
� The shared random bit s is disclosed subject to a conjunction of the following conditions:

1. For every 3 � j � k, the subcube sent to DB

j

is equal to the subcube sent to DB

2

.

2. The subcubes sent to DB

1

;DB

2

are consistent with the components of the index i shared between

these two databases (see B

00

2

for implementation details).

3. For every � 2 f0; 1g

d

such that weight(�) � 2, the index i

0

shared by the user in the invocation

of B

00

k�1

on w

�

(in accordance with the strong data privacy assumption made on B

00

k�1

) is equal to

i

0

�

. This can be veri�ed by comparing each component of i

0

with the corresponding component

of i as shared by the user.

We start by analyzing the communication complexity. The combined size of all conditional disclosure

formulas is O(` log `). Thus, the communication complexity satis�es c

k

(n) = O(` log `) + (2

d

� d � 1) �

c

k�1

(`

d�2

) = O(` log `) = O(logn � n

1=(2k�1)

).

The correctness and the user's privacy are straightforward to verify. It remains to show that the strong

data privacy requirement also holds for B

00

k

. We argue that if the user commits to an index i = (i

1

; : : : ; i

d

)

(by sharing its components between DB

1

and DB

2

), then it can learn at most the bit x

i

. As in the B

0

k

scheme, an honest user learns x

i

alone. In order to learn something on other bits, a dishonest user must

deviate from the scheme's speci�cation either by sending to DB

1

; : : : ;DB

k

subcubes which don't meet the

requirements imposed by i, or by trying to retrieve from the recursive invocations of B

00

k�1

di�erent bits

than those corresponding to i. The speci�ed disclosure conditions and the strong data privacy assumption

made on B

00

k�1

guarantee that in both of these cases, the user will learn nothing about s. By the use of the

underlying PSM protocol and by the data-privacy of B

00

k�1

, the answers to any choice of queries reveal at

most the exclusive-or of 2

d

bits (one selected from each list) together with s. Thus, learning nothing about

s makes the user learn nothing at all.
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� The user and databases DB

2

; : : : ;DB

k

recursively invoke B

0

k�1

, as in the de�nition of B

k

, except that

the virtual data strings a

�

used in B

k

are replaced by the corresponding PSM message strings w

�

.

I.e., every bit of a

�

(from which the bit b

�

is retrieved) is xored with the same shared random bit r

�

.

Remarks:

� The above scheme requires only one round of interaction. Since the conditional disclosure of each bit

requires only a constant amount of communication, the communication complexity satis�es: c

k

(n) �

(d+ 1) �O(`) + (2

d

� d� 1) � c

k�1

(`

d�2

) = O(n

1=(2k�1)

).

� Databases DB

2

; : : : ;DB

k

do not have to directly apply the conditional disclosure primitive; the re-

cursive use of B

0

k�1

\takes care" of exposing only a single bit b

�

per invocation.

� The scheme B

0

2

may serve as basis for the recursion (in contrast to the original PIR setting, in which

it was possible to use a trivial scheme B

1

as basis).

Proof of Theorem 5. As in the proof of Theorem 3, we follow the recursive construction of [1]. Let

d = 2k � 1 and ` = n

1=d

. Suppose we have a (k � 1)-database SPIR scheme B

00

k�1

of communication

complexity O(logn � n

1=(2k�3)

). In this case we make an additional assumption on B

00

k�1

: we assume that

the user is required to commit to the index being retrieved. This assumption, referred to as a strong

data-privacy requirement is formally de�ned in the following.

We say that a 1-round PIR scheme P satis�es the strong data-privacy requirement with parameter d

0

,

if the following conditions hold:

1. On a data string x of length n

0

= `

d

0

, the user sends special queries Q

0

m

; Q

1

m

, m � 1 � d

0

(each of

which is a (log

2

`)-bit string); and

2. If a user (possibly a dishonest user) sends queries in which Q

0

m

�Q

1

m

= bin(i

0

m

) for each 1 � m � d

0

,

then the answers reveal at most the bit x

(i

0

1

;:::;i

0

d

0

)

.

Note that strong data privacy implies the usual data privacy. Also note that the scheme B

00

2

satis�es

this stronger requirement with d

0

= 3, since in that scheme the user can only obtain information on the

data bit corresponding to index components i

1

; i

2

; i

3

it shares between the two databases. Our additional

assumption on B

00

k�1

(which will be carried on to B

00

k

) is that it satis�es the strong data privacy requirement

with d

0

= 2(k � 1)� 1 = 2k � 3.

The scheme B

00

k

proceeds as follows:

� The user sends the subcube C

0

d

= (S

0

1

; : : : ; S

0

d

) to DB

1

and the subcube C

1

d

= (S

1

1

; : : : ; S

1

d

) to each

of DB

2

; : : : ;DB

k

. Independently, the user shares binary representations of the index components i

m

,

m = 1; 2; : : : ; d (as in the B

00

2

scheme). In their answers, DB

1

;DB

2

disclose each j-th bit of a PSM

message string w

e

m

, 1 � j � `; 1 � m � d, subject to the condition i

m

= j (where e

m

denotes the

m-th unit vector of length d). In addition, DB

1

sends the bit w

0

d

� s, where s is a shared random

bit.

� For each � 2 f0; 1g

d

such that weight(�) � 2, the user and the databases DB

2

; : : : ;DB

k

recursively

invoke B

00

k�1

on the virtual data string w

�

de�ned in the following. Let d

0

= d�2 and n

0

= `

d

0

. Letm

�

z

,

1 � z � weight(�), denote the position of the z-th zero in �. With every � such that weight(�) � 2

and tuple i

0

= (i

0

1

; : : : ; i

0

d

0

) 2 [`]

d

0

we associate a subcube C

�

i

0

(of the cube [`]

d

), which is obtained from

C

1

d
by replacing each set S

1

z

, 1 � z � weight(�), with the set S

1

z

� i

m

�

z

. Each w

�

is de�ned to be

the n

0

-bit string, whose i

0

-th bit is equal to the exclusive-or of data bits residing in the subcube C

�

i

0

together with the PSM random bit r

�

. In a recursive invocation of B

00

k�1

on the virtual data string

w

�

, the user retrieves the bit whose index is represented by the d

0

-tuple i

0

�

= (i

m

�

1

; i

m

�

2

; i

m

�

p

; 1; : : : ; 1),

where p = weight(�).
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A Necessity of Shared Randomness

In this section we show that the addition of a shared randomness resource to the basic PIR setting is in a

sense minimal.

Suppose we allow the databases to use private randomness in answering the user's queries, but we still

do not allow them to interact without the mediation of the user (and in particular we do not allow them to

share a random string unknown to the user). We argue that in this setting, (information-theoretic) SPIR

cannot be implemented at all, even when the user is honest.

Proposition 3. There exists no multi-round k-database SPIR scheme without interaction between the

databases, even if the databases are allowed to hold private, independent random inputs, and the user is

honest.

Proof. The strong privacy requirement implies that any single database DB

j

cannot respond to the

user's queries in a way that depends on the data string x. Formally, at any round the distribution of the

database's answer given previous communication is the same under every x. For otherwise, this answer

distribution must either not follow from x

i

alone, thus violating the data's privacy, or alternatively reveal

the index i on which it depends, thus violating the user's privacy. By independence of private random

inputs held by di�erent databases, this implies that the joint distribution of their answers, given previous

communication, is independent of x. Fixing an index i, it follows by induction on the number of rounds

that for any w > 0 the accumulated communication in the �rst w rounds is distributed independently of

x. In particular, this implies that the user's output cannot depend on the value of x

i

, contradicting the

correctness requirement.

B Proofs

Proof of Theorem 3. We show how to adapt the proof of Theorem 2 to the k-database generalization

given in [1]. Let d = 2k � 1 and ` = n

1=d

. In the B

k

scheme, the k databases (denoted DB

1

; : : : ;DB

k

)

jointly emulate the 2

d

databases of the d-dimensional elementary cube scheme. The scheme proceeds as

follows. The user sends to DB

1

the subcube C

0

d
as in the elementary cube scheme, and sends to each of

DB

2

; : : : ;DB

k

the subcube C

1

d
. In its answers, DB

1

emulates all databases DB

�

of the original scheme such

that � 2 f0; 1g

d

is at Hamming distance at most 1 from 0

d

, similarly to the way such an emulation is done

in the B

2

scheme. Simultaneously, the remaining databases DB

2

; : : : ;DB

k

jointly emulate the remaining

databases of the original schemes, namely all DB

�

such that � contains at least two 1's. This is done

using a constant number (2

d

� d � 1) of recursive invocations of the B

k�1

scheme between the user and

DB

2

; : : : ;DB

k

. In each such invocation the user retrieves a single bit b

�

from a virtual data string, whose

entries correspond to the di�erent subcubes possibly sent to DB

�

in the elementary scheme (i.e.., each bit

of the virtual data strings equals the exclusive-or of data bits residing in such a potential subcube). By

xoring d+1 bits selected from the answers of DB

1

together with the 2

d

�d�1 bits retrieved by the recursive

invocations of B

k�1

, the user reconstructs x

i

.

It is not hard to see that the technique we used for converting B

2

into an honest-user-SPIR scheme B

0

2

of

the same asymptotic complexity can be carried on recursively. Suppose we have a (k�1)-database honest-

user-SPIR scheme B

0

k�1

of communication complexity O(n

1=(2k�3)

). We can obtain a recursive de�nition

of B

0

k

(in terms of B

0

k�1

) from the recursive de�nition of B

k

, similarly to the way B

0

2

was obtained from B

2

.

Omitting details which should be clear by now, B

0

k

proceeds as follows:

� The user sends the subcube C

0

d
toDB

1

and the subcube C

1

d
to each of DB

2

; : : : ;DB

k

. Independently,

the user shares all characteristic vectors �

i

m

, m = 1; : : : ; d, between DB

1

and DB

2

. In their answers,

DB

1

;DB

2

disclose each bit of the PSM message strings w

�

held by DB

1

, subject to an appropriate

condition on corresponding bits of the shares they received (as in the B

0

2

scheme).
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Theorem 7. There exists a 2-database computational SPIR scheme of communication complexity O(n

c

)

(for any c > 0, assuming the existence of a one-way function).

5 Final Remarks

From a wider perspective, our solutions exploit the speci�c structure of current PIR schemes (single round,

a simple-enough structure of reconstruction function) to provide e�ciency which cannot be rivaled in more

general settings. For instance, general techniques of information-theoretic resilient multi-party computation

(cf. [3, 8]), which can in principle be applied to convert PIR schemes into SPIR counterparts, involve a

much higher complexity overhead.

The techniques we have used can be applied to obtain SPIR analogues of other PIR-related results

which were not discussed in this work. In particular, e�cient SPIR schemes for retrieving blocks of data,

and schemes with a higher degree of user privacy (i.e., privacy with respect to any coalition of at most t

databases) may be obtained by applying similar techniques to schemes from [10]. In the case of single-

database computational PIR schemes [15], (multi-round) SPIR counterparts can be obtained by applying

standard zero-knowledge techniques (whose polynomial communication overhead is insigni�cant in that

case).

We �nally note that the SPIR problem may be viewed as a distributed version of the problem of

�

n

1

�

-Oblivious-Transfer [6, 7] (also denoted \all or nothing disclosure of secrets"). Thus, our solutions

immediately give 1-round distributed implementations of

�

n

1

�

-Oblivious-Transfer with sub-linear communi-

cation complexity.
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1 � j � k, the query ~u

j

= �

j

� ~c+

~

i.

7

Each database DB

j

replies with a single �eld element a

j

4

= p

x

(~u

j

).

The user reconstructs x

i

by interpolation: if p

0

is the unique degree-s univariate polynomial (over GF (q))

such that p

0

(�

j

) = a

j

for every 1 � j � k, then x

i

= p

0

(0). The communication complexity of the scheme

is O(log

2

n log log n).

In Section 3 we relied on the linearity of the reconstruction function to obtain a PSM-based honest-

user-SPIR scheme with the same communication complexity. To prevent a dishonest user from obtaining

any illegitimate information on x, we require the user to prove that its queries are consistent with some

~

i 2 f0; 1g

s

and ~c 2 GF (q)

s

. Such a proof will consist of sharing each entry of ~c and

~

i, and its validation

will consist of verifying that

~

i 2 f0; 1g

s

and that ~u

j

= �

j

� ~c+

~

i for each 1 � j � k. The SPIR scheme is

formally described in the following.

Queries: The user sends to each database DB

j

a query ~u

j

as in the original scheme. In addition, the user

picks random tuples

~

i

0

;

~

i

1

;~c

0

;~c

1

2 GF (q)

s

such that

~

i

0

+

~

i

1

=

~

i and ~c

0

+ ~c

1

= ~c, and sends

~

i

0

;~c

0

to

DB

1

and

~

i

1

;~c

1

to each of DB

2

; : : : ;DB

k

.

Answers: By linearity of the original scheme's reconstruction function, it can be expressed as

P

k

j=1

�

j

a

j

,

where the �

j

's are �xed �eld elements (which depend on the �

j

's). Let r

1

; r

2

; : : : ; r

k

be independent,

random elements of GF (q) (included in the databases' shared randomness), and let r = �

P

k

j=1

r

j

.

Each database DB

j

replies with a

0

j

4

= �

j

a

j

+ r

j

, where a

j

is its answer according to the original

scheme. In addition, the databases use their shared randomness to independently disclose each bit

of r, subject to the following conditions: (1) for every 3 � j � k, the shares of

~

i and ~c sent to DB

j

must be identical to those sent to DB

2

; (2) for every 1 � m � s, either i

0

m

+ i

1

m

= 0 or i

0

m

+ i

1

m

= 1

(where i

b

m

denotes the m-th entry of the b-th share of

~

i); and �nally: (3) for every 1 � j � k and

1 � m � s, we require that �

j

(c

0

m

+ c

1

m

) + (i

0

m

+ i

1

m

) = u

j

m

. Note that each of the atomic conditions

can be expressed as equality between two elements of GF (q), known to two di�erent databases.

For instance, if j > 1 then verifying the condition �

j

(c

0

m

+ c

1

m

) + (i

0

m

+ i

1

m

) = u

j

m

is equivalent to

comparing �

j

c

0

m

+ i

0

m

, which is known to DB

1

, and u

j

m

� �

j

c

1

m

� i

1

m

, which is known to DB

j

. Thus

each such atomic condition can be veri�ed by a Boolean formula of size O(log s), and the whole

disclosure condition by a Boolean formula of size O(s

2

log s). Altogether, disclosing all bits of r

requires O(s

2

log

2

s) = O(log

2

n(log logn)

2

) communication bits.

Reconstruction: The user reconstructs r, and computes x

i

as

P

k

j=1

a

0

j

+ r.

The correctness and the user's privacy of the original scheme are clearly maintained. To see the data privacy

of this scheme, consider two possible cases. If the user's queries are valid, then the tuple (a

0

1

; a

0

2

; : : : ; a

0

k

; r)

is uniformly distributed among all (k + 1)-tuples over GF (q) which sum up to x

i

, implying that the an-

swer distribution depends only on x

i

. Otherwise, the user obtains no information on r, and consequently

a

0

1

; : : : ; a

0

k

(which are uniformly and independently distributed over GF (q)) are independent of the condi-

tional disclosure messages. It follows that in the latter case the user learns nothing at all.

The communication complexity is dominated by the conditional disclosure of r, which requires O(log

2

n�

(log logn)

2

) communication bits.

4.3 Computational PIR

In a computational setting, where requirements of strict equality between distributions are relaxed to

computational indistinguishability requirements, our information-theoretic primitives may be replaced by

more powerful cryptographic primitives. In [11] it is shown that for every function in P there exists a

computational PSM protocol of polynomial communication complexity, assuming the existence of a one-way

function. Since both the reconstruction function and the validity of the user's queries in the computational

scheme of [9] can be veri�ed in polynomial time (uniformly in c), we may conclude the following:

7

Throughout this subsection, all additions and multiplications are over GF (q).
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Answers: Let w

�

denote the PSM message strings as in the B

0

2

scheme, and let s be a shared random

bit. The databases use their shared randomness to independently disclose to the user each of the

following bits:

1. The bit s is disclosed subject to the condition

V

3

m=1

(S

0

m

� S

1

m

= fr

0

m

� r

1

m

g) (which validates

the user's queries). This condition can be veri�ed by a Boolean formula of size O(` log `).

6

2. The bits w

000

� s and w

111

are sent in a plain form. The former bit may be viewed as the PSM

message corresponding to the input bit b

000

� s.

3. Each bit of w

�

(� 6= 000; 111) is disclosed subject to the appropriate comparison of its position

to the shared index components; e.g., the j-th bits of w

001

and w

110

, 1 � j � `, are disclosed

subject to the condition r

0

3

� r

1

3

= bin(j). Each such condition can be veri�ed by a Boolean

formula of size O(log `).

Reconstruction: The honest user can reconstruct s and the 8 bits corresponding to the index i. The

retrieved bit x

i

is equal to the exclusive-or of these 9 bits.

The correctness and the user's privacy in the above scheme are easy to verify. The scheme's data privacy,

relative to any user, follows from the following observations:

� From each of the 6 `-bit strings w

�

the user can obtain only a single physical bit of w

�

, corresponding

to the appropriate shared index component. By the use of an underlying PSM protocol for xor, this

means that the user can only learn (s� b

000

)� b

111

� b, where b is the exclusive-or of the 6 selected

bits.

� If the user's queries are inconsistent, i.e. the relation between the two subcubes does not match the

shared index components, then the user obtains no information on s, and hence (by the previous

observation) no information at all. On the other hand, if the user's queries are consistent with some

index i, then it learns only s and s� x

i

, which is equivalent to learning x

i

.

From the sizes of the Boolean formulas used as disclosure conditions it follows that the scheme meets the

speci�ed complexity bound.

Theorem 4 is generalized by the following theorem, whose proof appears in the Appendix.

Theorem 5 . For every �xed k � 2 there exists a k-database SPIR scheme, B

00

k

, of communication

complexity O(logn � n

1=(2k�1)

).

4.2 A Polynomial Interpolation Scheme

In this subsection we show how the polynomial interpolation PIR scheme for k = log

2

n+1 databases [10]

(see also [2]) can be transformed into a SPIR scheme with the same number of databases, and with an

O(log logn) factor of communication overhead.

Theorem 6. There exists a dlog

2

n+ 1e-database SPIR scheme of communication complexity O(log

2

n �

(log logn)

2

).

Proof. We start by describing the elementary polynomial interpolation scheme. Suppose n = 2

s

,

and let k = s + 1 be the number of databases. Let GF (q) be a �nite �eld with at least s + 2 elements,

and �

j

, 1 � j � k, be distinct, nonzero elements of GF (q). With every index i 2 [n] we associate an

s-tuple

~

i = (i

1

; i

2

; : : : ; i

s

) 2 f0; 1g

s

, corresponding to the binary representation of i. For each data string

x 2 f0; 1g

n

there exists a multivariate degree-s polynomial p

x

(y

1

; : : : ; y

s

), such that p

x

(

~

i) = x

i

for every

i 2 [n]. The user picks a random s-tuple ~c = (c

1

; : : : ; c

s

) 2 GF (q)

s

, and sends to each database DB

j

,

6

A condition of the form S � S

0

= fr� r

0

g can be expressed as a conjunction of ` conditions of the form ((S)

j

�

(S

0

)

j

= 1)$ (r � r

0

= bin(j)), where each such smaller condition can be easily veri�ed by a formula of size O(log `).

9



(This argument can be easily formalized by describing a simulator which, given an honest user's queries

and a value of x

i

, produces the answer distribution).

Since the condition for disclosing each of the O(n

1=3

) bits of the strings w

j

is expressed by a Boolean

formula of a constant size, from Corollary 2 it follows that all such bits can be conditionally disclosed with

a total communication cost of O(n

1=3

) bits. Altogether, the communication complexity of the scheme is

O(n

1=3

), as required.

The next theorem, whose proof is deferred to the Appendix, generalizes Theorem 2 to any number of

databases k � 2.

Theorem 3. For every �xed k � 2 there exists a k-database honest-user-SPIR scheme, B

0

k

, of commu-

nication complexity O(n

1=(2k�1)

).

Note that the methodology of using conditional disclosure of secrets on top of a PSM protocol may be

useful for handling any scheme whose reconstruction depends only on a proper subset of the answer bits.

In particular, this applies to schemes obtained from the generic database-dominated balancing technique

of [10].

4 SPIR Schemes with Respect to Dishonest Users

In this section we transform PIR schemes into SPIR schemes which guarantee data privacy with respect

to dishonest users as well. The following example demonstrates the undesired extra power granted to a

dishonest user in ordinary PIR schemes.

Example 1. Consider the B

2

scheme. By sending the subcube C = (fi

1

g ; fi

2

g ; fi

3

g) (which is a legitimate

query) to the 1st database, its answers alone reveal about 3n

1=3

physical bits of data. Namely, the data bits

revealed are all those whose Hamming distance from (i

1

; i

2

; i

3

) is at most 1. Although an honest user might

also be lucky enough to learn that many physical data bits, this occurs with only a negligible probability.

In principle, every honest-user-SPIR scheme can be made resilient to dishonest users by �ltering every

original answer bit using the conditional disclosure primitive, where the condition tests for the validity of

the user's queries. For instance, to properly handle the honest-user-SPIR version of B

2

(see Theorem 2),

such a condition must ensure in particular that the user does not try to obtain several bits from one string

w

�

, e.g. by sharing the all-ones vector instead of a characteristic vector �

i

m

. However, the complexity of

disclosing each answer bit subject to a full validity test will usually be prohibitive. We signi�cantly reduce

this overhead by requiring the user to send a \proof" for the validity of its queries (which may be viewed

as switching to nondeterministic veri�cation), and by letting di�erent answer bits be disclosed subject to

di�erent conditions.

The next subsections present speci�c transformations from PIR schemes into corresponding SPIR

schemes. All transformations involve at most an O(logn) multiplicative communication overhead.

4.1 Cube Schemes

In this subsection we construct a k-database SPIR scheme of complexity O(logn � n

1=(2k�1)

). As in the

previous section, we �rst address the 2-database case.

Theorem 4. There exists a 2-database SPIR scheme, B

00

2

, of communication complexity O(logn � n

1=3

).

Proof. Assume that ` = n

1=3

is a power of 2. For every j 2 [`], let bin(j) denote the (log

2

`)-bit binary

representation of j. The scheme B

00

2

proceeds as follows:

Queries: The user sends to DB

000

the subcube C

000

= (S

0

1

; S

0

2

; S

0

3

) and to DB

111

the subcube C

111

=

(S

1

1

; S

1

2

; S

1

3

), as in the B

2

scheme. In addition, the user independently shares binary representations

of the index components i

m

, m = 1; 2; 3. This is done by picking random (log

2

`)-bit strings r

0

m

; r

1

m

such that r

0

m

� r

1

m

= bin(i

m

), and sending the strings r

0

m

to DB

000

and the strings r

1

m

to DB

111

.

8



goal, DB

000

sends the single bit b

000

(which it is able to compute from the query it received) along with

3 `-bit long strings, each of which contains the answer bit of one of the other databases it emulates. For

instance, the i

0

1

-th bit of the string emulating DB

100

is obtained by computing the exclusive-or of all data

bits residing in the subcube (S

0

1

� i

0

1

; S

0

2

; S

0

3

), implying that the i

1

-th bit in this string is equal to b

100

.

Symmetrically, DB

111

sends the single bit b

111

along with 3 `-bit long strings, each of which corresponds to

the subcubes obtained from C

111

by xoring a single set S

1

m

with all ` possible values of i

0

m

. Altogether, the

user receives 8 answer strings a

�

; � 2 f0; 1g

3

, six of which contain ` bits each, and the other two (namely,

a

000

and a

111

) contain single bits. In each of the `-bit long strings, the index of the required answer bit b

�

is either i

1

(for � = 100; 011), i

2

(� = 010; 101), or i

3

(� = 001; 110). Since the user knows the positions

of all 8 bits b

�

, � 2 f0; 1g

3

, in the answer strings, it can reconstruct x

i

by computing the exclusive-or of

these bits.

It is convenient to view the reconstruction function of the B

2

scheme as a two-stage procedure:

1. The user selects a single bit from each of 8 answer strings, depending only on the index i.

2. The user exclusive-ors the 8 bits it has selected to obtain x

i

.

Thus, if we let the honest user learn only the exclusive-or of the 8 bits corresponding to the index i,

the data privacy requirement will be met. This can be achieved by using the conditional disclosure of

secrets primitive on top of a PSM protocol computing the exclusive-or of 8 bits. The scheme B

0

2

, an

honest-user-SPIR version of B

2

, may proceed as follows:

Queries: The user sends the subcubes C

000

to DB

000

and C

111

to DB

111

, as in the B

2

scheme. In addition,

the user independently shares the characteristic vectors �

i

m

, m = 1; 2; 3, among the two databases.

This is done by picking random `-bit strings r

0

m

; r

1

m

such that r

0

m

� r

1

m

= �

i

m

and sending the three

strings r

0

m

to DB

000

and the three strings r

1

m

to DB

111

.

Answers: Each of the two databases computes 4 answer strings as in the B

2

scheme. Denote by a

�

the

answer string emulating DB

�

, � 2 f0; 1g

3

. The databases treat each bit of a string a

�

as an input to a

PSM protocol computing the Boolean xor of 8 bits, and using their shared randomness they compute

the PSM message sent for each such bit. Under the simple PSM protocol for xor (see subsection 3.1),

each such message consists of a single bit. Let w

�

denote the string obtained by replacing each bit

from a

�

by its corresponding PSM message bit. In this case, w

�

is obtained by xoring every bit of

a

�

with the same random bit r

�

, where the bits r

�

are 8 random bits that xor to 0. Finally, for

every � 2 f0; 1g

3

and 1 � j � jw

�

j, the databases use their shared randomness to disclose to the

user the j-th bit of w

�

, (w

�

)

j

, subject to an appropriate condition. For � = 100; 011 the condition

is (r

0

1

)

j

� (r

1

1

)

j

= 1, for � = 010; 101 the condition is (r

0

2

)

j

� (r

1

2

)

j

= 1, and for � = 001; 110 the

condition is (r

0

3

)

j

� (r

1

3

)

j

= 1. The single bits w

000

; w

111

can be sent in a plain form.

Reconstruction: The user reconstructs the eight PSM message bits corresponding to the index i (using

the reconstruction function of the conditional disclosure protocol), and xors them to obtain x

i

.

The correctness of the above scheme and the user's privacy are easy to verify. The scheme's data privacy

(when the user is honest) follows from the following observations:

� By the use of conditional disclosure of secrets, the answer strings disclose to the user only 8 bits: a

single bit from each w

j

, whose position corresponds to the appropriate characteristic vector shared

by the user.

� By the privacy of the underlying PSM protocol for \xor", the joint distribution of these 8 bits depends

only on their exclusive-or, which equals x

i

.

� By the independence of the PSM randomness and the conditional disclosure randomness, the user's

view given its queries depends only on x

i

.
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a secret (from the same secret domain) subject to the condition f , whose total communication complexity

is c, assuming that all k players know the secret.

Proof. Let P

0

1

; : : : ; P

0

m

denote the participants in the generalized secret sharing scheme S. The condi-

tional disclosure protocol P proceeds as follows. Each player, holding input bits (y

j

)

j2T

for some T � [n],

uses the shared random input to compute (as speci�ed by S) the shares of all participants P

0

i

such that:

(1) g

i

is a function of some y

j

it holds, and (2) g

i

(y

j

) = 1. All such shares are simultaneously sent to Carol,

who uses her input y to determine whether f

M

(~g(y)) = 1, and if so reconstructs the secret from the shares

she received using the reconstruction function of S.

The privacy and correctness of this protocol follow from observing that the m-bit characteristic vector z

of the shares received by Carol satis�es z = ~g(y), so that f

M

(z) = f

M

(~g(y)) = f(y). Indeed, if f(y) = 0 then

f

M

(z) = 0, which by the privacy of S implies that the shares received by Carol give her no information

about the secret. If f(y) = 1 then f

M

(z) = 1, which by the correctness of S implies that Carol can

reconstruct the secret.

Corollary 1. Suppose f : f0; 1g

n

! f0; 1g has a Boolean formula of size S(n),

5

and let s denote a secret

bit known to all players. Then there exists a protocol for disclosing s subject to the condition f , whose total

communication complexity is S(n).

Proof. Let F be a Boolean (AND-OR) formula for f over the literals fy

1

; y

1

; : : : ; y

n

; y

n

g, whose

size is S(n). Replacing each negative literal y

j

with a positive literal w

j

, we obtain a monotone Boolean

formula F

M

of size S(n) computing a monotone Boolean function f

M

(y

1

; : : : ; y

n

; w

1

; : : : ; w

n

). Since f is a

projection of f

M

(as f(y

1

; : : : ; y

n

) = f

M

(y

1

; : : : ; y

n

; y

1

; : : : ; y

n

)), then by Proposition 2 the corollary follows.

The use of shared randomness allows to obtain essentially the same result even when only one player

knows the secret.

Corollary 2. Let s denote a secret bit known to at least one player, and let f be as in Corollary 1. Then

there exists a protocol for disclosing s subject to the condition f , whose total communication complexity is

S(n) + 1.

Proof. The players conditionally disclose a shared random bit r subject to the condition f (using S(n)

communication), and a single player holding s simultaneously sends the bit s�r to Carol. Clearly, if Carol

can reconstruct r then she can also reconstruct s, and if she obtains no information on r then she can

obtain no information on s.

An honest-user-SPIR counterpart of the k-database B

k

scheme of [1] will be obtained by combining the

use of a PSM protocol with the use of conditional disclosure of secrets. As a basis for the general recursive

construction, we initially show that the 2-database B

2

scheme can be transformed into an honest-user-SPIR

scheme B

0

2

of the same asymptotic complexity.

Theorem 2 . There exists a 2-database honest-user-SPIR scheme, B

0

2

, of communication complexity

O(n

1=3

).

Proof. We �rst describe the original B

2

scheme. This scheme may be regarded as a 2-database

implementation of the 8-database 3-dimensional elementary cube scheme described in subsection 3.1. Let

` = n

1=3

, and let i = (i

1

; i

2

; i

3

) be the index of the data bit being retrieved. Each of the two databases DB

000

and DB

111

emulates the 4 databases DB

�

such that � 2 f0; 1g

3

is within Hamming distance (at most) 1

from its index. This is done in the following way. The user sends to DB

000

the subcube C

000

= (S

0

1

; S

0

2

; S

0

3

)

and to DB

111

the subcube C

111

= (S

1

1

; S

1

2

; S

1

3

) as in the elementary cube scheme. We would like the answers

of each of the two databases to include the 4 answer bits of the 4 databases it emulates. To achieve this

5

Using the secret sharing scheme proposed in [14], this can be generalized to any function f with a span program (over

GF (2)) of size S(n).

6



reconstruction consists of computing the free coe�cient of a degree-dlog

2

ne univariate polynomial (over

a �nite �eld) given its values at dlog

2

ne + 1 �xed, distinct points. In the second scheme, reconstruction

consists of simply xoring 4 bits. Both of these reconstruction functions are linear, thus admitting PSM

protocols of complexity c

k

(n) = n (a protocol for any linear function can be obtained by a straightforward

generalization of the protocol for exclusive-or from subsection 3.1). Hence, by Proposition 1 we can

obtain honest-user-SPIR schemes of the same complexity as the original PIR schemes, i.e. of the speci�ed

complexity.

Since even some of the simplest Boolean functions (including functions with linear formula size) are

not known to have sub-quadratic PSM complexity, using a PSM protocol for computing non-linear recon-

struction functions may result in a considerable communication overhead. For instance, the B

2

scheme

from [10] seems to pose such a problem. Although in this case the problem can be tackled by applying

Proposition 1 alone,

3

in the next subsection we introduce a di�erent tool which gives conceptually simpler

and more e�cient (by a constant factor) schemes, and which will be more extensively used in the Section 4.

3.3 SPIR Schemes Bases on Conditional Disclosure of Secrets

The reconstruction functions in several important PIR schemes, including the B

2

scheme and schemes

obtained by applying communication balancing techniques, have a very special structure. These functions

depend only on some (small) subset of the message bits, which is completely determined by the index i of

the data bit being retrieved. When such a scheme is modi�ed to allow the reconstruction to depend on

the answers alone, some of the input to the modi�ed reconstruction function will typically be known to

the user. This motivates a generalization of the usual PSM setting, in which some of the inputs held by

the players are also known to Carol, and some input bits may be known to several players. The original

correctness requirement is relaxed so that Carol is allowed to compute the value of f from the messages

she has received and the input she holds. The original privacy requirement is relaxed so that Carol is not

allowed to obtain any information other than what follows from the value of f and the input she holds.

We now consider a special case of this general problem, which we call conditional disclosure of secrets.

The problem of conditionally disclosing a secret s (subject to a condition f) is described in the following.

Let f : f0; 1g

n

! f0; 1g be some Boolean function (the \condition"). An n-bit input y is partitioned

between k players, and Carol holds the entire string y as input. In addition, a secret input s (single bit

unless otherwise mentioned) is known to at least one of the players, but is unknown to Carol. As in

the general PSM setting, the players use their inputs and the shared randomness to send simultaneous

messages to Carol, such that: (1) if f(y) = 1, then from her input y and the messages she received, Carol

should be able to reconstruct the secret s; and (2) if f(y) = 0, then carol obtains no information (in the

information-theoretic sense) about s.

The next proposition shows that the problem of disclosing a secret subject to the condition f reduces

to the problem of generalized secret sharing [4, 13] relative to a corresponding access structure.

4

Proposition 2. Let f

M

: f0; 1g

m

! f0; 1g be a monotone Boolean function (access structure), and let

f : f0; 1g

n

! f0; 1g be a projection of f

M

[18]. That is, f(y

1

; : : : ; y

n

) = f

M

(g

1

; : : : ; g

m

), where each g

i

is

a function of a single variable y

j

. Suppose there exists a generalized secret sharing scheme S realizing the

access structure f

M

, in which the total size of the shares is c. Then there exists a protocol P for disclosing

3

Modify the B

2

scheme so that the user shares the characteristic vectors of the index components i

1

; i

2

; i

3

among the two

databases, in addition to its original queries. That is, for each component i

m

it sends two random binary strings (one to DB

1

and one to DB

2

) that xor to the characteristic vector �

i

m

. The reconstruction function can then be represented as a Boolean

xor of O(n

1=3

) functions, each depending on a constant number of bits (namely, functions of the form (s

1

� s

2

) ^ b

m

, where

s

1

and s

2

are two corresponding shared bits held by DB

1

and DB

2

respectively). Such a function can be computed by a

linear-size constant-width permutation branching program, and thus (using techniques from [11]) has linear PSM complexity.

4

The problem of generalized secret sharing extends the usual notion of t-out-of-m secret sharing [17] in the following way.

Instead of allowing every set of participants whose size is at least t to reconstruct the secret, the class of such quali�ed sets is

de�ned by a monotone Boolean function (access structure) f

M

: f0; 1g

m

! f0; 1g in the natural way. The combined shares of

every unquali�ed set of participants should give no information about the secret. See [4, 13] for a formal de�nition.
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a user may obtain the exclusive-or of di�erent (possibly large) subsets of data bits. Such a dishonest user

is treated in Section 4.

3.2 SPIR Schemes Based on PSM Protocols

The speci�c reconstruction function of the previous scheme (namely, a Boolean xor of k bits) makes it

easy for the databases to send randomized answers which disclose only the output of this function. Now,

what can be said about the di�culty of this problem in general? Precisely this problem is captured by

the model of private computation introduced by [11] and further studied in [12]. We call this model the

PSM (\Private Simultaneous Messages") model. In this model there are k players, each player P

j

holding

a private input string y

j

, and an external referee called Carol. All players have access to a shared random

input, which is unknown to Carol. Based on its private input y

j

and the shared random input, each

player P

j

simultaneously sends a single message to Carol. From the messages she received, Carol should be

able to compute some predetermined function f(y

1

; : : : ; y

k

) of the inputs, but should obtain no additional

information on the input string other than what follows from the value of f . The PSM complexity of f is

the number of communication bits needed to privately compute the function f in such a way. We denote

this complexity by c

k

(n), where n is the total number of input bits held by the k players. In [11, 12] several

upper bounds on PSM complexity are obtained. These include an O(k � S(n)

2

) bound for any function

with a deterministic branching program of size S(n) (for any partition of the n bits among the players),

which in particular implies the same upper bound for every function with a Boolean formula of size S(n).

Note that in order to use a PSM protocol for evaluating the reconstruction function, this function must

depend only on the answers computed by the databases. Although this is the case in the elementary cube

scheme described above, in the B

2

scheme, for instance, the reconstruction function heavily depends on

the index i held by the user. However, every PIR scheme may be e�ciently transformed into a scheme

which satis�es this requirement, e.g. by letting the user share the index i between two databases (so that

its privacy is not violated), and concatenating these shares along with the queries to the original answers

of the two databases.

Proposition 1. Suppose P is a 1-round k-database PIR scheme with communication complexity (�

k

(n);

�

k

(n)), such that the reconstruction function f : (1) depends only on the answers sent by the databases,

and (2) has PSM complexity of c

k

(n). Then there exists a 1-round SPIR scheme S, with respect to an

honest user, whose communication complexity is (�

k

(n); c

k

(�

k

(n))).

Proof. A scheme S of the speci�ed complexity can be obtained from P as follows. The databases

compute their answers as in P , but instead of sending back their answers, they use their shared randomness

to simulate the PSM computation of the reconstruction function, f . The correctness and privacy of S follow

from the correctness and privacy of P and of the PSM protocol for f .

We note that if the PSM complexity of the reconstruction function is high, then some of the extra

cost may be absorbed by originating from a PIR scheme whose communication is unbalanced (so that the

databases send less bits than the user). To this end, balancing techniques from [10, 9] may be used.

Luckily, the reconstruction functions in some currently known PIR schemes (at least in their elementary

unbalanced form) have the lowest PSM complexity possible, thus allowing their transformation into honest-

user-SPIR schemes with the same communication complexity.

Theorem 1. There exist:

� dlog

2

n+ 1e-database honest-user-SPIR scheme of communication complexity O(log

2

n log logn);

� 2-database honest-user computational SPIR scheme of communication complexity O(n

c

) (for any

c > 0, assuming the existence of a one-way function).

Proof. The �rst SPIR scheme is obtainable from the elementary polynomial interpolation scheme of

[10], and the second from the computational PIR scheme of [9]. We observe that in the �rst scheme,

4



that satis�es the data-privacy requirement with respect to an honest user, which follows the scheme's

speci�cation.

By default, the terms \PIR scheme" and \SPIR scheme" refer to 1-round, information-theoretically

private schemes (all of our SPIR schemes will require only a single round of interaction). Complexity is

measured, by default, in terms of communication. The communication complexity of a k-database scheme

will be denoted (�

k

(n); �

k

(n)), where �

k

(n) is the total number of query bits and �

k

(n) is the total number

of answer bits on a data string of size n.

Finally, we use B

2

to denote the 2-database covering-codes scheme from [10], and B

k

to denote its

k-database generalization from [1]. These schemes, which are the most e�cient of their kind known to

date, are described in subsection 3.3.

3 SPIR Schemes with Respect to Honest Users

In this section we construct SPIR schemes, which maintain the privacy of the user, as well as the privacy

of the data against honest but curious users. The schemes we obtain in this case are more e�cient than

those obtained for the case of a dishonest user | all of them are of the same asymptotic communication

complexity as the PIR schemes they are based on. Later, we will use similar techniques to deal with

dishonest users.

3.1 A Simple Example

We start with a simple example, whose ideas will be subsequently generalized to handle more involved

cases. Consider the elementary d-dimensional cube scheme from [10]. This is a PIR scheme (without data

privacy) for k = 2

d

databases, which is described in the following.

Assume w.l.o.g. that the database size is n = `

d

, where ` is an integer. The index set [n] can then be

identi�ed with the d-dimensional cube [`]

d

, in which each index i 2 [n] can be naturally identi�ed with a

d-tuple (i

1

; : : : ; i

d

). A d-dimensional subcube is a subset S

1

�� � ��S

d

of the d-dimensional cube, where each

S

i

is a subset of [`]. Such a subcube is represented by the d-tuple C = (S

1

; : : : ; S

d

). The k(= 2

d

) databases

will be indexed by all binary strings of length d. The scheme proceeds as follows.

Queries: The user picks a random subcube C = (S

0

1

; : : : ; S

0

d

), where S

0

1

; : : : ; S

0

d

are independent, random

subsets of [`]. Let S

1

m

= S

0

m

� i

m

(1 � m � d). For each � = �

1

�

2

� � ��

d

2 f0; 1g

d

, the user

sends to database DB

�

the subcube C

�

= (S

�

1

1

; : : : ; S

�

d

d

), where each set S

�

m

m

is represented by its

characteristic `-bit string.

Answers: Each database DB

�

, � 2 f0; 1g

d

, exclusive-ors the data bits residing in the subcube C

�

, and

sends the resultant bit b

�

to the user.

Reconstruction: The user computes x

i

as the exclusive-or of the k bits b

�

it has received.

The scheme's correctness follows from the fact that every bit in x except x

i

appears in an even number of

subcubes C

�

, � 2 f0; 1g

d

, and x

i

appears in exactly one such subcube (see [10] for details).

Since the scheme doesn't use shared randomness, Proposition 3 (see Appendix A) implies that it must

expose some extra information, which doesn't follow from x

i

, to the honest user. Indeed, the user receives

the exclusive-or of k di�erent subsets of data bits. In this case, the extra information can be eliminated

by applying the following simple modi�cation to the above scheme. Instead of sending the original answer

b

�

, each database DB

�

will send a masked answer b

�

� r

�

, where r = r

0���00

r

0���01

� � �r

1���10

is a (k � 1)-

bit shared random string, and r

1���11

is computed as the exclusive-or of the bits of r. (Alternatively,

r

0���00

; r

0���01

; : : : ; r

1���11

can be randomly chosen from the k-tuples whose bits xor to 0). Under the modi�ed

scheme, an honest user's view is uniformly distributed among all k-tuples that xor to

L

�2f0;1g

d b

�

, which

by the scheme's correctness equals the physical bit x

i

.

We note that even in this simple case, a dishonest user may obtain information that doesn't follow from

any physical bit of data. Speci�cally, by choosing the cubes C

�

not according to the scheme's speci�cation,

3



In case of an honest but curious user (i.e., a user which follows the prescribed scheme, but may try to

deduce extra information from the communication), the logarithmic overhead can be avoided.

In a nutshell, our solutions work as follows. Consider any 1-round PIR scheme. The user, depending on

the index i, produces k queries q

1

; : : : ; q

k

(one per each database); it sends each of them to the corresponding

database and in response receives k answer strings a

1

; : : : ; a

k

. Then, the user applies a reconstruction

function f to obtain the desired bit x

i

. Our idea is that it might be possible for the user to compute the

value of f without actually getting the answers a

1

; : : : ; a

k

but rather some other messages m

1

; : : : ; m

k

that

keep the privacy of the string x. This is a very similar scenario to the scenario of [11].

2

The problem

here is that not all functions are known to have an e�cient solution in the model of [11], and even if

the reconstruction function f does have an e�cient solution, in order to maintain the communication

complexity of the PIR scheme that we start with we need a solution for f that will be linear (or \almost"

linear). We present methods which overcome these di�culties in various ways, that allow dealing with the

reconstruction functions of the existing PIR schemes and that seem general enough to apply for future PIR

solutions as well.

Organization: In Section 2 we introduce notations and basic de�nitions. Section 3 includes SPIR

schemes which rely on the user being honest. In Section 4 we present schemes which keep the data private

from any, possibly dishonest, user (with a minor extra communication cost). Section 5 contains a discussion

of our results and some of their possible generalizations and applications. Appendix A contains a proof of

the impossibility of SPIR in the usual PIR setting (without interaction between the databases or shared

randomness). Appendix B contains proofs which were deferred from the main body of text.

2 De�nitions

The following notations and conventions are used throughout. [`] denotes the set f1; 2; : : : ; `g. For any sets

S; S

0

� [`], we let S�S

0

denote the symmetric di�erence between S and S

0

(i.e., S�S

0

= (S nS

0

)[(S

0

nS)),

and �

S

denote the characteristic vector of S, an `-bit binary string whose j-th bit is equal to 1 i� j 2 S.

To simplify notation, S � j and �

j

are used instead of S � fjg and �

fjg

, respectively. For any � 2 f0; 1g

d

,

weight(�) denotes the number of nonzero entries in �. By default, whenever referring to a random choice

of an element from a �nite domain A, the associated distribution is uniform over A, and is independent of

all other random choices.

The following notations and de�nitions are speci�cally related to PIR and SPIR schemes. We let k

denote the number of databases, and DB

j

denote the j-th database. x denotes an n-bit data string which

is held by all k databases. We let i denote the position (also called index) of a data bit which the user

wants to retrieve.

A PIR scheme is a randomized protocol, where in each round queries are sent from the user to each

database, and answers are sent from each database to the user. At the end of the execution, the user applies

some reconstruction function to the queries, answers and the index i, to obtain the desired data bit x

i

.

Every (1-private) PIR scheme must satisfy the following user privacy requirement: under any two indices

i; i

0

, the communication seen by any single database is identically distributed. (This information-theoretic

privacy requirement is relaxed to computational indistinguishability in the case of computational PIR).

A SPIR scheme is a PIR scheme (in a setting which allows databases to access a shared random string

not known to the user), such that in a single invocation the user cannot obtain any information which

doesn't follow from some physical bit of data. Formally, this data privacy requirement implies that for any

behavior of a user (possibly a dishonest one, not following the scheme's speci�cation) there exists an index

i, such that the distribution of communication between the user and the (honest) databases depends on

x

i

alone, i.e. is the same for every x; x

0

such that x

i

= x

0

i

. An honest-user-SPIR scheme is a PIR scheme

2

In the setting of [11] there are several players P

1

; : : : ; P

k

where each P

i

has some input y

i

and they all share a random

string. Each of them is supposed to send a single message m

i

, based on its input and the shared random string, to a referee

(named Carol). From the messages she received, Carol should be able to compute f(y

1

; : : : ; y

k

) but should not be able to

learn any additional information about the inputs.

2



1 Introduction

Private Information Retrieval (PIR) schemes allow a user to retrieve information from a database in a way

that maintains the identity of the data retrieved by the user hidden (in the information theoretic sense)

from the database administrator. Formally, the database is viewed as an n-bit string x out of which the

user wishes to retrieve the bit x

i

while maintaining i private. The notion of PIR was introduces in [10],

where it was shown that if there is only one copy of the database available then 
(n) bits of communication

are needed for (information theoretic) PIR. However, if there are k � 2 (separated) copies of the database

available then there are solutions with much better communication complexity: O(n

1=3

) bits for k = 2

databases; O(n

1=k

) bits for k � 3 databases; and O(log

2

n log logn) bits for k = O(logn) databases. [1]

showed an upper bound of O(n

1=(2k�1)

) bits for k � 3 databases. The computational counterpart of the

de�nition (i.e., PIR schemes where the privacy is only with respect to polynomial-time databases, relying

on certain intractability assumptions) were considered in [9, 15]; they show how to obtain schemes with

communication complexity O(n

c

) (for any constant c > 0) for k = 2 databases [9] (see also [16]) and even

for the case of a single database [15] (based on a stronger assumption).

One disturbing property of the currently existing PIR schemes is that since the databases do not know

what bit x

i

the user wishes to retrieve, they provide the user with a lot of information out of which (by

combining the answers from di�erent databases) the user can compute x

i

. However, in all these solutions

the user is able to reconstruct other physical bits of the database (i.e., x

j

for j 6= i) or other information

about the database (e.g., the exclusive-or of certain subsets of the bits of x). For instance, in a single

invocation of the 2-database scheme from [10] (which is the most e�cient of its kind known to date), a

user can systematically retrieve O(n

1=3

) physical bits of data (see Section 4, Example 1). This means that

the user gets much more information than what it is supposed to get, which is particularly undesirable in

case of commercial databases where the user is supposed to pay by the amount of data it retrieves.

Therefore, we are interested in symmetrically-private information retrieval (or SPIR for short) schemes;

i.e., schemes which respect the privacy of the data as well as the user's. That is, in addition to maintaining

the user's privacy, any single invocation of such a stronger scheme does not allow the user (even a dishonest

one) to obtain any information other than a single physical bit of the data. In the usual PIR setting

the databases do not interact with each other; the only interaction allowed is between the user and the

databases. It is easy to observe (see Appendix A) that in this basic setting, such stronger schemes cannot

be realized at all, regardless of their complexity. We thus use a minimal extension of the basic setting:

we still disallow direct interaction between the databases, but we grant them access to a shared random

string, known to all databases but unknown to the user. This kind of extension has been studied before

in the context of private computation [11] (see also [12]) and other scenarios such as non-interactive zero-

knowledge [5]. Adding a resource of shared randomness to PIR schemes is particularly natural, since even in

the basic PIR setting databases are required to maintain identical copies of the same data string.

1

Moreover,

if one is willing to settle for computational privacy of the data (while maintaining the information-theoretic

privacy of the user), sharing a short random seed allows generating longer shared pseudo-random strings

without extra communication.

We prove that currently known PIR schemes (information theoretic and computational) can be trans-

formed into SPIR schemes, with the same number of databases and at most a logarithmic factor of com-

munication overhead. Our schemes maintain the general paradigm of existing PIR schemes: all databases

hold an identical copy of x, and all protocols use a single queries-answers round. In particular, schemes

from [10, 1, 9] translate into:

� k-database SPIR scheme of complexity O(logn � n

1=(2k�1)

).

� O(logn)-database SPIR scheme of complexity O(log

2

n � (log log n)

2

).

� 2-database computational SPIR of complexity O(n

c

), for every constant c > 0.

1

In fact, we may view the data string as consisting of a deterministic part, containing ordinary data, and a random part

containing the shared random string.

1
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Abstract

Private Information Retrieval (PIR) schemes allow a user to retrieve the i-th bit of a data string x,

replicated in k � 2 databases, while keeping the value of i private. The main cost measure for such a

scheme is its communication complexity.

We study PIR schemes where in addition to the user's privacy we require data privacy. That is, in

every invocation of the retrieval protocol the user learns exactly a single (physical) bit of x and no other

information.

We present general transformations that allow translating PIR schemes satisfying certain properties

into PIR schemes that respect data privacy as well, with a small penalty in the communication complex-

ity. Using our machinery we are able to translate currently known PIR solutions into schemes satisfying

the newly introduced, stronger privacy constraint. In particular we get: a k-database scheme of com-

plexity O(logn �n

1=(2k�1)

) for every k � 2; an O(logn)-database scheme of poly-logarithmic complexity;

and a 2-database computational PIR scheme of complexity O(n

c

), for every constant c > 0. All these

schemes require only a single round of interaction.
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