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Abstract. The Wire-Tap Channel of Wyner [19] shows that a Binary

Symmetric Channel may be used as a basis for exchanging a secret key,

in a cryptographic scenario of two honest people facing an eavesdropper.

Later Cr�epeau and Kilian [9] showed how a BSC may be used to im-

plement Oblivious Transfer in a cryptographic scenario of two possibly

dishonest people facing each other. Unfortunately this result is rather im-

practical as it requires 
(n

11

) bits to be transmitted through the BSC to

accomplish a single OT. The current paper provides e�cient protocols to

achieve the cryptographic primitives of Bit Commitment and Oblivious

Transfer based on the existence of a Binary Symmetric Channel. Our

protocols respectively require sending O(n) and O(n

3

) bits through the

BSC. These results are based on a technique known as Generalized Pri-

vacy Ampli�cation [1] that allow two people to extract secret information

from partially compromised data.

1 Introduction

The cryptographic power of a noisy channel has been demonstrated by Wyner

[19] who showed that two honest parties, say A and B, can exchange a secret

key on which an eavesdropper E may obtain only a small fraction of the infor-

mation as long as A and B are connected by a Binary Symmetric Channel of

better quality than a similar Channel connecting them to E . More recently, a

result of Bennett, Brassard, Cr�epeau and Maurer [1] provides a technique called

Generalized Privacy Ampli�cation to ensure that E 's information is an arbitrary

small fraction of a bit under the same conditions.

But cryptography is no longer interested solely in protecting communications.

As a result of public-key cryptography, a large number of other cryptographic

tasks have emerged. Examples of such tasks are Coin-ipping by telephone [3]

and Mental Poker. These may involve two or more parties, some of which may

be dishonest. The general concept of Distributed Function Evaluation was �rst

introduced by Yao [20] and later extended to \Mental Games" by Goldreich,

Micali and Wigderson [12].
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Distributed Function Evaluation and Mental Games are multi-party algo-

rithms which involve secret data that the parties want to keep from one an-

other. In the model where we are ready to accept computational assumptions,

such general tasks can be achieved from basic assumptions such as the existence

of a One-Way Trapdoor Function [12].

The lesson derived in the computational model is that very simple protocols

are su�cient to achieve the general ones. The two primitives known as Bit Com-

mitment (de�ned in Section 3) and Oblivious Transfer (de�ned in Section 4)

are elementary protocols that are su�cient in general to accomplish any Mental

Games, even in a non-computational scenario [14, 8].

The current paper considers a scenario where only two people, A and B, are

involved and where we put no limitation on their computing power. If we made

no further assumption, it would be impossible to accomplish Mental Games.

Thus, the extra assumption we make is that A and B are connected by a Binary

Symmetric Channel (BS

�

), that is a channel that will change the value of a bit

b with probability � as it travels from one party to the other.

A �rst protocol to accomplish Oblivious Transfer from a Noisy Channel

was presented in [9]. Unfortunately, that protocol is quite complex and requires


(n

11

) bits sent through the BSC to perform a single Oblivious Transfer, where

n is a security parameter that speci�es the reliability of the protocol. As a con-

sequence, any two-party computations may be performed from the assumption

that there exists a reliable BSC. The current solution is by far more e�cient than

those suggested earlier. The current paper provides a protocol for Bit Commit-

ment that uses O(n) times the BS

�

and a protocol for Oblivious Transfer that

uses O(n

3

) times that primitive, where n is a security parameter that speci�es

the probabilities of failure of the protocols. These probabilities are all exponen-

tially small in n.

2 General Tools

2.1 Error Channel

We consider a standard error model: the binary symmetric channel. In the binary

symmetric channel A sends a bit to B that is ipped with probability �

BS

�

(x) =

�

�x with prob. �

x with prob. 1� �.

By extension, we also writeBS

�

(w) as a shorthand forBS

�

(w

1

)BS

�

(w

2

):::BS

�

(w

n

)

when w = w

1

w

2

:::w

n

is an n{bit word. Let H(�) = �� lg �� (1 � �) lg(1 � �) be

the binary entropy function. We de�ne the channel capacity of the BS

�

to be

C

�

= 1�H(�).

A nice property of the binary symmetric channel is that it is totally symmet-

rical between the participants: if B wants to send a bit x via BS

�

(x) to A when

it is only available from A to B, they can do as follows:



Protocol 2.1 ( BS

�

(x) )

1: A picks r 2

R

f0; 1g and runs BS

�

(r) with B who gets r

0

,

2: B announces y  x� r

0

to A,

3: A returns y � r.

In general, for the binary symmetric channel, any protocol may be inverted

by permuting A and B and replacing BS

�

by BS

�

. Therefore the protocols of

sections 3 and 4 may be achieved from a noisy channel running either way. This

is not the case with all channels. The following is an example of the opposite

type.

An alternative to the binary symmetric channel would have been to consider

the erasure channel where bits are either received without errors, or completly

lost with probalities 1 � � and �. However this situation has been previously

analyzed since the erasure channel is the same as Rabin's Oblivious Transfer

[16]. Protocols for Bit Commitment and (

2

1

){OT using Rabin's O.T. are available

in [14] and [7].

2.2 Coding theory

An [n; k; d] linear code C is a linear subspace of f0; 1g

n

of dimension k (and

cardinality 2

k

) such that no two words c

1

; c

2

from C are such that d

H

(c

1

; c

2

) < d,

except if c

1

= c

2

, where d

H

(x; y) is the Hamming distance between x and y: the

number of positions where they di�er.

Such a code is de�ned as the linear combinations of the rows of a generating

matrix G of dimension k � n. Alternatively, C may be de�ned as the kernel of

a parity check matrix H of dimension n � (n � k). Knowledge of G or H is

computationally equivalent as it is easy to get one from the other.

For section 3 we need the well known fact [15, chap. 17, prob. (30)] that there

exists a constant � > 1 such that a random binary matrixG of size Rn�n de�nes

a binary linear code with minimal distance at least �n except with probability

not greater than �

(R�C

�

)n

, for values of R < C

�

.

For section 4 we need codes that are e�ciently decodable with high correction

rate and high dimension. For this purpose we use concatenated codes de�ned in

[11] that are e�ciently encoded and decoded. Asymptotically, very long [n;Rn; d]

concatenated codes may be constructed in such a way that for every � > 0 there

exists a constant � > 1 such that the codes fail to correct �n errors except

with probability not greater than �

(R�C

�

)n

, for values of R < C

�

(although the

minimum distance d may be somewhat smaller than �n). Please consult [11] for

more information on asymptotic performances of concatenated codes.

In some situations the information transmitted is not a codeword. In such a

case, as long as the syndrome syn(w) = H

>

w of a word w is known the decoding

algorithm may be used to recover w from a noisy version of that word and the

value of syn(w). Please consult [15] for more information on coding theory.



2.3 Generalized Privacy Ampli�cation

Let W be a random variable uniformly distributed over f0; 1g

n

and let BS

�

(W )

be another random variable obtained fromW through a binary symmetric chan-

nel of error rate �, i.e.

Prob [BS

�

(W ) = vjW = w] = (1� �)

n�d

H

(w;v)

�

d

H

(w;v)

:

Let G be a random variable taking values g : f0; 1g

n

! f0; 1g

r

uniformly

distributed from a universal

2

class of hash functions [6]. It is shown in [1] that

Theorem1. For any � > 0 and all su�ciently large n, for s = n(H(�)� �)� r

H(G(W )jBS

�

(W ); G) � r �

2

�s

ln 2

:

Moreover, according to [2, 5, 1] for the special case where we have a linear

function syn : f0; 1g

n

! f0; 1g

t

Theorem2. For any � 2 f0; 1g

t

, � > 0 and all su�ciently large n ,

for s = n(H(�)� �)� r

H(G(W )jsyn(W ) = �;BS

�

(W ); G) � r �

2

t�s

ln 2

:

SinceH(G(W )jsyn(W ) = �;BS

�

(W ); G) = rmeans that no information about

G(W ) is given by syn(W ) = �;BS

�

(W ); G, the above result is exponentially

close to the best possible: the latter contains almost no information about G(W ).

3 Bit Commitment

Assume that a party, A, has a bit b in mind, to which she would like to be

committed toward another party, B. That is, A wishes, through a procedure

BC(b), to provide B with a piece of evidence w that she has a bit b in mind

and that she cannot change it (binding). Meanwhile, B should not be able to tell

from that evidence what b is (concealing). At a later time, A can reveal, through

an unveiling procedure UN(b; p), the value of b and prove through p to B that

the piece of evidence sent earlier (w) really corresponded to that bit.

Bit commitment schemes have several applications in the �eld of crypto-

graphic protocols. In particular one can implement zero-knowledge proofs of a

variety of statements using bit commitment schemes [13, 4]. The �rst implemen-

tations of bit commitment schemes were given in a computational complexity

scenario [3]. Unfortunately, proofs of their (computational) security have always

required an unproven assumption since otherwise they would imply very strong

results such as P 6= NP.

This section is inspired by that work of [5] to achieve Bit Commitment in

the model of Quantum Cryptography.



3.1 Bit Commitment from Binary Symmetric Channel

Intuition behind Protocols BC & UN After establishing a proper error-

correcting code, A sends a codeword from that code to B through the BS

�

.

The code is such that B should have many candidates for A's codeword after

seeing it through the BS

�

. The secret bit of A is given by applying a random

function from a universal

2

class to the codeword. To unveil her bit, A discloses

her codeword. She should not be able to announce two codewords that B will

�nd close enough to the word he received to believe her.

Formal Protocol Let � be the error probability of the channel, and  < 1 be

a positive number. Let � > 0 be such that H(�) � � > H(�) and such that

(H(�) � �)n is an integer. The following protocols work for any value of � such

that 0 < � < 1=2, in contrast to the protocols of Section 4.

Protocol 3.1 ( BC(b) )

1: B chooses and announces to A a binary linear [n; k; d]-code C

with parameters k = (1�H(�) + �)n and d � �n.

2: A

{ picks a random n-bit string m and announces it to B,

{ picks a random codeword c 2 C such that c�m = b,

{

n

DO

i=1

runs BS

�

(c

i

) with B who receives c

0

i

,

{ returns c; b.

3: B sets c

0

 (c

0

1

c

0

2

: : : c

0

n

) and returns (C;m; c

0

).

B keeps c

0

secret forever, whereas A keeps b and c secret until (and if) unveiling

takes place. If A subsequently decides to unveil her commitment, she initiates the

next protocol with B. There exists a positive number � < (1=2��)=2 such that

an honest A is likely to satisfy the following with overwhelming probability while

a dishonest A is unable to open the commitment as both bits with overwhelming

probability.

Protocol 3.2 ( UN(c; b); (C;m; c

0

) )

1: if (c 2 C) ^ (b = c�m) ^ (d

H

(c; c

0

) < �n+ �n)

then B accepts else B rejects.

Details of the Protocol In the above Protocol BC we ask B to choose a code

with speci�c parameters. The e�ect of these parameters on the security of the

protocol explain why we require B to do this job and not A: the bigger d is, the

more unlikely it is for A to cheat and the bigger k is, the more unlikely it is



for B to cheat. Coding theory give us limits on how big d and k can be at the

same time. In order to have them as large as possible at the same time, the best

construction known to this day is to pick the generating matrix of the code at

random. Nevertheless, in this case the value of k is easy to �gure out from the

matrix (the rank of the matrix) while the exact value of d is more di�cult to

determine. All we know is that it is likely to be high.

As discussed in Sect. 2.2, a random binary matrix G of size Rn � n de�nes

a binary linear code with minimal distance at least �n except with probability

�

(R�C

�

)n

, thus B has an exponentially small probability of having d too small

when he picks a k� n matrix at random. A can easily verify that the value of k

is correct.

The random vector m is used to de�ne a Privacy Ampli�cation Function of

f0; 1g

n

to f0; 1g.

3.2 Analysis of the Protocol

Concealing Let C andM be the random variables describing B's possibilities for

c and m. Before c is sent through the BSC, C is uniformly distributed among

all the possible codewords of C and M among all possible n{bit strings. Let

0 < �

0

< �. We are in the scenario of Theorem 2 with r = 1, t = (H(�) � �)n,

and s = (H(�)��

0

)n�1. We therefore conclude that seeing a codeword c through

a BSC and learning m is not enough to know much about c�m:

Theorem3. For any all su�ciently large n

H(C �M jsyn(C) = (0; 0; :::;0);BS

�

(C);M ) � 1�

2

(�

0

��)n+1

ln 2

:

Binding An honest A sends a random codeword c through the channel. Con-

sider the random variable d

H

(c;BS

�

(c)). It is clear that E(d

H

(c;BS

�

(c))) = �n

and by Bernstein's law of large numbers [17, Chap. VII, Sect. 4, Theorem 2]

Prob [d

H

(c;BS

�

(c)) > �n+ �n] is exponentially small in n for all � su�ciently

small, and all su�ciently large n. A dishonest A sends any word w through

the channel and later would like to claim c

0

or c

1

to unveil as 0 or 1. One

of these, say c

z

, is such that d

H

(c

z

; w) > �n=2. Consider the random variable

d

H

(c

z

;BS

�

(w)). It is easy to calculate thatE(d

H

(c

z

;BS

�

(w))) � �n+(1=2��)n

and by Bernstein's law of large numbers Prob [d

H

(c

z

;BS

�

(w)) < �n+ (1=2 � �)n� �n]

is exponentially small in n for all � su�ciently small, and all su�ciently large n.

Thus any � < (1=2 � �)=2 will satisfy our requirements that an honest A

succeeds except with probability exponentially small in n, while a dishonest A

succeeds to open both ways only with probability exponentially small in n.



4 Oblivious Transfer

One-out-of-two Oblivious Transfer, denoted (

2

1

){OT, is a primitive that origi-

nates with [18] (under the label of \multiplexing"). According to this primitive,

one party A owns two secret strings w

0

and w

1

, and another party B wants to

learn w

c

for a secret bit c of his choice. A is willing to collaborate provided that

B does not learn any information about w

�c

, but B will only participate if A

cannot obtain information about c.

Similarly, in an Oblivious Transfer [16], A sends a message to B that is

received with probability � (this fact is out of their control) while the message

is otherwise lost. A does not �nd out what happened. B knows if he got the

message or nothing. We note this protocol OT

�

. Independently from [18] but

inspired by [16], (

2

1

){OT was introduced subsequently in [10] with applications

to contract signing protocols.

These two simple cryptographic tools have been extensively studied by sev-

eral researchers because they turned out to be elementary blocks to build more

elaborate cryptographic tasks known as \secure computations". This idea intro-

duced by Yao [20] allows A and B to compute a two-argument function on data

they would like to keep secret from one another. They �nd out the output of the

function but not their respective inputs. It was shown in a computational model

that One-out-of-two Oblivious Transfer su�ces to perform general secure com-

putations by Goldreich, Micali and Wigderson [12] and later in an abstract (not

necessarily computational) model by Kilian [14]. Cr�epeau showed [7] that indeed

Rabin's Oblivious Transfer can also do the job by describing a general technique

to turn an Oblivious Transfer into a One-out-of-two Oblivious Transfer. The

result of the current section is an extension of that technique.

4.1 Oblivious Transfer from Binary Symmetric Channel

Basic Idea For � > 1=2, simulate OT

�

(b) with protocol

d

OT

�

(b) obtained by

sending b twice through the BSC of error probability ' =

1�

p

2��1

2

and then

reduce (

2

1

){OT to

d

OT

�

(b) with a Protocol similar to that of [7].

Protocol 4.1 (

d

OT

�

(b) )

1: A runs BS

'

(b)BS

'

(b) with B who receives b

0

b

1

, for ' =

1�

p

2��1

2

.

2: if b

0

= b

1

then B returns b

0

else B returns ".

The problems with this approach are that

d

OT

�

(b) makes errors and that A can

send bad pairs

�

bb: if A is honest and sends bb through the binary symmetric

channel then

Prob

h

d

OT

�

(b) = x

i

=

8

<

:

(1� ')

2

if x = b

'

2

if x =

�

b

2'(1� ') if x = "



B receives a bit with probability � = '

2

+ (1� ')

2

. If instead A is dishonest

and sends

�

bb or b

�

b through the binary symmetric channel then the probability

that B receives a bit is 1 � � = 2'(1 � '). If no extra checks are performed, A

could send bad pairs and �gure out in Protocol 4.2 which set is good and which

set is bad by the fact that good pairs are more likely to have been received.

The errors are �rst solved (in Protocol 4.2) by the same trick as in [2] using

codes to �x them, while the cheating by A is later taken care of (in Protocol

4.3) by running statistics on the frequency of bb pairs. Protocol 4.2 introduces

another kind of cheating A could perform that is also solved in Protocol 4.3.

Intuition behind Protocol

�

2

1

�

{

d

OT For this �rst protocol we assume A

behaves honestly and will remove this assumption in the �nal protocol. The idea

of the �rst protocol is that A sends 2n random bits r

1

; r

2

; :::; r

2n

to B using

d

OT

�

.

B should receive roughly 2�n of these and lose 2(1� �)n. B forms two sets I

0

; I

1

of size n and thus de�nes two strings r

0

I

0

; r

0

I

1

of size n (r

0

restricted to I

0

and I

1

).

String r

I

c

should be entirely known by B, while string r

I

�c

should be partially

unknown by B. Nevertheless, because

d

OT

�

is imperfect, we expect an average

of

'

2

�

n di�erences between r

I

c

and r

0

I

c

.

A code is established between the parties to correct more than

'

2

�

n errors

except with exponentially small probability in n.

The errors are corrected by having A send the syndrome of the two words

syn(r

I

0

); syn(r

I

1

). Using r

0

I

c

and syn(r

I

c

), B may recover r

I

c

except with small

probability of failure. Nevertheless, this correction information is not su�cient

to �nd out both words r

I

c

; r

I

�c

accurately, as long as the dimension of the code

is somewhat greater than �n.

A privacy ampli�cation function is �nally used to extract one secret bit per

string, so that one bit may be recovered by B but not both. This function is the

scalar product by a random n-bit word m.

Imcomplete Protocol Let  be a number greater than 1.

Protocol 4.2 (

�

2

1

�

{

d

OT(b

0

; b

1

)(c) )

1:

2n

DO

i=1

A picks a random bit r

i

and runs

d

OT

�

(r

i

) with B who gets r

0

i

.

2: B picks and sends two random disjoint sets I

0

; I

1

s.t. jI

0

j = jI

1

j = n, and

(8i 2 I

c

[r

0

i

6= "]).

3: A and B agree on a parity check matrix H of a concatenated code C

with parameters [n; k > (�+ �)n; d] correcting 

'

2

�

n errors.

4: A

{ computes and sends s

0

 syn(r

I

0

) and s

1

 syn(r

I

1

),

{ picks and sends a random n-bit word m,

{ computes and sends

^

b

0

 b

0

� (m� r

I

0

) and

^

b

1

 b

1

� (m� r

I

1

).

5: B

{ recovers r

I

c

using r

0

I

c

; s

c

and the decoding algorithm of C,

{ computes and returns

^

b

c

� (m� r

I

c

).



Details and discussion of Protocol

�

2

1

�

{

d

OT The code used for this protocol

requires the extra property that it must be e�ciently decodable. This can be

done by using concatenated codes. For ' < 0:1982 the conditions of Step 3 can

be satis�ed. Therefore, contrary to Protocol BC, this new protocol works only

for reliable enough channels BS

'

(not for all ').

B is unable to cheat this protocol because whatever way he splits the \good"

bits (r

0

i

6= ") between I

0

; I

1

, he will not be able to put more (� + �=2)n good

bits in at least one of I

0

or I

1

. Since k > (� + �)n then syn(r

I

0

); syn(r

I

1

) each

contain n � k bits of information, i.e. no more than (1 � � � �=2)n bits. Thus,

at least one of the two words r

I

0

; r

I

1

will be undetermined by at least �n=2 =

n�(1+�)n=2�(1=2��)n bits. Using privacy ampli�cation, this word will contain

an exponentially small amount of information about its related bit. Therefore,

B cannot learn both of A's bits.

Unfortunately, A can cheat this protocol in two di�erent ways that allow her

to �gure out B's secret input c: at Step 2 A can send \bad" pairs r

i

�r

i

or �r

i

r

i

instead of r

i

r

i

increasing the probability that it is lost (r

0

i

= ") by B and at

Step 4 she can send a \bad" syndrome leading B to a decoding error. In the �rst

cheat, \bad" pairs are more likely to end up in the \bad" set thus indicating

to A which one is more likely to be the \good" and \bad" sets. In the second

cheat, if A makes only one syndrome bad then B might have to abort depending

on which bit he is trying to get. Protocol 4.3 solves these two problems.

Intuition behind Protocol (

2

1

){OT The general idea of this new protocol is

to repeat Protocol

�

2

1

�

{

d

OT several times for random b

`;0

; b

`;1

and c

`

and combine

these instances in such a way to prevent A's cheating as above.

More precisely, Protocol

�

2

1

�

{

d

OT is repeated n

2

times. We combine the n

2

instances of

�

2

1

�

{

d

OT in such a way that Amust cheat in each instance if she wants

to discover the value of c. Protocol

d

OT is used a total of 2n

3

times. In order to

obtain information A must send at least n

2

bad pairs in these protocols. This

will make a statistical di�erence that will be detected with probability almost

1. If A uses less than n

2

bad pairs, she �nds out nothing about c. Similarly,

if A sends bad syndromes in protocol

�

2

1

�

{

d

OT with probability 1=2 she will be

detected by B because he reads according to a random choice. If she uses O(n)

such syndromes it is almost certain that B will detect her cheating.

Let n be an odd number. The instances are combined by requesting that

b

`;0

� b

`;1

= b

0

� b

1

for 1 � ` � n

2

. Let b

0;0

=

n

2

M

`=1

b

`;0

and b

0;1

=

n

2

M

`=1

b

`;1

. These

requirements cause that

n

2

M

`=1

b

`;c

`

= b

0;z

for z =

n

2

M

`=1

c

`

. Thus in order to �nd out

which of b

0;0

or b

0;1

B is trying to get, A must �nd out all the c

`

.

Full Protocol Let  be a number greater than 1 and n be an odd number. An

extra index ` is added to each variable of the `

th

iteration of

�

2

1

�

{

d

OT.



Protocol 4.3 ( (

2

1

){OT(b

0

; b

1

)(c) )

1: A picks n

2

random bits b

1;0

; b

2;0

; :::; b

n

2

;0

and sets b

`;1

 b

0

� b

1

� b

`;0

, for

1 � ` � n

2

.

2: B picks n

2

random bits c

1

; c

2

; :::; c

n

2

.

3:

n

2

DO

`=1

1. A runs

�

2

1

�

{

c

OT(b

`;0

; b

`;1

)(c

`

) with B who gets b

0

`

,

2. if d

H

(r

`;I

`;c

`

; r

0

`;I

`;c

`

) > 

'

2

�

n then B aborts.

4: if

�

#f`; i j r

0

`;i

6= "g < 2�n

3

�

(1�2')

2

2

n

2

�

then B aborts

else B computes and sends c

0

 c�

0

@

n

2

M

`=1

c

`

1

A

.

5: A computes and sends

^

b

0

 b

0

�

0

@

n

2

M

`=1

b

`;c

0

1

A

and

^

b

1

 b

1

�

0

@

n

2

M

`=1

b

`;�c

0

1

A

to B.

6: B computes and returns

^

b

c

�

0

@

n

2

M

`=1

b

0

`

1

A

.

Details of the Protocol The test of Step 3.2 is to decide if the syndrome

sent by A was valid. The value 

'

2

�

n is the scope of the decoding algorithm of

the concatenated code. If the decoded word was further than this distance then

clearly the syndrome was wrong. If the test of Step 4 is negative then B is almost

certain that A has not cheated n

2

times over the 2n

3

transmissions.

4.2 Analysis of the protocol

Let z

i;j

=

�

0 if r

0

i;j

= "

1 if r

0

i;j

6= "

. When A sends valid pairs r

i;j

r

i;j

in Protocol 4.3 clearly

we have E

0

@

n

2

X

i=1

2n

X

j=1

z

i;j

1

A

= 2�n

3

. On the other hand, if A wants to take advan-

tage of this kind of cheating, she must cheat in each of the n

2

iterations of the

protocol (if not she will loose completely one of the c

`

and thus c). In that case

we get E

0

@

n

2

X

i=1

2n

X

j=1

z

i;j

1

A

� �(2n

3

� n

2

) + (1� �)n

2

= 2�n

3

� (1� 2')

2

n

2

.



Theorem4. There exists a constant � < 1 with the following properties: when

A does not use \bad" pairs then

Prob

2

4

n

2

X

i=1

2n

X

j=1

z

i;j

< 2�n

3

�

(1� 2')

2

2

n

2

3

5

< �

n

whereas, when she cheats n

2

times,

Prob

2

4

n

2

X

i=1

2n

X

j=1

z

i;j

> 2�n

3

�

(1� 2')

2

2

n

2

3

5

< �

n

:

Proof (sketch). Follows from Bernstein's law of large numbers.

Thus, except with exponentially small probability, an honest A will pass the

test of Step 4 while a dishonest A will fail that same test.

If A is honest, the probability that more than 

'

2

�

n errors occur during

transmission by accident is exponentially small. Thus an honest A who sends

correct syndromes, is unlikely to fail the test of Step 3.2 while a dishonest A

who deliberately sends a wrong syndrome will be detected with probability 1=2,

if B happens to use that syndrome at random.

Finally, for the same reasons discussed in Sect. 3.2, because of Privacy Ampli-

�cation B cannot obtain information about both b

0

and b

1

through the instances

of protocol

�

2

1

�

{

d

OT.

5 Conclusion and Open Question

We have obtained two new protocols for the cryptographic primitives of Bit

Commitment and One-out-of-Two Oblivious Transfer based on the existence of

a BSC using Privacy Ampli�cation. The protocol for BC requires O(n) uses

of the BSC, while the protocol for (

2

1

){OT requires O(n

3

) uses of the BSC.

If we combine these protocols with the protocol of Cr�epeau, van de Graaf and

Tapp [8] for Private Multi-Party Computation to achieve any two-party function

evaluation which requires O(n

2

) BCs and O(n) (

2

1

){OT per gate, we end up with

a protocol requiring a total ofO(n

4

) uses of the BSC per gate of the computation.

Our main open question is to obtain (

2

1

){OT with only O(n

2

) uses of the BSC

and thus any two-party computation at a cost of O(n

3

) uses of the BSC per

gate. Another open question is to �nd an equally e�cient protocol for (

2

1

){OT

using a BS

�

for values of � above 0:1982.
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