
A preliminary version of this paper appeared in Advances in Cryptology { Eurocrypt 97 Proceed-

ings, Lecture Notes in Computer Science Vol. 1233, W. Fumy ed., Springer-Verlag, 1997. This is a

revised version.

Round-Optimal Zero-Knowledge Arguments

Based on any One-Way Function

Mihir Bellare

�

Markus Jakobsson

y

Moti Yung

z

July 1997

Abstract

We �ll a gap in the theory of zero-knowledge protocols by presenting NP-arguments that

achieve negligible error probability and computational zero-knowledge in four rounds of inter-

action, assuming only the existence of a one-way function. This result is optimal in the sense

that four rounds and a one-way function are each individually necessary to achieve a negligible

error zero-knowledge argument for NP.

�

Department of Computer Science & Engineering, Mail Code 0114, University of California at San Diego, 9500

Gilman Drive, La Jolla, CA 92093, USA. E-mail: mihir@cs.ucsd.edu. Supported in part by NSF CAREER Award

CCR-9624439 and a Packard Foundation Fellowship in Science and Engineering.

y

Department of Computer Science & Engineering, Mail Code 0114, University of California at San Diego, 9500

Gilman Drive, La Jolla, CA 92093, USA. E-mail: markus@cs.ucsd.edu.

z

CertCo, New York, NY, USA. E-mail: moti@certco.com

1

Contents

1 Introduction 3

1.1 The big picture . 3

1.2 Complexity measures and optimality . 4

1.3 Our result . 6

1.4 Open problems . 6

2 De�nitions 6

2.1 Preliminaries . 7

2.2 Arguments, or computationally convincing proofs . 7

2.3 Computational proofs of knowledge . 9

2.4 Zero-knowledge . 9

3 Building blocks for our protocol 11

3.1 One-way functions . 11

3.2 Formulas and satis�ability . 11

3.3 Naor's commitment scheme . 12

3.4 The atomic protocol . 12

4 Protocol 4R-ZK and its properties 13

4.1 Protocol description . 13

4.2 Result . 15

4.3 The �-Extraction Lemma . 15

4.4 Protocol 4R-ZK is computationally convincing . 17

4.5 Protocol 4R-ZK is a computational proof of knowledge 19

4.6 Protocol 4R-ZK is zero-knowledge . 20

References 22

A Constant round ZK via coin ipping plus NIZK 24

2

1 Introduction

In a zero-knowledge (ZK) protocol, a prover P wants to \convince" a veri�er V that some claim is

true, without \revealing" any extra information [GMR]. In the theory of ZK protocols, researchers

have looked at the complexity assumptions based on which protocols can be constructed, and the

resources necessary to do so. Here we �ll a gap in this area. Let us begin by explaining the various

dimensions of such protocols.

1.1 The big picture

The interaction between P and V takes place on some common input x, and P is trying to convince

V that x belongs to some underlying language L. The length of x is denoted n and one measures

complexity in terms of n. The veri�er is always a (probabilistic) polynomial time algorithm. Typ-

ically (and here) L is in NP. The system has two dimensions: \conviction" and \zero-knowledge."

Each can be formalized in one of two ways, a weak and a strong, depending on whether or not

we restrict the adversary involved to polynomial time. To describe these dimensions, we use a

terminology from [BCY] (which they credit to Chaum).

Degrees of conviction. Conviction is about \soundness." If x 62 L we ask that no matter how

the prover behaves, it cannot convince V to accept, except with low probability (called the error

probability, and denoted �(�)). This has been formalized in two ways:

Statistical conviction: This is the notion of [GMR]. Even a computationally unrestricted prover

should be unable to make the veri�er accept x 62 L, except with probability �(n). Protocols

providing this strong degree of conviction are usually called \proofs."

Computational conviction: This is the notion of [BrCr, BCC]. A prover restricted to (ran-

domized) polynomial time should be unable to make the veri�er accept x 62 L, except with

probability �(n).

1

(But a more powerful prover might succeed in making the veri�er accept

with high probability.) Although weaker, this kind of soundness is good enough for crypto-

graphic protocols. The soundness will typically depend on the assumed intractability of some

computational problem, like factoring or computing discrete logarithms. Protocols meeting

this condition are usually called \arguments."

Degrees of zero-knowledge. Roughly, the zero-knowledge condition of [GMR] asks that when

x 2 L, the transcript of an interaction between the prover and a veri�er yield no information (other

than the fact that x 2 L) to an adversary who gets to examine the transcript. Again, this adversary

may be weak or strong:

Statistical ZK: Even a computationally unrestricted adversary will not get useful information

out of a transcript, except with low (negligible) probability. Protocols meeting this are usually

called SZK.

Computational ZK: A (randomized) polynomial time adversary will not get useful information

out of a transcript. (But a computationally unrestricted adversary might.) This will be the case

when the transcript contains encryptions of sensitive data, which are useless to a polynomial

time adversary, but can be opened by an unrestricted one. This type of ZK is usually called

CZK and, although weaker, is good enough for cryptographic protocols.

We clarify that this discussion is very informal. The de�nitions talk of the indistinguishability of

ensembles. (See Section 2.4.) We also don't make perfect ZK a special case, considering it included

1

This description masks some subtleties. See De�nition 2.1 and the following discussion.

3

as a sub-case of statistical.

A note on completeness. In addition, a basic completeness condition is always required. It asks

that if x 2 L then there is a strategy via which the prover can make V accept. The de�nition of

[BrCr, BCC] asks (as appropriate for a cryptographic protocol) that this be e�ciently achievable:

if P is given a witness for the membership of x in the NP language L then it can make V accept in

polynomial time. The de�nition of [GMR] does not make such a requirement. However, all known

proofs (statistically convincing) for NP languages do meet this e�cient completeness requirement,

so we won't discuss it further, assuming it always to be true.

A note on proofs of knowledge. One usually also wants that when x 2 L, the ability of a

prover to convince V to accept should be indicative of \knowledge" of a witness. Like soundness,

in proofs it holds for arbitrary provers and in arguments for polynomial time ones. (The notion

was suggested in [GMR], and an appropriate formalization has emerged in [BeGo]. See Section 2.3

for more.) Again, we will not discuss it further here, concentrating just on the two dimensions

mentioned above.

Four kinds of protocols. Since the dimensions discussed above are orthogonal, we get four

kinds of protocols:

� CZK arguments: Computationally convincing, computational ZK. The weakest kind, but still

adequate for cryptographic protocols. For example the arguments for all of NP in [BrCr, BCC]

when a standard bit commitment is used.

� CZK proofs: Statistically convincing, computational ZK. For example the proofs for all of NP

in [GMW].

� SZK arguments: Computationally convincing, statistical ZK. For example the arguments for all

of NP in [BrCr, BCC] when a discrete logarithm based bit commitment is used; also [NOVY].

� SZK proofs: Statistically convincing, statistical ZK. The strongest kind, but not possible for all

of NP unless the polynomial time hierarchy collapses [Fo]. But there are examples for special

languages: quadratic residuosity and its complement [GMR]; graph isomorphism and its com-

plement [GMW]; constant round SZK proofs for quadratic residuosity and graph isomorphism

[BMO1].

1.2 Complexity measures and optimality

Recall that the error-probability is the probability �(�) in the soundness condition, whether in a

proof or an argument. Most atomic ZK protocols have constant error. But one really wants low

error. A standard goal is to make the error negligible. (That is, a function vanishing faster than

the reciprocal of any polynomial.) We will have the same goal.

Complexities to minimize. Theoretical research in ZK proofs has focused on achieving this low

error while trying to minimize other complexity measures. Two main ones are:

� Rounds: The round complexity is the number of messages exchanged, or rounds of interaction

in the protocol.

2

2

There may be some danger of confusion in terminology. We call each sending of a message by a party a round.

Some works like [FeSh] call this a move, and say a round is two consecutive moves. In their terminology, our four

round protocols would be four move or two round protocols.

4

Rounds Assumption Reference Type

poly(n) One-way function Combine [GMW, HILL, Na] CZK proof

!(logn) Algebraic [BrCr, BCC] SZK argument

poly(n) One-way permutation [NOVY] SZK argument

6 Claw-free pairs [BCY] SZK argument

6 Claw-free pairs [GoKa] CZK proof

5 One-way function [FeSh] CZK argument

4 Algebraic [FeSh] CZK argument

4 Trapdoor perm. + Algebraic Combine [Bl, FLS, BeYu] CZK argument

4 One-way function This paper CZK argument

Figure 1: Negligible error ZK protocols for NP. We list round complexity, complexity assumption used, and

type (CZK or SZK, proof or argument). Remember four rounds is optimal.

� Assumptions: The complexity assumption underlying the protocol, it underlies either the com-

putational ZK or the computational conviction (or both). For example it may be an algebraic

assumption like the hardness of factoring or discrete log computation, or a general assumption

like the existence of claw-free pairs, trapdoor permutations, one-way permutations, or one-way

functions.

Lower bounds. We know that things can't go too low. Four rounds and a one-way function are

each individually necessary to get low-error ZK:

� Four rounds needed: Goldreich and Krawczyk [GoKr] show that there do not exist three round,

negligible error (whether proof or argument) ZK (whether computational or statistical) pro-

tocols for NP unless NP � BPP. (There is a technical condition saying the ZK must be of

a certain form called black-box. But all known ZK protocols are of this type. In this paper

whenever we talk of ZK we always mean black box. See De�nition 2.6.) Accordingly, four is

the minimal number of rounds required to achieve ZK with low error. (The result also holds if

the protocol is not sound but just a proof of knowledge, so that four rounds is also necessary

for negligible knowledge error [IS1].)

� One-way function needed: ZK arguments can be used to implement many kinds of cryptographic

schemes, whence by [ImLu] require a one-way function to implement. Even for the proof case

with a computationally unbounded prover, it is known that for \hard" languages some kind

of \one-way function" is necessary [OsWi]. Thus, a one-way function is a minimal assumption

required to achieve ZK.

The problem. There are many so-called \atomic" ZK protocols for NP that achieve constant

error-probability in constant (three or four) rounds. Serial repetition lowers the error and preserves

ZK [GoOr, ToWo], but at the cost of increasing the number of rounds to non-constant. So we would

like to do parallel repetition. However, this is ruled out: �rst, we have the above mentioned results

of [GoKr]; second, the latter also showed that in general parallel repetition does not preserve ZK.

So one must build low error ZK protocols directly.

5

Previous work. A good deal of e�ort has gone into this, and a variety of ingenious constructions

have been proposed. We summarize the known results in Figure 1. (One that may need elaboration

is the protocol of [Bl, FLS, BeYu]. We discuss it briey in Appendix A.)

Notice that prior to our work optimality had not been achieved in any protocol category. That

is, neither for CZK arguments, SZK arguments or CZK proofs did we have four round, low error

protocols based on any one-way function. In this paper we have �lled the �rst of these gaps.

We also clarify that we are only tabulating ZK protocols for all of NP (ie. for NP-complete

languages). There is also a lot of work on constant round ZK (especially statistical ZK) for special

languages which we don't get into.

1.3 Our result

Result. We look at low error CZK arguments for all of NP. Figure 1 tells us that it is possible

to do it in four rounds using an algebraic assumption (hardness of discrete log) [FeSh]; or in �ve

rounds using a one-way function [FeSh]. This leaves a (small but noticeable) gap, which we �ll: we

provide an optimal protocol, that uses only four rounds and a one-way function.

Theorem 1.1 Suppose there exists a one-way function. Then for any language in NP, there exists

a protocol which has four rounds of interaction; is computationally convincing (ie. an argument)

with negligible error probability; is computational zero-knowledge; and is a computational proof of

knowledge (for the underlying NP-relation) with negligible knowledge-error.

Techniques. Our protocol is for the NP-complete language SAT . Let ' be the input formula.

We use the idea of Feige and Shamir [FeSh] of ORing to ' some formula � which represents

some choices of the veri�er, and then having the prover run a standard ZK proof on input � =

'_�. However, Feige and Shamir [FeSh] begin their protocol by having the veri�er give a witness

indistinguishable proof of knowledge of something underlying �. Instead, we work directly with

the one-way function, having the veri�er give a cut-and-choose type proof that � meets some

conditions. This is interleaved with a standard ZK proof run on �. To implement the latter with

a one-way function we use Naor's bit commitment scheme [Na] which can be based on a one-way

function via [HILL].

The tricky part is getting the protocol to be ZK. When the protocol is �nally designed, how-

ever, the ZK is not hard to see. It turns out the technically more challenging part is to prove

computational soundness. We introduce what seems to be a new technique, proving the soundness

by using proofs of knowledge, relying on the strong formulation of the latter given in [BeGo].

1.4 Open problems

We have �lled the (small) existing gap between upper and lower bounds for CZK arguments. For

other protocol categories, the existing gap is larger and still un�lled. For CZK proofs, it is not

known whether constant error can be achieved with a one-way function (let alone with what value of

the constant). For SZK arguments, it is not known whether it can be done at all (ie. in polynomially

many rounds) with a one-way function.

2 De�nitions

We provide de�nitions for zero-knowledge arguments and computational proofs of knowledge.

6

2.1 Preliminaries

NP-relations. Let �(�; �) be a binary relation. We say that � is an NP-relation if it is polynomial

time computable and, moreover, there exists a polynomial p such that �(x;w) = 1 implies jwj �

p(jxj). For any x 2 f0; 1g

�

we let �(x) = f w 2 f0; 1g

�

: �(x;w) = 1 g denote the witness set of x.

We let L

�

= f x 2 f0; 1g

�

: �(x) 6= ; g denote the language de�ned by �. Note that a language L

is in NP i� there exists an NP-relation � such that L = L

�

. We say that � is NP-complete if L

�

is

NP-complete.

The example we will concentrate on is satis�ability. Let ' be a boolean formula (circuit) and

T an assignment of 0=1 values to its variables. We let Satisfy('; T) = 1 if T satis�es ' (makes it

true) and 0 otherwise. This is an NP-relation, and the corresponding language L

Satisfy

is of course

just SAT = f ' : ' is a satis�able boolean formula g.

Negligibility. Recall that a function � : N ! R is negligible if for every polynomial p(�) there

exists an integer n

p

such that �(n) � 1=p(n) for every n � n

p

.

Interactive algorithms. Parties in our protocols (provers and veri�ers) are modeled as inter-

active functions. An interactive function A takes input x (the common input), the conversation

M

1

: : :M

i

so far, and coins R to output A(x;M

1

: : : M

i

; R), which is either the next message, or

some indicator to stop, perhaps accepting or rejecting in the process. Probabilities pertaining to

this function are over the choice of R. We let A

x

(�; �) = A(x; �; �) and A

x;R

(�) = A(x; �; R). Typically

we will have �xed x and will be talking about A

x

; sometimes we will also have �xed R and are

talking about the deterministic function A

x;R

. A may also take an auxiliary input w (when A is

the prover, this is a witness w 2 �(x)) and we write A

w

for this algorithm. Thus we can have A

w

x

or A

w

x;R

.

The transcript of a conversation between a pair of interactive functions is the entire sequence

of messages exchanged between them until one of them halts. We let Acc(A

x

; B

x

) denote the

probability (over the coins of both parties) that B accepts when talking to A on common input x.

We let Acc(A

x

; B

x

;M

1

: : :M

i

) denote the conditional probability that B accepts in talking to A on

common input x when the conversation so far is M

1

: : :M

i

.

We refer to the sending of a message by one party as a round of interaction. So the number of

rounds is the total number of messages sent.

2.2 Arguments, or computationally convincing proofs

The protocol must satisfy a standard completeness condition saying that a prover knowing a witness

for x 2 L

�

can convince the veri�er to accept x. Soundness pertains to what happens when x 62 L

�

.

We want to say that it is unlikely that one can make the veri�er accept, even if one is allowed to

modify the strategy of the prover. The error-probability measures how unlikely. For the purpose

of this paper we are interested in arguments of negligible error, but the de�nition that follows is

for any error.

De�nition 2.1 Let P; V be polynomial time interactive algorithms and let � be an NP-relation.

We say that (P; V) is a computationally convincing proof (or argument) for �, with error-probability

�(�), if the following two conditions are met:

(1) Efficient completeness: For every x 2 L

�

and every witness w 2 �(x) it is the case that

Acc(P

w

x

; V

x

) = 1.

(2) Computational soundness: For every polynomial time interactive algorithm

b

P there is a

constant N

b

P

such Acc(

b

P

x

; V

x

) � �(jxj) for all x 62 L

�

which have length at least N

b

P

.

7

If � is negligible then we say that the error-probability is negligible.

Notice one di�erence with de�ning interactive proofs: we ask that the point at which the error goes

down to �(�) depend on the prover

b

P . This is necessary, as the discussion below explains.

Note we say the system has negligible error as long as there is some negligible function �(�) such

that the error is �(�). This de�nition of a negligible error argument di�ers from previous ones like

[Go, NOVY], where the error corresponding to each prover is allowed to be a di�erent negligible

function, depending on the prover. However under such a de�nition there is no particular function

we can actually call the error-probability of the protocol. Accordingly, we prefer the de�nition

above. But it turns out that the notions are equivalent [Be]. This equivalence, captured in the

following Proposition, will be instrumental in some of our proofs.

Proposition 2.2 [Be] Let � be an NP-relation. A pair (P; V) of polynomial time interactive algo-

rithms is a computationally convincing proof (or argument) for � with negligible error-probability

if and only if it meets the e�cient completeness condition of De�nition 2.1 and also the following

modi�ed computation soundness condition:

Computational soundness: For every polynomial time interactive algorithm

b

P there is a

negligible function �

b

P

such that Acc(

b

P

x

; V

x

) � �

b

P

(jxj) for all x 62 L

�

.

Issues in computational soundness. In the interactive proof setting [GMR], the error-probability

of a protocol (P; V) is �(�) if for any x 62 L and any interactive algorithm

b

P playing the role of the

prover, Acc(

b

P

x

; V

x

) � �(jxj). The question of what is the error-probability of a computationally

sound proof (argument) is more subtle. The �rst thought is that we say the same thing, except

restricting our attention to polynomial time prover algorithms. Namely, the error-probability is

�(�) if Acc(

b

P

x

; V

x

) � �(jxj) for any polynomial time interactive algorithm

b

P and any x 62 L. But

this is not right. Underlying the argument is some computationally hard problem like inverting a

one-way function. The size of this problem is proportional to jxj. So for any �xed x there is some

polynomial time prover who can convince the veri�er with high probability, by solving the underly-

ing computational problem. In other words, we cannot, for a �xed x 62 L, hope that the probability

of convincing the veri�er is at most �(jxj) for all polynomial time provers. (Unless the argument

is in fact a proof.) However, for any �xed polynomial time prover, as jxj grows, the probability of

convincing the veri�er decreases, because the size of the underlying hard computational problem

is increasing. In particular it is reasonable to ask that for each

b

P the error eventually goes below

the desired error-probability �(n), which is what we did above. (For the case of error 1=3 the same

de�nition is given in [Go]. However the latter adopts a di�erent approach to negligible error as

discussed above.)

In particular, the probability of convincing the veri�er to accept x 62 L in a computationally

convincing proof cannot be reasonably expected to be exponentially small. It is restricted by the

probability of solving the underlying computational problem. Since the typical assumption is that

the latter is negligible (not but less), the error of the argument too is negligible but not less. In

particular, independent repetition will not lower the error to exponentially small.

Another way to resolve the issue is to have a security parameter k that is separate from the

input x and measures the size of the underlying hard problem. For any �xed x, the error-probability

still goes down as we increase k. This formulation is probably better for protocol design, but in

the current theoretical setting, we stick, for simplicity, to just one input, and adopt the de�nition

above.

8

2.3 Computational proofs of knowledge

We want to say that if an interactive algorithm can convince V to accept x 2 L then it must actually

\know" a witness w 2 �(x). This notion of a \proof of knowledge" was suggested in [GMR]. It

was formalized in [BeGo] both for the standard interactive proof setting and the argument, or

computationally convincing setting. (They discuss the latter in [BeGo, Section 4.7].) We adopt

their notion. It comes in two equivalent forms. We present both.

Recall an oracle algorithm E is an algorithm that can be equipped with an oracle. An invocation

of the oracle counts as one step. We will talk of an \extractor" E which will be given an oracle for

b

P

x

, a prover algorithm on input x, and will then try to �nd a witness w to the membership of x in

L

�

. The �rst de�nition below is what [BeGo] refer to as the \alternative form of validity."

De�nition 2.3 [BeGo] We say that veri�er V de�nes a computational proof of knowledge for NP-

relation �, with knowledge-error �(�), if there is a an expected polynomial time oracle algorithm E

(the extractor) such that for every polynomial time interactive algorithm

b

P there is a constant N

b

P

such that if x 2 L

�

has length at least N

b

P

then

Pr

�

E

b

P

x

(x) 2 �(x)

�

� Acc(

b

P

x

; V

x

)� �(jxj) :

If �(�) is negligible then we say the proof has negligible knowledge-error.

In other words, if E has oracle access to

b

P then it can output a witness for membership of x in

L

�

with a probability only slightly less than the probability that

b

P would convince V to accept x.

Again, note negligible knowledge error means the above is true for some negligible function �(�).

In the next formulation (the main one of [BeGo]) the extractor must �nd a witness with probabil-

ity one. It is not limited to (expected) polynomial time, but must run in time inversely proportional

to the excess of the accepting probability over the knowledge error.

De�nition 2.4 [BeGo] We say that veri�er V de�nes a computational proof of knowledge for NP-

relation �, with knowledge-error �(�), if there is a an oracle algorithm E (the extractor) and a

constant c such that for every polynomial time interactive algorithm

b

P there is a constant N

b

P

such

that if x 2 L

�

has length at least N

b

P

and satis�es Acc(

b

P

x

; V

x

) > �(x), then E

b

P

x

(x) 2 �(x), and

moreover this computation halts in an expected number of steps bounded by

jxj

c

Acc(

b

P

x

; V

x

)� �(x)

:

If �(�) is negligible then we say the proof has negligible knowledge-error.

See [BeGo] for the proof that these two notions are equivalent. Sometimes it is convenient to use

one, sometimes the other. Also see [Be] for some issues relating to the case of negligible knowledge

error and alternative ways to de�ne it.

2.4 Zero-knowledge

Ensembles and computational indistinguishability. We recall these notions of [GoMi,

GMR]. An ensemble indexed by L � f0; 1g

�

is a collection fE(x)g

x2L

of probability spaces (of

�nite support), one for each x 2 L. Let E

1

= fE

1

(x)g

x2L

and E

2

= fE

2

(x)g

x2L

be ensembles over

a common index set L. A distinguisher is a polynomial sized family of circuits D = fD

x

g

x2L

, with

one circuit for each x 2 L. We say that E

1

; E

2

are (computationally) indistinguishable if there is

9

a negligible function �(�) such that for every distinguisher D there is a constant N

D

such that if

x 2 L has length at least N

D

then

�

�

�

Pr

h

D

x

(v) = 1 : v

R

 E

1

(x)

i

� Pr

h

D

x

(v) = 1 : v

R

 E

2

(x)

i

�

�

�

� �(jxj) :

Zero-knowledge. Let P; V be interactive algorithms. The de�nition of a zero-knowledge inter-

active proof [GMR] refers to a language L. It begins by de�ning a probability space, the view of

a cheating veri�er

b

V in talking to P on input x 2 L. (And then says there is a simulator that on

input x produces an \indistinguishable" view.) The basic idea is the same in the argument setting,

but one must be careful about a couple of things. Recall prover P begins with a witness w to x.

The view generated by P and V depends not just on P but on w. An elegant way to bring this

into the picture is via the notion of a witness selector [BeYu].

De�nition 2.5 [BeYu] A witness selector for an NP-relation � is a map W : L

�

! f0; 1g

�

with

the property that W (x) 2 �(x) for each x 2 L

�

.

That is, a witness selector is just a way of �xing an association of a particular witness to each

input. When � = Satisfy and L

�

= SAT this just means associating to any formula x = ' 2 SAT

a particular satisfying assignment to it, out of all the possible satisfying assignments.

Now we can de�ne the view. Let P; V be interactive algorithms, � an NP-relation, and W a

witness selector for �. We let View(P;W; V; x) be the probability space whose points are of the

form (R; �), where R is a random tape for V

x

and � is a transcript of an interaction between P

W (x)

x

and V

x;R

. The associated probability is that over the choice of R and the coins of P

W (x)

x

. The

collection fView(P;W;

b

V ; x)g

x2L

�

becomes an ensemble.

We de�ne zero-knowledge in a strong \black-box" simulation form. The simulator S is an

oracle algorithm given input x and oracle access to

b

V

x;R

where R has been chosen at random.

(The simulator does not have to pick R. It is done automatically and the simulator only sees the

interface to the oracle

b

V

x;R

.) It will output a transcript � of a conversation between P

x

and

b

V

x;R

.

We let S

b

V

x

(x) denote the probability space of pairs (R; �) where R was chosen at random and

� S

b

V

x;R

(x).

De�nition 2.6 We say that (P; V) is a (computational) zero-knowledge protocol for NP-relation

� if there exists an expected polynomial time oracle algorithm S (the simulator) such that for every

polynomial time interactive algorithm

b

V (the cheating veri�er) and every witness selector W for �,

the ensembles fS

b

V

x

(x)g

x2L

�

and fView(P;W;

b

V ; x)g

x2L

�

are computationally indistinguishable.

Note formally, zero-knowledge is no longer a property of the language L

�

but of the relation � itself.

Under this de�nition of zero-knowledge, we know that any negligible error probability zero-

knowledge argument for an NP-complete relation � must have at least four rounds, assuming NP

is not in BPP [GoKr]. We want to meet this bound given only a one-way function.

Remark. The above notion of black-box simulation zero-knowledge is stronger than those of

[GoOr, GoKr, BMO2] in the following sense. In our notion, the simulator has no control over the

coins R of

b

V

x

: they are automatically chosen (at random) and then �xed. The simulator does not

even have direct access to them: it just gets an oracle for

b

V

x;R

. In the notions of [GoOr, GoKr],

the simulator could choose these coins as it liked, even try running

b

V

x

on many di�erent random

tapes. In the notion of [BMO2] it could not choose them, but did have direct access to them, and

could try several random tapes. However, since our results are positive, making a more stringent

de�nition only strengthens them. Also, all known zero-knowledge protocols do meet our de�nition.

10

For simplicity we do not talk of non-uniform veri�ers, but of course the above de�nition could

be extended to include them.

3 Building blocks for our protocol

Our protocol uses one-way functions, satis�ability, and a standard bit commitment based atomic

ZK protocol for satis�ability.

3.1 One-way functions

Let f : f0; 1g

�

! f0; 1g

�

be some length-preserving function. An inverter for f is a family I =

fI

n

g

n�1

where each I

n

is a circuit, taking n bit inputs and yielding n bit outputs, and having size

at most p(n) for some polynomial p(�). We let

Inv

I

f

(n) = Pr

h

f(x

0

) = y : x

R

 f0; 1g

n

; y f(x) ; x

0

 I

n

(y)

i

denote the probability that I

n

successfully inverts f at the point y = f(x), taken over a random

choice of x 2 f0; 1g

n

.

De�nition 3.1 A polynomial time computable, length-preserving function f : f0; 1g

�

! f0; 1g

�

is

one-way if there is a negligible function �(�) such that for every inverter I there is an integer N

I

such that Inv

I

f

(n) � �(n) for all n � N

I

.

Again this de�nition is actually di�erent from the standard one: the latter allows the inversion

probability of each inverter to be a di�erent negligible function. However, the two notions are

equivalent [Be].

Hereafter we �x a one-way function f , and the notation f will always refer to this �xed function.

3.2 Formulas and satis�ability

We will present ZK arguments for the NP-complete language SAT . More precisely let Satisfy be

the NP-relation de�ned by Satisfy('; T) = 1 if assignment T satis�es formula '. The corresponding

language L

Satisfy

is of course SAT = f ' : ' is a satis�able boolean formula g. We will present

ZK arguments for the NP-relation Satisfy meeting the de�nitions in Section 2. (In terms of those

de�nitions, the NP-relation here is � = Satisfy , the common input is x = ', a boolean formula,

and the witness w is a satisfying assignment T to '.)

We will be encoding statements about the one-way function f as formulas, and need some stan-

dard features of the Cook-Levin theorem. The NP-completeness of SAT as proved in this theorem

implies the following. There is a polynomial time computable transformation Formula

f

(�) such

that for any y 2 f0; 1g

�

it is the case that Formula

f

(y) is a boolean formula which is satis�able

i� there exists an x 2 f0; 1g

�

such that f(x) = y. More important, there are polynomial time com-

putable maps t

f;1

; t

f;2

(called witness transformations) with the following properties. Given x, map

t

f;1

outputs a satisfying assignment T = t

f;1

(x) to Formula

f

(f(x)). Conversely, given a satisfying

assignment T to Formula

f

(y), map t

f;2

outputs a point x = t

f;2

(T) such that f(x) = y. We will

refer to both the transformation Formula

f

and to the accompanying witness transformations in

what follows. What is important to remember is that knowledge of a satisfying assignment T to

Formula

f

(y) is tantamount to knowledge of a pre-image x of y under f .

11

3.3 Naor's commitment scheme

We will use Naor's commitment scheme [Na] which can be based on any one-way function via

[HILL]. Some special properties of the scheme are important for us.

It work like this. Suppose A has some data d 2 f0; 1g

m

that she wants to commit to B. First, B

must send A a random string R, which we call the commitment setup string, and which has length

polynomial in the security parameter n and the data length m. Then, A picks at random some

string s to use as coins, and computes a function � = Commit

f

(R; d; s). (This function depends

on a pseudorandom bit generator [BlMi, Ya], constructed out of f via [HILL], but we don't need

to know that.) This � is A's commitment to d and is sent to B. At a later stage, B can ask A to

\open" the commitment, at which point A sends d and s, and B checks that � = Commit

f

(R; d; s).

The protocol must have two properties. First is privacy: � gives B no information about d.

Second is soundness: A can't create commitments which she can open in more than one way.

In Naor's scheme [Na], the privacy is true in a computational sense. That is, as long as B

cannot invert the underlying one-way function f , it gets no partial information about d. Soundness

however is true in a strong, unconditional sense, and since this is important for us, we need to

discuss it further.

A de-committal of � is a pair (d; s) such that � = Commit

f

(R; d; s). We say that A opens �

as d if she provides a de-committal (d; s) of �. We say that a commitment setup string R is bad if

there exists a pair (d

1

; s

1

); (d

2

; s

2

) of de-committals of � such that d

1

6= d

2

. We say R is good if it is

not bad. Naor's scheme has the property that a randomly chosen commitment setup string is bad

with probability exponentially small in n [Na, Claim 3.1]. For our purposes we set the parameters

of the scheme so that this probability is 2

�2n

. (The length of R required to make this true depends

not only on n but also on the data length m. In what follows, we assume R is of the right length to

make this true with respect to whatever data length we have.) It follows that the probability that

even one out of n random commitment setup strings R

1

; : : : ; R

n

is bad is at most n � 2

�2n

� 2

�n

.

This will be used repeatedly in what follows.

3.4 The atomic protocol

We use as a primitive a atomic four round ZK argument achieving error 1=2. We now specify the

properties we want of it and the notation used to describe it. To avoid depending on the details of

any speci�c protocol, it is described via generic components and steps.

The protocol. In the literature there are several commitment-based three round ZK arguments

with error 1=2. For concreteness, take the one of Brassard, Cr�epeau and Chaum [BCC], or the one

based on general commitment in [ImYu]. To set it up using one-way function based commitment,

we �rst have the veri�er send a commitment setup string, and then run a protocol such as the ones

in [BCC, ImYu], so that we have four rounds.

To avoid depending on the details of any speci�c underlying protocol, we describe the protocol

via generic components and steps. Let � denote the boolean formula which is the common input.

The prover is assumed to have a satisfying assignment T for �. We now specify the instructions

for the parties, with the nomenclature to be explained later:

(1) Veri�er picks at random a commitment setup string R and sends it to the prover.

(2) Prover picks a random string � and computes an encapsulated circuitC = EncCirc

f

(�; T;R; �).

This is sent to the veri�er.

(3) Veri�er picks a random challenge bit c and sends it to the prover.

(4) Prover computes an answer D = Answer

f

(�; T;R; �; c) and sends it to the veri�er.

12

(5) Veri�er checks that Check

f

(�; R;C; c;D) = 1. If this is true it accepts, else rejects.

Now let us explain the components. In the second step, the prover computes an object C we call an

\encapsulated circuit." This step will involve a number of bit commitments which is proportional

to the size of �, and they are performed, here, using the scheme of Section 3.3, which can be

implemented given f . The commitment setup string used (for all the commitments) is R, and

� represents some random choices that underly the encapsulation. (Roughly, the prover will �rst

create a randomized version of � that is annotated with the values given by the truth assignment T .

This annotated circuit, call it d, would reveal T , but the prover does not send it directly. Instead,

he commits to it, sending Commit

f

(R; d; s) where s is part of �. But the details, such as what is d,

will not matter: later we will summarize all the properties we need.) As in a typical cut-and-choose

protocol, the veri�er then poses a random challenge question, which is the bit c, and prover must

\open" the encapsulated circuit in one of two ways. This \answer" of the prover, denoted D, is

computed as a function of the truth assignment, the challenge, and the random choices underlying

the original encapsulation. It consists of de-committing certain parts of C. The answer being sent

to the veri�er, the latter checks that it is correct. The check is a function of the encapsulated

circuit, the commitment setup string, the challenge, and the answer provided.

Properties. We assume certain properties of this protocol. The standard example protocols

(eg. [BCC]) do have these properties.

We assume that if an encapsulated circuit C is successfully \opened" in both ways, ie. for both

a 0-challenge and a 1-challenge, then one can obtain the truth assignment underlying �. This is

true no matter how C was constructed, and is the technical fact underlying the protocol being a

(computational) proof of knowledge with knowledge error 1=2.

More precisely, there is a polynomial time algorithm Extract

f

such that the following is true.

Suppose R is a good commitment setup string. Let C be some string sent by the prover in the �rst

step. (It purports to be a correctly computed encapsulated circuit.) Let D

0

;D

1

be strings such that

Check

f

(�; R;C; 0;D

0

) = Check

f

(�; R;C; 1;D

1

) = 1. Then Extract

f

(�; R;C;D

0

;D

1

) = T

0

is

a truth assignment that satis�es �.

We stress that this requires the commitment setup string R to be good as de�ned in Section 3.3.

We are using the fact that when this happens, it is impossible (not just computationally infeasible)

for the commiter (here the prover) to open a commitment in two di�erent ways.

We will need (to show our protocol is ZK) that one can compute EncCirc

f

(�; T;R; �) for any

T , not just a T that satis�es �. The underlying annotated circuit d will be non-sensical in this case,

but the veri�er will not know, because the annotated circuit is provided in committed form. (Of

course, a prover providing such an encapsulated circuit will be hard put to answer the challenges,

but that will not matter for us.)

Finally, of course, we also need that the protocol is ZK. (Actually, all we will use is that it is

witness indistinguishable in the sense of [FeSh], something which follows from its being ZK.)

4 Protocol 4R-ZK and its properties

We now describe our protocol and its properties. We call the protocol 4R-ZK for \four round ZK."

4.1 Protocol description

We give instructions for the prover P and the veri�er V to execute protocol 4R-ZK. The common

input is a formula ' of size n, and the prover is assumed in possession of a satisfying assignment T

to '. Refer to Section 3 for the notation and components referred to below.

13

(1) The veri�er's message M

1

=M

1;1

M

1;2

consists of two parts computed as we now describe.

(1.1) For i = 1; : : : ; n and j = 0; 1 the veri�er chooses x

i;j

R

 f0; 1g

n

and sets y

i;j

= f(x

i;j

).

These points are hereafter called the \Y -values." It letsM

1;1

consist of these 2n strings.

(1.2) The veri�er picks at random commitment setup strings R

1

; : : : ; R

n

. It is thereby initi-

ating n parallel runs of the atomic protocol: R

i

will play the role of the commitment

setup string for the i-th run. (But the input formula � for these runs has however not

yet been de�ned! That will appear later.) It sets M

1;2

= (R

1

; : : : ; R

n

).

The veri�er sends M

1

= M

1;1

M

1;2

to the prover. Now for i = 1; : : : ; n and j = 0; 1 we let

�

i;j

= Formula

f

(y

i;j

) as per Section 3.2. This is a formula both parties can now compute.

(2) The prover receives M

1

. Its reply M

2

= M

2;1

M

2;2

consists of two parts computed as we now

describe.

(2.1) The prover picks bits b

1

; : : : ; b

n

R

 f0; 1g and sets M

2;1

= (b

1

; : : : ; b

n

). The bit b

i

is viewed as selecting the Y -value y

i;b

i

, and the veri�er is being asked to reveal the

pre-image of this value, which he will do in the next step.

(2.2) We now set � = �

1;1�b

1

_ : : :_�

n;1�b

n

. (This is the OR of all formulas corresponding

to Y -values which the prover has not asked be revealed. As long as f is one-way, the

prover has very little chance of knowing a satisfying assignment to �.) We then set

� = � _ '. Notice that T (the satisfying assignment to ' that the prover has) is

also a satisfying assignment to �, so the prover has a satisfying assignment to � (even

though he does not have one for �). Viewing R

1

; : : : ; R

n

as commitment setup strings

initiating n parallel runs of the atomic protocol on common input �, the prover will now

perform the second step for each of these executions of the atomic protocol. Namely,

for i = 1; : : : ; n it picks at random a string �

i

to be used as coins in the encapsulated

circuit computation, and computes C

i

= EncCirc

f

(�; T;R

i

; �

i

) for i = 1; : : : ; n. He

now sets M

2;2

= (C

1

; : : : ; C

n

).

The prover sends M

2

=M

2;1

M

2;2

to the veri�er.

(3) The veri�er receives M

2

=M

2;1

M

2;2

. Its replyM

3

=M

3;1

M

3;2

consists of two parts computed

as we now describe:

(3.1) It sets M

3;1

= (x

1;b

1

; : : : ; x

n;b

n

), meaning it returns the pre-images for the Y -values

selected by the bits b

1

; : : : ; b

n

that the prover sent in M

2;1

= (b

1

; : : : ; b

n

).

(3.2) Having b

1

; : : : ; b

n

, the veri�er knows � and hence �, these formulas being as de�ned

above. It now picks challenges c

1

; : : : ; c

n

R

 f0; 1g, one for each run of the atomic

protocol on input �, and sets M

3;2

= (c

1

; : : : ; c

n

).

The veri�er sends M

3

=M

3;1

M

3;2

to the prover.

(4) The prover receives M

3

=M

3;1

M

3;2

.

(4.1) Say M

3;1

= (x

1

; : : : ; x

n

). The prover checks that f(x

i

) = y

i;b

i

for i = 1; : : : ; n, and if

this check fails then it aborts the protocol. Else it goes on to the next step.

(4.2) SayM

3;2

= (c

1

; : : : ; c

n

). The prover computes the answers to these challenges. Namely

for i = 1; : : : ; n it sets D

i

= Answer

f

(�; T;R

i

; �

i

; c

i

). (Recall �

i

was the coins used to

produce the encapsulated circuitC

i

, so that here the prover is opening this encapsulated

circuit according to challenge c

i

.)

The prover sends M

4

= (D

1

; : : : ;D

n

) to the veri�er.

(5) The veri�er receives M

4

and makes its �nal check. For i = 1; : : : ; n it checks that Check

f

(�;

R

i

; C

i

; c

i

;D

i

) = 1. (Recall the veri�er received the encapsulated circuit C

i

in M

3;2

and the

14

opening D

i

in M

4

.) If this is true it accepts, else it rejects.

Notice that the protocol is indeed of four rounds. Next we address its properties.

4.2 Result

Our claims about the above protocol are summarized in the following theorem. Refer to Section 2

for de�nitions of the various notions.

Theorem 4.1 Assume f is a one-way function. Then protocol 4R-ZK is:

(1) A computationally convincing proof (ie. an argument) with negligible error probability,

(2) A computational proof of knowledge with negligible knowledge error, and

(3) A (computational) zero-knowledge protocol,

all for the NP-relation Satisfy corresponding to the NP-complete language SAT.

We will prove these items in turn. As one might imagine, the di�culty in the protocol design was

making sure it was ZK. Having done the design to make this work out, however, it will be relatively

easy to show. The other claims turn out to be more non-trivial. In particular the soundness is

shown via a novel use of proofs of knowledge. We begin with a technical lemma that underlies the

�rst two claims above.

4.3 The �-Extraction Lemma

The �rst two claims about the protocol are that it is computationally convincing and a computa-

tional proof of knowledge. The �rst says that if ' is unsatis�able then a polynomial time prover

has little chance of convincing the veri�er to accept, and the second says that if ' is satis�able then

any prover convincing the veri�er to accept actually \knows" a satisfying assignment to '. Both

these claims pertain to the input formula '. Yet our main technical lemma is a claim not about '

but about the formula � constructed in the protocol. Remember this formula (a random variable

depending on other choices in the protocol) is the one on which the atomic protocol is actually

run. The crucial property of this formula is that (as long as the veri�er is honest, namely is V) it

is always satis�able: whether or not ' is satis�able, � is, because � is always satis�able.

We claim that if a prover A convinces V to accept ' then we can extract a satisfying assignment

for �, regardless of whether or not ' is satis�able. Furthermore, this extraction can be done to

meet the kinds of conditions asked in the de�nition of [BeGo]. This will help prove both the

above mentioned claims, and, as motivation, it may help to say why. Roughly, an assignment to �

corresponds to knowledge of inverses of f on random points. But remember � = ' _ �. So if ' is

unsatis�able, then an assignment to � must be an assignment to �, and this will enable us to say in

Lemma 4.3 that signi�cant success in making the veri�er accept when ' is unsatis�able translates

to inverting the one-way function f . On the other hand, if ' is satis�able then an assignment to

� will with high probability be one to ' since otherwise someone is inverting f . Now let us state

and prove the lemma.

Lemma 4.2 There is an expected polynomial time oracle algorithm E (the extractor) such that for

any prover A and formula ' the following is true. Let R be a random tape for A

'

and M

1

M

2

M

3;1

a partial transcript of an interaction between A

';R

and V

'

. (The transcript includes the �rst two

messages of the protocol and the �rst part of V 's third message). Assume the commitment setup

strings in M

1

are good. Let n = j'j. Let p = Acc(A

';R

; V

'

;M

1

M

2

M

3;1

) be the probability that V

accepts given the current partial transcript. Then on input ';M

1

M

2

M

3;1

and with oracle access to

15

A

';R

, algorithm E outputs a satisfying assignment to the formula � de�ned by the above partial

transcript as in the description of our protocol, and this with probability at least p� 2

�n

.

Proof: Let

~

R = (R

1

; : : : ; R

n

) be the sequence of commitment setup strings in M

1

. We know that

M

2

= (

~

b;

~

C) where

~

C = (C

1

; : : : ; C

n

) and C

i

is (supposed to be) an encapsulated circuit as per an

execution of the atomic protocol on input �.

Say ~c = (c

1

; : : : ; c

n

) is a challenge vector playing the role of message M

3;2

in the protocol, and

~

D = (D

1

; : : : ;D

n

) =M

4

is some response. It is useful to let

Check

n

f

(�;

~

R;

~

C;~c;

~

D) =

V

n

i=1

Check

f

(�; R

i

; C

i

; c

i

;D

i

)

be the �nal evaluation predicate of our veri�er.

We �rst describe a di�erent oracle algorithm E

1

. It takes the same inputs as E should. It always

returns a satisfying assignment to �, and this within an expected number of steps bounded by

poly(n)=(p� 2

�n

). (We can assume p > 2

�n

since otherwise there is nothing to show.)

Algorithm E

1

will sample responses of A

';R

for di�erent random challenge vectors ~c, keeping other

information �xed, until it �nds a pair of challenge vectors that are accepted by V but are di�erent

in at least one component. Namely:

Repeat:

Pick ~c

t

= (c

t;1

; : : : ; c

t;n

)

R

 f0; 1g

n

and let M

�

t;3

=M

3;1

:~c

t

Let

~

D

t

= (D

t;1

; : : : ;D

t;n

) A

';R

(M

1

M

2

M

�

t;3

)

Until 9 l;m 2 [t] such that ~c

l

6= ~c

m

but Check

n

f

(�;

~

R;

~

C;~c

l

;

~

D

l

) = Check

n

f

(�;

~

R;

~

C;~c

m

;

~

D

m

) = 1

Now let l;m satisfy the halting condition. Let i 2 [n] be such that c

l;i

6= c

m;i

. By de�nition of

Check

n

f

it must be that Check

f

(�; R

i

; C

i

; c

l;i

;D

l;i

) = Check

f

(�; R

i

; C

i

; c

m;i

;D

m;i

) = 1, meaning

encapsulated circuit C

i

of the atomic protocol has been successfully opened both for a 0-challenge

and 1-challenge. But then, we know from the properties of the atomic protocol described in

Section 3.4, that we can compute a satisfying assignment for � via Extract

f

(�; R

i

; C

i

;D

l;i

;D

m;i

).

(We use here the assumption, made in the lemma statement, that the commitment setup strings

in M

1

are good. See Sections 3.3 and 3.4.)

Now we need to analyze the running time of E

1

. Say ~c is good if Check

n

f

(�;

~

R;

~

C;~c;

~

D) = 1 where

~

D = A

';R

(M

1

M

2

M

3;1

:~c). The probability that a random ~c is good is p so one is found in expected

1=p tries. Another di�erent one is then found in expected 1=(p � 2

�n

) tries. So the pair is found

within 2=(p � 2

�n

) tries. Each try being poly(n) time, we have the claimed time bound on the

expected running time of E

1

.

Finally, we need to specify the extractor E claimed in the lemma. We apply a trick used in [BeGo]

to prove the equivalence of De�nitions 2.3 and 2.4. On input ';M

1

M

2

M

3;1

and with oracle access

to A

';R

, algorithm E producesM

3;2

as V would (this consists of just picking n random challenges),

sets M

3

= M

3;1

M

3;2

, and runs A

';R

to get the response M

4

= A

';R

(M

1

M

2

M

3

). If the resulting

transcript is rejecting (as can be determined by running the veri�er's check) then E just aborts.

If not, it nonetheless aborts with probability exactly 2

�n

. If neither of these aborts happens, it

runs E

1

. Since it runs E

1

with probability p � 2

�n

, it �nds the satisfying assignment with this

probability, and moreover its expected running time is poly(n)+(p�2

�n

) �poly(n)=(p�2

�n

) which

is poly(n).

16

4.4 Protocol 4R-ZK is computationally convincing

We will justify the �rst claim of Theorem 4.1 by proving the following:

Lemma 4.3 Assume f is a one-way function. Then protocol 4R-ZK is a computationally sound

proof for the NP-relation Satisfy, achieving negligible error-probability.

We �rst remark and explain that there is indeed something (non-trivial) to be proven here. Typi-

cally, error-reduction is done by (serial or parallel) repetition. Firstly, that's not what we are doing;

there is some repetition in the protocol, but the protocol itself does not consist of independently

repeating some atomic protocol. Moreover, even when the input ' is unsatis�able, the atomic

sub-protocols are actually being run on a satis�able formula (namely �). So we are not counting

on the soundness of the atomic protocol to prove the soundness of our protocol!

As mentioned earlier, our approach is to use proofs of knowledge, and in particular Lemma 4.2.

Let us now provide the proof.

Proof of Lemma 4.3: It is easy to see that the speci�ed polynomial time prover strategy P in

4R-ZK will meet the e�cient completeness condition of De�nition 2.1. The issue is to show that

computational soundness is achieved, and with the claimed negligible error.

Let us assume protocol 4R-ZK does not have negligible error-probability. So it does not meet

the computational soundness condition of Proposition 2.2. Hence there exists a polynomial time

prover

b

P and an in�nite set F of unsatis�able boolean formulae such that Acc(

b

P

'

; V

'

) � �(j'j) for

all ' 2 F , where �(�) = 1=p

0

(�).

3

We will show this contradicts the assumption that f is one-way.

We will show that there is an inverter I, a polynomial p

1

, and an in�nite set K of integers such

that Inv

I

f

(n) > 1=p

1

(n) for all n 2 K. As per De�nition 3.1, this implies f is not one-way.

Let us set p

1

(n) = (64n)p

0

(n) and �(�) = 1=p

1

(�). Let K be the set of all integers n for which F

contains a formula ' of length n. For each n 2 K we �x (arbitrarily) some formula '

n

2 F . Before

describing the inverter I for f we need to isolate certain executions of the interaction between

b

P

'

and V

'

, where ' = '

n

.

Good executions. Let n 2 K and let ' = '

n

. Let R be a random tape for

b

P

'

and M

1

M

2

M

3;1

a partial transcript of an interaction between P

';R

and V

'

. (The transcript includes the �rst two

messages of the protocol and the �rst part of V 's third message.) We say that R;M

1

M

2

M

3;1

is good

if the commitment setup string in M

1

is good (as de�ned in Section 3.3) and also Acc(P

';R

; V

'

;M

1

M

2

M

3;1

) � �(n)=2 (the probability here is only over the choice of the veri�er's challenge vector ~c,

since all other quantities are �xed). Since Acc(

b

P

'

; V

'

) � �(n) it must be that the probability (over

R and the coins of V leading to M

1

M

2

M

3;1

) that Acc(P

';R

; V

'

;M

1

M

2

M

3;1

) � �(n)=2 is at least

1=2. On the other hand the probability that the commitment setup string in M

1

is bad is 2

�n

(cf. Section 3.3). So the probability that R;M

1

M

2

M

3;1

is good is at least 1=4. In the sequel we

will focus on these good transcript pre�xes.

Structure of inverter. We now describe an inverter I for f . The inverter I is a polynomial

sized collection of circuits fI

n

: n � 1g as described in Section 3.1. (Meaning there is a polynomial

p

2

(�) such that the size of I

n

is at most p

2

(n) for all n � 1.) We will show that that for all n 2 K we

have Inv

I

f

(n) > �(n) = �(n)=(64n). I

n

has embedded into it the formula '

n

(which by assumption

3

If we were to directly take the contrapositive of De�nition 2.1, we would only be able to say that there is no

negligible function � such that 4R-ZK meets the computational soundness condition of De�nition 2.1 with error set

to �. It is important for this proof that we use the stronger contrapositive of (the computational soundness condition

of) Proposition 2.2.

17

is unsatis�able). The input to I

n

is a n-bit string y = f(x) where x was chosen at random from

f0; 1g

n

. I

n

wants to output a pre-image of y under f . We describe I

n

as a randomized algorithm.

(The coins can always be later eliminated by using the non-uniformity). Think if I

n

as having oracle

access to

b

P

'

where ' = '

n

. (Meaning it will feed it messages and run it, sometimes \backing it

up" and so forth. It implements this by running

b

P as a subroutine with the common input �xed

to '. It is important here that

b

P is polynomial time). It begins by picking a random string R for

b

P

'

and initializing the latter with that.

First move. I

n

will mimic the �rst move of V , with a slight twist. It picks �

R

 [n] and �

R

 f0; 1g.

Then for i = 1; : : : ; n and j = 0; 1 it does the following: If (i; j) = (�; �) then set y

i;j

= y, else

pick x

i;j

R

 f0; 1g

n

and set y

i;j

= f(x

i;j

). We let �

i;j

= Formula

f

(y

i;j

) be the boolean formula

resulting from applying Cook's theorem to the \f(�) = �" relation on input y

i;j

, as described in

Section 3.2. Now I

n

also picks random strings R

1

; : : : ; R

n

, of appropriate length, as setup strings

for the bit commitment to be used in the atomic protocol. It lets M

1

consist of the strings y

i;j

for

i = 1; : : : ; n and j = 0; 1, together with R

1

; : : : ; R

n

. This, thought of as the �rst message of V to

b

P

'

, is then \sent" to

b

P

'

.

Second move. I

n

runs

b

P

'

to get its response M

2

=

b

P

'

(M

1

; R) to the veri�er message M

1

. This

response has the form M

2

= M

2;1

M

2;2

where M

2;1

= (b

1

; : : : ; b

n

) and M

2;2

= (C

1

; : : : ; C

n

). Here

C

i

is (supposed to be) a committal for a run of the atomic protocol on input � = ' _ �, where

� = �

1;1�b

1

_ : : : _ �

n;1�b

n

.

Opening. Recall that V

'

is supposed to return x

i;b

i

to

b

P

'

for all i = 1; : : : ; n. I

n

would like to do

the same. But if b

�

= � then this means it must return a pre-image of y

�;�

under f , and it does

not know such a pre-image. (Indeed, the goal of I

n

is to �nd one). So in this case I

n

aborts. But

this can only happen with probability 1=2 since � was a random bit. In case b

�

6= �, our I

n

sets

M

3;1

= ~x = (x

1;b

1

; : : : ; x

n;b

n

). This is the �rst part of a veri�er message M

3

to be sent to

b

P

'

.

Finding a witness for �. Now comes the important step. I

n

will run an \extractor" for the

protocol which consists of n parallel runs of the atomic protocol on input � and �nd a satisfying

assignment for �. Speci�cally, we apply Lemma 4.2. Let E be as in that lemma and let p

3

(�) be the

polynomial which is its expected running time. I

n

runs E on input ';M

1

M

2

M

3;1

, giving it oracle

access to

b

P

';R

. However, this execution is halted in 8p

3

(n)=�(n) = 8p

3

(n)p

0

(n) steps. (Recall E

has an expected polynomial running time, but I

n

needs to halt within a �xed polynomial amount of

time.) If E �nds, within this time, a satisfying assignment T to � = '_�, then I

n

will be able to

�nd what it wants, namely a point x satisfying f(x) = y. The crucial observation is that since ' is

unsatis�able, the assignment T must satisfy �. Hence it must satisfy �

i;1�b

i

for some i 2 [n]. Since

� was chosen at random from [n] it will be the case that i = � with probability at least 1=n. We

know b

�

6= � (since otherwise we aborted above) meaning b

�

= 1��. So we have an assignment to

�

�;�

. Now recall that �

�;�

= Formula

f

(y). Applying the witness transformation t

f;2

discussed

in Section 3.2, we can compute a string x such that f(x) = y. I

n

does this and outputs x.

Analysis. The running time of I

n

is clearly poly(n). We must analyze its success probabil-

ity. We assume R;M

1

M

2

M

3;1

is good in the sense de�ned above: we saw this happens with

probability at least 1=4. This means the commitment setup strings in M

1

are good and p =

Acc(P

';R

; V

'

;M

1

M

2

M

3;1

) � �(n)=2. Now Lemma 4.2 says that E would �nd a satisfying assign-

ment to � with probability at least p � 2

�n

� �(n)=2 � 2

�n

> �(n)=4, for large enough n. Since

we halt E within 8=�(n) times its expected running time, Markov's inequality says we �nd the

assignment with at least the original probability minus �(n)=8. So I

n

�nds x with probability at

least �(n)=4� �(n)=8 = �(n)=8. Putting this together with the other probability losses, all together,

18

I

n

succeeds with probability at least �(n)=(64n) = �(n), as desired.

4.5 Protocol 4R-ZK is a computational proof of knowledge

The second claim of Theorem 4.1 is justi�ed by the following lemma.

Lemma 4.4 Assume f is a one-way function. Then protocol 4R-ZK is a computational proof of

knowledge (with negligible knowledge error) for the NP-relation Satisfy.

Before proving it let us discuss the issues. Given a satis�able formula ' and oracle access to

a polynomial time prover

b

P , the goal is to extract a satisfying assignment to ', with a success

probability only marginally less than the probability that

b

P

'

convinces V

'

to accept. We can easily

run the extractor of Lemma 4.2 to �nd a satisfying assignment T , but for �, not '. But � = '_�.

Our worry is that T satis�es �, not '. However, intuitively not, because a satisfying assignment to

� corresponds to the ability to invert f , and thus should appear only with negligible probability.

To capture this intuition we must show that were T to satisfy � too often then there would be a

way to invert f . We can do this similarly to the proof of Lemma 4.3.

Proof of Lemma 4.4: We will exhibit an extractor E

1

such that the conditions of De�nition 2.3

are met for some negligible function �(�). (Recall De�nition 2.3 and De�nition 2.4 are equivalent.)

E

1

has input satis�able formula ', and has oracle access to

b

P

';R

where R is some (randomly chosen

and then �xed) random tape for prover

b

P . E

1

�rst picks a random a tape R

0

for V . It now plays

the role of V , invoking

b

P for the role of the prover, and generates a partial transcript M

1

M

2

M

3;1

of the interaction between

b

P

'

and V

';R

0

. If the commitment setup strings in M

1

are not good then

E

1

aborts. Else it runs the knowledge extractor E of Lemma 4.2 on input ';M

1

M

2

M

3;1

, giving it

oracle access to

b

P

';R

. Whatever the latter outputs (hopefully an assignment T to �) is what E

1

outputs.

Since E runs in expected polynomial time, it is easy to see that E

1

does too. Similarly, given

Lemma 4.2, it is easy to see that with probability at least p � 2

�n+1

, algorithm E

1

outputs a

satisfying assignment T to � (not '!), where p = Acc(

b

P

'

; V

'

). (We loose the additional 2

�n

over

the success probability of E because the commitment setup strings are bad with probability at

most 2

�n

(cf. Section 3.3) and E

1

aborts in this case.)

But our goal is to �nd a satisfying assignment to '. Remember � = � _ '. Our worry is that T

satis�es � rather than '. Intuitively, however, not, because we know that the ability to �nd an

assignment to � corresponds to the ability to invert f . Thus it might happen, but only negligibly

often. We must now capture this.

We must show there exists a negligible function �(�) such that T is a satisfying assignment to '

with probability p � �(n), for all ' of size at least N

b

P

, where N

b

P

is an integer depending on

b

P .

Assume towards a contradiction that there is no such �. So given any negligible function � there is a

polynomial time prover

b

P and an in�nite set F of formulas such that when ' 2 F , the assignment T

output by E

1

satis�es � (rather than ') with probability at least (p�2

�n

)�(p��(n)) = �(n)�2

�n

.

We must show that this implies f is not one-way.

We will not give the construction and proof for this last statement in full because the idea is

essentially the same as in the proof of Lemma 4.3. We begin by applying [Be] to be able to work

with a function that is not negligible. We use the composite of E

b

P

1

as an algorithm to construct an

inverter for f . Like in the proof of Lemma 4.3, we are given a value y and want to �nd a pre-image

of y under f . We put y into the �rst message of the veri�er in the same way as before. Eventually

19

when E

b

P

1

gives us an assignment T to �, it has some probability of satisfying Formula

f

(y) and

then we get a pre-image of y under f , just as before. The details can be �lled in by looking at the

proof of Lemma 4.3.

4.6 Protocol 4R-ZK is zero-knowledge

The third claim of Theorem 4.1 is justi�ed by the following lemma.

Lemma 4.5 Assume f is a one-way function. Then protocol 4R-ZK is a (computational) zero-

knowledge protocol.

Proof: We must specify a simulator S for which De�nition 2.6 is met. S has input ' and oracle

access to

b

V

';R

where

b

V is any (possibly cheating) polynomial time veri�er algorithm and R is a

randomly chosen random tape for

b

V

'

. It must produce a transcript � such that (R; �) is distributed

like random members of the view of the real interaction between P

'

and

b

V

'

. Before describing the

algorithm let us sketch the intuition.

S will be trying to produce the prover moves in a conversation with

b

V

';R

. Of course, not knowing

a satisfying assignment for ', it can't really play the prover. But recall the atomic protocol is run

not on input ' but on input � = '_�. The trick is that it su�ces to know a satisfying assignment

for �.

Indeed, suppose we know some satisfying assignment for �. This is not necessarily a satisfying

assignment for '. Still, we can \mimic the prover" by using this assignment in the atomic protocol.

The veri�er will never know it was not an assignment to ', because the proof is ZK and hence

witness indistinguishable [FeSh]: views of the veri�er for di�erent witnesses held by the prover are

indistinguishable.

So if the simulator can �nd a satisfying assignment to � it can complete a simulation. How can it

�nd one? It can force

b

V

';R

to give it one! It will do this by forcing the veri�er to reveal a pre-image

x

i;1�b

i

of y

i;1�b

i

for some i 2 [n]. This corresponds e�ectively to a satisfying assignment to �

i;1�b

i

and hence to a satisfying assignment to � and hence to a satisfying assignment to �.

But how does it get x

i;1�b

i

? What

b

V

';R

reveals is x

i;b

i

, exactly to prevent the prover from getting

x

i;1�b

i

, because if the prover had the latter, it could cheat. But the simulator has an advantage:

it can backup the veri�er and run it twice for di�erent choices of b

1

; : : : ; b

n

. First it runs it in a

normal way on some \dummy" challenges b

0

1

; : : : ; b

0

n

, gets back the corresponding pre-images, and

then claims that the real challenges b

1

; : : : ; b

n

were di�erent, in particular have b

�

= 1�b

0

�

for some

� 2 [n]. For the new challenges, it has the pre-image.

Let us now specify all this in full. Here is the algorithm for S with input ' and oracle access to

b

V

';R

:

(1) S runs

b

V

';R

to get the �rst messageM

1

=M

1;1

M

1;2

. HereM

1;1

consists of strings y

i;j

2 f0; 1g

n

for i = 1; : : : ; n and j = 0; 1, and M

1;2

= (R

1

; : : : ; R

n

) consists of n strings to play the role

of commitment setup strings. We let �

i;j

= Formula

f

(y

i;j

) be the formula corresponding to

y

i;j

via Cook's theorem, as explained in Section 3.2.

(2) S picks at random b

0

1

; : : : ; b

0

n

2 f0; 1g and lets �

0

= �

1;1�b

0

1

_ : : : _ �

n;1�b

0

n

. It then lets

�

0

= '_�

0

and picks at random an assignment T

0

to the variables of �

0

. (This assignment is

extremely unlikely to satisfy �

0

, but that does not matter!) For each i = 1; : : : ; n it then picks

at random some coins �

0

i

and computes an encapsulated circuit C

0

i

= EncCirc

f

(�

0

; T

0

; R

i

; �

0

i

)

20

for �

0

. We let M

0

2;1

= (b

0

1

; : : : ; b

0

n

) and M

0

2;2

= (C

0

1

; : : : ; C

0

n

). We view M

0

2

= M

0

2;1

M

0

2;2

as the

second protocol message (from the prover).

(3) S runs

b

V

';R

(M

1

M

0

2

) to get back its responseM

0

3

=M

0

3;1

M

0

3;2

. Here M

0

3;1

consists of values x

i;b

0

i

for i = 1; : : : ; n and M

0

3;2

is a challenge vector. S checks that f(x

i;b

0

i

) = y

i;b

0

i

for i = 1; : : : ; n.

If this fails, it outputs the current partial conversation and halts. Else it continues.

(4) S now picks at random another sequence of bits b

1

; : : : ; b

n

2 f0; 1g. If (b

1

; : : : ; b

n

) = (b

0

1

; : : : ; b

0

n

)

then it aborts (but this happens only with probability 2

�n

). Else it �xes an index � 2 [n]

such that b

i

6= b

0

i

. It lets � = �

1;1�b

1

_ : : : _ �

n;1�b

n

and � = ' _ �. Now, notice that

1� b

�

= b

0

�

and S knows x

�;b

0

�

, a pre-image of y

�;b

0

�

, from the previous step. Because of this,

it can compute a satisfying assignment T to the formula �

�;b

0

�

. (This is via the properties of

Cook's reduction as explained in Section 3.2.) But then T also satis�es � and hence �, so S

has in its possession a satisfying assignment to �. Now the idea is to act like the real prover on

input this assignment. (Note this assignment does not satisfy ', but the veri�er will never be

able to tell, because it does satisfy the formula � on which the atomic protocol is performed,

and the bit commitments are secure.) So for each i = 1; : : : ; n the simulator picks at random

some coins �

i

and computes an encapsulated circuit C

i

= EncCirc

f

(�; T;R

i

; �

i

) for �. We

let M

2

= M

2;1

M

2;2

where M

2;1

= (b

1

; : : : ; b

n

) and M

2;2

= (C

1

; : : : ; C

n

). We view M

2

as a

second protocol message (from the prover).

(5) Backing up

b

V

';R

, the simulator S computes

b

V

';R

(M

1

M

2

) to get back its response M

3

=

M

3;1

M

3;2

. Here M

3;1

consists of values x

i;b

i

for i = 1; : : : ; n and M

3;2

is a challenge vector

c

1

; : : : ; c

n

. S checks that f(x

i;b

i

) = y

i;b

i

for i = 1; : : : ; n. If this check fails S cannot abort or

output this conversation. (One can check this would lead to an incorrect simulation.) Instead,

it must return to Step 4 and try again, continuing this loop until the check does pass. (This

is a standard procedure, used for example in [BMO1], and as there one can show that the

expected number of tries in this process is at most 2.) So we go on assuming the check did

pass.

(6) Having a satisfying assignment T to �, the simulator (now in guise of the prover) is able to

answer the challenges c

1

; : : : ; c

n

by opening the appropriate parts of the encapsulated circuits

C

1

; : : : ; C

n

just as the prover would. Namely S can compute D

i

= Answer

f

(�; T;R

i

; �

i

; c

i

)

for i = 1; : : : ; n and let M

4

consist of D

1

; : : : ;D

n

.

(7) Finally, S can output � = M

1

M

2

M

3

M

4

as a transcript of the interaction between the prover

and

b

V

';R

.

Fix some witness selector W : SAT ! f0; 1g

�

for the relation Satisfy(�; �). That is, W (') is a

satisfying assignment to ' for every ' 2 SAT . As per De�nition 2.6 we want to show that the

probability ensembles E

1

= fS

b

V

'

(')g

'2SAT

and E

2

= fView(P;W;

b

V ; ')g

'2SAT

are computation-

ally indistinguishable. (Refer to Section 2.4 for the de�nition of S.) We will do this under the

assumption that f is a one-way function. We will provide here only a brief outline of the intuition

behind this proof.

The function f shows up in two places in the protocol. First, f is used in the construction of

Y -values underlying the formula �. Second, f underlies the bit commitment scheme of the atomic

protocol. The �rst use of f is not a concern for the zero-knowledge, in the sense that the protocol

would be ZK (but not computationally convincing or a computational proof of knowledge!) even

if the function used to produce the Y -values was not one-way. The ZK depends however on the

security of the bit commitment scheme, and hence indirectly on the one-wayness of f .

21

The privacy (cf. Section 3.3) of the bit commitment scheme means that when S, in Step (2), forms

an encapsulated circuit using a dummy truth assignment T

0

, the veri�er

b

V has no feasible way

to detect it, and its behavior can change \only negligibly." Now, in Step (4) the simulator uses

a satisfying assignment for � that is di�erent from the one the prover would use. But since the

atomic protocol is ZK it is also witness indistinguishable in the sense of [FeSh]. Furthermore,

they show that witness indistinguishability is preserved under parallel repetition, so the protocol

consisting of n parallel repetitions of the atomic protocol is also witness indistinguishable. So

the transcripts produced for the two di�erent witnesses in protocol 4R-ZK have (computationally)

indistinguishable distributions.

The formal proof would be by contradiction. We assume the ensembles are not computationally

indistinguishable. So for any negligible function �(�) there is a distinguisher D = fD

'

g

'2SAT

and

an in�nite set F of satis�able boolean formulae such that

�

�

�

�

Pr

�

D

'

(v) = 1 : v

R

 S

b

V

'

(')

�

� Pr

h

D

'

(v) = 1 : v

R

 View(P;W;

b

V ; ')

i

�

�

�

�

> �(j'j)

whenever ' 2 F . Using D we would do one of the following. Either construct a polynomial sized

circuit family that defeated the privacy of the bit commitment scheme, which would contradict the

security of this scheme as proven in [Na, HILL]. Or, build a distinguisher that would contradict the

witness indistinguishability of n parallel repetitions of the atomic protocol. We omit these proofs

from this abstract.

Acknowledgments

We thank the (anonymous) referees of Eurocrypt 97 for comments which improved the presentation

of the paper.

References

[Be] M. Bellare. A note on negligible functions. Technical Report CS97-529, Department of Com-

puter Science and Engineering, University of California at San Diego, March 1997. Available at

http://www-cse.ucsd.edu/users/mihir.

[BeGo] M. Bellare and O. Goldreich. On De�ning Proofs of Knowledge. Advances in Cryptology

{ Crypto 92 Proceedings, Lecture Notes in Computer Science Vol. 740, E. Brickell ed., Springer-

Verlag, 1992.

[BMO1] M. Bellare, S. Micali and R. Ostrovsky. Perfect Zero-Knowledge in Constant Rounds.

Proceedings of the 22nd Annual Symposium on the Theory of Computing, ACM, 1990.

[BMO2] M. Bellare, S. Micali and R. Ostrovsky. The true complexity of statistical zero-Knowledge.

Proceedings of the 22nd Annual Symposium on the Theory of Computing, ACM, 1990.

[BeYu] M. Bellare and M. Yung. Certifying permutations: Non-interactive zero-knowledge based on

any trapdoor permutation. Journal of Cryptology, Vol. 9, No. 1, pp. 149{166, Winter 1996.

[Bl] M. Blum. Coin Flipping over the Telephone. IEEE COMPCON 1982, pp. 133{137.

[BDMP] M. Blum, A. De Santis, S. Micali, and G. Persiano. Non-Interactive Zero-Knowledge Proof

Systems. SIAM Journal on Computing, Vol. 20, No. 6, December 1991, pp. 1084{1118.

[BlMi] M. Blum and S. Micali. How to generate cryptographically strong sequences of pseudo-random

bits. SIAM Journal on Computing, Vol. 13, No. 4, pp. 850{864, November 1984.

22

[BrCr] G. Brassard and C. Cr

�

epeau. Non-transitive Transfer of Con�dence: A perfect Zero-

knowledge Interactive protocol for SAT and Beyond. Proceedings of the 27th Symposium on

Foundations of Computer Science, IEEE, 1986.

[BCC] G. Brassard, D. Chaum and C. Cr

�

epeau. Minimum Disclosure Proofs of Knowledge. J.

Computer and System Sciences, Vol. 37, 1988, pp. 156{189.

[BCY] G. Brassard, C. Cr

�

epeau and M. Yung. Constant round perfect zero knowledge computa-

tionally convincing protocols. Theoretical Computer Science, Vol. 84, No. 1, 1991.

[FFS] U. Feige, A. Fiat, and A. Shamir. Zero-Knowledge Proofs of Identity. Journal of Cryptology,

Vol. 1, 1988, pp. 77{94.

[FLS] U. Feige, D. Lapidot, and A. Shamir. Multiple Non-Interactive Zero-Knowledge Proofs Based

on a Single Random String. Proceedings of the 31st Symposium on Foundations of Computer

Science, IEEE, 1990.

[FeSh] U. Feige and A. Shamir.Witness Indistinguishable and Witness Hiding Protocols. Proceedings

of the 22nd Annual Symposium on the Theory of Computing, ACM, 1990.

[Fo] L. Fortnow. The Complexity of Perfect Zero-Knowledge. In Advances in Computing Research,

Ed. S. Micali, Vol. 18, 1989.

[Go] O. Goldreich. Foundations of cryptography: Fragments of a book. Weizmann Institute of Sci-

ence, February 1995.

[GoKa] O. Goldreich and A. Kahan. How to Construct Constant-Round Zero-Knowledge Proof Sys-

tems for NP. Journal of Cryptology, Vol. 9, No. 3, 1996, pp. 167{190.

[GoKr] O. Goldreich and H. Krawczyk. On the Composition of Zero Knowledge Proof Systems.

SIAM J. on Computing, Vol. 25, No. 1, pp. 169{192, 1996.

[GMW] O. Goldreich, S. Micali and A. Wigderson. Proofs that yield nothing but their validity or

all languages in NP have zero knowledge proof systems. Journal of the Association for Computing

Machinery, Vol. 38, No. 1, July 1991.

[GoOr] O. Goldreich and Y. Oren. De�nitions and properties of zero-knowledge proof systems. Jour-

nal of Cryptology, Vol. 7, No. 1, 1994, pp. 1{32.

[GoMi] S. Goldwasser and S. Micali. Probabilistic Encryption. J. Computer and System Sciences,

Vol. 28, 1984, pp. 270{299.

[GMR] S. Goldwasser, S. Micali and C. Rackoff. The knowledge complexity of interactive proof

systems. SIAM J. on Computing, Vol. 18, No. 1, pp. 186{208, February 1989.

[HILL] J. H

�

astad, R. Impagliazzo, L. Levin and M. Luby. Construction of a pseudo-random gen-

erator from any one-way function. Manuscript. Earlier versions in STOC 89 and STOC 90.

[ImLu] R. Impagliazzo and M. Luby. One-way Functions are Essential for Complexity-Based Cryp-

tography. Proceedings of the 30th Symposium on Foundations of Computer Science, IEEE, 1989.

[ImYu] R. Impagliazzo and M. Yung. Direct Minimum-Knowledge Computations. Advances in Cryp-

tology { Crypto 87 Proceedings, Lecture Notes in Computer Science Vol. 293, C. Pomerance ed.,

Springer-Verlag, 1987.

[IS1] T. Itoh and K. Sakurai. On the complexity of constant round ZKIP of possession of knowledge.

IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences,

Vol. E76-A, No. 1, January 1993.

23

[Na] M. Naor. Bit Commitment using Pseudo-Randomness. Advances in Cryptology { Crypto 89

Proceedings, Lecture Notes in Computer Science Vol. 435, G. Brassard ed., Springer-Verlag, 1989.

[NOVY] M. Naor, R. Ostrovsky, R. Venkatasan, M. Yung. Perfect zero knowledge arguments

for NP can be based on general complexity assumptions. Advances in Cryptology { Crypto 92

Proceedings, Lecture Notes in Computer Science Vol. 740, E. Brickell ed., Springer-Verlag, 1992.

[OsWi] R. Ostrovsky and A. Wigderson. One-way functions are essential for non-trivial zero-

knowledge. Proceedings of the Second Israel Symposium on Theory and Computing Systems,

IEEE, 1993.

[ToWo] M. Tompa and H. Woll. Random Self-Reducibility and Zero-Knowledge Interactive-Proofs of

Possession of Information. Proceedings of the 28th Symposium on Foundations of Computer

Science, IEEE, 1987.

[Ya] A. C. Yao. Theory and Applications of Trapdoor functions. Proceedings of the 23rd Symposium

on Foundations of Computer Science, IEEE, 1982.

A Constant round ZK via coin ipping plus NIZK

The protocol stated in Figure 1 as obtained by combining [Bl, FLS] may need elaboration. In

this folklore protocol, one �rst uses Blum's coin ipping in the well protocol [Bl] to get a common

random string. Then one implements a non-interactive CZK proof (a notion of [BDMP]) using this

string, which as per [FLS, BeYu] can be done with a trapdoor permutation.

In somewhat more detail, the �rst move is the veri�er committing; for a three round simulatable

protocol we need a \certi�ed one-way permutation." (Based on algebraic assumption, e.g. Discrete

Logarithm. An arbitrary trapdoor permutation won't su�ce.) After this the prover sends bits in

the clear, the veri�er de-commits, and the XOR of the prover bits and the veri�er's de-comitted

bits is declared to be the common random string. The non-interactive ZK (NIZK) proof is run on

the latter.

The reason the full protocol is an argument, not a proof, is that the veri�er's �rst round commit-

tals are done using a computational assumption. Note that we assume more than in other methods.

(We could also use stronger forms of commitment which coceals with information theoretic security;

but an extra round is needed.)

24

