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Abstra
t

In theoreti
al 
ryptography, one formalizes the notion of an adversary's su

ess probability

being \too small to matter" by asking that it be a negligible fun
tion of the se
urity parameter.

We argue that the issue that really arises is what it might mean for a 
olle
tion of fun
tions to be

\negligible." We 
onsider (and de�ne) two su
h notions, and prove them equivalent. Roughly,

this enables us to say that any 
ryptographi
 primitive has a spe
i�
 asso
iated \se
urity level."

In parti
ular we say this for any one-way fun
tion. We also re
on
ile di�erent de�nitions of

negligible error arguments and 
omputational proofs of knowledge that have appeared in the

literature. Although the motivation is 
ryptographi
, the main result is purely about negligible

fun
tions.

�
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1 Introdu
tion

A fun
tion g: N ! R is 
alled negligible if it approa
hes zero faster than the re
ipro
al of any

polynomial. That is, for every 
 2 N there is an integer n




su
h that g(n) � n

�


for all n � n




. In

theoreti
al 
ryptography, one formalizes the notion of an adversary's su

ess probability being \too

small to matter" by asking that it be a negligible fun
tion of the se
urity parameter.

In this note we point out that there are two possible ways to formalize the notion of a 
rypto-

graphi
 primitive being se
ure based on the negligibility of su

ess probabilities of polynomial-time

adversaries. Roughly, the di�eren
e is in whether the primitive has a single \se
urity level," or a

di�erent one for ea
h adversary. Both formalizations have been used in the literature. We ask how

these formalizations relate to ea
h other.

We show that the underlying te
hni
al question has nothing to do with 
ryptography. It 
an be


aptured by de�ning two notions of negligibility for a 
olle
tion of fun
tions and asking how they

relate to ea
h other. We de�ne the notions and show that they are equivalent.

Roughly, this implies that to any 
ryptographi
 primitive we 
an asso
iate a single fun
tion that

is its \se
urity level," rather than having a di�erent se
urity level for ea
h adversary. In the 
ase of

negligible error arguments and 
omputational proofs of knowledge with negligible knowledge error,

this re
on
iles two di�erent de�nitions that have appeared in the literature. To illustrate the issues,

however, let us begin by looking at a more basi
 primitive, namely a one-way fun
tion.

1.1 The issue for one-way fun
tions

Two notions. Let f : f0; 1g

�

! f0; 1g

�

be a polynomial-time 
omputable, length preserving

fun
tion. An inverter for f is a probabilisti
, polynomial time algorithm I. (We will dis
uss later

the non-uniform 
ase, where an inverter is a family of 
ir
uits of polynomial size.) To any inverter I

we asso
iate a fun
tion Inv

I


alled its su

ess probability, de�ned for any value n 2 N of the se
urity

parameter by Inv

I

(n) = Pr[ f(I(f(x))) = f(x) ℄, the probability being over a random 
hoi
e of x

from f0; 1g

n

, and over the 
oin tosses of I. The following is standard:

We say f is one-way if for every inverter I the fun
tion Inv

I

is negligible.

There is another way we might 
onsider formalizing f being \one-way". To des
ribe this, we �rst

introdu
e the following terminology and notation. We say that g

1

: N ! R is eventually less than

g

2

: N ! R, written g

1

�

ev

g

2

, if there is an integer k su
h that g

1

(n) � g

2

(n) for all n � k. Now:

We say f is uniformly one-way if there is a negligible fun
tion Æ su
h that Inv

I

�

ev

Æ

for every inverter I.

In other words, there is a negligible fun
tion Æ that is a \witness" to the fa
t that the su

ess

probability of any inverter eventually be
omes \small." More pre
isely, for ea
h inverter I there is

an integer k

I

su
h that Inv

I

(n) � Æ(n) for all n � k

I

. We 
all s(�) = 1=Æ(�) the \se
urity level."

1

Dis
ussion. Another way of viewing the above de�nitions is that the order of quanti�
ation is

di�erent:

f is one-way : 8 inverters I 9 negligible Æ

I

su
h that Inv

I

�

ev

Æ

I

f is uniformly one-way : 9 negligible Æ su
h that 8 inverters I we have Inv

I

�

ev

Æ

1

In asking for a single \se
urity level", this de�nition is in the style of the de�nition of Levin [7℄. (See also Luby

[8℄). The latter however measure the quality of inverters via their time to su

ess probability ratios. It seems the

notion of uniform one-wayness is a simpli�ed, spe
ial 
ase of their notions in whi
h one looks only at polynomial time

adversaries and se
urity of the form 1=Æ for a negligible fun
tion Æ.
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Yet another way to see the di�eren
e is by taking the 
ontra-positives of the de�nitions, as we must

do in proving theorems based on the assumption that f is one-way or uniformly one-way. Fun
tion f

is not one-way if there is an inverter I and a 
onstant 
 su
h that Inv

I

(n) > n

�


for in�nitely many

n. That is, there is some inverter whose su

ess probability is not negligible. On the other hand, f

is not uniformly one-way if for every negligible Æ there is an inverter I

Æ

su
h that Inv

I

Æ

(n) > Æ(n)

for in�nitely many n. This does not dire
tly say that there is one inverter a
hieving non-negligible

su

ess.

Is there a single se
urity level? It is not hard to see that if f is uniformly one-way then it

is one-way, but it is not 
lear whether or not the 
onverse is true. Perhaps di�erent inverters have

di�erent su

ess probabilities, all negligible, but so that for any parti
ular negligible Æ, there is some

inverter who does better than Æ in�nitely often.

Equivalen
e. The results in this paper imply that the above two de�nitions are equivalent,

meaning f is one-way if and only if it is uniformly one-way. This means that given a one-way

fun
tion f there exists a single negligible fun
tion Æ su
h that the su

ess probability of any inverter

is eventually less than Æ. So every one-way fun
tion does have a \spe
i�
" asso
iated se
urity level.

In other words, the order of the quanti�ers does not matter.

1.2 Negligibility of fun
tion 
olle
tions

It turns out the te
hni
al question underlying the above has nothing to do with one-way fun
tions,

or even with 
ryptography. It is just about negligible fun
tions. Let us �rst formulate the question,

then relate it to the above.

Let F = f F

i

: i 2 N g be a 
olle
tion of fun
tions, all mapping N to R. We will 
onsider two

de�nitions of \negligibility" for the 
olle
tion F . The �rst is simple: just ask that ea
h fun
tion,

taken individually, is negligible. Formally, we say F is pointwise negligible if F

i

is negligible for

ea
h i 2 N. The se
ond is to ask that the 
olle
tion is \uniformly" negligible in that the di�erent

fun
tions 
onform to some 
ommon limit point. Formally, F is uniformly negligible if there is a

negligible fun
tion Æ (
alled a limit point) su
h that F

i

�

ev

Æ for all i 2 N. That is, ea
h F

i

drops

below Æ for large enough n. (The terminology here is by some sort of rough analogy with the notions

of pointwise and uniform 
onvergen
e of 
olle
tions of fun
tions in real analysis.)

It is quite easy to see that if 
olle
tion F is uniformly negligible then it is also pointwise negligible.

But is the 
onverse true? Theorem 3.2 shows that the answer is yes: the two notions of negligible


olle
tions are equivalent.

We stress that the 
olle
tions 
onsidered here are 
ountable. The result is not true for an

un
ountable 
olle
tion.

1.3 Appli
ation to 
ryptographi
 notions

Appli
ation to one-way fun
tions. Now, how does this relate to the issue for one-way fun
-

tions? Let I = h I

i

: i 2 N i be an enumeration of all inverters. (Sin
e an inverter is a probabilisti
,

polynomial-time algorithm, the number of inverters is 
ountable. For the non-uniform 
ase, where

there are un
ountably many inverters, see Se
tion 1.4 and Se
tion 4.) For ea
h i 2 N de�ne the fun
-

tion F

i

by F

i

(n) = Inv

I

i

(n), the latter being the su

ess probability of I

i

as de�ned in Se
tion 1.1.

Let F = f F

i

: i 2 N g. Then observe that f is one-way if and only if the 
olle
tion F is point-

wise negligible, and f is uniformly one-way if and only if the 
olle
tion F is uniformly negligible.

Theorem 3.2 thus implies that f is one-way if and only if it is uniformly one-way.

More generally. Now that we see this, it is 
lear the same is true for pretty mu
h any 
rypto-

graphi
 primitive. The (asymptoti
) de�nition of se
urity for any primitive has the following form.
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To any \adversary" A and any value of the se
urity parameter n there will be asso
iated a su

ess

probability Su



A

(n), under some experiment. (For now, an adversary is a uniform algorithm.)

The primitive will be said to be \se
ure" if for ea
h adversary A the fun
tion Su



A

is negligible.

To put this in the framework we have been looking at, let A = fA

i

: i 2 N g be an enumeration of

all adversaries in question. (Sin
e an adversary is a uniform algorithm, the number of adversaries

is 
ountable.) Let F

i

(n) = Su



A

i

(n). Then we see that the de�nition indi
ated above is asking

that the 
olle
tion of fun
tions F = f F

i

: i 2 N g is pointwise negligible. It seems equally rea-

sonable, however, to ask that the 
olle
tion of fun
tions be uniformly negligible. This says there

exists a parti
ular negligible fun
tion Æ su
h that the su

ess probability Su



A

(�) of any adversary

A is eventually less than Æ. Here, a spe
i�
 se
urity level is asso
iated to the primitive, to whi
h

all adversaries must eventually 
onform. This might seem di�erent, but Theorem 3.2 says the two

notions are equivalent. In parti
ular it says that it is always possible to �nd su
h a spe
i�
 se
urity

level for any primitive even if the de�nition does not expli
itly ask for it.

Error probabilities in proto
ols. For a one-way fun
tion, it seems of some interest that there

is a single \se
urity level" asso
iated to the fun
tion, but we do not see any parti
ular advantage

to a
tually formulating the de�nition in the new way. However, a setting where the se
ond type of

formulation seems more natural is in 
omputationally sound proofs and proofs of knowledge.

We often talk of \the error probability" of a proto
ol su
h as a 
omputationally sound intera
tive

proof. This terminology indi
ates that we imagine there being asso
iated to a given intera
tive

proof system, de�ned by a given veri�er, a single entity (fun
tion) 
alled its error-probability. A

de�nition of \negligible error arguments" based on this view is given in [2℄. Earlier, however,

other de�nitions had appeared whi
h did not have this view of error probability in the 
ase of

negligible error [5, 9℄: ea
h prover had a di�erent asso
iated \error-probability," so that the term

\the error-probability" of the proto
ol did not have a realization. Applying the above however

we 
an show that the two formulations are equivalent. See Se
tion 4.2. Similarly, we relate two

notions of 
omputational proofs of knowledge with negligible knowledge error suggested in [1℄. See

Se
tion 4.3.

1.4 Non-uniform adversaries and un
ountability

As we indi
ated above, we wish to asso
iate a fun
tion to ea
h adversary, this fun
tion being the

adversary's su

ess probability, and 
onsider the \negligibility" of the ensuing 
olle
tion of fun
tions.

When the 
lass of adversaries in
ludes only uniform algorithms, the number of adversaries, and

hen
e of fun
tions, is 
ountable, and the result mentioned in Se
tion 1.2 applies. However, the

set of adversaries might be the set of all non-uniform polynomial time algorithms. This set is

un
ountable, and hen
e so is the 
olle
tion of asso
iated fun
tions. In this 
ase, we 
annot dire
tly

apply our main result. However, we will see that it is still possible to apply the equivalen
e, and

get the desired results, by 
onsidering the \best possible" non-uniform adversaries for ea
h spe
i�


polynomial size-bound. This will \redu
e" the un
ountable 
ase to the 
ountable one.

The treatment in Se
tion 2 is general, applying to either 
ountable or un
ountable 
olle
tions.

We prove in Se
tion 3 the equivalen
e in the 
ountable 
ase, and also a 
hara
terization, for the

un
ountable 
ase, that enables us to redu
e the latter to the former.

2 De�nitions and elementary fa
ts

Let N = f1; 2; 3 : : :g be the set of positive integers, and R the reals. Unless otherwise indi
ated, a

fun
tion maps N to R. We sometimes regard a fun
tion as a \point" in the spa
e of all fun
tions
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and refer to it this way. An \integer" means a positive integer, ie. an element of N. We begin with

a useful shorthand:

De�nition 2.1 If f; g are fun
tions we say that f is eventually less than g, written f �

ev

g, if

there is an integer k su
h that f(n) � g(n) for all n � k.

It is useful to note that this relation is transitive:

Proposition 2.2 The relation �

ev

is transitive: if f

1

�

ev

f

2

and f

2

�

ev

f

3

then f

1

�

ev

f

3

.

Re
all that a fun
tion f is negligible if for every integer 
 there is an integer n




su
h that f(n) � n

�


for all n � n




. With the above shorthand, another way to say it is:

De�nition 2.3 A fun
tion f is negligible if f �

ev

(�)

�


for every integer 
.

Here (�)

�


stands for the fun
tion n 7! n

�


. It is useful to note the following:

Proposition 2.4 A fun
tion f is negligible if and only if there is a negligible fun
tion g su
h that

f �

ev

g.

Proof of Proposition 2.4: If f is negligible then the other 
ondition is satis�ed by setting g = f .

Conversely assume there is a negligible g su
h that f �

ev

g. We want to show f is negligible. So let


 2 N. Then f �

ev

g (by assumption) and g �

ev

(�)




(be
ause g is negligible) so by Proposition 2.2

we have f �

ev

(�)




. So f is negligible by De�nition 2.3.

A 
olle
tion of fun
tions is a set of fun
tions whose 
ardinality 
ould be 
ountable or un
ountable.

De�nition 2.5 A 
olle
tion of fun
tions F is pointwise negligible if for every F 2 F it is the 
ase

that F is a negligible fun
tion.

This means that for ea
h F 2 F and ea
h integer 
 there is some number k(F; 
), depending on

both F and 
, su
h that F (n) � n

�


whenever n � k(F; 
). In other words, the di�erent fun
tions


ould go down at di�erent rates, and although ea
h is eventually below any inverse polynomial, the

time at whi
h this happens depends both on the fun
tion and the value of 
 de�ning the inverse

polynomial. The notion we de�ne next is stronger, in that it asks that there be a single negligible

fun
tion Æ that is a \witness" to the fa
t that the fun
tions in the 
olle
tion eventually be
ome

small. All fun
tions must eventually drop below Æ.

De�nition 2.6 A 
olle
tion of fun
tions F is uniformly negligible if there is a negligible fun
tion Æ

su
h that F �

ev

Æ for every F 2 F .

In other words, the 
olle
tion F is uniformly negligible if there is a negligible fun
tion Æ su
h that

for ea
h F 2 F there is an integer k(F ) su
h that F (n) � Æ(n) for all n � k(F ). Noti
e that the

point at whi
h F drops below Æ is allowed to depend on F and may vary from fun
tion to fun
tion

in the 
olle
tion.

De�nition 2.7 Let F be a 
olle
tion of fun
tions and let Æ be a fun
tion. We say that Æ is a limit

point of F if F �

ev

Æ for ea
h F 2 F .

The following is obvious:

Proposition 2.8 A 
olle
tion of fun
tions F is uniformly negligible if and only if it has a negligible

limit point.

Note that limit points are not unique.
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3 Relations between the two notions of negligible 
olle
tions

It is easy to see that uniform negligibility implies pointwise negligibility. This is true regardless of

whether the 
olle
tion is 
ountable or un
ountable.

Proposition 3.1 If F is uniformly negligible then it is pointwise negligible.

Proof: By Proposition 2.8 there exists a negligible fun
tion Æ that is a limit fun
tion for F . Let

F 2 F . We know that F �

ev

Æ sin
e Æ is a limit point of F , and we know that Æ is negligible, so F

is negligible by Proposition 2.4. So F is pointwise negligible as per De�nition 2.5.

The question we want to look at is whether the notions are equivalent. We �rst 
onsider the 
ase

where the 
olle
tion of fun
tions is 
ountable, and then the 
ase where it is un
ountable.

3.1 The 
ase of a 
ountable 
olle
tion of fun
tions

The important 
ase is when the 
olle
tion is 
ountable. In that 
ase we show that the two notions

of negligibility are equivalent.

Theorem 3.2 Let F = f F

i

: i 2 N g be a 
ountable 
olle
tion of fun
tions. Then F is pointwise

negligible if and only if it is uniformly negligible.

We know from Proposition 3.1 that if F is uniformly negligible then it is pointwise negligible. The

other dire
tion is more interesting. The assumption is that ea
h F

i

is a negligible fun
tion. We


laim that F is uniformly negligible. To show this we will de�ne a negligible limit point Æ for F .

Before doing so, it may help to see why a tempting easier 
onstru
tion does not work.

Remark 3.3 Perhaps the �rst thought would be to set

Æ(n) = max f F

1

(n); F

2

(n); : : : ; F

n

(n) g : (1)

Certainly F

i

�

ev

Æ for ea
h i 2 N. But it is not hard to see that Æ need not be negligible. For

example let � be a negligible fun
tion and set F

i

(j) = 1 if j � i and F

i

(j) = �(j) if j > i. The


olle
tion of fun
tions f F

i

: i 2 N g is pointwise negligible, but the fun
tion Æ of Equation (1) is

the 
onstant fun
tion 1 whi
h is de�nitely not negligible.

Proof of Theorem 3.2: Assume F is pointwise negligible. We will 
onstru
t a negligible limit

point Æ for F . The 
onstru
tion uses diagonalization. Let us �rst sket
h the idea and then provide

the details.

Imagine a table with rows indexed by the values i = 1; 2; : : :; 
olumns indexed by the values of

n = 1; 2; : : :; and entry (i; n) of the table 
ontaining F

i

(n). We know that for any 
, the entries in

ea
h row eventually drop below n

�


. But where it happens di�ers from row to row. We de�ne Æ

by a sort of diagonalization, in a sequen
e of \stages." In stage 
 we will 
onsider only the �rst 


fun
tions in the list, namely F

1

; : : : ; F




. We will �nd a value h(
), su
h that all these fun
tions are

less than (�)

�


for n � h(
), by \moving out" as mu
h as is ne
essary for all 
 fun
tions to fall below

our target. We view this as de�ning a sequen
e of re
tangles, ea
h �nite, but so that the sequen
e

eventually 
overs the entire table. (For a vague illustration, see Figure 1.) We will use h to de�ne Æ.

Namely for ea
h n we de�ne Æ(n) to maximize the fun
tions in the re
tangle with 
olumn number

\
losest" to n. Let us now give the 
onstru
tion and proof in more detail.
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1

h(1)

2

h(2)

.

.

.

� � �

i

h(i)

Figure 1: Entry (i; n) of this table is F

i

(n). To ea
h row number i we asso
iate a 
olumn number

h(i; i) su
h that all entries to the right of the 
orresponding re
tangle (meaning stay above the

bottom edge!) are bounded by n

�i

.

For every i; 
 2 N we know that F

i

�

ev

(�)

�


. Let N(i; 
) 2 N be su
h that F

i

(n) � n

�


for all

n � N(i; 
). We now de�ne a fun
tion h: f0g [ N ! N re
ursively as follows. Let h(0) = 0, and for


 2 N let

h(
) = max fN(1; 
); N(2; 
); : : : ; N(
; 
); 1 + h(
� 1) g : (2)

That is, h(
) is a point beyond whi
h the �rst 
 fun
tions drop below (�)

�


. The following two


laims are 
lear from the de�nition:

Claim 1: F

1

(n); : : : ; F




(n) � n

�


for all n � h(
) and all 
 2 N. 2

Claim 2: h is an in
reasing fun
tion, meaning h(
) < h(
+ 1) for all 
 2 N [ f0g. 2

For any n 2 N we let

g(n) = max f j 2 N : h(j) � n g : (3)

That is, the �rst g(n) fun
tions drop below (�)

�g(n)

for inputs that are at least n. Note the fa
t

that h is in
reasing means that the set in the above maximization is �nite, so the maximum is well

de�ned. The following is 
lear from Equation (3):

Claim 3: g is a non-de
reasing fun
tion, meaning g(n) � g(n+ 1) for all n 2 N. 2

Intuitively, we think of g as an inverse of fun
tion h. The pre
ise relationship is provided by Claims 4

and 5 below. Claim 4 is 
lear from Equation (3):

Claim 4: h(g(n)) � n for all n 2 N. 2

Letting n = h(
) in Equation (3) and using Claim 2, we also get:

Claim 5: g(h(
)) = 
 for all 
 2 N. 2

Now for any n 2 N we let

Æ(n) = max f F

i

(n) : 1 � i � g(n) g : (4)

We have two �nal 
laims, to be proven below:

8



Claim 6: The fun
tion Æ is a limit point of the 
olle
tion F = f F

i

: i 2 N g. 2

Claim 7: The fun
tion Æ is negligible.

Claims 6 and 7 together say that Æ is a negligible limit point for the 
olle
tion F = f F

i

: i 2 N g,

and hen
e F is uniformly negligible by Proposition 2.8, 
ompleting the proof. It remains to prove

Claims 6 and 7.

To prove Claim 6, let i 2 N. As per De�nition 2.7 we need to show there is an integer n

i

su
h that

F

i

(n) � Æ(n) for all n � n

i

. We set n

i

= h(i) and 
laim this works. Indeed, suppose n � h(i).

Applying �rst Claim 3 and then Claim 5 we get

g(n) � g(h(i)) = i :

From Equation (4) it follows that F

i

(n) � Æ(n), as desired.

To prove Claim 7, we need to show that Æ meets De�nition 2.3. So let 
 2 N. We need to show that

there is an integer n




su
h that Æ(n) � n

�


for all n � n




. We set n




= h(
) and 
laim this works.

To see this, assume n � h(
). The following is justi�ed below:

Æ(n) = max f F

i

(n) : 1 � i � g(n) g

� n

�g(n)

� n

�


:

The �rst line is from Equation (4). Claim 4 tells us that n � h(g(n)), and Claim 1 then gives us

the se
ond line above. Sin
e we assumed n � h(
), applying �rst Claim 3 and then Claim 5 we get

g(n) � g(h(
)) = 
 :

This implies n

�g(n)

� n

�


whi
h was the last line above.

Remark 3.4 The limit point Æ 
onstru
ted in Theorem 3.2 has properties beyond being a negligible

limit point. In parti
ular, it is a non-in
reasing fun
tion, meaning Æ(n) � Æ(n+ 1) for all n 2 N.

3.2 The 
ase of an un
ountable 
olle
tion of fun
tions

The 
olle
tion of fun
tions 
onsidered in Theorem 3.2 is 
ountable. Proposition 3.1 says that even

an un
ountable 
olle
tion of uniformly negligible fun
tions is pointwise negligible. But the 
onverse

fails for some un
ountable 
olle
tions.

Proposition 3.5 There is an un
ountable 
olle
tion of fun
tions F that is pointwise negligible but

not uniformly negligible.

Proof: Let F be the set of all negligible fun
tions mapping N to R. Obviously F is pointwise

negligible. But it is not uniformly negligible. To see this, let g be any negligible fun
tion. It 
annot

be a limit point of F , be
ause the fun
tion f = 2g is negligible, hen
e in F , but f is not eventually

less than g. Thus no negligible fun
tion 
an be a limit point for F , so that F has no negligible limit

point.

This does not mean that all un
ountable 
olle
tions of pointwise negligible fun
tions fail to be

uniformly negligible. The following is a simple 
hara
terization of 
olle
tions where the equivalen
e

holds.
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De�nition 3.6 Let F ;M be 
olle
tions of fun
tions. We say that F is majored by M , or M

majors F , if for every F 2 F there is an M 2M su
h that F �

ev

M .

The following 
hara
terization holds for any 
olle
tion F , but the interesting 
ase is when F is

un
ountable. The key point below is that the 
olle
tion that majors F is required to be 
ountable.

Theorem 3.7 Let F be a 
olle
tion of fun
tions. Then F is uniformly negligible if and only if it

is majored by some pointwise negligible, 
ountable 
olle
tion of fun
tions.

Proof: First assume F is uniformly negligible. By Proposition 2.8 it has a negligible limit point Æ.

We set M = fmÆ : m 2 N g. This is a 
ountable, pointwise negligible 
olle
tion of fun
tions, and

it majors F be
ause it 
ontains Æ. So F is indeed majored by some pointwise negligible 
ountable


olle
tion of fun
tions.

Conversely suppose M is a pointwise negligible, 
ountable 
olle
tion of fun
tions that majors F .

Sin
e M is 
ountable, it is uniformly negligible by Theorem 3.2. By Proposition 2.8, M has a

negligible limit point Æ. Now if F 2 F then by De�nition 3.6 there is some M 2 M su
h that

F �

ev

M . But M �

ev

Æ be
ause M 2 M and Æ is a limit point for M . Thus, F �

ev

Æ by

Proposition 2.2 and Æ is also a limit point for F . So F is uniformly negligible.

Re
all that we want to make the fun
tions in the 
olle
tion 
orrespond to su

ess probabilities of

adversaries. We have dis
ussed in Se
tion 1.4 how the 
ountability or un
ountability of the 
olle
tion

is a question of whether uniform or non-uniform adversaries are being 
onsidered. Although it is

not possible to dire
tly apply Theorem 3.2 in the latter 
ase, we will see that it is possible to apply

Theorem 3.7, and get the desired results.

4 Appli
ation to 
ryptographi
 de�nitions

We dis
ussed in Se
tion 1.3 how the above relates to 
ryptographi
 de�nitions. Let us look at this

in more detail. We �rst summarize the impli
ations for one-way fun
tions and then move on to

arguments and proofs of knowledge.

Below, a uniform adversary is a probabilisti
, polynomial-time (PPT) algorithm. A non-uniform

adversary A = hA

i

: i 2 Ni is a sequen
e of 
ir
uits of polynomial size (meaning, there is a polynomial

p su
h that for all i the size of A

i

is at most p(i)), and in this 
ase the notation A(x) denotes the

output of 
ir
uit A

jxj

on input x. An adversary means either a uniform or a non-uniform adversary.

4.1 Appli
ation to one-way fun
tions

Let f : f0; 1g

�

! f0; 1g

�

be a polynomial time 
omputable, length preserving fun
tion. An adversary

in this 
ontext is 
alled an inverter. Asso
iated to any inverter I (uniform or non-uniform) is its su
-


ess probability fun
tion Inv

I

: N ! R, de�ned for all n 2 N by Inv

I

(n) = Pr[ f(I(f(x))) = f(x) ℄,

the probability being over the 
hoi
e of x, and, in the uniform 
ase, over the 
oins of I. We let I

denote the set of all inverters. (In the uniform 
ase, this is the 
ountable set of all PPT algorithms,

and in the non-uniform 
ase the un
ountable set of all sequen
es of 
ir
uits that have polynomial

size.) We 
onsider two de�nitions of one-wayness.

De�nition 4.1 Let f;I be as above. We say that f is one-way if for every inverter I 2 I the

fun
tion Inv

I

is negligible. We say that f is uniformly one-way if there is a negligible fun
tion Æ

su
h that Inv

I

�

ev

Æ for every inverter I 2 I.
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We 
laim the notions are equivalent. The following applies to both the uniform and the non-uniform


ases:

Theorem 4.2 Let f be as above. Then f is one-way if and only if it is uniformly one-way.

Proof: We let F = fInv

I

: I 2 I g denote the 
olle
tion of su

ess probability fun
tions asso
iated

to the set of inverters under 
onsideration. This 
olle
tion is 
ountable in the uniform 
ase and

un
ountable in the non-uniform 
ase. The key observation is that f is one-way if and only if F is

pointwise negligible, and f is uniformly one-way if and only if F is uniformly negligible. To 
omplete

the proof it suÆ
es to show that F is pointwise negligible if and only if it is uniformly negligible.

In the uniform 
ase 
ase F is 
ountable, so the 
on
lusion follows dire
tly from Theorem 3.2. We

now 
onsider the non-uniform 
ase.

Proposition 3.1 says that if F is uniformly negligible then it is pointwise negligible. To prove

the 
onverse, assume F is pointwise negligible. We will exhibit a 
ountable, pointwise negligible


olle
tion M that majors F . It follows from Theorem 3.7 that F is uniformly negligible, and our

proof is 
omplete. It remains to exhibitM .

For any integers n; s there are �nitely many n-input 
ir
uits of size at most s, and hen
e we 
an �x

an n-input 
ir
uit B

n;s

of size at most s su
h that for all n-input 
ir
uits C of size at most s we

have

Pr[ f(B

n;s

(f(x))) = f(x) ℄ � Pr[ f(C(f(x))) = f(x) ℄ ;

the probability above being over a random 
hoi
e of x from f0; 1g

n

. Let p

1

; p

2

; : : : be an enumeration

of all polynomials, and for any i 2 N de�ne the non-uniform inverter I

i

= h B

n;p

i

(n)

: n 2 N i. For

any n 2 N let M

i

(n) = Inv

I

i

(n) and let M be the 
olle
tion of fun
tions fM

i

: i 2 N g. It is 
lear

thatM is 
ountable, andM is pointwise negligible be
ause it is a subset of the pointwise negligible


olle
tion F . To 
omplete the proof, we show that M majors F . Consider any inverter I 2 I and

let p be a polynomial bounding its size. Let i be su
h that p = p

i

. Then for ea
h n 2 N we have

Inv

I

(n) � Inv

I

i

(n). Thus Inv

I

�

ev

Inv

I

i

=M

i

.

4.2 Appli
ation to negligible error arguments

An argument, also 
alled a 
omputationally sound proof [3, 4℄, is a two-party proto
ol in whi
h

soundness is only required to hold with respe
t to polynomial-time 
heating provers. (As usual one


an 
onsider either uniform or non-uniform 
heating provers.) A 
ouple of de�nitions of negligible

error arguments have appeared in the literature. We show how they 
orrespond to the two di�erent

views of negligibility of 
olle
tions of fun
tions and then show they are equivalent.

Let us begin with the de�nitions. We 
onsider a two-party proto
ol in whi
h a prover attempts

to 
onvin
e a probabilisti
, polynomial time veri�er V that their 
ommon input belongs to some

underlying language L. An adversary in this 
ontext is 
alled a 
heating prover. Asso
iated to any


heating prover P (uniform or non-uniform) is its error-probability fun
tion Err

P

: N ! R, de�ned

for all n 2 N by

Err

P

(n) = max fA



P

(x) : x 2 f0; 1g

n

and x 62 L g :

Here A



P

(x) denotes the probability, taken over the 
oins of V and P , that V a

epts in a


onversation with P on 
ommon input x. We adopt the 
onvention Err

P

(n) = 0 when the set in

the maximization above is empty. We let P denote the set of all 
heating provers. (In the uniform


ase, this is the 
ountable set of all PPT algorithms, and in the non-uniform 
ase the un
ountable

set of all sequen
es of 
ir
uits that have polynomial size.)
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In an intera
tive proof setting [6℄, where 
heating provers are not 
omputationally bounded, we

would say the error probability is Æ: N ! R if Err

P

(n) � Æ(n) for all P and all n 2 N. One might

try to de�ne the error-probability similarly in the 
ase of arguments by simply repla
ing \for all

P" by \for all P 2 P". This however does not yield a suitable notion of error probability for an

argument.

2

Taking this into a

ount, two di�erent de�nitions of 
omputational soundness have been

proposed in the literature. Computational soundness as de�ned below is from [5, 9℄ while uniform


omputational soundness is from [2℄:

De�nition 4.3 Let V;L;P be as above. We say that V is 
omputationally sound over L if for every


heating prover P 2 P the fun
tion Err

P

is negligible. We say that V is uniformly 
omputationally

sound over L if there is a negligible fun
tion Æ (
alled the error-probability of V ) su
h that Err

P

�

ev

Æ for every P 2 P.

In the notion of 
omputational soundness, there is no \error-probability" asso
iated to V . Instead,

di�erent 
heating provers might have di�erent error probabilities, as long as they are all negligi-

ble. Uniform 
omputational soundness, in 
ontrast, asks that there be an identi�able fun
tion Æ,

depending only on V , that is 
alled the error-probability, and in that sense is 
loser in spirit to the

de�nition in the 
ase of intera
tive proofs. However, it turns out the two notions are equivalent.

Theorem 4.4 Let V;L be as above. Then V is 
omputationally sound over L if and only if V is

uniformly 
omputationally sound over L.

For the proof, we let F = f Err

P

: P 2 P g denote the 
olle
tion of error-probability fun
tions

asso
iated to the set of 
heating provers under 
onsideration. This 
olle
tion is 
ountable in the

uniform 
ase and un
ountable in the non-uniform 
ase. As before, the key observation is that

V is 
omputationally sound over L if and only if F is pointwise negligible, and V is uniformly


omputationally sound over L if and only if F is uniformly negligible. To 
omplete the proof it

suÆ
es to show that F is pointwise negligible if and only if it is uniformly negligible. This 
an

be done as in the proof of Theorem 4.2, dire
tly by Theorem 3.2 for the uniform 
ase, and via

Theorem 3.7 for the non-uniform 
ase. We omit the details to avoid repetition.

4.3 Appli
ation to proofs of knowledge

An NP-relation is a fun
tion �: f0; 1g

�

� f0; 1g

�

! f0; 1g 
omputable in time polynomial in the

length of its �rst argument. For any x 2 f0; 1g

�

we let �(x) = f w 2 f0; 1g

�

: �(x;w) = 1 g denote

the witness set of x. We let Lang(�) = f x 2 f0; 1g

�

: �(x) 6= ; g denote the language de�ned by �.

Note that a language L is in NP i� there exists an NP-relation � su
h that L = Lang(�).

Let � be an NP-relation and let L = Lang(�). Let V be a probabilisti
, polynomial-time veri�er

de�ning a two-party proto
ol. An adversary in this 
ontext is 
alled a 
heating prover and P denotes

the set of all 
heating provers. (As above, P is 
ountable in the uniform 
ase and un
ountable in

the non-uniform 
ase.) As above, let A



P

(x) denote the probability, taken over the 
oins of V and

P , that V a

epts in a 
onversation with prover P on 
ommon input x. Below P

x

denotes prover P

with 
ommon input �xed to x. The two notions in the de�nition below are both from [1℄.

2

To see why, 
onsider the following proto
ol for membership in the language L = ;. On 
ommon input x the

veri�er pi
ks a pair of random primes of length n = jxj and multiplies them to get a modulus N whi
h it sends to the

prover. It a

epts if the prover returns the fa
torization of N . Intuitively (and formally as per De�nition 4.3), this

proto
ol is 
omputationally sound if fa
toring is hard. But for any negligible Æ: N ! R, there exists a polynomial-time

P and an n 2 N su
h that Err

P

(n) > Æ(n).
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De�nition 4.5 Let �; V; L;P be as above. We say that V de�nes a 
omputationally sound proof of

knowledge for � if there is an expe
ted polynomial time ora
le algorithm E (
alled the extra
tor)

su
h that for ea
h 
heating prover P 2 P there is a negligible fun
tion �

P

su
h that

Pr[E

P

x

(x) 2 �(x) ℄ � A



P

(x)� �

P

(jxj)

for all x 2 Lang(�). We say that V de�nes a uniformly 
omputationally sound proof of knowledge

over � if there is an expe
ted polynomial-time ora
le algorithm E (the extra
tor) and a negligible

fun
tion � (
alled the knowledge error) su
h that for every 
heating prover P 2 P there is a 
onstant

n

P

su
h that

Pr[E

P

x

(x) 2 �(x) ℄ � A



P

(x)� �(jxj)

for all x 2 Lang(�) that have length at least n

P

.

The di�eren
e is that in a uniformly 
omputationally sound proof of knowledge, there is an identi�-

able fun
tion 
alled the knowledge-error, analogous to an error-probability in proofs of membership,

while in a 
omputationally sound proof of knowledge, there is no single su
h fun
tion, but instead

the fun
tion depends on the 
heating prover. However, the two notions are equivalent.

Theorem 4.6 Let �; V; L be as above. Then V de�nes a 
omputationally sound proof of knowledge

over � if and only if V de�nes a uniformly 
omputationally sound proof of knowledge over �.

In this 
ase it may be a little less evident than before how the issue 
orresponds to negligibility

of some 
olle
tion of fun
tions. For the proof, we �rst 
laim something stronger than the theorem

statement, namely that not only are the notions equivalent, but the extra
tor is the same in both


ases. So view the extra
tor E as now �xed. For ea
h prover P 2 P de�ne the fun
tion

F

P

(n) = max fA



P

(x)� Pr[E

P

x

(x) 2 �(x) ℄ : x 2 f0; 1g

n

and x 2 L g :

We adopt the 
onvention F

P

(n) = 0 when the set in the maximization above is empty. We 
onsider

the 
olle
tion of fun
tions F = f F

P

: P 2 P g. Now we observe that V de�nes a 
omputationally

sound proof of knowledge over � if and only F is pointwise negligible, and V de�nes a uniformly


omputationally sound proof of knowledge over � if and only if F is uniformly negligible. We then

show that F is uniformly negligible if and only if it is pointwise negligible as before.
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