signi�cantly di�erent roles. We show that the �rst and last rounds can

be replaced by pair-wise independent permutations and use this in order to :

1. Achieve an improvement in the computational complexity of the pseudo-random permuta-

tions { two applications of a pseudo-random function on n bits su�ce for computing the value

of a pseudo-random permutation on 2n bits at a given point (vs. four applications in the

original LR-Construction).

2. Simplify the proof of security of the construction (especially in the case of strong pseudo-

random permutations) and provide a framework for proving the security of similar construc-

tions.

3. Derive generalizations of the construction that are of practical and theoretical interest. The

proof of security for each one of the constructions is practically \free of charge" given the

proof of security of the main construction.

As discussed in Section 5.2, the new construction is in fact a generalization of the original LR-

Construction. Thus, the proof of security (Theorem 3.2) also applies to the original construction.

The following is a brief and informal description of the paper's main results and organization:

Section 2 Reviews the notations and de�nitions regarding pseudo-randomness and k-wise inde-

pendence.

Section 3 Presents the main construction and proves its security: pair-wise independent permu-

tations can replace the �rst and fourth rounds of the LR-Construction (see Figure 1.b for an

illustration).

Section 4 Highlights the high-level structure of the proof of security which provides a framework

that enables us to relax and generalize the main construction.

Section 5 Shows how the main construction can be relaxed by:

5.1 Using a single pseudo-random function (instead of two) and

5.2 Using weaker and more e�cient permutations (or functions) instead of the pair-wise

independent permutations.

2

Section 6 Provides a simple generalization of the main construction: using t rounds of (gener-

alized) Feistel permutations (instead of two) the success probability of the distinguisher is

reduced from approximately

m

2

2

l=2

to approximately

t

2

�

m

2

2

(1�1=t)l

, where the permutation is on l

bits and the distinguisher makes at most m queries (see Figure 3 for an illustration).

Section 7 Provides a second generalization of the main construction. Instead of applying Feistel

permutations on the entire outputs of the �rst and second rounds, Feistel permutations can

be separately applied on each one of their sub-blocks. This is a construction of a strong

pseudo-random permutation on large blocks using pseudo-random functions on small blocks

(see Figure 4 for an illustration).

Section 8 Analyzes the di�erent constructions of the paper as constructions of k-wise �-dependent

permutations.

Section 9 Suggests directions for further research.

1.2 Related Work

The LR-Construction inspired a considerable amount of research. We try to refer to the more

relevant (to this paper) part of these directions.

Several alternative proofs of the LR-Construction were presented over the years. Maurer [29]

gives a proof of the three-round construction. His proof concentrates on the non-adaptive case,

i.e., when the distinguisher has to specify all its queries in advance. A point worth noticing is

that indistinguishability under non-adaptive attacks does not necessarily imply indistinguishability

under adaptive attacks. For example, a random involution (an involution is a permutation which is

the inverse of itself) and a random permutation are indistinguishable under non-adaptive attacks

and can be distinguished using a very simple adaptive attack.

2

A di�erent approach toward the

proof was described by Patarin [35] (this is the only published proof, we are aware of, for the

LR-Construction of strong pseudo-random permutations; another proof was given by Koren [23]).

Other papers consider the security of possible variants of the construction. A signi�cant portion

of this research deals with the construction of pseudo-random permutations and strong pseudo-

random permutations from a single pseudo-random function. This line of work is described in

Section 5.1.

Lucks [28] shows that a hash function can replace the pseudo-random function in the �rst round

of the three-round LR-Construction. His proof is based on [29] and is motivated by his suggestion

to use the LR-Construction when the input is divided into two unequal parts. Lucks left open the

question of the construction of strong pseudo-random permutations.

Somewhat di�erent questions were considered by Even and Mansour [15] and by Kilian and

Rogaway [22]. Loosely speaking, the former construct several pseudo-random permutations from

a single one, while the latter show how to make exhaustive key-search attacks more di�cult. The

construction itself amounts, in both cases, to XORing the input of the pseudo-random permutation

with a random key and XORing the output of the permutation with a second random key.

The background and related work concerning other relevant issues are discussed in the appro-

priate sections: De�nitions and constructions of e�cient hash functions in Section 5.2, reducing

the distinguishing probability in Section 6 and the construction of pseudo-random permutations

(or functions) with large input size from pseudo-random permutations (or functions) with small

input size in Section 7.

2

An even more striking example is obtained by comparing a random permutation P that satis�es P (P (0)) = 0

with a truly random permutation.

3

2 Preliminaries

In this section, the concepts of pseudo-random functions and pseudo-random permutations are

brie
y reviewed. A more thorough and formal treatment can be found in [16, 26]. In addition,

some basic notations and de�nitions are introduced.

2.1 Notations

� I

n

denotes the set of all n-bit strings, f0; 1g

n

.

� F

n

denotes the set of all I

n

7! I

n

functions and P

n

denotes the set of all such permutations

(P

n

� F

n

).

� Let x and y be two bit strings of equal length, then x�y denotes their bit-by-bit exclusive-or.

� For any f; g 2 F

n

denote by f � g their composition (i.e., f � g(x) = f(g(x))).

� For x 2 I

2n

, denote by x

j

L

the �rst (left) n bits of x and by x

j

R

the last (right) n bits of x.

De�nition 2.1 (Feistel Permutations) For any function f 2 F

n

, let D

f

2 P

2n

be the permuta-

tion de�ned by D

f

(L;R)

def

= (R;L� f(R)), where jLj = jRj = n.

3

Notice that Feistel permutations are as easy to invert as they are to compute (since the in-

verse permutation satis�es D

�1

f

(L;R) = (R � f(L); L); that is, D

�1

f

(L;R) � � � D

f

� � for

�(L;R)

def

= (R;L)). Therefore, the LR-Construction (and its di�erent variants which are intro-

duced in Sections 6 & 7) are easy to invert.

2.2 Pseudo-Randomness

Pseudo-randomness is fundamental to cryptography and, indeed, essential in order to perform such

tasks as encryption, authentication and identi�cation. Loosely speaking, pseudo-random distribu-

tions cannot be e�ciently distinguished from the truly random distributions (usually, random here

means uniform). However, the pseudo-random distributions have substantially smaller entropy

than the truly random distributions and are e�ciently samplable.

2.2.1 Overview of Pseudo-Random Primitives

In the case of pseudo-random (bit) generators, which were introduced by Blum and Micali

and Yao [10, 51], the pseudo-random distribution is of bit-sequences. The distribution is e�ciently

sampled using a, relatively small, truly random bit-sequence (the seed). Hastad, Impagliazzo, Levin

and Luby [21] showed how to construct a pseudo-random generator from any one-way function

(informally, a function is one-way if it is easy to compute its value but hard to invert it).

Pseudo-random function ensembles (PFE), which were introduced by Goldreich, Gold-

wasser and Micali [17], are distributions of functions. These distributions are indistinguishable from

the uniform distribution under all (polynomially-bounded) black-box attacks (i.e. the distinguisher

can only access the function by specifying inputs and getting the value of the function on these

inputs). Goldreich, Goldwasser and Micali provided a construction of such functions based on the

existence of pseudo-random generators.

3

D stands for DES-like, another common term for these permutations.

4

Luby and Racko� [27] de�ne pseudo-random permutation ensembles (PPE) to be dis-

tributions of permutations that are indistinguishable from the uniform distribution to an e�cient

observer (that, again, has access to the value of the permutation at points of its choice). In addi-

tion, they consider a stronger notion of pseudo-randomness which they call super pseudo-random

permutation generators. Here the distinguisher can also access the inverse permutation at points

of its choice. Following [16] we use the term strong pseudo-random permutation ensembles

(SPPE) instead.

Luby and Racko� provided a simple construction of PPE and SPPE (LR-Construction) which

is the focus of this work. Their construction is based on a basic compound of the structure of DES

[33], namely, the compositions of several Feistel-permutations. Their de�nition of the PPE (resp.

SPPE) is D

f

3

�D

f

2

�D

f

1

(resp. D

f

4

�D

f

3

�D

f

2

�D

f

1

) where all f

i

s are independent pseudo-random

functions and D

f

i

as in De�nition 2.1 (see Figure 1.a for an illustration).

2.2.2 De�nitions

A function ensemble is a sequence H = fH

n

g

n2N

such that H

n

is a distribution over F

n

, H is

the uniform function ensemble if H

n

is uniformly distributed over F

n

. A permutation ensemble is

a sequence H = fH

n

g

n2N

such that H

n

is a distribution over P

n

, H is the uniform permutation

ensemble if H

n

is uniformly distributed over P

n

.

A function ensemble (or a permutation ensemble), H = fH

n

g

n2N

, is e�ciently computable if

the distribution H

n

can be sampled e�ciently (i.e., there exists a probabilistic polynomial-time

Turing-machine, I , and a mapping from strings to functions, �, such that �(I(1

n

)) and H

n

are

identically distributed) and the functions in H

n

can be computed e�ciently (i.e., there exists a

probabilistic polynomial-time Turing-machine, V , such that V (i; x) = (�(i))(x)).

We would like to consider e�ciently computable function (or permutation) ensembles that

cannot be e�ciently distinguished from the uniform ensemble. In our setting, the distinguisher is

an oracle machine that can make queries to a length preserving function (or functions) and outputs

a single bit. We assume that on input 1

n

the oracle machine makes only n-bit long queries, n

also serves as the security parameter. An oracle machine has an interpretation both under the

uniform complexity model and under the non-uniform model. In the former it is interpreted as

a Turing-machine with a special oracle-tape (in this case e�cient means probabilistic polynomial-

time) and in the latter as a circuit-family with special oracle-gates (in this case e�cient means

polynomial-size). The discussion of this paper is independent of the chosen interpretation.

Let M be an oracle machine, let f be a function in F

n

and H

n

a distribution over F

n

. Denote

by M

f

(1

n

) the distribution of M 's output when its queries are answered by f and denote by

M

H

n

(1

n

) the distribution M

f

(1

n

), where f is distributed according to H

n

. We would also like to

consider oracle machines with access both to a permutation and to its inverse. Let M be such a

machine, let f be a permutation in P

n

and H

n

a distribution over P

n

. Denote by M

f;f

�1

(1

n

) the

distribution of M 's output when its queries are answered by f and f

�1

and denote by M

H

n

;H

�1

n

(1

n

)

the distribution M

f;f

�1

(1

n

), where f is distributed according to H

n

.

De�nition 2.2 (advantage) Let M be an oracle machine and let H = fH

n

g

n2N

and

~

H =

f

~

H

n

g

n2N

be two function (or permutation) ensembles. We call the function

jProb[M

H

n

(1

n

) = 1]� Prob[M

~

H

n

(1

n

) = 1]j

the advantage M achieves in distinguishing between H and

~

H.

5

Let M be an oracle machine and let H = fH

n

g

n2N

and

~

H = f

~

H

n

g

n2N

be two permutation

ensembles. We call the function

jProb[M

H

n

;H

�1

n

(1

n

) = 1]� Prob[M

~

H

n

;

~

H

�1

n

(1

n

) = 1]j

the advantage M achieves in distinguishing between hH;H

�1

i and h

~

H;

~

H

�1

i.

We say that M distinguishes between H and

~

H (resp. hH;H

�1

i and h

~

H;

~

H

�1

i) with advantage

� = �(n) if for in�nitely many n's the advantage M achieves in distinguishing between H and

~

H

(resp. hH;H

�1

i and h

~

H;

~

H

�1

i) is at least �(n).

De�nition 2.3 (negligible functions) A function h : N 7! N is negligible if for every constant

c > 0 and all su�ciently large n's

h(n) <

1

n

c

De�nition 2.4 (PFE) Let H = fH

n

g

n2N

be an e�ciently computable function ensemble and let

R = fR

n

g

n2N

be the uniform function ensemble. H is a pseudo-random function ensemble if

for every e�cient oracle-machine M , the advantage M has in distinguishing between H and R is

negligible.

De�nition 2.5 (PPE) Let H = fH

n

g

n2N

be an e�ciently computable permutation ensemble and

let R = fR

n

g

n2N

be the uniform permutation ensemble. H is a pseudo-random permutation en-

semble if for every e�cient oracle-machine M , the advantage M has in distinguishing between H

and R is negligible.

De�nition 2.6 (SPPE) LetH = fH

n

g

n2N

be an e�ciently computable permutation ensemble and

let R = fR

n

g

n2N

be the uniform permutation ensemble. H is a strong pseudo-random permutation

ensemble if for every e�cient oracle-machine M , the advantage M has in distinguishing between

hH;H

�1

i and hR;R

�1

i is negligible.

Remark 2.1 We use the phrase \f is a pseudo-random function" as an abbreviation for \f is

distributed according to a pseudo-random function ensemble" and similarly for \f is a pseudo-

random permutation" and \f is a strong pseudo-random permutation"

2.3 k-Wise Independent Functions and Permutations

The notions of k-wise independent functions and k-wise \almost" independent functions [3, 4, 13,

14, 25, 31, 50] (under several di�erent formulations) play a major role in contemporary computer

science. These are distributions of functions such that their value on any given k inputs is uniformly

or \almost" uniformly distributed. Several constructions of such functions and a large variety of

applications were suggested over the years.

We brie
y review the de�nitions of k-wise independence (and k-wise �-dependence). The de�-

nitions of pair-wise independence (and pair-wise �-dependence) can be derived by taking k = 2.

De�nition 2.7 Let D

1

and D

2

be two distributions de�ned over
, the variation distance between

D

1

and D

2

is

kD

1

�D

2

k =

1

2

X

!2

jD

1

(!)�D

2

(!)j

6

De�nition 2.8 Let A and B be two sets, 0 � � � 1, k an integer (2 � k � jAj) and F a

distribution of A 7! B functions.

Let x

1

; x

2

; : : : ; x

k

be k di�erent members of A, consider the following two distributions:

1. hf(x

1

); f(x

2

); : : : ; f(x

k

)i where f is distributed according to F .

2. The uniform distribution over B

k

.

F is k-wise independent if for all x

1

; x

2

; : : : ; x

k

the two distributions are identical. F is k-wise

�-dependent if for all x

1

; x

2

; : : : ; x

k

the two distributions are of variation distance at most �.

These de�nitions are naturally extended to permutations:

De�nition 2.9 Let A be a set, 0 � � � 1, k an integer (2 � k � jAj) and F a distribution of

permutations over A.

Let x

1

; x

2

; : : : ; x

k

be k di�erent members of A, consider the following two distributions:

1. hf(x

1

); f(x

2

); : : : ; f(x

k

)i where f is distributed according to F .

2. The uniform distribution over sequences of k di�erent elements of A.

F is k-wise independent if for all x

1

; x

2

; : : : ; x

k

the two distributions are identical. F is k-wise

�-dependent if for all x

1

; x

2

; : : : ; x

k

the two distributions are of variation distance at most �.

The connection of this paper to k-wise independence is bidirectional as described in the following

two paragraphs.

As shown in Section 3, pair-wise independent permutations can replace the �rst and fourth

rounds of the LR-Construction. Let A be a �nite �eld then the permutation f

a;b

(x)

def

= a � x + b,

where a 6= 0; b 2 A are uniformly distributed, is pair-wise independent. Thus, there are pair-

wise independent permutations over I

n

(the permutations f

a;b

with operations over GF (2

n

)). In

Section 5.2, it is shown that we can use even more e�cient functions and permutations in our

construction. In particular, we consider the concept of �-AXU

2

functions.

In contrast with the case of pair-wise independent permutations, we are not aware of any \good"

constructions of k-wise �-dependent permutations for general k and �. The di�erent variants of the

LR-Construction o�er a partial solution to this problem (\partial" because of the bounded values

of � that can be achieved). For example, using k-wise �

0

-dependent functions on n bits instead of

pseudo-random functions in the original LR-Construction yields a k-wise �-dependent permutation

on 2n bits (for � = O(k

2

=2

n

+�

0

)). In Section 8 we analyze the di�erent constructions of this paper

as constructions of k-wise �-dependent permutations.

3 Construction of PPE and SPPE

3.1 Intuition

As mentioned in the introduction, a principle observation of this paper is that the di�erent rounds of

the LR-Construction serve signi�cantly di�erent roles. To illustrate this point, consider two rounds

of the construction. Namely, E = D

f

2

� D

f

1

, where f

1

; f

2

2 F

n

are two independently chosen

pseudo-random functions. It is not hard to verify that E is computationally indistinguishable from

a random permutation to any e�cient algorithm that has access to pairs fhx

i

; E(x

i

)ig

m

i=1

, where

the sequence fx

i

g

m

i=1

is uniformly distributed. The intuition is as follows: First we should notice

7

f3

1f

f2

h1

1f

(a) (b)

f2

h2

-1
f4

L R

L RL R

L R L R

L R

0L 0R

0L 0R1 1

Input

2 2 1 1

3 3 2 2

4 4 Output

Figure 1: Constructions of SPPE: (a) The original LR-Construction (b) The revised Construction.

In (a) and (b): 8i � 1, L

i

= R

i�1

and R

i

= L

i�1

� f

i

(R

i�1

). In (b): hL

0

; R

0

i = h

1

(Input) and

Output = h

�1

2

(hL

2

; R

2

i).

8

that it is enough to prove the pseudo-randomness of E when f

1

and f

2

are truly random functions

(instead of pseudo-random). Let (L

0

i

; R

0

i

) = x

i

and (L

2

i

; R

2

i

) = E(x

i

), by the de�nition of E we get

that L

2

i

= L

0

i

� f

1

(R

0

i

) and R

2

i

= R

0

i

� f

2

(L

2

i

). Since the sequence fx

i

g

m

i=1

is uniformly distributed,

we have that with good probability (better than (1�

m

2

2

n+1

)) R

0

i

6= R

0

j

for all i 6= j. Conditioned on

this event, the sequence fL

2

i

g

m

i=1

is uniformly distributed (since f

1

is random). We now have that

with good probability L

2

i

6= L

2

j

for all i 6= j. Conditioned on this event, the sequence fR

2

i

g

m

i=1

is

uniformly distributed (and independent of the sequence fL

2

i

g

m

i=1

). Notice that this argument still

works if the sequence fx

i

g

m

i=1

is only pair-wise independent.

Nevertheless, as Luby and Racko� showed, E can be easily distinguished from a random permu-

tation by an algorithm that gets to see the value of E or E

�1

on inputs of its choice. The reason is

that for any values L

1

; L

2

and R such that L

1

6= L

2

we have that E(L

1

; R)

j

L

�E(L

2

; R)

j

L

= L

1

�L

2

.

In contrast, for a truly random permutation, the probability of this event is 2

�n

. This is the reason

that the LR-Construction includes three or four rounds.

We think of the second and third rounds of the LR-Construction as the two-round construc-

tion E, described above and show that the role of the �rst and fourth rounds is to prevent the

distinguisher from directly choosing the inputs of E and E

�1

. As we shall see, this goal can also

be achieved with \combinatorial" constructions (e.g., pair-wise independent permutations), rather

than \cryptographic" (i.e., pseudo-random functions). In particular, the LR-Construction remains

secure when the �rst and fourth rounds are replaced with pair-wise independent permutations (see

Figure 1 for an illustration).

3.2 Construction and Main Result

De�nition 3.1 For any f

1

; f

2

2 F

n

and h

1

; h

2

2 P

2n

, de�ne

W (h

1

; f

1

; f

2

)

def

= D

f

2

�D

f

1

� h

1

and

S(h

1

; f

1

; f

2

; h

2

)

def

= h

�1

2

�D

f

2

�D

f

1

� h

1

Theorem 3.1 Let h

1

; h

2

2 P

2n

be pair-wise independent permutations (similarly to Remark 2.1

this is an abbreviation for \distributed according to a pair-wise independent permutation ensemble")

and let f

1

; f

2

2 F

n

be pseudo-random functions; h

1

, h

2

, f

1

and f

2

are independently chosen. Then,

W = W (h

1

; f

1

; f

2

) is a pseudo-random permutation and S = S(h

1

; f

1

; f

2

; h

2

) is a strong pseudo-

random permutation (W and S as in De�nition 3.1).

Furthermore, assume that no e�cient oracle-machine that makes at most m = m(n) queries,

distinguishes between the pseudo-random functions and random functions with advantage � = �(n)

(see De�nition 2.2). Then, no e�cient oracle-machine that makes at most m queries to W (resp.

S and S

�1

) distinguishes W (resp. S) from a random permutation with advantage 2� +

m

2

2

n

+

m

2

2

2n

Remark 3.1 The conditions of Theorem 3.1 are meant to simplify the exposition of the theorem

and of its proof. These conditions can be relaxed, as discussed in Section 5. The main points are

the following:

1. A single pseudo-random function f can replace both f

1

and f

2

2. h

1

and h

2

may obey weaker requirements than pair-wise independence. For example, it is

enough that for every x 6= y:

Prob[h

1

(x)

j

R

= h

1

(y)

j

R

] � 2

�n

and Prob[h

2

(x)

j

L

= h

2

(y)

j

L

] � 2

�n

9

3.3 Proof of Security

We now prove the security of the SPPE-construction; the proof of security for the PPE-construction

is very similar (and, in fact, a bit simpler). As with the original LR-Construction, the main task

is to prove that the permutations are pseudo-random when f

1

and f

2

are truly random (instead of

pseudo-random).

Theorem 3.2 Let h

1

; h

2

2 P

2n

be pair-wise independent permutations and let f

1

; f

2

2 F

n

be

random functions. De�ne S = S(h

1

; f

1

; f

2

; h

2

) (as in De�nition 3.1) and let R 2 P

2n

be a random

permutation. Then, for any oracle machine M (not necessarily an e�cient one) that makes at

most m queries:

jProb[M

S;S

�1

(1

2n

) = 1]� Prob[M

R;R

�1

(1

2n

) = 1]j �

m

2

2

n

+

m

2

2

2n

Theorem 3.1 follows easily from Theorem 3.2 (see a proof-sketch in the subsequent). In order

to prove Theorem 3.2, we introduce some additional notations.

Let G denote the permutation that is accessible to the machine M (G is either S or R). There

are two types of queries M can make: either (+; x) which denotes the query \what is G(x)?" or

(�; y) which denotes the query \what is G

�1

(y)?". For the ith query M makes, de�ne the query-

answer pair hx

i

; y

i

i 2 I

2n

�I

2n

, where either M 's query was (+; x

i

) and the answer it got was

y

i

or M 's query was (�; y

i

) and the answer it got was x

i

. We assume that M makes exactly m

queries and refer to the sequence fhx

1

; y

1

i; :::; hx

m

; y

m

ig of all these pairs as the transcript (of M 's

computation).

Notice that no limitations were imposed on the computational power of M . Therefore, M can

be assumed to be deterministic (we can always �x the random tape that maximizes the advantage

M achieves). This assumption implies that for every 1 � i � m the ith query of M is fully

determined by the �rst i � 1 query-answer pairs. Thus, for every i it can be determined from

the transcript whether the ith query was (+; x

i

) or (�; y

i

). We also get that M 's output is a

(deterministic) function of its transcript. Denote by C

M

[fhx

1

; y

1

i; :::; hx

i�1

; y

i�1

ig] the ith query of

M as a function of the previous query-answer pairs and denote by C

M

[fhx

1

; y

1

i; :::; hx

m

; y

m

ig] the

output of M as a function of its transcript.

De�nition 3.2 Let � be a sequence fhx

1

; y

1

i; :::; hx

m

; y

m

ig, where for 1 � i � m we have that

hx

i

; y

i

i 2 I

2n

�I

2n

. Then, � is a possible M -transcript if for every 1 � i � m

C

M

[fhx

1

; y

1

i; :::; hx

i�1

; y

i�1

ig] 2 f(+; x

i

); (�; y

i

)g

Let us consider yet another distribution on the answers to M 's queries (which, in turn, induces

another distribution on the possible M -transcripts). Consider a random process

~

R that on the ith

query of M answers as follows:

1. If M 's query is (+; x) and for some 1 � j < i the jth query-answer pair is hx; yi, then

~

R's

answer is y (for an arbitrary such query-answer pair, hx; yi).

2. If M 's query is (�; y) and for some 1 � j < i the jth query-answer pair is hx; yi, then

~

R's

answer is x (for an arbitrary such query-answer pair, hx; yi).

3. If neither 1 nor 2 holds, then

~

R's answer is a uniformly chosen 2n-bit string.

10

It is possible that

~

R provides answers that are not consistent with any permutation; that is, we can

have two query-answer pairs of the form hx

1

; yi and hx

2

; yi for x

1

6= x

2

or hx; y

1

i and hx; y

2

i for

y

1

6= y

2

. In this case call the transcript inconsistent, otherwise, the transcript is called consistent.

We �rst show (in Proposition 3.3) that the advantage M might have in distinguishing between

the process

~

R and the random permutation R is small. The reason is that as long as

~

R answers

consistently (which happens with good probability) it \behaves" exactly as a random permutation.

In order to formalize this, we consider the di�erent distributions on the transcript of M (induced

by the di�erent distributions on the answers it gets).

De�nition 3.3 Let T

S

, T

R

and T

~

R

be the random variables such that T

S

is the transcript of M

when its queries are answered by S, T

R

is the transcript of M when its queries are answered by R

and T

~

R

is the transcript of M when its queries are answered by

~

R.

Notice that by these de�nitions (and by our assumptions) M

S;S

�1

(1

2n

) = C

M

(T

S

) (are the same

random variables) and M

R;R

�1

(1

2n

) = C

M

(T

R

).

Proposition 3.3

jProb

~

R

[C

M

(T

~

R

) = 1]� Prob

R

[C

M

(T

R

) = 1]j �

m

2

2

2n+1

Proof: For any possible and consistent M -transcript � we have that

Prob

R

[T

R

= �] =

2

2n

!

(2

2n

�m)!

= Prob

~

R

[T

~

R

= � j T

~

R

is consistent]:

Therefore, the distribution of T

~

R

conditioned on T

~

R

being consistent is exactly the distribution of

T

R

. Furthermore, the probability that T

~

R

is inconsistent is small: T

~

R

is inconsistent if for some

1 � j < i � m the corresponding query-answer pairs satisfy x

i

= x

j

and y

i

6= y

j

or y

i

= y

j

and

x

i

6= x

j

. For a given i and j this event happens with probability at most 2

�2n

. Hence,

Prob

~

R

[T

~

R

is inconsistent] �

m

2

!

� 2

�2n

<

m

2

2

2n+1

The proposition follows:

�

�

Prob

~

R

[C

M

(T

~

R

) = 1]� Prob

R

[C

M

(T

R

) = 1]

�

�

�

�

�

Prob

~

R

[C

M

(T

~

R

) = 1 j T

~

R

is consistent] � Prob

R

[C

M

(T

R

) = 1]

�

�

� Prob

~

R

[T

~

R

is consistent]

+

�

�

Prob

~

R

[C

M

(T

~

R

) = 1 j T

~

R

is inconsistent] � Prob

R

[C

M

(T

R

) = 1]

�

�

� Prob

~

R

[T

~

R

is inconsistent]

� Prob

~

R

[T

~

R

is inconsistent]

<

m

2

2

2n+1

2

It remains to bound the advantage M might have in distinguishing between T

~

R

and T

S

. The

intuition is that for every possible and consistent M -transcript � unless some \bad" and \rare"

event on the choice of h

1

and h

2

(as in the de�nition of S) happens, the probability that T

S

= � is

exactly the same as the probability that T

~

R

= �. We now formally de�ne this event (De�nition 3.4)

and bound its probability (Proposition 3.4).

For any possible M -transcript � = fhx

1

; y

1

i; :::; hx

m

; y

m

ig we can assume that if � is consistent

then for i 6= j both x

i

6= x

j

and y

i

6= y

j

(this means that M never asks a query if its answer is

determined by a previous query-answer pair).

11

De�nition 3.4 For every speci�c choice of pair-wise independent permutations h

1

; h

2

2 P

2n

(in

the de�nition of S) de�ne BAD(h

1

; h

2

) to be the set of all possible and consistent M -transcripts,

� = fhx

1

; y

1

i; : : : ; hx

m

; y

m

ig, satisfying:

91 � i < j � m such that h

1

(x

i

)

j

R

= h

1

(x

j

)

j

R

or h

2

(y

i

)

j

L

= h

2

(y

j

)

j

L

Proposition 3.4 Let h

1

; h

2

2 P

2n

be pair-wise independent permutations then for any possible and

consistent M -transcript � = fhx

1

; y

1

i; :::; hx

m

; y

m

ig we have that:

Prob

h

1

;h

2

[� 2 BAD(h

1

; h

2

)] <

m

2

2

n

Proof: By de�nition, � 2 BAD(h

1

; h

2

) if there exist 1 � i < j � m such that either h

1

(x

i

)

j

R

=

h

1

(x

j

)

j

R

or h

2

(y

i

)

j

L

= h

2

(y

j

)

j

L

. For any given i and j both Prob

h

1

[h

1

(x

i

)

j

R

= h

1

(x

j

)

j

R

] and

Prob

h

2

[h

2

(y

i

)

j

L

= h

2

(y

j

)

j

L

] are smaller than 2

�n

(since h

1

and h

2

are pair-wise independent).

Therefore,

Prob

h

1

;h

2

[� 2 BAD(h

1

; h

2

)] <

m

2

!

� 2 � 2

�n

<

m

2

2

n

2

The key lemma for proving Theorem 3.2 is:

Lemma 3.5 Let � = fhx

1

; y

1

i; :::; hx

m

; y

m

ig be any possible and consistent M -transcript, then

Prob

S

[T

S

= � j � 62 BAD(h

1

; h

2

)] = Prob

~

R

[T

~

R

= �]

Proof: Since � is a possible M -transcript we have that for all 1 � i � m,

C

M

[fhx

1

; y

1

i; :::; hx

i�1

; y

i�1

ig] 2 f(+; x

i

); (�; y

i

)g

Therefore, T

~

R

= � i� for all 1 � i � m, the ith answer

~

R gives is y

i

in the case that

C

M

[fhx

1

; y

1

i; :::; hx

i�1

; y

i�1

ig] = (+; x

i

) and otherwise its ith answer is x

i

. By our assumptions

and the de�nition of

~

R, given that

~

R answered \correctly" on each one of the �rst i� 1 queries its

ith answer is an independent and uniform 2n-bit string. Therefore,

Prob

~

R

[T

~

R

= �] = 2

�2nm

Since � is a possible M -transcript we have that T

S

= � i� for all 1 � i � m, y

i

= S(x

i

).

Consider any speci�c choice of permutations h

1

and h

2

(for which S = S(h

1

; f

1

; f

2

; h

2

)) such that

� 62 BAD(h

1

; h

2

). Let (L

0

i

; R

0

i

) = h

1

(x

i

) and (L

2

i

; R

2

i

) = h

2

(y

i

). By the de�nition of S, we get that:

y

i

= S(x

i

) () f

1

(R

0

i

) = L

0

i

� L

2

i

and f

2

(L

2

i

) = R

0

i

� R

2

i

For every 1 � i < j � m both R

0

i

6= R

0

j

and L

2

i

6= L

2

j

(otherwise � 2 BAD(h

1

; h

2

)). Therefore,

since f

1

and f

2

are random, we have that for every choice of h

1

and h

2

such that � 62 BAD(h

1

; h

2

)

the probability that T

S

= � is exactly 2

�2nm

. We can conclude:

Prob

S

[T

S

= � j � 62 BAD(h

1

; h

2

)] = 2

�2nm

which complete the proof of the lemma. 2

12

Proof: (of Theorem 3.2) Let � be the set of all possible and consistent M -transcripts � such that

M(�) = 1.

�

�

Prob

S

[C

M

(T

S

) = 1]� Prob

~

R

[C

M

(T

~

R

) = 1]

�

�

�

�

�

�

X

�2�

(Prob

S

[T

S

= �]� Prob

~

R

[T

~

R

= �])

�

�

�
+ Prob

~

R

[T

~

R

is inconsistent]

�

X

�2�

�

�

Prob

S

[T

S

= �j� 62 BAD(h

1

; h

2

)]� Prob

~

R

[T

~

R

= �]

�

�

� Prob

h

1

;h

2

[� 62 BAD(h

1

; h

2

)] (1)

+

�

�

�

X

�2�

(Prob

S

[T

S

= �j� 2 BAD(h

1

; h

2

)]� Prob

~

R

[T

~

R

= �]) � Prob

h

1

;h

2

[� 2 BAD(h

1

; h

2

)]

�

�

�
(2)

+ Prob

~

R

[T

~

R

is inconsistent] (3)

We already showed in the proof of Proposition 3.3 that (3) = Prob

~

R

[T

~

R

is inconsistent] <

m

2

2

2n+1

,

by Lemma 3.5 we get that (1) = 0. Therefore, it remains to bound (2): Assume without loss of

generality that

X

�2�

Prob

S

[T

S

= � j � 2 BAD(h

1

; h

2

)] � Prob

h

1

;h

2

[� 2 BAD(h

1

; h

2

)]

�

X

�2�

Prob

~

R

[T

~

R

= �] � Prob

h

1

;h

2

[� 2 BAD(h

1

; h

2

)]

then using Proposition 3.4 we get that

�

�

�

X

�2�

(Prob

S

[T

S

= � j � 2 BAD(h

1

; h

2

)]� Prob

~

R

[T

~

R

= �]) � Prob

h

1

;h

2

[� 2 BAD(h

1

; h

2

)]

�

�

�

�

X

�2�

Prob

~

R

[T

~

R

= �] � Prob

h

1

;h

2

[� 2 BAD(h

1

; h

2

)]

� max

�2�

Prob

h

1

;h

2

[� 2 BAD(h

1

; h

2

)]

<

m

2

2

n

Thus, we can conclude that:

jProb

S

[C

M

(T

S

) = 1]� Prob

~

R

[C

M

(T

~

R

) = 1]j <

m

2

2

n

+

m

2

2

2n+1

Using Proposition 3.3 we complete the proof:

�

�

�
Prob

S

[M

S;S

�1

(1

2n

) = 1]� Prob

R

[M

R;R

�1

(1

2n

) = 1]

�

�

�

= jProb

S

[C

M

(T

S

) = 1]� Prob

R

[C

M

(T

R

) = 1]j

�

�

�

Prob

S

[C

M

(T

S

) = 1]� Prob

~

R

[C

M

(T

~

R

) = 1]

�

�

+

�

�

Prob

~

R

[C

M

(T

~

R

) = 1]� Prob

R

[C

M

(T

R

) = 1]

�

�

<

m

2

2

n

+

m

2

2

2n

2

Given Theorem 3.2, the proof of Theorem 3.1 is essentially the same as the corresponding proof

of the original LR-Construction (the proof of Theorem 1 of [27], given their main Lemma). The

proof-idea is the following: De�ne three distributions:

13

� S

1

= S(h

1

; f

1

; f

2

; h

2

), where h

1

; h

2

2 P

2n

are pair-wise independent and f

1

; f

2

2 F

n

are

pseudo-random functions.

� S

2

= S(h

1

; g

1

; f

2

; h

2

), where h

1

; h

2

2 P

2n

are pair-wise independent, f

2

2 F

n

a pseudo-random

function and g

1

2 F

n

a random function.

� S

3

= S(h

1

; g

1

; g

2

; h

2

), where h

1

; h

2

2 P

2n

are pair-wise independent and g

1

; g

2

2 F

n

are

random functions.

It is enough to show that for every oracle machine, for all but �nite number of n's:

1. jProb[M

S

1

;S

�1

1

(1

2n

) = 1]� Prob[M

S

2

;S

�1

2

(1

2

n) = 1]j � �(n)

2. jProb[M

S

2

;S

�1

2

(1

2n

) = 1]� Prob[M

S

3

;S

�1

3

(1

2n

) = 1]j � �(n)

If (1) or (2) do not hold, then we can construct an e�cient oracle-machine M

0

that distinguishes a

pseudo-random function from a random one with advantage greater than �, in contradiction to the

assumption. Assume for example that for in�nitely many n's:

jProb[M

S

1

;S

�1

1

(1

2n

) = 1]� Prob[M

S

2

;S

�1

2

(1

2n

) = 1]j > �(n)

The oracle-machine M

0

on input 1

n

and with access to a function O 2 F

n

�rst samples pair-wise

independent permutations, h

1

; h

2

2 P

2n

, and a pseudo-random function f

2

2 F

n

. M

0

then invokes

M with input 1

2n

and answers its queries with the values of S and S

�1

, for S = S(h

1

; O; f

2

; h

2

).

When M halts so does M

0

and it outputs whatever was the output of M . Notice that if O is a

pseudo-random function then the distribution of S is S

1

whereas if O is a truly random function

then the distribution of S is S

2

. This is the reason that M

0

distinguishes a pseudo-random function

from a random one with advantage greater than �. Similar hybrid-arguments apply to all other

constructions of this paper.

4 The Framework

As we shall see in Sections 5{7, the construction of Section 3 can be relaxed and generalized in

several ways. The di�erent pseudo-random permutations obtained share a similar structure and

almost identical proof of security. In this section we examine the proof of Theorem 3.2 in a more

abstract manner. Our goal is to establish a framework for proving (almost) all the constructions

of this paper and to suggest a way for designing and proving additional constructions.

Our framework deals with constructions of a pseudo-random permutation S on ` bits which is

the composition of three permutations: S � h

�1

2

� E � h

1

. (see Figure 2 for an illustration). In

general, h

1

and h

�1

2

are \lightweight" and E is where most of the work is done. E is constructed

from pseudo-random functions and for the purpose of the analysis we assume (as in Theorem 3.2)

that these functions are truly random. In Section 3, for example, ` = 2n, h

1

and h

2

are chosen as

pair-wise independent permutations and E � D

f

2

�D

f

1

for random f

1

; f

2

2 F

n

.

The framework starts with E which may be easily distinguished from a truly random permuta-

tion and transforms it via h

1

and h

2

into a pseudo-random permutation. The property E should

have is that for almost every sequence, fhx

1

; y

1

i; : : : ; hx

m

; y

m

ig, the probability that 8i; y

i

= E(x

i

)

is \close" to what we have for a truly random permutation: Call a sequence, fhx

1

; y

1

i; : : : ; hx

m

; y

m

ig,

E-Good if Prob

E

[8i; y

i

= E(x

i

)] = 2

�l�m

. We assume that apart from some \rare" sequences all

others are E-Good. Loosely speaking, the role of h

1

and h

2

is to ensure that under any (adaptive

14

h1

h2

-1

Output

Input

E

Figure 2: The high-level structure of the di�erent constructions of SPPE.

chosen plaintext and ciphertext) attack on S the inputs and outputs of E form an E-Good sequence

with a very high probability.

For the exact properties needed from the distributions on h

1

; h

2

and E, we shall try to follow

the statement and proof of Theorem 3.2. The goal is to show that S is indistinguishable from a

truly random permutation R on ` bits. Speci�cally, that for some small � (whose choice will be

explained hereafter), for any oracle machine M (not necessarily an e�cient one) that makes at

most m queries:

jProb[M

S;S

�1

(1

`

) = 1]� Prob[M

R;R

�1

(1

`

) = 1]j � � +

m

2

2

`

:

Let the notions of query-answer pair, a transcript, the function C

M

, a possible M -transcript, the

random process

~

R, a consistent transcript and the di�erent random variables T

S

, T

R

and T

~

R

be

as in the proof of Theorem 3.2. Proposition 3.3 (saying that the distance between T

R

and T

~

R

is

bounded by the probability that T

~

R

is inconsistent and that this probability is bounded by

m

2

2

`+1

)

still holds. The heart of applying the framework is in specifying the \bad" M -transcripts for given

h

1

and h

2

. This set BAD

E

(h

1

; h

2

) replaces BAD(h

1

; h

2

) in De�nition 3.4 and in the rest of the

proof. It contains possible and consistent M -transcripts and should have the property that any

fhx

1

; y

1

i; : : : ; hx

m

; y

m

ig not in BAD

E

(h

1

; h

2

) satis�es that fhh

1

(x

1

); h

2

(y

1

)i; : : : ; hh

1

(x

m

); h

2

(y

m

)ig

is E-Good. Note that De�nition 3.4 is indeed a special case of the above and also that, by this

property,

Prob

S

[T

S

= � j � 62 BAD

E

(h

1

; h

2

)] = 2

�`�m

This implies that Lemma 3.5 where BAD(h

1

; h

2

) is replaced with BAD

E

(h

1

; h

2

) is true:

Lemma 4.1 Let � = fhx

1

; y

1

i; :::; hx

m

; y

m

ig be any possible and consistent M -transcript, then

Prob

S

[T

S

= � j � 62 BAD

E

(h

1

; h

2

)] = Prob

~

R

[T

~

R

= �]:

15

For BAD

E

(h

1

; h

2

) to be useful we must have that

Prob

h

1

;h

2

[� 2 BAD

E

(h

1

; h

2

)] � � (1)

and this substitutes Proposition 3.4. This is the only place in the proof where we use the de�nition

of � and the de�nition of the distributions of h

1

and h

2

. As demonstrated in Sections 5.2 & 7.1, there

is actually a tradeo� between reducing the requirements from h

1

and h

2

and having a somewhat

larger value of �. Applying (1) and Lemma 4.1 as in the proof of Theorem 3.2 we conclude:

Theorem 4.2 Let h

1

; h

2

; E be distributed over permutations in P

`

, let S � h

�1

2

� E � h

1

and let

R 2 P

`

be a random permutation. Suppose that BAD

E

(h

1

; h

2

) is as above and � satis�es (1). Then,

for any oracle machine M (not necessarily an e�cient one) that makes at most m queries:

jProb[M

S;S

�1

(1

`

) = 1]� Prob[M

R;R

�1

(1

`

) = 1]j � � +

m

2

2

`

To summarize, the major point in proving the security of the di�erent constructions is to de�ne

the set BAD

E

(h

1

; h

2

) such that for any possible and consistent M -transcript, �, both Prob

S

[T

S

=

� j � 62 BAD

E

(h

1

; h

2

)] = 2

�`�m

and Prob

h

1

;h

2

[� 2 BAD

E

(h

1

; h

2

)] � � (for the speci�c � in the claim

we are proving). This suggests that the critical step for designing a pseudo-random permutation,

using the framework described in this section, is to come up with a permutation E such that the

set of E-Good sequences is \large enough" and \nice enough". Note that to meet this end one can

use di�erent or more general de�nitions of an E-Good sequence with only minor changes to the

proof (as is the case for the permutation

^

S in Section 7).

5 Relaxing the Construction

5.1 PPE and SPPE with a Single Pseudo-Random Function

Since Luby and Racko� introduced their construction a considerable amount of research [34, 35, 36,

37, 39, 43, 44, 45, 47, 52] was focused on the following question: Can we obtain a similar construction

of PPE or SPPE such that every permutation will be constructed from a single pseudo-random

function?

Apparently, this line of research originated in the work of Schnorr [47]. Schnorr considered the

LR-Construction, where the functions used are truly random, as a pseudo-random generator that is

secure if not too many bits are accessible. The security of Schnorr's generator does not depend on

any unproven assumption. This notion of local-randomness is further treated in [29, 30]. Since the

key of a random function is huge it makes sense to minimize the number of functions and, indeed,

Schnorr suggested D

f

�D

f

�D

f

as pseudo-random (the suggested permutation was later shown to

be distinguishable from random [43]).

Following is an informal description of some of these results. Let f 2 F

n

be a random function,

then:

� For all i; j; k � 1 the permutation D

f

i
�D

f

j
�D

f

k

is not pseudo-random [52].

� For all i; j; k; l� 1 the permutation D

f

i
�D

f

j
�D

f

k

�D

f

l

is not strongly pseudo-random [44].

� D

f

2
�D

f

�D

f

�D

f

is pseudo-random [39].

� D

f

�D

I

�D

f

2 �D

f

�D

I

�D

f

2 is strongly pseudo-random, where I 2 F

n

is the identity function

[45].

16

� D

f���f

� D

f

�D

f

is pseudo-random and D

f���f

� D

f

�D

f

� D

f

is strongly pseudo-random,

where � is, for example, a rotation of one bit [37].

A critique which has been voiced often is that using only one pseudo-random function does not

seem too signi�cant: A pseudo-random function on n+2 bits can replace 4 pseudo-random functions

on n bits or, alternatively, a small key can be used to pseudo-randomly generate a larger key. It

should also be noticed that the new constructions require additional invocations of the pseudo-

random functions which imply an increase in the computation time. Furthermore, these results

involve detailed and non-trivial proofs (to a point, where some papers claim to �nd inaccuracies in

others).

The adjustment of the LR-Construction we suggest in Section 3 can easily be converted into

a construction of PPE and SPPE from a single pseudo-random function. Simply replace both

(pseudo-random) functions, f

1

and f

2

, with a single (pseudo-random) function f . This solution

does not su�er from the drawbacks of the previous ones. The construction and the proof remain as

simple as before and the pseudo-random function is only invoked twice at each computation of the

permutation. The additional key-size for the pair-wise independent functions (h

1

and h

2

) is not

substantial (especially compared to the size of a truly random function). Consider, for example,

the construction of SPPE when we use a truly random function f :

Theorem 5.1 Let h

1

; h

2

2 P

2n

be pair-wise independent permutations and let f 2 F

n

be a random

function. De�ne S = S(h

1

; f; f; h

2

) (as in De�nition 3.1) and let R 2 P

2n

be a random permutation.

Then, for any oracle machine M (not necessarily an e�cient one) that makes at most m queries:

jProb[M

S;S

�1

(1

2n

) = 1]� Prob[M

R;R

�1

(1

2n

) = 1]j �

2m

2

2

n

+

m

2

2

2n

The proof follows the framework described in Section 4. The set BAD(h

1

; h

2

) (De�nition 3.4)

is replaced with the set BAD

1

(h

1

; h

2

) de�ned to be:

The set of all possible and consistent M -transcripts, � = fhx

1

; y

1

i; : : : ; hx

m

; y

m

ig, sat-

isfying that there exist 1 � i < j � m such that either h

1

(x

i

)

j

R

= h

1

(x

j

)

j

R

or

h

2

(y

i

)

j

L

= h

2

(y

j

)

j

L

(as before), or there exist 1 � i; j � m such that h

1

(x

i

)

j

R

= h

2

(y

j

)

j

L

.

In order to apply Theorem 4.2, it is enough to note that by this de�nition we get that for any

possible and consistent M -transcripts, �, both Prob

S

[T

S

= � j � 62 BAD

1

(h

1

; h

2

)] = 2

�2nm

(hence,

it is a proper de�nition according to the framework) and Prob

h

1

;h

2

[� 2 BAD

1

(h

1

; h

2

)] <

2m

2

2

n

.

5.2 Relaxing the Pair-Wise Independence Requirement

One might interpret the construction of Section 3 in the following way: given the task of construct-

ing e�cient pseudo-random permutations it is enough to concentrate on the e�cient construction

of pseudo-random functions. The assumption that supports such a claim is that the computation

of pseudo-random functions is much more expensive than the computation of pair-wise indepen-

dent permutations. Therefore, computing the value of the pseudo-random permutation (that is

constructed in Section 3) on any input of 2n bits is essentially equivalent to two invocations of a

pseudo-random function with n-bit inputs. In this section we show that we can use even weaker

permutations instead of the pair-wise independent ones { resulting in an even more e�cient con-

struction of pseudo-random permutations.

17

As mentioned in Section 4, the only place in Section 3 we use the fact that h

1

and h

2

are pair-

wise independent permutations is in the proof of Proposition 3.4. In fact, the exact requirement

on h

1

and h

2

we use is that for every x 6= y:

Prob

h

1

[h

1

(x)

j

R

= h

1

(y)

j

R

] � 2

�n

and Prob

h

2

[h

2

(x)

j

L

= h

2

(y)

j

L

] � 2

�n

:

Furthermore, we can replace 2

�n

with any � � 2

�n

and still get a construction of pseudo-random

permutations (with somewhat larger distinguishing probability). Consider, for example, the revised

statement of Theorem 3.2:

Theorem 5.2 Let H

1

and H

2

be distributions of permutations in P

2n

such that for every 2n-bit

strings x 6= y:

Prob

h

1

2H

1
[h

1

(x)

j

R

= h

1

(y)

j

R

] � � and Prob

h

2

2H

2
[h

2

(x)

j

L

= h

2

(y)

j

L

] � �

Let h

1

be distributed according to H

1

, h

2

distributed according to H

2

and let f

1

; f

2

2 F

n

be random

functions. De�ne S = S(h

1

; f

1

; f

2

; h

2

) (as in De�nition 3.1) and let R 2 P

2n

be a random permu-

tation. Then, for any oracle machine M (not necessarily an e�cient one) that makes at most m

queries:

jProb[M

S;S

�1

(1

2n

) = 1]� Prob[M

R;R

�1

(1

2n

) = 1]j < m

2

� � +

m

2

2

2n

The proof follows the framework described in Section 4. This time the de�nition of BAD(h

1

; h

2

)

stays unchanged and, in order to apply Theorem 4.2, we only need to note that for any possible

and consistent M -transcript �, Prob

h

1

;h

2

[� 2 BAD(h

1

; h

2

)] < m

2

� �.

The conditions on H

1

and H

2

in Theorem 5.2 are somewhat nonstandard (since the requirements

are on half the bits of the output). Nevertheless, these conditions are satis�ed by more traditional

requirements on function-families. In particular, we can take both H

1

and H

2

to be a distribution

of permutations, H , such that for every x 6= y and every z (x; y; z 2 I

2n

),

Prob

h2H

[h(x)� h(y) = z] � (2

n

� 1)

�1

� �

Such a distribution (for � = (2

n

+ 1)

�1

) is h

a

(x)

def

= a � x where a is uniform in I

2n

n f0g and the

multiplication is in GF (2

2n

).

Another way to construct H

1

and H

2

is by using Feistel permutations with �-AXU

2

functions.

A distribution on I

n

7! I

n

function, H , is �-AXU

2

if for every x 6= y and every z (x; y; z 2 I

n

),

Prob

h2H

[h(x)� h(y) = z] � �

The concept of �-AXU

2

functions was originally de�ned by Carter and Wegman [13]; We use the

terminology of Rogaway [41]. Let H be a distribution of �-AXU

2

functions on n bits strings then,

we can de�ne H

1

to be fD

h

g

h2H

and H

2

to be fD

�1

h

g

h2H

. The reason is that for every two di�erent

2n-bit strings x = (L

1

; R

1

) and y = (L

2

; R

2

) and every function h 2 F

n

we have by de�nition that:

D

h

(x)

j

R

= D

h

(y)

j

R

() h(R

1

)� h(R

2

) = L

1

� L

2

If R

1

= R

2

then L

1

6= L

2

and therefore D

h

(x)

j

R

6= D

h

(y)

j

R

otherwise, by the de�nition of �-AXU

2

functions:

Prob

h2H

[D

h

(x)

j

R

= D

h

(y)

j

R

] = Prob

h2H

[h(R

1

)� h(R

2

) = L

1

� L

2

] � �

18

Thus, H

1

satis�es its requirement and similarly for H

2

.

By using Feistel permutations to construct H

1

and H

2

we get the original LR-Construction as

a special case (since a random function is in particular 2

�n

-AXU

2

). Thus, the proof of security in

Section 3 also holds for the original LR-Construction. The idea of using �-AXU

2

functions instead

of pseudo-random functions for the �rst round of the LR-Construction was previously suggested

by Lucks [28].

Another advantage of this approach is that it allows us to use many e�cient constructions of

function families. An example of e�cient 2

�n

-AXU

2

functions are Vazirani's \shift"-family [49]. A

key of such a function is a uniformly chosen string a 2 I

2n�1

and the j's bit of f

a

(x) (1 � j � n)

is de�ned to be

P

n

i=1

x

i

a

j+i�1

mod 2.

A substantial amount of research [13, 20, 24, 41, 48, 50] deals with the construction of e�cient

hash functions. This line of work contains constructions that obey weaker de�nitions on function

families than pair-wise independence and in particular contains constructions of �-AXU

2

functions.

Unfortunately, these functions were designed to be especially e�cient when their output is substan-

tially smaller than their input (since, they were mainly brought up in the context of authentication)

which is not true in our case (but is relevant in Section 7). An additional objective is to reduce the

size of the family of hash functions (e.g., [19, 24]). In our setting the purpose of this is to reduce

the key-size of the pseudo-random permutations.

6 Reducing the Distinguishing Probability

There are various circumstances where it is desirable to have a pseudo-random permutation on rela-

tively few bits (say 128). This is especially true when we want to minimize the size of the hardware-

circuit that implements the permutation or the communication bandwidth with the (hardware or

software) component that computes the permutation.

Let F be a pseudo-random permutation on ` bits (note that n = `=2 in Section 3) constructed

from truly random functions (on `=2 bits) using the LR-Construction. As shown by Patarin [36], F

can be distinguished (with constant probability) from a random permutation using O(2

`=4

) queries

(which means that the analysis of the LR-Construction, where the distinguishing probability for

m queries is O(

m

2

2

`=2

), is tight). Therefore, the LR-Construction on ` bits can only be used if 2

`=4

is

large enough to bound the number of queries in the attack on the block cipher.

In this section, a simple generalization of the construction of Section 3 is presented. Using this

construction, the adversary's probability of distinguishing between the pseudo-random and random

permutations can be reduced to roughly

t

2

�

m

2

2

(1�1=t)`

for every integer 2 � t � ` (for t = 2 we get

the original construction). To achieve this security t + 2 permutations are composed. The initial

and �nal are pair-wise independent permutations, the rest are (generalized) Feistel permutations

de�ned by I

(1�1=t)`

7! I

`=t

random (or pseudo-random) functions (see Figure 3 for an illustration).

Patarin [38] shows that if we take six rounds of the LR-Construction (instead of three or four),

then the resulting permutation cannot be distinguished from a random permutation with advan-

tage better than

5m

3

2

`

(improving [36]). This means that distinguishing the six-round construction

from a truly random permutation (with constant probability) requires at least
(2

`=3

) queries.

The bound we achieve in this section (
(2

(1�1=t)�`=2

)) is better (for any t � 4). Note that our

construction uses pseudo-random functions with larger input size, which might be a disadvantage

for some applications. Aiello and Venkatesan [1] show a construction of pseudo-random functions

on ` bits from pseudo-random functions on `=2 bits. When using truly random functions in their

construction, distinguishing the function they get from a truly random function (with constant

probability) requires
(2

`=2

) queries.

19

1f

F2 F3

h1

F L 1 L 23

f3

1L

f2

h2
-1

3L 1 L 2 L

Output

F F F1 2 3

Input

Figure 3: Construction of strong pseudo-random permutations with reduced distinguishing proba-

bility using t + 2 rounds (here t = 3). Recall, f

i

: I

(1�1=t)`

7! I

`=t

(here f

i

: I

2`=3

7! I

`=3

).

20

In order to describe our generalized constructions we �rst extend Feistel permutations to deal

with the case where the underlying functions have arbitrary input and output lengths (instead of

length preserving functions as in De�nition 2.1). We note that using such \unbalanced" Feistel

permutations was previously suggested in [5, 28, 46].

De�nition 6.1 (Generalized Feistel Permutations) For any integers 0 < s < ` and any func-

tion f : I

`�s

7! I

s

let D

f

2 P

`

be the permutation de�ned by D

f

(L;R)

def

= (R;L � f(R)), where

jLj = s and jRj = `� s (D

f

is de�ned for any function f since one can read 8s, 8(`� s)).

We can now de�ne the revised construction and consider its security. These are simple gener-

alizations of the construction in Section 3 and of its proof of security.

De�nition 6.2 (t + 2-Round Construction) For any integers 2 � t � `, let s and r be integers

such that ` = s � t + r (where r < t). For any h

1

; h

2

2 P

`

, f

1

; f

2

; : : : ; f

r

: I

`�s�1

7! I

s+1

and

f

r+1

; : : : ; f

t

: I

`�s

7! I

s

de�ne

W (h

1

; f

1

; f

2

: : : ; f

t

)

def

= D

f

t

�D

f

t�1

� : : : �D

f

1

� h

1

and

S(h

1

; f

1

; f

2

; : : : ; f

t

; h

2

)

def

= h

�1

2

�D

f

t

�D

f

t�1

� : : : �D

f

1

� h

1

(We get the constriction of De�nition 3.1 by choosing t = 2, s = `=2 and r = 0.)

Theorem 6.1 Let W and S be as in De�nition 6.2, where h

1

& h

2

are pair-wise independent

permutations and f

1

; f

2

; : : : ; f

t

are pseudo-random functions (t is allowed to be a function of `); h

1

,

h

2

and f

1

; f

2

; : : : ; f

t

are independently chosen. Then, W is a pseudo-random permutation and S a

strong pseudo-random permutation.

Furthermore, assume that no e�cient oracle-machine that makes at most m = m(`) queries,

distinguishes between the pseudo-random functions and random functions with advantage � = �(n).

Then, no e�cient oracle-machine that makes at most m queries to W (resp. S and S

�1

) distin-

guishes W (resp. S) from a random permutation with advantage t � � +

t

2

�

m

2

2

`�d`=te

+

m

2

2

`

In case the middle functions are truly random this reduces to:

Theorem 6.2 Let S be as in De�nition 6.2, where h

1

and h

2

are pair-wise independent permuta-

tions and f

1

; f

2

; : : : ; f

t

are random functions and let R 2 P

`

be a random permutation. Then, for

any oracle machine M (not necessarily an e�cient one) that makes at most m queries:

jProb[M

S;S

�1

(1

`

) = 1]� Prob[M

R;R

�1

(1

`

) = 1]j �

t

2

�

m

2

2

`�d`=te

+

m

2

2

`

The proof of Theorem 6.2 follows the framework described in Section 4. Assume for simplicity

that ` = s � t, the set BAD(h

1

; h

2

) (De�nition 3.4) is replaced with the set BAD

2

(h

1

; h

2

) de�ned to

be:

The set of all possible and consistent M -transcripts, � = fhx

1

; y

1

i; : : : ; hx

m

; y

m

ig, sat-

isfying that there exist 1 � i < j � m and 1 � k � t such that

(F

k+1

i

; : : : ; F

t

i

; L

1

i

; : : : ; L

k�1

i

) = (F

k+1

j

; : : : ; F

t

j

; L

1

j

; : : : ; L

k�1

j

);

where (F

1

i

; F

2

i

; : : : ; F

t

i

) = h

1

(x

i

) and (L

1

i

; L

2

i

; : : : ; L

t

i

) = h

2

(y

i

) (jF

1

i

j = jF

2

i

j = : : : =

jF

t

i

j = jL

1

i

j = jL

2

i

j = : : : = jL

t

i

j = s).

21

This guarantees that for any possible and consistent M -transcript � we have that Prob

S

[T

S

=

� j � 62 BAD

2

(h

1

; h

2

)] = 2

�lm

(and hence, it is a proper de�nition according to the framework).

The reason is that, under the notations above,

8i; y

i

= S(x

i

) () 81 � i � m; 81 � k � t; f

k

(F

k+1

i

; : : : ; F

t

i

; L

1

i

; : : : ; L

k�1

i

) = F

k

i

� L

k

i

Therefore, given any speci�c choice of h

1

and h

2

(in the de�nition of S) such that � 62 BAD

2

(h

1

; h

2

)

the event T

S

= � is composed of m � t independent events each of which has probability 2

�s

to

happen. In order to apply Theorem 4.2, it remains to note that for any such � we have that

Prob

h

1

;h

2

[� 2 BAD

2

(h

1

; h

2

)] < t �

m

2

!

� 2

�(`�d`=te)

<

t

2

�

m

2

2

`�d`=te

Remark 6.1 The construction of this section achieves a substantial improvement in security over

the construction in Section 3 even for a small constant t > 2 (that is, with a few additional

applications of the pseudo-random functions). Nevertheless, it might be useful for some applications

to take a larger value of t. Choosing t = ` reduces the advantage the distinguisher may achieve to

roughly

`�m

2

2

`

.

7 SPPE on Large Blocks Using PFE or PPE on Small Blocks

Consider the application of pseudo-random permutations to encryption, i.e., using f(M) in order

to encrypt a message M , where f is a pseudo-random permutation. Assume also that we want

to use DES for this purpose. We now have the following problem: while DES works on �xed and

relatively small length strings, we need a permutation on jM j-bit long strings, where the length of

the message, jM j, may be large and may vary between di�erent messages.

This problem is not restricted to the usage of DES (though the fact that DES was designed

for hardware implementation contributes to it). Usually, a direct construction of pseudo-random

permutations or pseudo-random functions (if we want to employ the LR-Construction) with large

input size is expensive. Therefore, we would like a way to construct pseudo-random permutations

(or functions) on large blocks from pseudo-random permutations (or functions) on small blocks.

Several such constructions were suggested in the context of DES (see e.g. [11] for the di�erent

modes of operation for DES). The simplest, known as the electronic codebook mode (ECB-mode),

is to divide the input into sub-blocks and to apply the pseudo-random permutation on each sub-

block separately. This solution su�ers from the obvious drawback that every sub-block of output

solely depends on a single sub-block of input (and, in particular, the permutation on the complete

input is not pseudo-random). This may leak information about the message being encrypted (see

further discussion in Section 7.2).

In this section we consider a generalization of the construction of Section 3 that uses pseudo-

random functions (or permutations) on small blocks to construct strong pseudo-random permuta-

tions on large blocks. The idea is as follows: apply a pair-wise independent permutation on the

entire input, divide the value you get into sub-blocks and apply two rounds of Feistel-permutations

(or one round of a pseudo-random permutation) on each sub-block separately, �nally, apply a second

pair-wise independent permutation on the entire value you get (see Figure 4 for an illustration).

This solution resembles the electronic codebook mode and is almost as simple. But here, the

security we achieve is relative to a random permutation applied on the entire message and not on

each sub-block separately. As is the case with the electronic codebook mode, the construction is

highly suitable for parallel implementation.

22

h2

-1

f2 f2 f2

f1 f1 f1

h1

Input

Output

Figure 4: Construction of a strong pseudo-random permutation on many (six in this case) blocks

from a pseudo-random function on a single block.

23

For simplicity, we only describe the construction using truly random functions (or a truly

random permutation). The analysis of the construction when pseudo-random functions are used

follows easily. In addition, we restrict our attention to the construction of strong pseudo-random

permutations.

De�nition 7.1 For any two integers b and s, for any function g 2 F

s

let g

�b

2 F

b�s

be the function

de�ned by:

g

�b

(x

1

; x

2

; : : : ; x

b

)

def

= (g(x

1

); g(x

2

); : : : ; g(x

b

))

For any f

1

; f

2

2 F

n

and h

1

; h

2

2 P

2nb

, de�ne:

S(h

1

; f

1

; f

2

; h

2

)

def

= h

�1

2

�D

�b

f

2

�D

�b

f

1

� h

1

For any p 2 P

2n

and h

1

; h

2

2 P

2nb

, de�ne:

^

S(h

1

; p; h

2

)

def

= h

�1

2

� p

�b

� h

1

Theorem 7.1 Let h

1

; h

2

2 P

2nb

be pair-wise independent permutations, let f

1

; f

2

2 F

n

be random

functions and p 2 P

2n

a random permutation. De�ne S = S(h

1

; f

1

; f

2

; h

2

) and

^

S =

^

S(h

1

; p; h

2

) (as

in De�nition 7.1) and let R 2 P

2nb

be a random permutation. Then, for any oracle machine M

(not necessarily an e�cient one) that makes at most m queries:

jProb[M

S;S

�1

(1

2nb

) = 1]� Prob[M

R;R

�1

(1

2nb

) = 1]j �

m

2

� b

2

2

n

+

m

2

2

2nb

and

jProb[M

^

S;

^

S

�1

(1

2nb

) = 1]� Prob[M

R;R

�1

(1

2nb

) = 1]j �

m

2

� b

2

2

2n�1

The proof of Theorem 7.1 for S follows the framework described in Section 4. The set BAD(h

1

; h

2

)

(De�nition 3.4) is replaced with the set BAD

3

(h

1

; h

2

) de�ned to be:

The set of all possible and consistent M -transcripts, � = fhx

1

; y

1

i; : : : ; hx

m

; y

m

ig, such

that either there are two equal values in fF

2j

i

g

1�i�m; 1�j�b

or there are two equal val-

ues in fL

2j�1

i

g

1�i�m; 1�j�b

, where (F

1

i

; F

2

i

; : : : ; F

2b

i

) = h

1

(x

i

) and (L

1

i

; L

2

i

; : : : ; L

2b

i

) =

h

2

(y

i

) (jF

1

i

j = jF

2

i

j = : : : = jF

2b

i

j = jL

1

i

j = jL

2

i

j = : : : = jL

2b

i

j = n).

This guarantees that for any possible and consistent M -transcript � we have that

Prob

S

[T

S

= � j � 62 BAD

3

(h

1

; h

2

)] = 2

�2n�b�m

(and hence, it is a proper de�nition according to the framework). The reason is that, under the

notations above,

8i; y

i

= S(x

i

) () 81 � i � m; 81 � j � b; f

1

(F

2j

i

) = F

2j�1

i

� L

2j�1

i

and f

2

(L

2j�1

i

) = F

2j

i

� L

2j

i

Therefore, given any speci�c choice of h

1

and h

2

(in the de�nition of S) such that � 62 BAD

3

(h

1

; h

2

)

the event T

S

= � is composed of 2m � b independent events each of which has probability 2

�n

to

happen. In order to apply Theorem 4.2, it remains to note that for any such � we have that

Prob

h

1

;h

2

[� 2 BAD

3

(h

1

; h

2

)] � 2 �

m � b

2

!

� 2

�n

<

m

2

� b

2

2

n

The proof of Theorem 7.1 for

^

S slightly deviates from the framework described in Section 4

(providing yet another evidence to the claim that \nobody is perfect"). The set BAD(h

1

; h

2

)

(De�nition 3.4) is replaced with the set BAD

4

(h

1

; h

2

) de�ned to be:

24

The set of all possible and consistent M -transcripts, � = fhx

1

; y

1

i; : : : ; hx

m

; y

m

ig, such

that either there are two equal values in fF

j

i

g

1�i�m; 1�j�b

or there are two equal values

in fL

j

i

g

1�i�m; 1�j�b

, where (F

1

i

; F

2

i

; : : : ; F

b

i

) = h

1

(x

i

) and (L

1

i

; L

2

i

; : : : ; L

b

i

) = h

2

(y

i

)

(jF

1

i

j = jF

2

i

j = : : : = jF

b

i

j = jL

1

i

j = jL

2

i

j = : : : = jL

b

i

j = 2n).

Now we have that for any possible and consistent M -transcript �,

Prob

h

1

;h

2

[� 2 BAD

4

(h

1

; h

2

)] � 2 �

m � b

2

!

� 2

�2n

<

m

2

� b

2

2

2n

but now for any such �,

Prob

^

S

[T

^

S

= � j � 62 BAD

4

(h

1

; h

2

)] =

2

2n

!

(2

2n

�m � b)!

instead of 2

�2n�b�m

as \required" by the framework. However, the di�erence in probabilities is

rather small which result in only a minor deviation from the proof of Theorem 3.2.

7.1 Relaxing the Construction

As in Section 5.2 we would like to reduce the requirements from h

1

and h

2

in Theorem 7.1. Our

main motivation in doing so is to decrease the key size of the pseudo-random permutations. We

would like the key-size to be of order n { the size of the small sub-blocks and not of order 2nb {

the size of the complete input (in some cases we may allow a small dependence on b).

We sketch a way to rede�ne the distributions on h

1

and h

2

in the de�nition of

^

S (almost the

same ideas apply to the de�nition of S). The requirement these distributions have to obey is

that for any possible and consistent M -transcript � we have that Prob

h

1

;h

2

[� 2 BAD

4

(h

1

; h

2

)] is

\small". We use the following notation: For any 2n � b-bit string z = (z

1

; z

2

; : : : ; z

b

) (such that

8j; jz

j

j = 2n) and for all 1 � i � b, denote by z

j

i

the substring z

i

(the ith substring of z). The

requirement above can be achieved by sampling h

1

and h

2

according to a permutation distribution

H such that for some small � � 2

�2n

we have that:

1. For any 2n � b-bit string x, 81 � i < j � b, Prob

h2H

[h(x)

j

i

= h(x)

j

j

] � � and

2. For any 2n � b-bit strings x 6= x

0

, 81 � i; j � b, Prob

h2H

[h(x)

j

i

= h(x

0

)

j

j

] � �.

We start by de�ning a permutation distribution H

0

that almost achieves this: A permutation

h

0

= h

0

u

1

;u

2

sampled from H

0

is de�ned by two �

0

-AXU

2

functions, u

1

: I

2n

7! I

2n

and u

2

: I

dlog be

7!

I

2n

(see de�nition of �-AXU

2

functions in Section 5.2). For any z = (z

1

; z

2

; : : : ; z

b

) (such that

8j; jz

j

j = 2n),

h

0

u

1

;u

2

(z)

def

= (z

1

� u

1

(z

b

)� u

2

(1); z

2

� u

1

(z

b

)� u

2

(2); : : : ; z

b�1

� u

1

(z

b

)� u

2

(b� 1); z

b

� u

2

(b))

It is not hard to verify that:

1

0

For any 2n � b-bit string x, 81 � i < j � b, Prob

h

0

2H

0

[h

0

(x)

j

i

= h

0

(x)

j

j

] � �

0

and

2

0

For any 2n � b-bit strings x 6= x

0

such that x

j

b

6= x

0

j

b

and for all 1 � i; j � b,

Prob

h

0

2H

0

[h

0

(x)

j

i

= h

0

(x

0

)

j

j

] � �

0

.

25

In order to eliminate the additional requirement in (2

0

) that x

j

b

6= x

0

j

b

, we de�ne the permutation

distribution H such that a permutation h sampled fromH is de�ned to be h

0

�D

g

(see De�nition 6.1),

where h

0

is sampled according to H

0

and g : I

2n�(b�1)

7! I

2n

is a �

0

-AXU

2

function. Using (1

0

) and

(2

0

) and the fact that for any 2n � b-bit strings x 6= x

0

:

Prob

g

[D

g

(x)

j

b

= D

g

(x

0

)

j

b

] � �

0

we get that H satis�es (1) and (2) for � = 2�

0

.

Notice that the computation of a function h 2 H is essentially equivalent to one computation

of an �-AXU

2

function, g : I

2n�(b�1)

7! I

2n

, and a few additional XOR operations per block. Using

e�cient constructions of �-AXU

2

functions [13, 20, 24, 41, 48, 50] we get an e�cient function h.

Krawczyk [24] shows a construction of

m+`

2

`�1

-AXU

2

functions from m bits to ` bits with ` key-bits.

Using these functions we can achieve the desired goal of reducing the key-size of h to O(n) bits.

7.2 Related Work

The construction presented in this section is certainly not the only solution to the problem at hand.

We refer in brief to some additional solutions:

As mentioned above, DES modes of operation were suggested as a way of encrypting long mes-

sages. However, none of these modes constitutes a construction of a pseudo-random permutation.

For instance, when using the cipher block chaining mode (CBC-mode), the encryptions of two

messages with identical pre�x will also have an identical pre�x. Note that when the encryption of a

message M is f(M), for a pseudo-random permutation f , then the only information that is leaked

on M is whether or not M is equal to previously encrypted messages. Bellare et. al. [8] show that

the CBC-mode does de�ne a construction of a pseudo-random function with small output length.

They also provide a formal setting for the analysis of the security of pseudo-random functions with

�xed input and output lengths. Bellare et. al. [6] consider the so called cascade construction of a

pseudo-random function with small output length. Bellare and Rogaway [9] show how to use the

CBC-mode in order to construct a pseudo-random permutation on large inputs (this is the only

work we are aware of that explicitly refers to the problem). The work in their construction is com-

parable to two applications of the CBC-mode (approximately twice the work of our construction,

assuming that h

1

and h

2

are relatively e�cient). The security of all these constructions is of similar

order to the security of our construction. In contrast to our construction, [6, 8, 9] are all sequential

in nature.

A di�erent approach that may be attributed in part to Carter and Wegman [50], is to de�ne a

length preserving pseudo-random function

~

F as G �F � h where, h is a pair-wise independent hash

function with short output, F is a length preserving pseudo-random function on short inputs and

G a pseudo-random (bit) generator. It is now possible to use the LR-Construction in order to get a

pseudo-random permutation on large inputs. Anderson and Biham [5] and Lucks [28] show how to

directly apply similar ideas into the LR-Construction in order to get a pseudo-random permutation

on large inputs. The comparison between these constructions and ours (both in terms of security

and in terms of e�ciency) is a bit more complicated because these constructions use an additional

primitive { a pseudo-random generator. Therefore, the comparison relies on the speci�c parameters

of the di�erent primitives that are used (pseudo-random functions, pseudo-random generator and

a hash function).

Remark 7.1 Our construction (as well as the other constructions described in this section) of a

pseudo-random permutation on many blocks from a pseudo-random function (or permutation) on a

26

single block is vulnerable to a birthday-attack on the size of a single block: If two di�erent queries

to the pseudo-random permutation on many blocks produce the same input to the pseudo-random

function on a single block (at any stage in the computation) then our analysis fails. However,

our construction (as well as the other constructions) reduces the problem of foiling birthday-attacks

when constructing a pseudo-random permutation on many blocks to the problem of foiling birthday-

attacks when constructing a pseudo-random function (or permutation) on two blocks. A solution

to the latter is proposed by Aiello and Venkatesan [1].

8 Constructions of k-Wise �-Dependent Permutations

In this section, we summarize the connection between the various constructions of this paper and

the task of obtaining k-wise �-dependent permutations. As mentioned in Section 5.1, Schnorr

[47] suggested using the LR-Construction with truly random functions in order to get a pseudo-

random generator that is secure as long as not too many bits of its output are accessible to the

adversary. This idea is further treated by Maurer and Massey [30]. Maurer [29] suggested to

replace the truly random functions with what he calls locally random (or almost random) functions.

In the terminology of k-wise independence these ideas can be interpreted as a way of using the

LR-Construction in order to obtain k-wise �-dependent permutations from k-wise �

0

-dependent

functions (as long as k is not too large). Theorem 1 in [29] implies that

when k-wise �

0

-dependent functions are used instead of pseudo-random functions in the

LR-Construction the result is a k-wise �-dependent permutations for � = O(k

2

=2

n

+�

0

).

Similar observations apply to the di�erent constructions of our paper as discussed in this section.

Corollary 8.1 (to Theorem 3.2) Let h

1

; h

2

2 P

2n

be pair-wise independent permutations and let

f

1

; f

2

2 F

n

be k-wise �

0

-dependent functions. Then, S = S(h

1

; f

1

; f

2

; h

2

) (as in De�nition 3.1) is a

k-wise �-dependent permutation for

�

def

=

k

2

2

n

+

k

2

2

2n

+ 2�

0

Proof: Let S

1

; S

2

2 P

2n

have the following distributions:

� S

1

= S(h

1

; g

1

; f

2

; h

2

), where h

1

; h

2

2 P

2n

are pair-wise independent, f

2

2 F

n

a k-wise �

0

-

dependent function and g

1

2 F

n

a truly random function.

� S

2

= S(h

1

; g

1

; g

2

; h

2

), where h

1

; h

2

2 P

2n

are pair-wise independent and g

1

; g

2

2 F

n

are truly

random functions.

and let R 2 P

2n

be a truly random permutation. It is enough to show that for every k strings of

2n-bits, x

1

; x

2

; : : : ; x

k

, we have:

1. k hS(x

1

); S(x

2

); : : : ; S(x

k

)i � hS

1

(x

1

); S

1

(x

2

); : : : ; S

1

(x

k

)i k � �

0

2. k hS

1

(x

1

); S

1

(x

2

); : : : ; S

1

(x

k

)i � hS

2

(x

1

); S

2

(x

2

); : : : ; S

2

(x

k

)i k � �

0

3. k hS

2

(x

1

); S

2

(x

2

); : : : ; S

2

(x

k

)i � hR(x

1

); R(x

2

); : : : ; R(x

k

)i k �

k

2

2

n

+

k

2

2

2n

27

The reason (3) holds is that if we de�ne an oracle machine M such that its ith query is always

(+; x

i

) and such that

C

M

(fhx

1

; y

1

i; hx

2

; y

2

i; : : : ; hx

k

; y

k

ig) = 1

() Prob[hS

2

(x

1

); : : : ; S

2

(x

k

)i = hy

1

; : : : ; y

k

i] < Prob[hR(x

1

); : : : ; R(x

k

)i = hy

1

; : : : ; y

k

i]

we get by the de�nition of variation distance and from Theorem 3.2 that

k hS

2

(x

1

); S

2

(x

2

); : : : ; S

2

(x

k

)i � hR(x

1

); R(x

2

); : : : ; R(x

k

)i k

= jProb[M

S

2

;S

�1

2

(1

2n

) = 1]� Prob[M

R;R

�1

(1

2n

) = 1]j

�

k

2

2

n

+

k

2

2

2n

(1) and (2) hold by the de�nition of k-wise �

0

-dependent functions. For example, if

k hS(x

1

); S(x

2

); : : : ; S(x

k

)i � hS

1

(x

1

); S

1

(x

2

); : : : ; S

1

(x

k

)i k > �

0

then we can �x h

1

; h

2

2 P

2n

and f

2

2 F

n

in the de�nition of both S and S

1

such that the inequality

still holds. This de�nes k strings of n-bits, z

1

; z

2

; : : : ; z

k

, (not necessarily all di�erent) and a function

V for which:

hS(x

1

); S(x

2

); : : : ; S(x

k

)i = V (hf

1

(z

1

); f

1

(z

2

); : : : ; f

1

(z

k

)i) and

hS

1

(x

1

); S

1

(x

2

); : : : ; S

1

(x

k

)i = V (hg

1

(z

1

); g

1

(z

2

); : : : ; g

1

(z

k

)i)

We get a contradiction since for any function V :

kV (hf

1

(z

1

); f

1

(z

2

); : : : ; f

1

(z

k

)i)� V (hg

1

(z

1

); g

1

(z

2

); : : : ; g

1

(z

k

)i)k

� khf

1

(z

1

); f

1

(z

2

); : : : ; f

1

(z

k

)i � hg

1

(z

1

); g

1

(z

2

); : : : ; g

1

(z

k

)ik

� �

0

2

In a similar way we get the following two Corollaries from the constructions of Sections 6 & 7:

Corollary 8.2 (to Theorem 6.2) Let S be as in De�nition 6.2, where h

1

and h

2

are pair-wise

independent permutations and f

1

; f

2

; : : : ; f

t

are k-wise �

0

-dependent functions. Then, S is a k-wise

�-dependent permutation for

�

def

=

t

2

�

k

2

2

`�d`=te

+

k

2

2

`

+ t � �

0

Corollary 8.3 (to Theorem 7.1) Let h

1

; h

2

2 P

2nb

be pair-wise independent permutations, let

f

1

; f

2

2 F

n

be b � k-wise �

0

-dependent functions and let p 2 P

2n

be a b � k-wise �

0

-dependent

permutation. De�ne S = S(h

1

; f

1

; f

2

; h

2

) and

^

S =

^

S(h

1

; p; h

2

) (as in De�nition 7.1). Then, S is a

k-wise �-dependent permutation for

�

def

=

k

2

� b

2

2

n

+

k

2

2

2nb

+ 2�

0

and

^

S is a k-wise

^

�-dependent permutation for

^

�

def

=

k

2

� b

2

2

2n�1

+ �

0

28

By taking t = ` in Corollary 8.2 we get a simple construction of a k-wise �-dependent permu-

tation on ` bits for � as close to

(`+1)�k

2

2

`

as we wish. This construction requires ` applications of

k-wise �

0

-dependent functions from ` � 1 bits to a single bit. An interesting question is to �nd a

simple construction of k-wise �-dependent permutations for an arbitrarily small � and an arbitrary

k.

An \old" proposal by the �rst author (see [42, page 17]) is to use an \oblivious" card shu�ing

procedure that requires only few rounds. Oblivious here means that the location of a card after

each round depends on a few random decisions. In [42] this idea is described for a speci�c card

shu�ing procedure that was suggested by Aldous and Diaconis [2]. Unfortunately, to the best of our

knowledge, this procedure was never proven to give (with few rounds) an almost uniform ordering

of the cards. However, we can still use this technique with di�erent card shu�ing procedures. For

example, one can recursively construct such a procedure by permuting each half of the deck and

merging the two halves in an almost uniform way (the merging is also performed recursively). This

translates to an O(n

2

) rounds procedure for a permutation on n bits (however, the construction is

rather cumbersome). This proposal may become attractive given an e�cient and simple \oblivious"

card shu�ing.

Leonard Schulman (private communication) suggested a way to generalize the algebraic con-

struction of pair-wise independent permutations that yields 3-wise independent permutations. He's

suggestion is to use sharply 3-transitive permutation groups. A permutation group over the set

[n] = f1; 2; : : : ; ng is a subgroup of the symmetric group S

n

. A permutation group G over [n] is

k-transitive if for every two k-tuples fa

1

; : : : ; a

k

g and fb

1

; : : : ; b

k

g of distinct elements of [n] there

exist a permutation � 2 G such that 81 � i � k; �(a

i

) = b

i

. A permutation group G over [n] is

sharply k-transitive if for every two such tuples there exists exactly one permutation � 2 G such

that 81 � i � k; �(a

i

) = b

i

. A sharply k-transitive permutation group is in particular k-wise inde-

pendent and indeed the algebraic construction of pair-wise independent permutations use a sharply

2-transitive permutation group (containing all the linear permutations). Schulman suggested to use

the fact that there are known constructions of sharply 3-transitive permutation groups. However,

this approach cannot be generalized to larger values of k: from the classi�cation of �nite simple

groups it follows that for k � 6 there are no k-transitive groups over [n] other than the symmetric

group S

n

and the alternating group A

n

and there are only few such groups for k = 4 and k = 5

(see [12, 40]). One should be careful not to interpret this as implying that for k � 4 there are

no e�cient algebraic constructions of k-wise independent permutations. It is however justi�ed to

deduce that for k � 4 any small family of k-wise independent permutations is not a permutation

group (i.e. is not closed under composition and inverse).

9 Conclusion and Further Work

The constructions described in Sections 3 & 7 are optimal in their cryptographic work in the sense

that the total number of bits on which the cryptographic functions are applied on is exactly the

number of bits in the input. Therefore, it seems that in order to achieve the goal of constructing

e�cient block-ciphers it is su�cient to concentrate on the construction of e�cient pseudo-random

functions. The depth of the constructions, on the other hand, is twice the depth of the cryptographic

functions. It is an interesting question whether there can be a construction of similar depth. The

goal of reducing the depth is even more signi�cant in the case of the t + 2-round construction in

Section 6. A di�erent question is �nding a simple construction of k-wise �-dependent permutations

for an arbitrarily small � and an arbitrary k. This question is discussed in Section 8.

29

Acknowledgments

We thank Ran Canetti, Oded Goldreich, Kobbi Nissim and Benny Pinkas for many helpful discus-

sions and for their diligent reading of the paper. It is di�cult to overestimate Oded's contribution

to the presentation of this paper.

References

[1] W. Aiello and R. Venkatesan, Foiling Birthday Attacks in Length-Doubling Transformations, Advances

in Cryptology - EUROCRYPT '96, Lecture Notes in Computer Science, Springer-Verlag, 1996.

[2] D. Aldous and P. Diaconis, Strong uniform times and �nite random walks, Advances in Applied Mathe-

matics, vol. 8, 1987, pp. 69-97.

[3] N. Alon, L. Babai and A. Itai, A fast and simple randomized parallel algorithm for the maximal inde-

pendent set problem, J. Algorithms, vol. 7(4), 1986, pp. 567-583.

[4] N. Alon, O. Goldreich, J. Hastad and R. Peralta, Simple constructions for almost k-wise independent

random variables, Random Structures and Algorithms, vol. 3, 1992, pp. 289-304.

[5] R. Anderson and E. Biham, Two practical and provably secure block ciphers: BEAR and LION, Proc.

Fast Software Encryption, Lecture Notes in Computer Science, vol. 1039, Springer-Verlag, 1996, pp. 113-

120.

[6] M. Bellare, R. Canetti and H. Krawczyk, Pseudorandom functions revisited: the cascade construction,

Proc. 37th IEEE Symp. on Foundations of Computer Science, 1996, pp. 514-523.

[7] M. Bellare, O. Goldreich and S. Goldwasser, Incremental cryptography: the case of hashing and signing,

Advances in Cryptology - CRYPTO '94, Lecture Notes in Computer Science, vol. 839, Springer-Verlag,

1994, pp. 216-233.

[8] M. Bellare, J. Kilian and P. Rogaway, The security of cipher block chaining, Advances in Cryptology -

CRYPTO '94, Lecture Notes in Computer Science, vol. 839, Springer-Verlag, 1994, pp. 341-358.

[9] M. Bellare and P. Rogaway, Block cipher mode of operation for secure, length-preserving encryption,

manuscript in preparation.

[10] M. Blum and S. Micali, How to generate cryptographically strong sequence of pseudo-random bits,

SIAM J. Comput., vol. 13, 1984, pp. 850-864.

[11] G. Brassard, Modern cryptology, Lecture Notes in Computer Science, vol. 325, Springer-Verlag,

1988.

[12] P. J. Cameron, Finite permutation groups and �nite simple groups, Bull. London Math. Soc., vol. 13,

1981, pp. 1-22.

[13] L. Carter and M. Wegman, Universal hash functions, J. of Computer and System Sciences, vol. 18,

1979, pp. 143-154.

[14] B. Chor and O. Goldreich, On the power of two-point based sampling, J. Complexity, vol. 5, 1989,

pp. 96-106.

[15] S. Even and Y. Mansour, A construction of a cipher from a single pseudorandom permutation, To

appear in J. of Cryptology. Preliminary version in Advances in Cryptology - ASIACRYPT '91, Lecture

Notes in Computer Science, Springer-Verlag, 1991.

30

[16] O. Goldreich, Foundations of cryptography (fragments of a book), 1995. Electronic publica-

tion: http://www.eccc.uni-trier.de/eccc/info/ECCC-Books/eccc-books.html (Electronic Colloquium on

Computational Complexity).

[17] O. Goldreich, S. Goldwasser and S. Micali, How to construct random functions, J. of the ACM., vol. 33,

1986, pp. 792-807.

[18] O. Goldreich, S. Goldwasser and S. Micali, On the cryptographic applications of random functions,

Advances in Cryptology - CRYPTO '84, Lecture Notes in Computer Science, vol. 196, Springer-Verlag,

1985, pp. 276-288.

[19] O. Goldreich and A. Wigderson, Tiny families of functions with random properties: a quality-size

trade-o� for hashing, Proc. 26th ACM Symp. on Theory of Computing, 1994, pp. 574-583.

[20] S. Halevi and H. Krawczyk, MMH: message authentication in software in the Gbit/second rates, Proc.

Fast Software Encryption, Lecture Notes in Computer Science, Springer-Verlag, 1997.

[21] J. Hastad, R. Impagliazzo, L. A. Levin and M. Luby, Construction of a pseudo-random generator from

any one-way function, To appear in SIAM J. Comput. Preliminary versions by Impagliazzo et. al. in 21st

STOC, 1989 and Hastad in 22nd STOC, 1990.

[22] J. Kilian and P. Rogaway, How to protect DES against exhaustive key search, Advances in Cryptology

- CRYPTO '96, 1996, pp. 252-267.

[23] T. Koren, On the construction of pseudorandom block ciphers, M.Sc. Thesis (in Hebrew), CS Dept.,

Technion, Israel, May 1989.

[24] H. Krawczyk, LFSR-based hashing and authentication, Advances in Cryptology - CRYPTO '94, Lecture

Notes in Computer Science, vol. 839, Springer-Verlag, 1994, pp. 129-139.

[25] M. Luby, A simple parallel algorithm for the maximal independent set problem, SIAM J. Comput.,

vol 15(4), 1986, pp. 1036-1053.

[26] M. Luby, Pseudo-randomness and applications, Princeton University Press, 1996.

[27] M. Luby and C. Racko�, How to construct pseudorandom permutations and pseudorandom functions,

SIAM J. Comput., vol. 17, 1988, pp. 373-386.

[28] S. Lucks, Faster Luby-Racko� ciphers, Proc. Fast Software Encryption, Lecture Notes in Computer

Science, vol. 1039, Springer-Verlag, 1996, pp. 189-203.

[29] U. M. Maurer, A simpli�ed and generalized treatment of Luby-Racko� pseudorandom permutation

generators, Advances in Cryptology - EUROCRYPT '92, Lecture Notes in Computer Science, Springer-

Verlag, 1992, pp. 239-255.

[30] U. M. Maurer and J. L. Massey, Local randomness in pseudorandom sequences, J. of Cryptology,

vol. 4(2), Springer-Verlag, 1991, pp. 135-149.

[31] J. Naor and M. Naor, Small-bias probability spaces: e�cient constructions and applications, SIAM J.

Comput., vol. 22(4), 1993, pp. 838-856.

[32] M. Naor and O. Reingold, Synthesizers and their application to the parallel construction of pseudo-

random functions, Proc. 36th IEEE Symp. on Foundations of Computer Science, 1995, pp. 170-181.

[33] National Bureau of Standards, Data encryption standard, Federal Information Processing Standard,

U.S. Department of Commerce, FIPS PUB 46, Washington, DC, 1977.

[34] Y. Ohnishi, A study on data security, Master Thesis (in Japanese), Tohuku University, Japan, 1988.

31

[35] J. Patarin, Pseudorandom permutations based on the DES scheme, Proc. of EUROCODE '90, Lecture

Notes in Computer Science, Springer-Verlag, 1991, pp. 193-204.

[36] J. Patarin, New results on pseudorandom permutation generators based on the DES scheme, Advances

in Cryptology - CRYPTO '91, Lecture Notes in Computer Science, Springer-Verlag, 1991. pp. 301-312

[37] J. Patarin, How to construct pseudorandom and super pseudorandom permutations from one single

pseudorandom function, Advances in Cryptology - EUROCRYPT '92, Lecture Notes in Computer Sci-

ence, Springer-Verlag, 1992, pp. 256-266.

[38] J. Patarin, Improved security bounds for pseudorandom permutations, To appear in: 4th ACM Con-

ference on Computer and Communications Security, 1997.

[39] J. Pieprzyk, How to construct pseudorandom permutations from single pseudorandom functions, Ad-

vances in Cryptology - EUROCRYPT '90, Lecture Notes in Computer Science, vol. 473, Springer-Verlag,

1991, pp. 140-150.

[40] D. J. S. Robinson, A course in the theory of groups { 2nd ed., New York : Springer-Verlag, 1996.

[41] P. Rogaway, Bucket hashing and its application to fast message authentication, Advances in Cryptology

- CRYPTO '95, Lecture Notes in Computer Science, vol. 963, Springer-Verlag, 1995, pp. 74-85.

[42] S. Rudich, Limits on the provable consequences of one-way functions, PhD Thesis, U. C. Berkeley.

[43] R. A. Rueppel, On the security of Schnorr's pseudo random generator, Advances in Cryptology - EU-

ROCRYPT '89, Lecture Notes in Computer Science, Springer-Verlag, 1989, pp. 423-428.

[44] B. Sadeghiyan and J. Pieprzyk, On necessary and su�cient conditions for the construction of su-

per pseudorandom permutations, Abstracts of ASIACRYPT '91, Lecture Notes in Computer Science,

Springer-Verlag, 1991, pp. 194-209.

[45] B. Sadeghiyan and J. Pieprzyk, A construction for super pseudorandom permutations from a single

pseudorandom function, Advances in Cryptology - EUROCRYPT '92, Lecture Notes in Computer Sci-

ence, Springer-Verlag, 1992, pp. 267-284

[46] B. Schneier and J. Kelsey, Unbalanced Feistel networks and block cipher design, Proc. Fast Software

Encryption, Lecture Notes in Computer Science, vol. 1039, Springer-Verlag, 1996, pp. 121-144.

[47] C. P. Schnorr, On the construction of random number generators and random function generators,

Advances in Cryptology - EUROCRYPT '88, Lecture Notes in Computer Science, vol. 330, Springer-

Verlag, 1988, pp. 225-232.

[48] D. Stinson, Universal hashing and authentication codes, Designs, Codes and Cryptography, vol. 4 (1994),

pp. 369-380.

[49] U. V. Vazirani, Randomness, adversaries and computation, PhD Thesis, U. C. Berkeley, 1986.

[50] M. Wegman and L. Carter, New hash functions and their use in authentication and set equality, J. of

Computer and System Sciences, vol. 22, 1981, pp. 265-279.

[51] A. C. Yao, Theory and applications of trapdoor functions, Proc. 23rd IEEE Symp. on Foundations of

Computer Science, 1982, pp. 80-91.

[52] Y. Zheng, T. Matsumoto and H. Imai, Impossibility and optimality results on constructing pseudoran-

dom permutations, Advances in Cryptology - EUROCRYPT '89, Lecture Notes in Computer Science,

vol. 434, Springer-Verlag, 1990, pp. 412-422.

32

