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Abstract

The random oracle model is a very convenient setting for designing cryptographic protocols.

In this idealized model all parties have access to a common, public random function, called a

random oracle. Protocols in this model are often very simple and e�cient; also the analysis is

often clearer. However, we do not have a general mechanism for transforming protocols that

are secure in the random oracle model into protocols that are secure in real life. In fact, we

do not even know how to meaningfully specify the properties required from such a mechanism.

Instead, it is a common practice to simply replace - often without mathematical justi�cation -

the random oracle with a `cryptographic hash function' (e.g., MD5 or SHA). Consequently, the

resulting protocols have no meaningful proofs of security.

We propose a research program aimed at rectifying this situation by means of identifying,

and subsequently realizing, the useful properties of random oracles. As a �rst step, we introduce

a new primitive that realizes a speci�c aspect of random oracles. This primitive, called oracle

hashing, is a hash function that, like random oracles, `hides all partial information on its input'.

A salient property of oracle hashing is that it is probabilistic: di�erent applications to the same

input result in di�erent hash values. Still, we maintain the ability to verify whether a given

hash value was generated from a given input. We describe constructions of oracle hashing, as

well as applications where oracle hashing successfully replaces random oracles.

1 Introduction

Existing collision resistant hash functions, such as MD5 [Ri] and SHA [SHA], are very useful and

popular cryptographic tools. In particular, these functions (often nicknamed `cryptographic hash

functions') are used in a variety of settings where far stronger properties than collision resistance

are required.

Some of these properties are better understood and can be rigorously formulated (e.g., the

use as pseudorandom functions [BCK1], or as message authentication functions [BCK2]). Often,

however, these extra properties are not precisely speci�ed; even worse, it is often unclear whether

the attributed properties can at all be formalized in a meaningful way.

We very roughly sketch two salient such properties. One is `total secrecy': it is assumed

that if h is a cryptographic hash function then h(x) `gives no information on x'. The other is

`unpredictability': it is assumed to be infeasible to `�nd an x such that x; h(x) have some desired

property'. This is of course only a sketch; each application requires di�erent variants.
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These uses of MD5, SHA, and other cryptographic hash functions are often justi�ed by saying

that `using cryptographic hash functions is equivalent to using random oracles'. More speci�cally,

the following random oracle paradigm is employed. Assume the security of some protocol (that

makes use of a `cryptographic hash function' h) needs to be proven. Then an idealized model is

formulated, where there is a public and random function R such that everyone can query R on any

value x and be answered with R(x). Next modify the protocol so that each invocation of the hash

function h is replaced with a query to R. Finally, it is suggested that if the modi�ed construction

(using R) is secure in this idealized model then the original construction (using h) is secure in

`real-life'. (We remark that here the random oracle can be viewed as an `ideal hash function'. In

particular, R satis�es both the `total secrecy' and the `unpredictability' properties sketched above,

since R(x) is a random number totally independent of x.)

However, the fact that a construction is secure in the random oracle model does not provide any

concrete assurance in the security of this construction in `real life'. In particular, there exist natural

protocols that are secure if a random oracle is used, but are clearly insecure if the random oracle

is replaced by any deterministic function (and in particular by any cryptographic hash function).

Section 1.1 below provides a good example. (In view of this criticism we stress that, with all its

drawbacks, the random oracle model has proved instrumental in designing very useful protocols

and applications, as well as new concepts, e.g. [FS, BDMP, M, BR1, BR2, BR3, PS]).

In this work we make a �rst step towards rigorously specifying some `random-oracle-like' prop-

erties of hash functions. We concentrate on the `total secrecy' property sketched above. That is,

we propose a new primitive, called oracle hashing, that hides all partial information on its input,

while maintaining the desired properties of a hash function.

The rest of the introduction is organized as follows. We �rst sketch (Section 1.1) a motivating

scenario for the new primitive. Next (Section 1.2) we describe the new primitive, together with

several constructions and applications.

1.1 A motivating scenario

Consider the following scenario. (It should be kept in mind that, while providing initial intuition

for the properties desired from the new primitive, this scenario is of limited scope. In particular,

some properties of the new primitive do not come to play here.) Alice intends to publish a puzzle

in the local newspaper. She also wants to attach a short string c that will allow readers that solved

the puzzle to verify that they have the right solution, but such that c will `give away' no partial

information about the solution, x, to readers who have not solved the puzzle themselves. In other

words, Alice wants c to mimic an `ideal scenario' where the readers can call the editor (as many

times as they wish), suggest a solution and be answered only `right' or `wrong'.

A crypto-practitioner posed with this problem may say: \what's the big deal? c should be a

cryptographic hash (e.g., MD5 or SHA) of the solution. It is easily veri�able, and since the hash is

one-way c gives no information on the preimage."

Indeed, this ad-hoc solution may be good enough for some practical purposes. However, when

trying to `pin down', or formalize the requirements from a solution some serious di�culties are

encountered. In particular, no known cryptographic primitive is adequate. For instance one-way

functions are not good enough, since they only guarantee that the entire preimage cannot be

computed given the function value. It is perfectly possible that a one-way function `leaks' partial

information, say half of the bits of its input.

Furthermore, any deterministic function (even ones that hide all the bits of the input, and

even `cryptographic hash functions') are inadequate here, since they are bound to disclose some

information on the input: For any deterministic function f , f(x) itself is some information on
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x. One way hash families [NY1] are inadequate for the same reason: they only guarantee that

collisions are hard to �nd, and may leak partial information on the input.

Similarly, commitment schemes (even non-interactive ones) are inadequate since they require

the committer to participate in the de-commit stage, whereas here the newspaper editor does not

want to be involved in de-committals. (Also, de-committals by nature reveal the correct solution

x, even if the suggested solution is wrong.)

In fact, it seems that the only known way to model such a primitive is via the random oracle

model: Given access to a random oracle R, Alice can simply publish c = R(x), where x is the

solution to the puzzle. This way, given x it can be easily veri�ed whether c = R(x), and as long as

the correct x is not found then R(x), being a totally random string, gives no information on x.

We remark thatR(x) does in a way provide assistance in �nding x since one can now exhaustively

search the domain of solutions until a solution x such that R(x) = c is found. This is, however,

the same assistance provided by the newspaper in the `ideal scenario' described above; thus it is a

welcome property of a solution.

1.2 The new primitive: Oracle Hashing

The proposed primitive, oracle hashing, is designed to replace the random oracle R in the above

scenario, as well as in several others. The idea behind this mechanism is quite simple. Traditionally,

one thinks of a hash function as a deterministic construct, in the sense that two invocations on the

same input will yield the same answer. We diverge from this concept, allowing the hash function,

H , to be probabilistic in the sense that di�erent invocations on the same input result in di�erent

outputs. That is, H(x) is now a random variable depending on the random choices of H . It is this

randomization that allows us to require that H(x) will `hide all partial information on x'.

Oracle hashing also diverges from the notion of (universal, or even one way) hash families

[CW, NY1], since there it is usually the case that a deterministic function is randomly chosen

`beforehand', and then �xed for the duration of the application.

But now we may have lost the ability to verify hashes. So we require that there exists a

veri�cation algorithm, V , that correctly decides, given x and c, whether c a hash of x. (Using

standard deterministic hashing, the veri�cation procedure is simple: apply the hash function to x

and check whether the result equals c. Here a di�erent procedure may be required.)

This mechanism is somewhat reminiscent of signature schemes, where H takes the role of the

signing algorithm and V takes the role of the signature veri�cation algorithm. It is stressed,

however, that here no secret keys are involved and both functions can be invoked by everyone.

(Also, here additional properties will be required from the pair H; V .)

It remains to formulate the `secrecy' requirement. This proves to be a non-trivial task. We want

to capture the property that `the hashed value gives no information on the input'. The natural

concept that comes to mind is semantic security (originally used for encryption schemes [GM]):

`whatever can be computed given H(x) can also be computed without it'. But semantic security is

unachievable in our scenario, since given H(x) and some value y one must be able to tell whether

x = y. In particular, if the input x has only a small number of possible values (say 0 or 1) then it

is easy to �nd x from H(x) by running the veri�cation algorithm on all possible inputs.

We thus introduce a new, weaker notion of secrecy, which we call oracle security. This notion

essentially means that the only way in which c = H(x) can be used to �nd information on x

is by exhaustively trying di�erent z's and checking if V (z; c) accepts. Very roughly, this can be

formulated as follows: Let I

x

be the oracle that answers 1 to a query z i� z = x; Otherwise it

answers 0. Then, \�nding information on x given H(x) is equivalent to �nding information on

x given only access to the oracle I

x

". Thus, oracle security is valuable only if there is `enough
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uncertainty' about the input, i.e. if no single input is too probable.

We present several equivalent formalizations of oracle security. Furthermore, as in the case of

encryption, it is convenient to incorporate in the formalization the notion of `a-priori information'

on the secret value. However here (in contrast with the case of encryption) we don't know whether

oracle security without a-priori information is equivalent to oracle security with a-priori information.

We elaborate within.

On the constructions. We present a simple oracle hashing scheme based on number-theoretic

primitives. Assume a large safe prime p is known. (p is safe if q = (p � 1)=2 is a prime.) Then,

given input x, choose a random element r in Z

�

p

and let H(x) = r

2

; r

2�h(x)

, where the calculations

are made modulo p, and h is any collision resistant hash function. Veri�cation is straightforward

(i.e., to verify whether a pair a; b is a hash of a known message x, check whether a

h(x)

� b (mod

p)). Here the only requirement from the hash function h is collision resistance. The security of

this construction is shown based on strong variants of the Di�e-Hellman assumption. (Di�erent

assumptions are needed to show di�erent levels of security.) These assumptions may well be of

independent interest.

The above scheme is somewhat costly, since it involves a modular exponentiation. We thus

suggest simple constructions based on a cryptographic hash function h. (For instance, let H(x; r) =

r; h(r; h(x)).) Here we of course make stronger assumptions on h than just collision resistance. We

stress however that, in contrast to the `random oracle heuristic', these are well-de�ned assumptions.

We remark that constructs similar to the ones described here are implicit in several previous

works, sometimes for related purposes (e.g., [F, P, E]). None of these works, however, suggests any

primitive similar to the one proposed here. Also, a similar idea is used in the BSD UNIX password

�le, where a random `salt' is prepended to a password before encrypting it, and then stored together

with the ciphertext.

Applications. A �rst, immediate application is for scenarios like the `puzzle in the newspaper'

scenario (i.e., whenever one wants to make public a veri�able hash that leaks no information

on the hashed value.) Oracle hashing can also be used to replace the use of random oracles in

known constructions. We demonstrate this on an encryption function introduced by Bellare and

Rogaway [BR1]. This function was proven semantically secure only in the random oracle model

described above. (It is suggested in [BR1], as a rule-of-thumb, to replace the random oracle with a

cryptographic hash function.) We show that if one replaces oracle hashing for random oracles then

the construction becomes secure without resorting to random oracles.

Another application is for content-concealing signatures: Assume that one wants to sign a mes-

sage m and at the same time make sure that the signature itself hides all partial information on m

(from parties who do not already know m). Then, given a message m one can simply sign H(m)

instead of signing m. See more details within.

2 De�ning oracle hashing

The de�nition of oracle hashing consists of three requirements: Completeness and Correctness (that

together comprise a validity requirement), together with Secrecy. The �rst two requirements are

fairly standard. Formulating the Secrecy requirement, however, is non-trivial. We present several

variants and brie
y discuss their relations.

Completeness. This requirement is straightforward: \Algorithm V will accept (except perhaps

with negligible probability) pairs x; c where c is generated by applying H to x."

Correctness. We would like to require that: \ It is infeasible to cheat V into accepting pairs x; c

such that c was not generated by applying H to x." Formalizing this requirement is somewhat tricky
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since the fact that H is probabilistic make the statement `c was not generated as H(x)' ambiguous.

In particular, this requirement takes di�erent 
avors depending on whether the producer of the hash

is trusted to useH as speci�ed (in which case one only needs to protect against non-malicious errors)

or untrusted (in which case one need to protect against malicious e�orts to generate ambiguous

hashes). We get around these problems by making the stronger requirement that it is infeasible to

�nd `collisions', i.e. two di�erent inputs x; y and a hash value c such that V accepts c as a legal

hash of both x and y.

Secrecy (oracle security). We want to say that: \Having c = H(x) gives no information

on x, besides the ability to exhaustively search the domain for x such that c = H(x)." This

requirement takes di�erent 
avors, depending on which probability distributions on the inputs are

considered, and on whether the attacker is assumed to have some a-priori information on x. We

start with the case where no a-priori information on x is known. Here we present our chosen

formalization, together with two other formalizations. We show that all three are equivalent.

1

We believe that comparing the di�erent formalizations helps understanding the nature of oracle

security. In particular, two of the formalizations are reminiscent of the two equivalent formalizations

of the security of encryption functions (see [G]).

We �rst need the following de�nitions: Say that a function f : N ! R is negligible if it

approaches zero faster than any polynomial (when its input grows to in�nity).

De�nition 1 Let X = fX

k

g

k2N

and Y = fY

k

g

k2N

be two ensembles of probability distributions.

We say that X and Y are computationally indistinguishable (and write X

c

� Y) if for any polytime

distinguisher D the di�erence jProb(D(x) = 1) � Prob(D(y) = 1)j is a negligible function of k,

where x is drawn from X

k

and y is drawn from Y

k

.

De�nition 2 A distribution ensemble X = fX

k

g

k2N

is well-spread if for any polynomial p(�) and all

large enough k, the largest probability of an element in X

k

is smaller than p(k) (i.e., max

a

(X

k

(a)) <

p(k)).

(In other words, the max-entropy of distributions in X must vanish super-logarithmically, see [CG]).

We proceed to the (basic) de�nition of oracle hashing. Consider a pair of algorithms H; V .

Algorithm H , given a security parameter k and input x, chooses a random value in domain R

k

and

outputs a value c. Algorithm V , given k and input c, outputs a binary value. In the sequel the

security parameter, k, is often implicit in our notation.

De�nition 3 Say that H; V are an oracle hashing scheme if the following requirements hold.

1. Completeness: For all large enough k, for all input x and for r 2

R

R

k

we have that Prob(V (x;H(x; r)) 6= 1)

is negligible (in k).

2

2. Correctness: For any probabilistic polynomial time adversary A, the probability that A outputs,

on input k, a triplet c; x; y such that x 6= y and V (x; c) = V (y; c) = 1 is negligible.

3

1

Here and for the rest of the discussion we assume non-uniform adversaries. I.e., an adversary is a family of

circuits with polynomial size.

2

x 2

R

D means that element x is independently and uniformly chosen from domain D.

3

Note that in the case that such triplets c;x; y exist, a non-uniform adversary can have a �xed triplet `wired in'

its circuit for each value of k. Thus, it appears to make no sense to require that it is hard to �nd such triplets. We

get around this problem by letting H;V be chosen a-priori from a family of functions, and requiring that any �xed

triplet forms a collision only for a small fraction of the functions in the family. See [D].
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3. Secrecy: For any poly time adversary A with binary output, and any well-spread distribution

fX

k

g:

hx;A(H(x; r))i

c

� hx;A(H(y; r))i (1)

where r 2

R

R

k

, and x; y are independently drawn from X

k

.

Remarks: 1. The Secrecy requirement can be relaxed by taking into account only the uniform

distribution on the inputs. We call this variant oracle hashing for random inputs.

2. It appears that limiting A's output to a binary value is essential for the Secrecy requirement

to make sense. In particular, if A could have arbitrary length output then it could simply output

its input, thus making distinguishing between the two sides of (1) easy.

4

We present two other formalizations of the secrecy requirement (i.e., of oracle security). A

somewhat simpli�ed sketch follows.

First is the formalization sketched in the Introduction. We call it Oracle simulatability: Let I

x

be

the oracle that answers 1 to a query z i� z = x; Otherwise it answers 0. Then, \For any algorithm

C

0

that has access to hashes of x, there exists an algorithm C that has access only to I

x

, such that

for any distribution on the x's, and any predicate P , C

0

does not predicts P (x) substantially better

than C."

Second is a formalization reminiscent of security by indistinguishability of encryption functions.

We call it Oracle indistinguishability: For any distinguisher D there exists a set L of polynomially

many inputs, such that for any x; y =2 L we have that D distinguishes between hashes of x and

hashes of y only with negligible probability."

We preferred the formalization of De�nition 3 since it naturally supports consideration of only

speci�c distributions on the inputs, and since it extends easily to a reasonable de�nition for the

case where a-priori information on the input is known (see De�nition 6).

Theorem 4 The following requirements are equivalent to the Secrecy requirement of De�nition 3:

3a. Oracle simulatability: For any polytime adversary C

0

and any polynomial p(�) there exists

a polytime adversary C, such that for any distribution ensemble fX

k

g, for any polytime

predicate P (�), and for all large enough k:

Prob(C

0

(H(x; r)) = P (x))� Prob(C

I

x

() = P (x)) <

1

p(k)

where r 2

R

R

k

, and x is drawn from X

k

.

3b. Oracle indistinguishability: For any polytime distinguisher D and any polynomial p(�) there

exists a polynomial-size family fL

k

g of sets such that for all large enough k and for all

x; y =2 L

k

:

Prob(D(H(x; r)) = 1)� Prob(D(H(y; r)) = 1) <

1

p(k)

where r 2

R

R

k

.

4

Our formalizations interpret `gaining information on x' as `being able to predict the value of some predicate

P (x)'. However, di�erent interpretations may exist. For instance, the random variable r; < x; r > (where r is a

random value and <;> denote inner product in GF (2

jxj

)) provides some `random information on x', but it does not

allow prediction of any predicate P (x).
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Proof: See Appendix B. 2

Oracle security with a-priori information. The secrecy requirement of De�nition 3 assumes

that no a-priori information on x is known. We formulate a de�nition requiring that the hashed

value gives no extra information on the input x, even when some partial information is already

known on x. This de�nition will be needed for the application described in Section 4.1.

A �rst attempt to incorporate a-priori information functions in oracle security may be: \For

any algorithm A and any a-priori information function f , we have that hx;A(f(x); H(x; r))i and

hx;A(f(x); H(y; r))i are computationally indistinguishable, where r; x; y are chosen at random from

their domains." This requirement doesn't make sense, though, since f(x) may `leak' x in full (for

instance it may be that f(x) = x), in which case A can use v to verify whether its second input is

a hash of x.

But a-priori information functions f that leak all information on their inputs seem uninteresting

here: why try to hide x from adversaries that already know it via f(x)? We therefore restrict our

attention to functions f that do not give full information on x (i.e., functions where x can be

computed from f(x) only with negligible probability.) We call such functions uninvertible. Note

that one-way functions are uninvertible; yet uninvertible functions are a much broader class than

one-way functions. For instance, the null function 8x; f(x) = ; is uninvertible but not one-way.

5

Furthermore, we allow uninvertible functions to be probabilistic, (i.e., the function value can be a

random variable depending on internal random choices of f). See also the discussion in [GL].

De�nition 5 A (probabilistic) function f : f0; 1g

�

! f0; 1g

�

is uninvertible with respect to distri-

bution ensemble fX

k

g if for any probabilistic polynomial time algorithm A and for x taken from

X

k

, the probability Prob(A(1

k

; f(x)) = x) is negligible in k, where the probability is taken over the

choices of f , A and x. (We let A have input 1

k

to signify that it may run in time polynomial in

k.)

When no distribution is speci�ed, uninvertibility with respect to the uniform distribution is implied.

De�nition 6 Say that H; V are a strong oracle hash scheme if the Secrecy requirement of De�nition

3 is replaced with:

3. Strong Secrecy (oracle security with a-priori information): For any algorithm A with

binary output, for any well-spread distribution ensemble fX

k

g, and and for any function f

that is uninvertible for fX

k

g:

hx;A(f(x); H(x; r))i

c

� hx;A(f(x); H(y; r))i;

where r 2

R

R

k

, and x; y are independently drawn from X

k

.

Remarks: 1. As in the case of De�nition 3, the strong secrecy requirement can be relaxed by

taking into account only the uniform distribution on the inputs. We call this variant strong oracle

hashing for random inputs. In particular, this variant will su�ce for the application of Section 4.1.

2. A weaker formalization of oracle security with a-priori information is that A(f(x); h(x; r))

c

�

A(f(x); h(y; r)). While this requirement su�ces for the application of Section 4.1, we cannot

intuitively justify it in the way we justify the current one. In particular, we do not see how this

weaker requirement implies the Secrecy requirement of De�nition 3.

3. The Oracle Simulatability formalization (see Theorem 4) can also be generalized in a natural

way to incorporate a-priori information. However, the resulting formalization may not be strong

enough. In particular, we were unable to carry out the application of Section 4.1 based on that

formalization.

5

One-way functions require that it is infeasible to �nd any value in the preimage of f(x).
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3 Constructions

We describe some constructions of oracle hash. In Section 3.1 we describe a construction based

on number theoretic assumptions. In Section 3.2 we describe constructions based on cryptographic

hash functions (such as MD5, SHA).

3.1 The r; r

x

construction

The construction proceeds as follows. Let p be a large safe prime, i.e. p = �q + 1 where �

is a small integer (for simplicity we assume � = 2). Let Q be the subgroup of order q in Z

�

p

(i.e., Q is the group of squares modulo p). On input m and random input r 2

R

Q, the oracle

hash function H �rst computes x = h(m) where h is a collision resistant hash function; next it

outputs H(m; r) = r; r

x

. (Here and in the sequel calculations are made modulo p.) The veri�cation

algorithm V is straightforward: given an input m and a hashed value ha; bi, compute x = h(m)

and accept if a

x

= b.

We analyze this construction based on three strong variants of the Di�e-Hellman assumption.

The variants are used to show, respectively, that the construction satis�es oracle security for random

inputs, oracle security, and oracle security with a-priori information. (These notions are de�ned in

Section 2.)

Assumption 7 The Di�e-Hellman Indistinguishability Assumptions: Let k be a security parameter.

Let p = 2q + 1 be a randomly chosen k-bit safe prime and let g 2

R

Q (where Q is the group of

squares modulo p).

DHI Assumption I: Let a; b; c 2

R

Z

�

q

. Then, hg

a

; g

b

; g

ab

i

c

� hg

a

; g

b

; g

c

i.

DHI Assumption II: For any well-spread distribution ensemble fX

q

g where the domain of X

q

is Z

�

q

, for a drawn from X

q

and for b; c 2

R

Z

�

q

we have hg

a

; g

b

; g

ab

i

c

� hg

a

; g

b

; g

c

i.

DHI Assumption III: For any uninvertible function f and for a; b; c 2

R

Z

�

q

we have hf(a); g

b

; g

ab

i

c

�

hf(a); g

b

; g

c

i.

Remarks: 1. It can be seen that Assumption III implies Assumption II, and that Assumption II

implies Assumption I. We were unable to show implications in the other direction.

2. While these assumptions are considerably stronger than the standard Di�e-Hellman assump-

tion (there it is only assumed that g

ab

cannot be computed given p; g; g

a

; g

b

), they seem consistent

with the current knowledge on the Di�e-Hellman problem. In particular, Assumption I appeared

in the past, both explicitly and implicitly. It is not hard to see that it is equivalent to the semantic

security of the El-Gamal encryption scheme [E]. Furthermore, the value exchanged via the DH

key exchange is often assumed to be indistinguishable from random. An assumption equivalent to

Assumption I is formulated in [B]. Also, this assumption underlies a new and e�cient construction

of pseudorandom functions [NR].

Although Assumptions II and III look quite strong, we were unable to contradict them. We

propose the viability of these assumptions as an open question. To gain assurance in the plausibility

of these assumptions, we remark that it is a common practice to use Di�e-Hellman key exchange

modulo a large prime of, say, 1024 bits, but to choose the secret exponents a and b as random

numbers of only, say, 200 bits. It is then assumed that the resulting secret, g

ab

, still has the full
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`100 bits of security'.

6

This practice implicitly relies on Assumption II (or, alternatively, III) for

the case where the �rst 824 bits of a are �xed to 0.

3. Choosing a safe prime (and the restriction to the subgroup Q) is a standard procedure aimed

at avoiding attacks based on the residuocity of a; b; c relative to small factors of p�1. It also carries

the advantage that any non-zero member of Q is a generator of Q.

4. Naor and Reingold show that if Assumption I is broken then it is possible to distinguish

g

a

; g

b

; g

ab

from g

a

; g

b

; g

c

for any a; b; c 2 Z

�

q

[NR].

For the analysis of the construction, we �rst consider a somewhat simpli�ed version, where the

collision resistant hash function h is omitted and the input is assumed to be taken from Z

�

q

.

Theorem 8 1. If DHI Assumption I holds then the function H(x; r) = r; r

x

, together with its

veri�cation algorithm, are an oracle hashing scheme for random inputs.

2. If DHI Assumption II holds then the function H(x; r) = r; r

x

, together with its veri�cation

algorithm, are an oracle hashing scheme.

3. If DHI Assumption III holds then the function H(x; r) = r; r

x

, together with its veri�cation

algorithm, are a strong oracle hashing scheme.

Proof: See Appendix A. 2

The construction H(m; r) = r; r

h(m)

. Strictly speaking, this construction does not satisfy our

requirements since the functions h we have in mind are �xed, non-scalable constructs with no as-

ymptotic behavior. Assume however, for sake of the following discussion, that h now describes a

scalable collision resistant function where the probability of �nding collisions is negligible in the se-

curity parameter. (In the next subsection we deal with the non-scalability of existing cryptographic

hash functions in a more rigorous way.)

We examine compliance with De�nition 3. Completeness still holds. Correctness is now based

on the collision resistance of h. (I.e., if two inputs m 6= m

0

and a hash value c are found such

that V (m; c) = V (m

0

; c) = 1, then h(m) = h(m

0

).) For the Secrecy requirement, note that as

long as the input m is drawn from a well-spread distribution, the value x = h(m) must also be

well-spread (otherwise h-collisions may be found by straightforward sampling). Thus, as long as

h is collision-resistant, De�nition 3 is satis�ed under DHI Assumption II; De�nition 6 is satis�ed

under DHI Assumption III.

3.2 Constructions based on cryptographic hash functions

The construction described in the previous subsection is somewhat ine�cient since it involves a

modular exponentiation. In light of the e�ciency of existing cryptographic hash functions (such

as MD5 and SHA), and of the general \di�usion and confusion" properties they seem to possess,

it is natural to look for a construction based only on such functions. Here making additional

new assumptions on these functions is unavoidable. However, in contrast with the `random oracle

heuristic' discussed in the introduction, these will be well de�ned assumptions.

We propose three simple constructions of oracle hashing, incorporating randomness in the input

of the hash function. Each construction (or, mode of operation of the hash function) results in a

di�erent assumption on the underlying hash function. The assumption will simply be that using

the hash function in the corresponding mode satis�es either De�nition 3 or 6, respectively. We let

further research and practical experience indicate which construction (if any) is preferable in terms

of performance and security.

6

There are several ways to �nd discrete logarithms of 2k bit numbers in O(2

k

) steps, regardless of the size of the

modulus. See details in [MOV].
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A �rst construction that comes to mind, given a cryptographic hash function h is H(x; r) =

r; h(r; x), where r is a random string of length �. (Setting � = 128 for MD5 and � = 160

for SHA seems appropriate.) Veri�cation (and the Completeness property) are straightforward.

Correctness follows directly from the collision resistance of h. The Secrecy requirement imposes

the following requirement on h. Following the concrete (i.e., non-asymptotic) security approach of

[BKR, BGR, BCK1] we say that:

De�nition 9 A hash function h is (�; �)-secure with respect to the H(x; r) = r; h(r; x) construction

and some distribution � on f0; 1g

�

if for any adversary A and distinguisher D, each running in

time � , we have

jProb(D(x;A(r; h(r; x))) = 1)� Prob(D(x;A(r; h(r; y))) = 1)j � �

where x; y are independently drawn from � and r 2

R

f0; 1g

�

.

(This assumption is obtained by simply plugging the construction in the Secrecy requirement of

De�nition 3.) A seemingly equivalent variant is H(x; r) = r; h(r � x), where � denotes bitwise

exclusive or.

We remark that the \bit commitment scheme based on one way functions" described in [S], p.

87, is secure under the assumption that the one-way function in use satis�es De�nition 9. In fact,

this assumption seems necessary here.

Another possible construction is H(x; r) = r; h(r; h(x)). Completeness and correctness are as

above. The resulting security assumption can be formulated analogously to the former one. Note

that potentially this construction is `more secure' than the former one, in the sense that if the latter

construction fails then most probably the former one fails, but not necessarily vice-versa.

Yet another construction is based on the HMAC construction [BCK2]: letH(x; r) = r; h(r

1

; h(r

2

; x)),

where r

1

= r�opad, r

2

= r�ipad, and opad and ipad are two �xed constants. Also here, Com-

pleteness and correctness are as above. This construction may be even `more secure', again in the

sense that if the HMAC construction fails then most probably so does the previous one, but not

necessarily vice versa.

We remark that embedding the randomness in the IV may result in inferior constructions, since

it may simplify violating Correctness. That is, let h

r

(x) denote the value of h(x) when the IV is

set to r. Consider the construction H(x; r) = h

r

(x). Now in order to violate Correctness it su�ces

to �nd r; r

0

; x; x

0

such that h

r

(x) = h

r

0

(x

0

). This is a much easier task; See [BB, MOV] for more

details.

4 Applications

We describe two more applications, on top of the one described in Section 1.1.

4.1 Avoiding random oracles

Various cryptographic primitives have simple and easily provable instantiations in the random

oracle model, whereas in the absence of random oracles the corresponding primitives have either

only very complex instantiations (e.g., non-malleable encryption and encryption schemes secure

against chosen ciphertext attacks [BR1, DDN, NY2, RS]), or no instantiation at all (e.g., the

use for removing interaction from protocols [FS]). In particular, in a sequence of papers Bellare

and Rogaway demonstrate how to construct, in the random oracle model, simple, e�cient, and

provably secure encryption and signature schemes, based on any trapdoor permutation (e.g., the

10



RSA permutation) [BR1, BR2, BR3, BR4]. It is suggested as a `rule-of-thumb' to replace, in

practice, the random oracle with a cryptographic hash function. While the resulting constructions

are very attractive and useful in practice, they lack rigorous proofs of security.

It is thus natural to attempt the following procedure with respect to these schemes: (a) replace

the random oracle with oracle hashing, and (b) prove the security of the resulting schemes without

random oracles. We do that to a simple encryption scheme described in [BR1].

The scheme proceeds as follows given a random oracle R, and a trapdoor permutation generator

G that on input 1

k

outputs a pair f; f

�1

(where f is a one way permutation and f

�1

is the inverse

of f). The public encryption key is f and the private decryption key is f

�1

. Given message m and

a random input s, let the encryption be E(m; s) = f(s); R(s)�m. Decryption is straightforward.

It is shown there that this scheme is semantically secure (in the random oracle model). There,

semantic security means that for any two messagesm

0

; m

1

, no polytime adversary A (with access to

the encryption algorithm E and to R) can distinguish between encryptions of m

0

and encryptions

of m

1

with more than negligible probability.

We show how to replace R with an oracle hashing scheme H . First however we need to make the

following two technical assumptions on H . The �rst assumption is that the random input r appears

explicitly in the output of H(x; r). All the schemes described in this paper have this property. We

call such schemes public randomness schemes and write H(x; r) = r;

~

H(x; r).

Let B

k

denote the domain of hashes with security parameter k. The second assumption is

that there is an `easy to compute' encoding from B

k

to f0; 1g

l(k)

for some `reasonable' length

function l(k). The encoding should make sure that when a hash is chosen at random from B

k

then

the encoded value is distributed (close to) uniform in f0; 1g

l(k)

. Again, the schemes described in

this paper have this property: For the r; r

x

scheme, one can use a standard encoding of Z

�

p

in,

say, f0; 1g

jpj�1

. For the schemes based on cryptographic hash functions no encoding seems to be

needed.

We suggest the following encryption scheme. Given message m and random input r; s compute:

E(m; r; s) = f(s); r;

~

H(s; r)�m (2)

Again, decryption is straightforward.

Proving semantic security of this construction, based on the fact that H is a strong oracle hash

function for random inputs, is quite straightforward. In fact, we use only a considerably weaker

secrecy property than the one in De�nition 6, namely that hf(x); h(x; r)i

c

� hf(x); h(y; r)i where

x; y; r are uniformly distributed in their domains.

Theorem 10 The encryption scheme described in (2) is semantically secure, if H is a strong oracle

hash function for random inputs with the additional technical properties described above.

Proof (sketch): Assume an adversary A such that Prob(A(E(m

1

; s)) = 1)�Prob(A(E(m

0

; s)) =

1) > � for some m

0

; m

1

and �. Let p

0

(resp., p

1

) denote the probability that A outputs `1' if it is

given E(m

0

; s) (resp., E(m

1

; s)), and let p

�

denote the probability that A outputs `1' given E(m; s),

where m is uniformly distributed in its domain. Clearly either jp

�

� p

0

j � �=2, or jp

�

� p

1

j � �=2.

Assume that jp

�

� p

0

j � �=2.

Construct a distinguisher D between hf(s); H(s; r)i and hf(s); H(s

0

; r)i, where s:s

0

; r are ran-

domly chosen. (Note that the function f is uninvertible.) Recall that here H(s; r) = r;

~

H(s; r),

and that for uniformly chosen s; r the value H(s; r) is uniform in f0; 1g

l

for some l. Given f(s); r; �

(where � is either

~

H(s; r) or

~

H(s

0

; r)), D will hand A the `ciphertext' f(s); r; � � m

0

. Now, if A

outputs `m

0

' then D outputs `� =

~

H(s; r)'; otherwise it outputs `� =

~

H(s

0

; r)'.
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Analyzing D is straightforward. (It distinguishes with probability �=2.) It should only be noted

that if � =

~

h(s

0

; r) then A is given an encryption of a uniformly chosen message. 2

Remarks: 1. For extra security one can modify 2 so that r is also protected by f . I.e., let

E(m; r; s) = f(s; r);

~

H(s; r)�m.

2. Bellare and Rogaway describe, in the random oracle model, two other simple and e�cient

encryption schemes with very attractive properties (such as input awareness, that implies both

non-malleability [DDN] and security against chosen ciphertext attacks). One of these schemes has

been adopted as a standard for public key encryption [BR2, BR4]. Each of these schemes involves

the use of two di�erent random oracles, where each one serves di�erent (analytical) purposes. We

were unable to use oracle hashing for completely removing the dependence on random oracles in

these schemes. Yet, we conjecture that (strong) oracle hash can successfully replace one of the two

oracles, without losing provability.

4.2 Content-Concealing signatures

Assume that one wants to sign a document m in a way that if m is known then the signature

can be veri�ed as usual, and at the same time make sure that the signature itself hides all partial

information on m from parties who do not already knowm. We call a signature scheme that has this

property content-concealing. Such signatures may become handy, for instance, when the document

to be signed has been agreed by the parties in a private way, but the signature has to be broadcasted

on a public channel where encryption is unavailable or costly. Another possible scenario is when

the signer wants to publish beforehand a signature on a document (say, the quarterly earnings of

IBM) but make the document public only at a later date.

As in the `puzzle in the newspaper' problem, to crypto practitioners it may seem that this

problem is already solved: Since cryptographic hash functions are assumed to `hide all partial

information on the input', and since the �rst step in any digital signature algorithm is to apply a

cryptographic hash function to the document, then existing digital signatures are already content-

concealing.

Also here, however, this is an illusion. No known (until now) cryptographic primitive solves

this problem. Furthermore, also here there is a simple solution in the random oracle model: in the

presence of a random oracle R one can simply sign R(m) instead of signing m.

When formalizing the requirement that the signature `hides all partial information on the input'

and at the same time allows for veri�cation, one ends up with the same notion of oracle security

used for oracle hash. That is:

De�nition 11 A signature scheme is (Strong) content-concealing if, in addition to being a signature

scheme (as de�ned in, say, [GMR]), the signing algorithm satis�es the Secrecy requirement of

De�nition 3 (resp., 6).

Once content-concealing signatures are de�ned, a solution is straightforward: To sign a message

m, sign c = H(m; r) (and attach c to the signature), where H; V are an oracle hash scheme and r

is randomly chosen. For veri�cation, �rst verify the signature on c; next verify that c is a hash of

m using the veri�cation algorithm V .
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A Proof of Theorem 8

Completeness is straightforward. Correctness holds in a strong sense: the value of x is uniquely

determined by r; r

x

. Thus there do not exist x; y; c such that V (x; c) = V (y; c) = 1. It remains to

show the Secrecy property. We �rst prove parts 2. (Part 1 will follow as a special case). Next we

prove part 3.

Part 2. Fix some value, k, of the security parameter. Choose a random k-bit safe prime p = 2q+1

and let g 2 Q where Q is the subgroup of quadratic residues modulo p. Let fX

q

g be a well-spread

distribution ensemble where the domain of X

q

is Z

�

q

. Assume that there exist an adversary A and

a distinguisher D such that

Prob(D(x;A(r; r

x

)) = 1)� Prob(D(x;A(r; r

y

)) = 1) � � (3)

where r 2

R

Q and x; y are independently drawn from X

q

. Let P

x

def

= Prob(A(r; r

x

) = 1). We

outline the rest of the proof: First we show that (3) implies that P

x

varies considerably with x.

This variance in P

x

can be used to detect whether two given hashes are two outputs of H on

the same input (with independent random inputs), or outputs of H on two independently chosen

inputs. This, in turn, will allow us to contradict the Di�e-Hellman Indistinguishability Assumption

II with respect to p and g and X

q

.

More precisely, construct a distinguisher D

0

that distinguishes with probability

�

4

between

g

a

; g

b

; g

ab

and g

a

; g

b

; g

c

. Given g

a

; g

b

; g

z

, algorithm D

0

distinguishes between the case where z = ab

and the case where z 2

R

Z

�

q

as follows:

1. Estimate P

a

. This is done by choosing r

1

:::r

k

2

R

Z

�

p

and sampling

~

P

a

 

1

k

P

k

i=1

A(g

r

i

; (g

a

)

r

i

).

2. Let w be such that wb = z(mod q). (That is, if z = ab then w = a, and if z 2

R

Z

�

p

then

w 2

R

Z

�

p

independently of a.) Then, estimate P

w

by choosing r

1

:::r

k

2

R

Z

�

p

and sampling

~

P

w

 

1

k

P

k

i=1

A((g

b

)

r

i

; (g

z

)

r

i

).

3. Let � be the value from (3). Then, if j

~

P

a

�

~

P

w

j �

�

4

then output `z 2

R

Z

�

p

'. Otherwise output

`z = ab'.

Analyzing D

0

, we �rst prove a simple claim:

Claim 12 Assume that (3) holds. Then, Prob(jP

x

�P

y

j <

�

2

) < 1�

�

4

, where x; y are independently

drawn from X

q

.

Proof: Consider the following experiment. Values x; y are independently drawn from X

q

. Next

a bit b 2

R

f0; 1g is chosen. If b = 1 then D is run on (x;A(r; r

x

)). If b = 0 then D is run on

(x;A(r; r

y

)). The experiment succeeds if the output of D equals b. It follows from (3) that the

experiment succeeds with probability at least

1

2

+

�

2

.

Assume now that the claim does not hold. Then (let I denote the event that jP

x

� P

y

j <

�

2

):

Prob(success) � Prob(successjI) + Prob(

�

I) <

1

2

+

�

4

+

�

4

=

1

2

+

�

2

in contradiction to (3). 2

Now, assume that the input of D

0

is g

a

; g

b

; g

ab

(i.e., w = a). In this case, both

~

P

a

and

~

P

w

are

averages of k independent samples from a distribution over f0; 1g with mean P

a

. Using a Cherno�

bound [AS] it follows that the probability that j

~

P

a

�

~

P

w

j �

�

4

is negligible.
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Next assume that the input of D

0

is g

a

; g

b

; g

c

(i.e., w 2

R

Z

�

p

). In this case,

~

P

w

is the average of

k independent samples from a distribution over f0; 1g with mean P

w

, where w 2

R

Z

�

p

. It follows

from Claim 12 that jP

w

� P

a

j �

�

2

with probability at least

�

4

. Using a Cherno� bound once again,

it now follows that j

~

P

a

�

~

P

w

j �

�

4

with probability at least

�

4

minus a negligible quantity.

Fixing X

q

to be the uniform distribution over Z

�

q

, we get Part 1 of the theorem as a special

case.

Part 3. We follow similar steps to those of the proof of Part 2. Fix, as there, p; q; g for the rest of

the proof. Assume that there exist a non-invertible function f , an adversary A and a distinguisher

D such that

jProb(D(x;A(f(x); r; r

x

)) = 1)� Prob(D(x;A(f(x); r; r

y

)) = 1)j � � (4)

where r 2

R

Q and x; y are independently drawn from X

q

. We �rst observe that without loss of

generality f(x) can be assumed to include �; �

x

where � 2

R

Q. That is, let

^

f(x) = f(x); �; �

x

. Then,

DHI Assumption III implies that if f is non-invertible then so is

^

f (with respect to distribution

ensemble fX

q

g). Furthermore, (4) implies that there exists an

^

A such that

jProb(D(x;

^

A(

^

f(x); r; r

x

)) = 1)� Prob(D(x;

^

A(

^

f(x); r; r

y

)) = 1)j � � (5)

(On input

^

f(x); r; r

z

,

^

A will simply run A on f(x); r; r

z

.) In the sequel we write A instead of

^

A.

Let P

x;y

def

= Prob(A(

^

f(x); r; r

y

) = 1). We outline the rest of the proof: First, (5) implies that

for a non-negligible fraction of the inputs x it holds that P

x;x

is non-negligibly di�erent from P

x;y

where y 2

R

Z

�

p

. This di�erence will allow us to contradict DHI Assumption III with respect to

^

f

and the chosen p and g.

More precisely, construct an algorithmD

0

that distinguishes with probability

�

4

between f(a); �; �

a

; g

b

; g

ab

and f(a); �; �

a

; g

b

; g

c

. Given f(a); �; �

a

; g

b

; g

z

, algorithm D

0

distinguishes between the case where

z = ab and the case where z 2

R

Z

�

p

as follows:

1. Estimate P

a;a

. This is done by choosing r

1

:::r

k

; r

0

1

:::r

0

k

2

R

Z

�

p

and sampling

~

P

a;a

 

1

k

P

k

i=1

A(f(a); �

r

0

i

; (�

a

)

r

0

i

; g

r

i

; (g

a

)

r

i

).

2. Let w be such that wb = z(mod q). (That is, if z = ab then w = a, and if z 2

R

Z

�

p

then

w 2

R

Z

�

p

independently of a.) Then, estimate P

a;w

by choosing r

1

:::r

k

; r

0

1

:::r

0

k

2

R

Z

�

p

and

sampling

~

P

a;w

 

1

k

P

k

i=1

A(f(a); �

r

0

i

; (�

a

)

r

0

i

; g

r

i

; (g

z

)

r

i

).

3. Let � be the value from (5). Then, if j

~

P

a;a

�

~

P

a;w

j �

�

4

then output `z 2

R

Z

�

p

'. Otherwise

output `z = ab'.

Analyzing D

0

, we �rst prove a claim analogous to Claim 12:

Claim 13 Assume that (5) holds. Then, Prob(jP

x;x

� P

x;y

j <

�

2

) < 1�

�

4

, where x; y are indepen-

dently drawn from X

q

.

Proof: Follow the argument used to prove Claim 12. 2

Now, assume that the input of D

0

is f(a); �; �

a

; g

a

; g

b

; g

ab

(i.e., w = a). In this case, both

~

P

a;a

and

~

P

a;w

are averages of k independent samples from a distribution over f0; 1g with mean P

a;a

.

Using a Cherno� bound [AS] it follows that the probability that j

~

P

a;a

�

~

P

a;w

j �

�

4

is negligible.

Next assume that the input of D

0

is f(a); �; �

a

; g

a

; g

b

; g

c

(i.e., w 2

R

Z

�

p

). In this case,

~

P

a;w

is the average of k independent samples from a distribution over f0; 1g with mean P

w

, where

w 2

R

Z

�

p

. It follows from Claim 13 that jP

a;w

�P

a;a

j �

�

2

with probability at least

�

4

. Consequently,

j

~

P

a;a

�

~

P

a;w

j �

�

4

with probability at least

�

4

minus a negligible quantity.
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B Sketch of proof of Theorem 4

Let Distributional Indistinguishability denote the secrecy requirement of De�nition 3. Throughout

the proof we assume non-uniform adversaries. That is, an adversary is a family of polynomial size

circuits. We let the subscript k denote the circuits associated with the value k of the security

parameter.

Oracle Indistinguishability (OI) implies Oracle Simulatability (OS). Assume that for any

polytime distinguisher D and any polynomial p(�) there exists a polynomial-size family fL

k

g of sets

such that for all large enough k and for all x; y =2 L

k

:

Prob(D

k

(H(x; r)) = 1)� Prob(D

k

(H(y; r)) = 1) <

1

p(k)

(6)

where r 2

R

R

k

. We construct, for any polytime adversary C

0

and any polynomial p(�), a polytime

adversary C that satis�es the OS requirement. C

k

, proceeds as follows, on empty input and access

to an oracle I

x

. Let L

k

be the set that the OI requirement associates with C

0

k

. Then, C

k

queries I

x

on the inputs in L

k

. If I

x

(z) = 1 for some z 2 L

k

then C

k

runs C

0

k

on input H(z; r) with randomly

chosen r and output the output of C

0

k

. Else, C

k

runs C

0

k

on H(z

0

; r) for some �xed input z

0

=2 L

k

,

and output the output of C

0

k

.

It remains to show that for any distribution X

k

, and for any polytime predicate P (�),

Prob(C

0

k

(H(x; r)) = P (x))� Prob(C

I

x

k

() = P (x)) <

1

p(k)

where r 2

R

R

k

, and x is drawn from X

k

. This is shown in a straightforward way, based on (6).

(Calculate the probabilities conditional on the event that x 2 L

k

.)

Oracle Simulatability implies Distributional Indistinguishability (DI). Assume an ad-

versary A (with binary output), a distinguisher D a well-spread distribution fX

k

g, and a value k

such that

Prob(D

k

(x;A

k

(H(x; r))) = 1)� Prob(D

k

(x;A

k

(H(y; r))) = 1) � � (7)

where r 2

R

R

k

, and x; y are independently drawn from X

k

. Let P

x

def

= Prob

r

(A

k

(H(x; r)) = 1). It

follows that there exist two sets, Y; Z in the support of X

k

such that:

(a) For any y 2 Y and any z 2 Z we have P

y

� P

z

>

�

10

.

(b) Prob(x 2 Y ) = Prob(x 2 Z) =

�

10

We construct a circuit C

0

k

, a distribution X

0

k

and a predicateP (�) such that for all circuits C

k

Prob(C

0

k

(H(x; r)) = P (x))� Prob(C

I

x

k

() = P (x)) > �

0

where �

0

is polynomial in k. Adversary C

0

is identical to A. Distribution X

0

k

is X

k

conditioned on

the event that a value in Y [ Z is chosen. P (x) = 1 if x 2 Y , and P (x) = 0 if x 2 Z.

C

0

k

(x) predicts P (x) with probability

1

2

+

�

20

. It remains to show that any C with oracle access

to I

x

predicts P (x) with probability only negligibly larger than

1

2

. Let m

k

denote the highest

probability of an element in X

k

. Then, the highest probability of an element in X

0

k

is m

k

10

�

.

Consequently, C

k

queries its oracle I

x

for the correct value x only with probability at most cm

k

10

�

,

where c is the size of C

k

. Given that C

k

never asks I

x

on x, the probability that C

I

x

k

() = P (x)

is exactly

1

2

. It follows that Prob(C

I

x

k

() = P (x)) <

1

2

+ cm

k

10

�

. However, m

k

is negligible, and �

decreases only polynomially fast in k.
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Distributional Indistinguishability implies Oracle Indistinguishability. Assume there

exist a polytime distinguisher D and a polynomial p(�), such that for any polynomial-size family

fL

k

g of sets, and for in�nitely many values of k there exist x; y =2 L

k

such that:

Prob(D

k

(H(x; r)) = 1)� Prob(D

k

(H(y; r)) = 1) �

1

p(k)

(8)

where r 2

R

R

k

. Let P

x

def

= Prob

r

(D

k

(H(x; r)) = 1). For any polynomial p

c

(k) = k

c

, consider

the following family fL

(c)

k

g of size k

c

. L

(c)

k

def

= Y

(c)

k

[ Z

(c)

k

, where Y

(c)

k

is the set of

k

c

2

elements x

with maximal P

x

, and Z

(c)

k

is the set of

k

c

2

elements x with minimal P

x

. It follows that any values

y 2 Y

(c)

k

and z 2 Z

(c)

k

satisfy P

y

� P

z

�

1

p(k)

.

Now, construct a distribution ensemble fX

k

g. Distribution X

k

is uniform over the set

~

L

k

, where

~

L

k

is de�ned as follows. Given k, let c be the largest value such that (8) is satis�ed with respect to

k and L

(c)

k

. Then, if jL

(c)

k

j � j

~

L

k�1

j then

~

L

k

= L

(c)

k

. Otherwise,

~

L

k

=

~

L

k�1

. It follows that fX

k

g is

well spread, since for any polynomial k

c

there exists a value k

0

such that j

~

L

k

j > k

c

for all k > k

0

.

We show adversaries A and D

0

such that for in�nitely many values of k:

Prob(D

0

k

(x;A

k

(H(x; r))) = 1)� Prob(D

0

k

(x;A

k

(H(y; r))) = 1) �

1

2p

2

(k)

(9)

where r 2

R

R

k

and x; y are drawn from X

k

.

A

k

is identical to D

k

. D

0

k

operates as follows, on input x; b where b 2 f0; 1g. Let m denote the

median value of P

z

over the inputs z. First D

0

k

estimates whether P

x

> m (say, by comparing m

to the average of k independent samples of P

x

). Now, if P

x

> m then D

0

k

outputs b. Otherwise D

0

k

outputs 1� b.

We analyze D

0

k

in the case where k is such that

~

L

k

= L

(c)

k

= Y

(c)

k

[ Z

(c)

k

for some c. (There

are in�nitely many such k's.) Let h = min

z2Y

(c)

k

(P

z

) and let l = max

z2Z

(c)

k

(P

z

). Similarly, let

^

h = E

z2Y

(c)

k

(P

z

) and let

^

l = E

z2Z

(c)

k

(P

z

).

7

Then, h� l > �, where �

def

=

1

p(k)

. Certainly

^

h�

^

l > �.

Let C denote the event that D

0

k

decides correctly whether P

x

> m. Note that

Prob(D

0

k

(x;A

k

(H(x; r))) = 1jC) = 1� Prob(D

0

k

(x;A

k

(H(x; r))) = 1j

�

C)

and similarly that

Prob(D

0

k

(x;A

k

(H(y; r))) = 1jC) = 1� Prob(D

0

k

(x;A

k

(H(y; r))) = 1j

�

C):

It follows that

Prob(D

0

k

(x;A

k

(H(x; r))) = 1)� Prob(D

0

k

(x;A

k

(H(y; r))) = 1) = (10)

(2Prob(C)� 1) � [Prob(D

0

k

(x;A

k

(H(x; r))) = 1jC)� Prob(D

0

k

(x;A

k

(H(y; r))) = 1jc)] (11)

We bound (11). First, since h� l > �, it follows that Prob(C) �

1

2

+

�

2

. Thus 2Prob(C)� 1 > �.

Furthermore,

Prob(D

0

k

(x;A

k

(H(x; r))) = 1jC)� Prob(D

0

k

(x;A

k

(H(y; r))) = 1jC) =

1

2

[Prob(D

0

k

(x;A

k

(H(x; r))) = 1jC ^ x 2 Y

(c)

k

)� Prob(D

0

k

(x;A

k

(H(y; r))) = 1jC ^ x 2 Y

(c)

k

)] +

1

2

[Prob(D

0

k

(x;A

k

(H(x; r))) = 1jC ^ x 2 Z

(c)

k

)� Prob(D

0

k

(x;A

k

(H(y; r))) = 1jC ^ x 2 Z

(c)

k

)] =

1

2

[

^

h� (

^

h

2

+

^

l

2

)] +

1

2

[1�

^

h� (

1�

^

h

2

+

1�

^

l

2

)] �

�

2

:

Inequality (9) follows.

7

Here E

x2D

(f(z)) denotes the average of f(z) over all z 2 D.
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