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Abstrat

In theoretial ryptography, one formalizes the notion of an adversary's suess probability

being \too small to matter" by asking that it be a negligible funtion of the seurity parameter.

We argue that the issue that really arises is what it might mean for a olletion of funtions to be

\negligible." We onsider (and de�ne) two suh notions, and prove them equivalent. Roughly,

this enables us to say that any ryptographi primitive has a spei� assoiated \seurity level."

In partiular we say this for any one-way funtion. We also reonile di�erent de�nitions of

negligible error arguments and omputational proofs of knowledge that have appeared in the

literature. Although the motivation is ryptographi, the main result is purely about negligible

funtions.

�
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1 Introdution

A funtion g: N ! R is alled negligible if it approahes zero faster than the reiproal of any

polynomial. That is, for every  2 N there is an integer n



suh that g(n) � n

�

for all n � n



. In

theoretial ryptography, one formalizes the notion of an adversary's suess probability being \too

small to matter" by asking that it be a negligible funtion of the seurity parameter.

In this note we point out that there are two possible ways to formalize the notion of a rypto-

graphi primitive being seure based on the negligibility of suess probabilities of polynomial-time

adversaries. Roughly, the di�erene is in whether the primitive has a single \seurity level," or a

di�erent one for eah adversary. Both formalizations have been used in the literature. We ask how

these formalizations relate to eah other.

We show that the underlying tehnial question has nothing to do with ryptography. It an be

aptured by de�ning two notions of negligibility for a olletion of funtions and asking how they

relate to eah other. We de�ne the notions and show that they are equivalent.

Roughly, this implies that to any ryptographi primitive we an assoiate a single funtion that

is its \seurity level," rather than having a di�erent seurity level for eah adversary. In the ase of

negligible error arguments and omputational proofs of knowledge with negligible knowledge error,

this reoniles two di�erent de�nitions that have appeared in the literature. To illustrate the issues,

however, let us begin by looking at a more basi primitive, namely a one-way funtion.

1.1 The issue for one-way funtions

Two notions. Let f : f0; 1g

�

! f0; 1g

�

be a polynomial-time omputable, length preserving

funtion. An inverter for f is a probabilisti, polynomial time algorithm I. (We will disuss later

the non-uniform ase, where an inverter is a family of iruits of polynomial size.) To any inverter I

we assoiate a funtion Inv

I

alled its suess probability, de�ned for any value n 2 N of the seurity

parameter by Inv

I

(n) = Pr[ f(I(f(x))) = f(x) ℄, the probability being over a random hoie of x

from f0; 1g

n

, and over the oin tosses of I. The following is standard:

We say f is one-way if for every inverter I the funtion Inv

I

is negligible.

There is another way we might onsider formalizing f being \one-way". To desribe this, we �rst

introdue the following terminology and notation. We say that g

1

: N ! R is eventually less than

g

2

: N ! R, written g

1

�

ev

g

2

, if there is an integer k suh that g

1

(n) � g

2

(n) for all n � k. Now:

We say f is uniformly one-way if there is a negligible funtion Æ suh that Inv

I

�

ev

Æ

for every inverter I.

In other words, there is a negligible funtion Æ that is a \witness" to the fat that the suess

probability of any inverter eventually beomes \small." More preisely, for eah inverter I there is

an integer k

I

suh that Inv

I

(n) � Æ(n) for all n � k

I

. We all s(�) = 1=Æ(�) the \seurity level."

1

Disussion. Another way of viewing the above de�nitions is that the order of quanti�ation is

di�erent:

f is one-way : 8 inverters I 9 negligible Æ

I

suh that Inv

I

�

ev

Æ

I

f is uniformly one-way : 9 negligible Æ suh that 8 inverters I we have Inv

I

�

ev

Æ

1

In asking for a single \seurity level", this de�nition is in the style of the de�nition of Levin [7℄. (See also Luby

[8℄). The latter however measure the quality of inverters via their time to suess probability ratios. It seems the

notion of uniform one-wayness is a simpli�ed, speial ase of their notions in whih one looks only at polynomial time

adversaries and seurity of the form 1=Æ for a negligible funtion Æ.
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Yet another way to see the di�erene is by taking the ontra-positives of the de�nitions, as we must

do in proving theorems based on the assumption that f is one-way or uniformly one-way. Funtion f

is not one-way if there is an inverter I and a onstant  suh that Inv

I

(n) > n

�

for in�nitely many

n. That is, there is some inverter whose suess probability is not negligible. On the other hand, f

is not uniformly one-way if for every negligible Æ there is an inverter I

Æ

suh that Inv

I

Æ

(n) > Æ(n)

for in�nitely many n. This does not diretly say that there is one inverter ahieving non-negligible

suess.

Is there a single seurity level? It is not hard to see that if f is uniformly one-way then it

is one-way, but it is not lear whether or not the onverse is true. Perhaps di�erent inverters have

di�erent suess probabilities, all negligible, but so that for any partiular negligible Æ, there is some

inverter who does better than Æ in�nitely often.

Equivalene. The results in this paper imply that the above two de�nitions are equivalent,

meaning f is one-way if and only if it is uniformly one-way. This means that given a one-way

funtion f there exists a single negligible funtion Æ suh that the suess probability of any inverter

is eventually less than Æ. So every one-way funtion does have a \spei�" assoiated seurity level.

In other words, the order of the quanti�ers does not matter.

1.2 Negligibility of funtion olletions

It turns out the tehnial question underlying the above has nothing to do with one-way funtions,

or even with ryptography. It is just about negligible funtions. Let us �rst formulate the question,

then relate it to the above.

Let F = f F

i

: i 2 N g be a olletion of funtions, all mapping N to R. We will onsider two

de�nitions of \negligibility" for the olletion F . The �rst is simple: just ask that eah funtion,

taken individually, is negligible. Formally, we say F is pointwise negligible if F

i

is negligible for

eah i 2 N. The seond is to ask that the olletion is \uniformly" negligible in that the di�erent

funtions onform to some ommon limit point. Formally, F is uniformly negligible if there is a

negligible funtion Æ (alled a limit point) suh that F

i

�

ev

Æ for all i 2 N. That is, eah F

i

drops

below Æ for large enough n. (The terminology here is by some sort of rough analogy with the notions

of pointwise and uniform onvergene of olletions of funtions in real analysis.)

It is quite easy to see that if olletion F is uniformly negligible then it is also pointwise negligible.

But is the onverse true? Theorem 3.2 shows that the answer is yes: the two notions of negligible

olletions are equivalent.

We stress that the olletions onsidered here are ountable. The result is not true for an

unountable olletion.

1.3 Appliation to ryptographi notions

Appliation to one-way funtions. Now, how does this relate to the issue for one-way fun-

tions? Let I = h I

i

: i 2 N i be an enumeration of all inverters. (Sine an inverter is a probabilisti,

polynomial-time algorithm, the number of inverters is ountable. For the non-uniform ase, where

there are unountably many inverters, see Setion 1.4 and Setion 4.) For eah i 2 N de�ne the fun-

tion F

i

by F

i

(n) = Inv

I

i

(n), the latter being the suess probability of I

i

as de�ned in Setion 1.1.

Let F = f F

i

: i 2 N g. Then observe that f is one-way if and only if the olletion F is point-

wise negligible, and f is uniformly one-way if and only if the olletion F is uniformly negligible.

Theorem 3.2 thus implies that f is one-way if and only if it is uniformly one-way.

More generally. Now that we see this, it is lear the same is true for pretty muh any rypto-

graphi primitive. The (asymptoti) de�nition of seurity for any primitive has the following form.
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To any \adversary" A and any value of the seurity parameter n there will be assoiated a suess

probability Su

A

(n), under some experiment. (For now, an adversary is a uniform algorithm.)

The primitive will be said to be \seure" if for eah adversary A the funtion Su

A

is negligible.

To put this in the framework we have been looking at, let A = fA

i

: i 2 N g be an enumeration of

all adversaries in question. (Sine an adversary is a uniform algorithm, the number of adversaries

is ountable.) Let F

i

(n) = Su

A

i

(n). Then we see that the de�nition indiated above is asking

that the olletion of funtions F = f F

i

: i 2 N g is pointwise negligible. It seems equally rea-

sonable, however, to ask that the olletion of funtions be uniformly negligible. This says there

exists a partiular negligible funtion Æ suh that the suess probability Su

A

(�) of any adversary

A is eventually less than Æ. Here, a spei� seurity level is assoiated to the primitive, to whih

all adversaries must eventually onform. This might seem di�erent, but Theorem 3.2 says the two

notions are equivalent. In partiular it says that it is always possible to �nd suh a spei� seurity

level for any primitive even if the de�nition does not expliitly ask for it.

Error probabilities in protools. For a one-way funtion, it seems of some interest that there

is a single \seurity level" assoiated to the funtion, but we do not see any partiular advantage

to atually formulating the de�nition in the new way. However, a setting where the seond type of

formulation seems more natural is in omputationally sound proofs and proofs of knowledge.

We often talk of \the error probability" of a protool suh as a omputationally sound interative

proof. This terminology indiates that we imagine there being assoiated to a given interative

proof system, de�ned by a given veri�er, a single entity (funtion) alled its error-probability. A

de�nition of \negligible error arguments" based on this view is given in [2℄. Earlier, however,

other de�nitions had appeared whih did not have this view of error probability in the ase of

negligible error [5, 9℄: eah prover had a di�erent assoiated \error-probability," so that the term

\the error-probability" of the protool did not have a realization. Applying the above however

we an show that the two formulations are equivalent. See Setion 4.2. Similarly, we relate two

notions of omputational proofs of knowledge with negligible knowledge error suggested in [1℄. See

Setion 4.3.

1.4 Non-uniform adversaries and unountability

As we indiated above, we wish to assoiate a funtion to eah adversary, this funtion being the

adversary's suess probability, and onsider the \negligibility" of the ensuing olletion of funtions.

When the lass of adversaries inludes only uniform algorithms, the number of adversaries, and

hene of funtions, is ountable, and the result mentioned in Setion 1.2 applies. However, the

set of adversaries might be the set of all non-uniform polynomial time algorithms. This set is

unountable, and hene so is the olletion of assoiated funtions. In this ase, we annot diretly

apply our main result. However, we will see that it is still possible to apply the equivalene, and

get the desired results, by onsidering the \best possible" non-uniform adversaries for eah spei�

polynomial size-bound. This will \redue" the unountable ase to the ountable one.

The treatment in Setion 2 is general, applying to either ountable or unountable olletions.

We prove in Setion 3 the equivalene in the ountable ase, and also a haraterization, for the

unountable ase, that enables us to redue the latter to the former.

2 De�nitions and elementary fats

Let N = f1; 2; 3 : : :g be the set of positive integers, and R the reals. Unless otherwise indiated, a

funtion maps N to R. We sometimes regard a funtion as a \point" in the spae of all funtions
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and refer to it this way. An \integer" means a positive integer, ie. an element of N. We begin with

a useful shorthand:

De�nition 2.1 If f; g are funtions we say that f is eventually less than g, written f �

ev

g, if

there is an integer k suh that f(n) � g(n) for all n � k.

It is useful to note that this relation is transitive:

Proposition 2.2 The relation �

ev

is transitive: if f

1

�

ev

f

2

and f

2

�

ev

f

3

then f

1

�

ev

f

3

.

Reall that a funtion f is negligible if for every integer  there is an integer n



suh that f(n) � n

�

for all n � n



. With the above shorthand, another way to say it is:

De�nition 2.3 A funtion f is negligible if f �

ev

(�)

�

for every integer .

Here (�)

�

stands for the funtion n 7! n

�

. It is useful to note the following:

Proposition 2.4 A funtion f is negligible if and only if there is a negligible funtion g suh that

f �

ev

g.

Proof of Proposition 2.4: If f is negligible then the other ondition is satis�ed by setting g = f .

Conversely assume there is a negligible g suh that f �

ev

g. We want to show f is negligible. So let

 2 N. Then f �

ev

g (by assumption) and g �

ev

(�)



(beause g is negligible) so by Proposition 2.2

we have f �

ev

(�)



. So f is negligible by De�nition 2.3.

A olletion of funtions is a set of funtions whose ardinality ould be ountable or unountable.

De�nition 2.5 A olletion of funtions F is pointwise negligible if for every F 2 F it is the ase

that F is a negligible funtion.

This means that for eah F 2 F and eah integer  there is some number k(F; ), depending on

both F and , suh that F (n) � n

�

whenever n � k(F; ). In other words, the di�erent funtions

ould go down at di�erent rates, and although eah is eventually below any inverse polynomial, the

time at whih this happens depends both on the funtion and the value of  de�ning the inverse

polynomial. The notion we de�ne next is stronger, in that it asks that there be a single negligible

funtion Æ that is a \witness" to the fat that the funtions in the olletion eventually beome

small. All funtions must eventually drop below Æ.

De�nition 2.6 A olletion of funtions F is uniformly negligible if there is a negligible funtion Æ

suh that F �

ev

Æ for every F 2 F .

In other words, the olletion F is uniformly negligible if there is a negligible funtion Æ suh that

for eah F 2 F there is an integer k(F ) suh that F (n) � Æ(n) for all n � k(F ). Notie that the

point at whih F drops below Æ is allowed to depend on F and may vary from funtion to funtion

in the olletion.

De�nition 2.7 Let F be a olletion of funtions and let Æ be a funtion. We say that Æ is a limit

point of F if F �

ev

Æ for eah F 2 F .

The following is obvious:

Proposition 2.8 A olletion of funtions F is uniformly negligible if and only if it has a negligible

limit point.

Note that limit points are not unique.
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3 Relations between the two notions of negligible olletions

It is easy to see that uniform negligibility implies pointwise negligibility. This is true regardless of

whether the olletion is ountable or unountable.

Proposition 3.1 If F is uniformly negligible then it is pointwise negligible.

Proof: By Proposition 2.8 there exists a negligible funtion Æ that is a limit funtion for F . Let

F 2 F . We know that F �

ev

Æ sine Æ is a limit point of F , and we know that Æ is negligible, so F

is negligible by Proposition 2.4. So F is pointwise negligible as per De�nition 2.5.

The question we want to look at is whether the notions are equivalent. We �rst onsider the ase

where the olletion of funtions is ountable, and then the ase where it is unountable.

3.1 The ase of a ountable olletion of funtions

The important ase is when the olletion is ountable. In that ase we show that the two notions

of negligibility are equivalent.

Theorem 3.2 Let F = f F

i

: i 2 N g be a ountable olletion of funtions. Then F is pointwise

negligible if and only if it is uniformly negligible.

We know from Proposition 3.1 that if F is uniformly negligible then it is pointwise negligible. The

other diretion is more interesting. The assumption is that eah F

i

is a negligible funtion. We

laim that F is uniformly negligible. To show this we will de�ne a negligible limit point Æ for F .

Before doing so, it may help to see why a tempting easier onstrution does not work.

Remark 3.3 Perhaps the �rst thought would be to set

Æ(n) = max f F

1

(n); F

2

(n); : : : ; F

n

(n) g : (1)

Certainly F

i

�

ev

Æ for eah i 2 N. But it is not hard to see that Æ need not be negligible. For

example let � be a negligible funtion and set F

i

(j) = 1 if j � i and F

i

(j) = �(j) if j > i. The

olletion of funtions f F

i

: i 2 N g is pointwise negligible, but the funtion Æ of Equation (1) is

the onstant funtion 1 whih is de�nitely not negligible.

Proof of Theorem 3.2: Assume F is pointwise negligible. We will onstrut a negligible limit

point Æ for F . The onstrution uses diagonalization. Let us �rst sketh the idea and then provide

the details.

Imagine a table with rows indexed by the values i = 1; 2; : : :; olumns indexed by the values of

n = 1; 2; : : :; and entry (i; n) of the table ontaining F

i

(n). We know that for any , the entries in

eah row eventually drop below n

�

. But where it happens di�ers from row to row. We de�ne Æ

by a sort of diagonalization, in a sequene of \stages." In stage  we will onsider only the �rst 

funtions in the list, namely F

1

; : : : ; F



. We will �nd a value h(), suh that all these funtions are

less than (�)

�

for n � h(), by \moving out" as muh as is neessary for all  funtions to fall below

our target. We view this as de�ning a sequene of retangles, eah �nite, but so that the sequene

eventually overs the entire table. (For a vague illustration, see Figure 1.) We will use h to de�ne Æ.

Namely for eah n we de�ne Æ(n) to maximize the funtions in the retangle with olumn number

\losest" to n. Let us now give the onstrution and proof in more detail.
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1

h(1)

2

h(2)

.

.

.

� � �

i

h(i)

Figure 1: Entry (i; n) of this table is F

i

(n). To eah row number i we assoiate a olumn number

h(i; i) suh that all entries to the right of the orresponding retangle (meaning stay above the

bottom edge!) are bounded by n

�i

.

For every i;  2 N we know that F

i

�

ev

(�)

�

. Let N(i; ) 2 N be suh that F

i

(n) � n

�

for all

n � N(i; ). We now de�ne a funtion h: f0g [ N ! N reursively as follows. Let h(0) = 0, and for

 2 N let

h() = max fN(1; ); N(2; ); : : : ; N(; ); 1 + h(� 1) g : (2)

That is, h() is a point beyond whih the �rst  funtions drop below (�)

�

. The following two

laims are lear from the de�nition:

Claim 1: F

1

(n); : : : ; F



(n) � n

�

for all n � h() and all  2 N. 2

Claim 2: h is an inreasing funtion, meaning h() < h(+ 1) for all  2 N [ f0g. 2

For any n 2 N we let

g(n) = max f j 2 N : h(j) � n g : (3)

That is, the �rst g(n) funtions drop below (�)

�g(n)

for inputs that are at least n. Note the fat

that h is inreasing means that the set in the above maximization is �nite, so the maximum is well

de�ned. The following is lear from Equation (3):

Claim 3: g is a non-dereasing funtion, meaning g(n) � g(n+ 1) for all n 2 N. 2

Intuitively, we think of g as an inverse of funtion h. The preise relationship is provided by Claims 4

and 5 below. Claim 4 is lear from Equation (3):

Claim 4: h(g(n)) � n for all n 2 N. 2

Letting n = h() in Equation (3) and using Claim 2, we also get:

Claim 5: g(h()) =  for all  2 N. 2

Now for any n 2 N we let

Æ(n) = max f F

i

(n) : 1 � i � g(n) g : (4)

We have two �nal laims, to be proven below:
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Claim 6: The funtion Æ is a limit point of the olletion F = f F

i

: i 2 N g. 2

Claim 7: The funtion Æ is negligible.

Claims 6 and 7 together say that Æ is a negligible limit point for the olletion F = f F

i

: i 2 N g,

and hene F is uniformly negligible by Proposition 2.8, ompleting the proof. It remains to prove

Claims 6 and 7.

To prove Claim 6, let i 2 N. As per De�nition 2.7 we need to show there is an integer n

i

suh that

F

i

(n) � Æ(n) for all n � n

i

. We set n

i

= h(i) and laim this works. Indeed, suppose n � h(i).

Applying �rst Claim 3 and then Claim 5 we get

g(n) � g(h(i)) = i :

From Equation (4) it follows that F

i

(n) � Æ(n), as desired.

To prove Claim 7, we need to show that Æ meets De�nition 2.3. So let  2 N. We need to show that

there is an integer n



suh that Æ(n) � n

�

for all n � n



. We set n



= h() and laim this works.

To see this, assume n � h(). The following is justi�ed below:

Æ(n) = max f F

i

(n) : 1 � i � g(n) g

� n

�g(n)

� n

�

:

The �rst line is from Equation (4). Claim 4 tells us that n � h(g(n)), and Claim 1 then gives us

the seond line above. Sine we assumed n � h(), applying �rst Claim 3 and then Claim 5 we get

g(n) � g(h()) =  :

This implies n

�g(n)

� n

�

whih was the last line above.

Remark 3.4 The limit point Æ onstruted in Theorem 3.2 has properties beyond being a negligible

limit point. In partiular, it is a non-inreasing funtion, meaning Æ(n) � Æ(n+ 1) for all n 2 N.

3.2 The ase of an unountable olletion of funtions

The olletion of funtions onsidered in Theorem 3.2 is ountable. Proposition 3.1 says that even

an unountable olletion of uniformly negligible funtions is pointwise negligible. But the onverse

fails for some unountable olletions.

Proposition 3.5 There is an unountable olletion of funtions F that is pointwise negligible but

not uniformly negligible.

Proof: Let F be the set of all negligible funtions mapping N to R. Obviously F is pointwise

negligible. But it is not uniformly negligible. To see this, let g be any negligible funtion. It annot

be a limit point of F , beause the funtion f = 2g is negligible, hene in F , but f is not eventually

less than g. Thus no negligible funtion an be a limit point for F , so that F has no negligible limit

point.

This does not mean that all unountable olletions of pointwise negligible funtions fail to be

uniformly negligible. The following is a simple haraterization of olletions where the equivalene

holds.
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De�nition 3.6 Let F ;M be olletions of funtions. We say that F is majored by M , or M

majors F , if for every F 2 F there is an M 2M suh that F �

ev

M .

The following haraterization holds for any olletion F , but the interesting ase is when F is

unountable. The key point below is that the olletion that majors F is required to be ountable.

Theorem 3.7 Let F be a olletion of funtions. Then F is uniformly negligible if and only if it

is majored by some pointwise negligible, ountable olletion of funtions.

Proof: First assume F is uniformly negligible. By Proposition 2.8 it has a negligible limit point Æ.

We set M = fmÆ : m 2 N g. This is a ountable, pointwise negligible olletion of funtions, and

it majors F beause it ontains Æ. So F is indeed majored by some pointwise negligible ountable

olletion of funtions.

Conversely suppose M is a pointwise negligible, ountable olletion of funtions that majors F .

Sine M is ountable, it is uniformly negligible by Theorem 3.2. By Proposition 2.8, M has a

negligible limit point Æ. Now if F 2 F then by De�nition 3.6 there is some M 2 M suh that

F �

ev

M . But M �

ev

Æ beause M 2 M and Æ is a limit point for M . Thus, F �

ev

Æ by

Proposition 2.2 and Æ is also a limit point for F . So F is uniformly negligible.

Reall that we want to make the funtions in the olletion orrespond to suess probabilities of

adversaries. We have disussed in Setion 1.4 how the ountability or unountability of the olletion

is a question of whether uniform or non-uniform adversaries are being onsidered. Although it is

not possible to diretly apply Theorem 3.2 in the latter ase, we will see that it is possible to apply

Theorem 3.7, and get the desired results.

4 Appliation to ryptographi de�nitions

We disussed in Setion 1.3 how the above relates to ryptographi de�nitions. Let us look at this

in more detail. We �rst summarize the impliations for one-way funtions and then move on to

arguments and proofs of knowledge.

Below, a uniform adversary is a probabilisti, polynomial-time (PPT) algorithm. A non-uniform

adversary A = hA

i

: i 2 Ni is a sequene of iruits of polynomial size (meaning, there is a polynomial

p suh that for all i the size of A

i

is at most p(i)), and in this ase the notation A(x) denotes the

output of iruit A

jxj

on input x. An adversary means either a uniform or a non-uniform adversary.

4.1 Appliation to one-way funtions

Let f : f0; 1g

�

! f0; 1g

�

be a polynomial time omputable, length preserving funtion. An adversary

in this ontext is alled an inverter. Assoiated to any inverter I (uniform or non-uniform) is its su-

ess probability funtion Inv

I

: N ! R, de�ned for all n 2 N by Inv

I

(n) = Pr[ f(I(f(x))) = f(x) ℄,

the probability being over the hoie of x, and, in the uniform ase, over the oins of I. We let I

denote the set of all inverters. (In the uniform ase, this is the ountable set of all PPT algorithms,

and in the non-uniform ase the unountable set of all sequenes of iruits that have polynomial

size.) We onsider two de�nitions of one-wayness.

De�nition 4.1 Let f;I be as above. We say that f is one-way if for every inverter I 2 I the

funtion Inv

I

is negligible. We say that f is uniformly one-way if there is a negligible funtion Æ

suh that Inv

I

�

ev

Æ for every inverter I 2 I.

10



We laim the notions are equivalent. The following applies to both the uniform and the non-uniform

ases:

Theorem 4.2 Let f be as above. Then f is one-way if and only if it is uniformly one-way.

Proof: We let F = fInv

I

: I 2 I g denote the olletion of suess probability funtions assoiated

to the set of inverters under onsideration. This olletion is ountable in the uniform ase and

unountable in the non-uniform ase. The key observation is that f is one-way if and only if F is

pointwise negligible, and f is uniformly one-way if and only if F is uniformly negligible. To omplete

the proof it suÆes to show that F is pointwise negligible if and only if it is uniformly negligible.

In the uniform ase ase F is ountable, so the onlusion follows diretly from Theorem 3.2. We

now onsider the non-uniform ase.

Proposition 3.1 says that if F is uniformly negligible then it is pointwise negligible. To prove

the onverse, assume F is pointwise negligible. We will exhibit a ountable, pointwise negligible

olletion M that majors F . It follows from Theorem 3.7 that F is uniformly negligible, and our

proof is omplete. It remains to exhibitM .

For any integers n; s there are �nitely many n-input iruits of size at most s, and hene we an �x

an n-input iruit B

n;s

of size at most s suh that for all n-input iruits C of size at most s we

have

Pr[ f(B

n;s

(f(x))) = f(x) ℄ � Pr[ f(C(f(x))) = f(x) ℄ ;

the probability above being over a random hoie of x from f0; 1g

n

. Let p

1

; p

2

; : : : be an enumeration

of all polynomials, and for any i 2 N de�ne the non-uniform inverter I

i

= h B

n;p

i

(n)

: n 2 N i. For

any n 2 N let M

i

(n) = Inv

I

i

(n) and let M be the olletion of funtions fM

i

: i 2 N g. It is lear

thatM is ountable, andM is pointwise negligible beause it is a subset of the pointwise negligible

olletion F . To omplete the proof, we show that M majors F . Consider any inverter I 2 I and

let p be a polynomial bounding its size. Let i be suh that p = p

i

. Then for eah n 2 N we have

Inv

I

(n) � Inv

I

i

(n). Thus Inv

I

�

ev

Inv

I

i

=M

i

.

4.2 Appliation to negligible error arguments

An argument, also alled a omputationally sound proof [3, 4℄, is a two-party protool in whih

soundness is only required to hold with respet to polynomial-time heating provers. (As usual one

an onsider either uniform or non-uniform heating provers.) A ouple of de�nitions of negligible

error arguments have appeared in the literature. We show how they orrespond to the two di�erent

views of negligibility of olletions of funtions and then show they are equivalent.

Let us begin with the de�nitions. We onsider a two-party protool in whih a prover attempts

to onvine a probabilisti, polynomial time veri�er V that their ommon input belongs to some

underlying language L. An adversary in this ontext is alled a heating prover. Assoiated to any

heating prover P (uniform or non-uniform) is its error-probability funtion Err

P

: N ! R, de�ned

for all n 2 N by

Err

P

(n) = max fA

P

(x) : x 2 f0; 1g

n

and x 62 L g :

Here A

P

(x) denotes the probability, taken over the oins of V and P , that V aepts in a

onversation with P on ommon input x. We adopt the onvention Err

P

(n) = 0 when the set in

the maximization above is empty. We let P denote the set of all heating provers. (In the uniform

ase, this is the ountable set of all PPT algorithms, and in the non-uniform ase the unountable

set of all sequenes of iruits that have polynomial size.)
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In an interative proof setting [6℄, where heating provers are not omputationally bounded, we

would say the error probability is Æ: N ! R if Err

P

(n) � Æ(n) for all P and all n 2 N. One might

try to de�ne the error-probability similarly in the ase of arguments by simply replaing \for all

P" by \for all P 2 P". This however does not yield a suitable notion of error probability for an

argument.

2

Taking this into aount, two di�erent de�nitions of omputational soundness have been

proposed in the literature. Computational soundness as de�ned below is from [5, 9℄ while uniform

omputational soundness is from [2℄:

De�nition 4.3 Let V;L;P be as above. We say that V is omputationally sound over L if for every

heating prover P 2 P the funtion Err

P

is negligible. We say that V is uniformly omputationally

sound over L if there is a negligible funtion Æ (alled the error-probability of V ) suh that Err

P

�

ev

Æ for every P 2 P.

In the notion of omputational soundness, there is no \error-probability" assoiated to V . Instead,

di�erent heating provers might have di�erent error probabilities, as long as they are all negligi-

ble. Uniform omputational soundness, in ontrast, asks that there be an identi�able funtion Æ,

depending only on V , that is alled the error-probability, and in that sense is loser in spirit to the

de�nition in the ase of interative proofs. However, it turns out the two notions are equivalent.

Theorem 4.4 Let V;L be as above. Then V is omputationally sound over L if and only if V is

uniformly omputationally sound over L.

For the proof, we let F = f Err

P

: P 2 P g denote the olletion of error-probability funtions

assoiated to the set of heating provers under onsideration. This olletion is ountable in the

uniform ase and unountable in the non-uniform ase. As before, the key observation is that

V is omputationally sound over L if and only if F is pointwise negligible, and V is uniformly

omputationally sound over L if and only if F is uniformly negligible. To omplete the proof it

suÆes to show that F is pointwise negligible if and only if it is uniformly negligible. This an

be done as in the proof of Theorem 4.2, diretly by Theorem 3.2 for the uniform ase, and via

Theorem 3.7 for the non-uniform ase. We omit the details to avoid repetition.

4.3 Appliation to proofs of knowledge

An NP-relation is a funtion �: f0; 1g

�

� f0; 1g

�

! f0; 1g omputable in time polynomial in the

length of its �rst argument. For any x 2 f0; 1g

�

we let �(x) = f w 2 f0; 1g

�

: �(x;w) = 1 g denote

the witness set of x. We let Lang(�) = f x 2 f0; 1g

�

: �(x) 6= ; g denote the language de�ned by �.

Note that a language L is in NP i� there exists an NP-relation � suh that L = Lang(�).

Let � be an NP-relation and let L = Lang(�). Let V be a probabilisti, polynomial-time veri�er

de�ning a two-party protool. An adversary in this ontext is alled a heating prover and P denotes

the set of all heating provers. (As above, P is ountable in the uniform ase and unountable in

the non-uniform ase.) As above, let A

P

(x) denote the probability, taken over the oins of V and

P , that V aepts in a onversation with prover P on ommon input x. Below P

x

denotes prover P

with ommon input �xed to x. The two notions in the de�nition below are both from [1℄.

2

To see why, onsider the following protool for membership in the language L = ;. On ommon input x the

veri�er piks a pair of random primes of length n = jxj and multiplies them to get a modulus N whih it sends to the

prover. It aepts if the prover returns the fatorization of N . Intuitively (and formally as per De�nition 4.3), this

protool is omputationally sound if fatoring is hard. But for any negligible Æ: N ! R, there exists a polynomial-time

P and an n 2 N suh that Err

P

(n) > Æ(n).

12



De�nition 4.5 Let �; V; L;P be as above. We say that V de�nes a omputationally sound proof of

knowledge for � if there is an expeted polynomial time orale algorithm E (alled the extrator)

suh that for eah heating prover P 2 P there is a negligible funtion �

P

suh that

Pr[E

P

x

(x) 2 �(x) ℄ � A

P

(x)� �

P

(jxj)

for all x 2 Lang(�). We say that V de�nes a uniformly omputationally sound proof of knowledge

over � if there is an expeted polynomial-time orale algorithm E (the extrator) and a negligible

funtion � (alled the knowledge error) suh that for every heating prover P 2 P there is a onstant

n

P

suh that

Pr[E

P

x

(x) 2 �(x) ℄ � A

P

(x)� �(jxj)

for all x 2 Lang(�) that have length at least n

P

.

The di�erene is that in a uniformly omputationally sound proof of knowledge, there is an identi�-

able funtion alled the knowledge-error, analogous to an error-probability in proofs of membership,

while in a omputationally sound proof of knowledge, there is no single suh funtion, but instead

the funtion depends on the heating prover. However, the two notions are equivalent.

Theorem 4.6 Let �; V; L be as above. Then V de�nes a omputationally sound proof of knowledge

over � if and only if V de�nes a uniformly omputationally sound proof of knowledge over �.

In this ase it may be a little less evident than before how the issue orresponds to negligibility

of some olletion of funtions. For the proof, we �rst laim something stronger than the theorem

statement, namely that not only are the notions equivalent, but the extrator is the same in both

ases. So view the extrator E as now �xed. For eah prover P 2 P de�ne the funtion

F

P

(n) = max fA

P

(x)� Pr[E

P

x

(x) 2 �(x) ℄ : x 2 f0; 1g

n

and x 2 L g :

We adopt the onvention F

P

(n) = 0 when the set in the maximization above is empty. We onsider

the olletion of funtions F = f F

P

: P 2 P g. Now we observe that V de�nes a omputationally

sound proof of knowledge over � if and only F is pointwise negligible, and V de�nes a uniformly

omputationally sound proof of knowledge over � if and only if F is uniformly negligible. We then

show that F is uniformly negligible if and only if it is pointwise negligible as before.
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