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Abstract

We address to the problem to factor a large composite number by lattice reduction algorithms.

Schnorr [Sc93] has shown that under a reasonable number theoretic assumptions this problem can

be reduced to a simultaneous diophantine approximation problem. The latter in turn can be solved

by �nding su�ciently many `

1

{short vectors in a suitably de�ned lattice.

Using lattice basis reduction algorithms Schnorr and Euchner applied the reduction technique of

[Sc93] to 40{bit long integers. Their implementation needed several hours to compute a 5% fraction

of the solution, i.e., 6 out of 125 congruences which are necessary to factorize the composite.

In this report we describe a more e�cient implementation using stronger lattice basis reduction

techniques incorporating ideas of [SH95] and [R97]. For 60{bit long integers our algorithm yields a

complete factorization in less than 3 hours.

1 Introduction

The security of many public key cryptosystems relies on the hardness of factoring large numbers.

In fact, no algorithm is known which given a number N computes its prime factor representation

in deterministic polynomial time in the input length O(log

2

N) : The fastest known factoring al-

gorithm is the Number Field Sieve (NFS) [LL93, Sch93]. The NFS takes expected running time

O

(

e

(1:923+o(1))(log N)

1=3

(log logN)

2=3

)

where log denotes the natural logarithm. Like many other factoring

algorithms the goal of the NFS and Schnorr's reduction is to �nd positive integers x and y such that

x

2

� y

2

( mod N) : If x 6� �y( mod N) then gcd(x�y;N) is a non{trivial divisor of N : In the NFS this

goal is accomplished by determining su�ciently many smooth numbers, i.e., numbers with small prime

factors, both in the ring of integers ZZ and in an algebraic extension (the number �eld) K = ZZ[�] : If

f is the minimal polynomial for � and m a small (mod N){zero of f the integers x

2

; y

2

are computed

from the product of smooth integers and algebraic numbers (a+ bm); (a+ b �) ; respectively, where

the product is taken over pairs (a; b) with relatively prime integers. Similarily, in Schnorr's reduction

| the Diophantine Approximation Algorithm (DAA) [Sc93] | the numbers x and y are constructed

from the product of smooth numbers u and u � v N with pairs (u; v) of relatively prime integers.

The pairs are generated from lattice vectors which are su�ciently close to a �xed point N . Given

constants � ; c > 1 and the �rst t primes p

1

; : : : ; p

t

with p

t

= (logN)

�

the DAA proceeds as follows:
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� �rst, �nd at least t+2 non{trivial integral vectors e := (e

1

; : : : ; e

t

)

>

2 Z

t

which are both `good'

and `

1

{short approximations of logN ; i.e.,

�

�

�

�

�

t

X

i=1

e

i

log p

i

� logN

�

�

�

�

�

� N

�c

p

o(1)

t

and (1)

t

X

i=1

je

i

log p

i

j � (2 c� 1) logN + 2 log p

t

; (2)

� secondly, for each pair (u; v) set u =

Q

a

j

>0

p

a

j

j

and v =

Q

a

j

<0

p

ja

j

j

j

and factorize ju � v N j

over the primes p

1

; : : : ; p

t

; a factorization ju � v N j =

Q

t

j=1

p

b

j

j

yields a non{trivial congruence

u � �(u� v N)(mod N) ;

� t+2 of this congruences su�ce to construct the integers x and y which give a non{trivial divisor

of N with probability of at least 1=2 :

Schnorr has shown that the diophantine approximation problem, in turn, can be reduced in prob-

abilistic polynomial time to the problem to �nd at least t + 2 su�ciently `

1

{near vectors to N=

(0; : : : ; 0

| {z }

t

; N

c

logN) in the lattice L

�;c

�R

t+2

generated by the row vectors of the matrix

2

6

6

6

6

4

log 2 0 : : : 0 N

c

log 2

0 log 3 : : : 0 N

c

log 3

.

.

. 0

.

.

.

0

.

.

.

0 : : : : : : log p

t

N

c

log p

t

3

7

7

7

7

5

: (3)

In order to compute `

1

{near lattice vectors it su�ces to use strong lattice basis reduction algorithms

in the `

2

{norm.

Adleman [Ad95] presented a probabalistic polynomial{time reduction from the problem of factoring

a composite N to the problem of �nding the `

2

{nearest vectors of su�ciently many pairs of suitably

de�ned lattices and �xed vectors.

Adleman [Ad95] essentially reduces the problem of factoring the composite N to the problem of

enumerating at least t+ 2 su�ciently `

2

{short vectors in the lattice generated by the row vectors of

2

6

6

6

6

4

1 0 : : : 0 N

c

logN

0

p

log 2 : : : 0 N

c

log 2

.

.

. 0

.

.

.

0

.

.

.

0 : : : : : :

p

log p

t

N

c

log p

t

3

7

7

7

7

5

: (4)

As [Ad95] uses a reduction to the problem of �nding `

2

{nearest lattice vectors the log p

j

's in the

matrix (3) have to be replaced by the square roots of the corresponding log p

j

's. Adleman does not

provide an experimental analysis of his method.

We re�ne Schnorr's factoring algorithm where we use e�cient lattice basis reduction algorithms

originating from the concept of block reduction as introduced in [Sc87] and improved in subsequent

papers [SE94, SH95, R97]. We also provide practical results of our methods.
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2 The Factoring Algorithm

Throughout the paper let R

n

denote the real n{dimensional vector space with the ordinary inner

product < x; y > :=

P

n

i=1

x

i

y

i

; `

2

{norm (i.e. Euclidean length) kxk

2

:=< x; x >

1=2

= (

P

n

i=1

x

2

i

)

1=2

;

`

1

{norm kxk

1

:=

P

n

i=1

jx

i

j for vectors x := (x

1

; : : : ; x

n

)

>

; y := (y

1

; : : : ; y

n

)

>

2 R

n

: Moreover, let

log(:) denote the natural logarithm function. Let N be an integer with at least two distinct prime

factors.

A discrete, additive subgroup L � IR

n

is called a lattice. Every lattice is generated by some set

of linearly independent vectors b

1

; : : : ; b

m

; called basis of L ; i.e., L =

P

m

i=1

ZZ b

i

: Let L(b

1

; : : : ; b

m

)

denote the lattice with basis b

1

; : : : ; b

m

: Its rank or dimension is m and its determinant is det(L) :=

det[(< b

i

; b

j

>)

1�i;j�m

]

1=2

: The rank and the dimension are independent of the choice of the lattice ba-

sis. The determinant of a lattice L(b

1

; : : : ; b

m

) can be geometrically interpreted as the m{dimensional

volume of the parallelepiped spanned by the vectors b

1

; : : : ; b

m

; i.e., det(L) =

vol

m

(

P

m

i=1

x

i

b

i

j 0 � x

i

� 1 ; 1 � i � m) :

We briey give an outline of the factoring method. The algorithm essentially coincides with the

one given in [Sc93]. Di�erences result from using a stronger and more re�ned enumeration method in

step 2 :

Input N ; rationals �; c > 1 ;

1. Compute the list p

1

; : : : ; p

t

of the �rst t primes smaller than (logN)

�

by Trial Division.

2. Let b

0

:= N and b

1

; : : : ; b

t

be the row vectors of the basis matrix of the lattice L

�;c

as de�ned

in section 1. Enumerate m � t+2 lattice vectors z

i

:=

P

t

j=0

a

i;j

b

j

; a

i;j

2 Z ; with the following

property:

for u

i

:=

Q

a

i;j

>0

p

a

i;j

j

; v

i

:=

Q

a

i;j

<0

p

ja

i;j

j

j

; the absolute value ju

i

�v

i

N j factorizes completely

over the primes p

1

; : : : ; p

t

:

De�ne the vectors a

i

, 1 � i � m by a

i

:= (a

i;0

; : : : ; a

i;t

)

>

; where a

i;0

:= 0 for 1 � i � m:

3. For every i = 1; : : : ; t factorize u

i

� v

i

N over the primes p

1

; : : : ; p

t

and p

0

= �1 :

Let u

i

� v

i

N =:

Q

t

j=0

p

b

i;j

j

; 1 � i � t ; and de�ne the vectors b

i

, 1 � i � m by

b

i

:= (b

i;0

; : : : ; b

i;t

)

>

:

4. Find a non{trivial 0/1{solution (c

1

; : : : ; c

m

) of the linear homogeneous system of m congruences

m

X

i=1

c

i

(a

i

+ b

i

) � 0 (mod 2) :

5.

x :=

m

Y

j=1

p

P

m

i=1

c

i

(a

i;j

+b

i;j

)=2

j

(modN) ;

y :=

m

Y

j=1

p

P

t

i=1

c

i

b

i;j

j

(modN) =

m

Y

j=1

p

P

t

i=1

c

i

a

i;j

j

(modN) :

(The de�nition of x and y implies that x

2

= y

2

(modN) ):

6. If x 6= �y (modN) then x+ y or x� y is a non{trivial factor of N :

Output gcd(x � y;N) and stop.

Otherwise go to 4 and generate a di�erent solution (c

1

; : : : ; c

m

) :
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Remarks. 1. By the prime number theorem (c.p. [RS62]) the number t of primes less than (logN)

�

is at most

0:876 (logN)

�

=(� log logN) :

This bounds the cost of step 1.

2. Steps 4{6 require that for i = 1; : : : ; t + 1 the numbers u

i

� v

i

N completely factorize over the

primes p

1

; : : : ; p

t

: A hypothesis given in [Sc93] essentially states that among all pairs of integers

(u; v) with prime factors less than (logN)

�

and N

c�1

=2 < v < N

c�1

there is a (logN)

O(1)

fraction

with ju� v N j = 1 : Using this hypothesis and a theorem of Norton and Can�eld, Erd�os, Pomerance

[No71, CEP83] Schnorr [Sc93] has shown the following: For any � > 0 there exists an � > 0 such that

there are N

�+o(1)

lattice vectors z with

kz �N k

1

� (2 c � 1) logN + 2� log p

t

: (5)

For the associated pairs of integers (u; v) this bound implies

ju� v N j � p

1=�+�+o(1)

t

; where � := c� 1� (2 c � 1) log logN= log p

t

:

By the detailed analysis given in [Sc93] the parameters � and c have to be chosen such that � >

(2 c� 1)=(c � 1) :

We derive a more e�cient method to determine the pairs (u; v) : We give a necessary and su�cient

condition for ju� v N j � p

�

t

in the following

Lemma. Let �; c > 1; � > 0 be �xed with (logN)

�

= p

t

< N : For every vector z 2 L

�;c

the associated

pair (u(z); v(z)) satis�es:

A necessary condition for ju(z)� v(z)N j � p

�

t

is

1

2

kz �Nk

1

�

�

N

c

+ 1

2N

c

�

j(z �N)

t+1

j+ log(j(z �N)

t+1

j) < (c�

1

2

) logN + � log p

t

: (6)

A su�cient condition for ju(z)� v(z)N j � p

�

t

is

1

2

kz �Nk

1

�

�

N

c

� 1

2N

c

�

j(z �N)

t+1

j+ log(j(z �N)

t+1

j) < (c�

1

2

) logN + � log p

t

: (7)

The proof is straightforward by evaluating the condition ju� v N j � p

�

t

in terms of max(u; v N) and

min(u; v N) and exploiting the concaveness of the log{function. For details we refer to [R97]. For the

enumeration process in step 2 of the factoring algorithm we must only enumerate lattice vectors z for

which the associated pairs (u(z); v(z)) satisfy (6) and (7).

Now the hard task of the algorithm is the enumeration of at least t + 2 such pairs which in turn

amounts to the enumeration of at least t + 2 su�ciently close lattice vectors to the �xed point N .

We achieve this by using the concept of block reduction of lattice bases as introduced in [Sc87] and

improved in subsequent papers as particulary [R97].

3 Enumeration of Short Lattice Vectors

The lattice basis reduction is done via block reduction as already implemented in [SE94]. However, for

the enumeration of candidates for short lattice basis vectors we use a more e�cient method proposed

by Ritter [R97]. It incorporates ideas of [SE94] and [SH95]. We briey introduce the concept of block

reduction.

4



With an ordered lattice basis b

1

; : : : ; b

m

2 R

n

we associate the Gram{Schmidt orthogonalization

^

b

1

; : : : ;

^

b

m

2 R

n

which can be computed together with the Gram{Schmidt coe�cients

�

i;j

=< b

i

;

^

b

j

> = <

^

b

j

;

^

b

j

> by the recursion

^

b

1

= b

1

;

^

b

i

= b

i

�

P

i�1

j=1

�

i;j

^

b

j

for i = 2; : : : ;m. We de�ne

the orthogonal projections �

i

: R

n

! span(b

1

; : : : ; b

i�1

)

?

for i = 1; : : : ;m. Clearly, �

i

(b

j

) =

P

j

t=i

�

i;t

^

b

t

.

An (ordered) lattice basis b

1

; : : : ; b

m

is called size{reduced if j�

i;j

j � 1=2 for 1 � j < i � m: It is

L

3

{reduced | according to Lenstra, Lenstra and Lov�asz [LLL82] | with � 2 [1=4; 1) if additionally

� k�

k�1

(b

k�1

)k

2

� k�

k�1

(b

k

)k

2

; k = 2; : : : ;m :

[LLL82] presented the �rst polynomial time algorithm which approximates the shortest non{trivial

vector in an m{dimensional lattice up to the factor 1=(� �

1

4

)

m=2

: A lattice basis b

1

; : : : ; b

m

is called

block reduced with � 2 [1=4; 1) and blocksize � if it is size{reduced and

� k�

i

(b

i

)k � k�

i

(v)k for all v 2 L(b

i

; : : : ; b

minfi+��1;mg

) ; i = 1; : : : ;m ;

i.e., �

i

(b

i

) is up to the factor � the shortest non{trivial vector in the lattice �

i

(L(b

i

; : : : ; b

minfi+��1;mg

)) :

L

3

{reduced bases are a special case of block{reduced bases with � = 2 : The approximation of the

shortest lattice vectors by a block{reduced basis becomes tighter by increasing blocksize, i.e., for a

block{reduced basis b

1

; : : : ; b

m

of a lattice L the ratio

max

1�i�m

kb

i

k=minfr > 0 : 9i lin. indep. c

1

: : : ; c

i

2 L : kc

i

k � rg

is bounded by 

2 (m�1)

��1

�

m+3

4

; where 

�

is the Hermite constant for dimension � : Algorithms for block

reduction have been proposed in [SE94, SH95] and are only known to have exponential running time

O(nm logB) [O(m

2

) + O(�) 1=(� �

1

4

)

O(�

2

)

] for L

3

{reduced input bases with maximum Euclidean

length B [Sc87, R97]. For k = t; : : : ; j we de�ne the following functions w

t

; ~c

t

with integer arguments

~u

t

; : : : ; ~u

k

:

w

t

:= w

t

(~u

t

; : : : ; ~u

k

) := �

t

(

k

X

i=t

~u

i

b

i

) = w

t+1

+

 

k

X

i=t

~u

i

�

i;t

!

^

b

t

~c

t

:= ~c

t

(~u

t

; : : : ; ~u

k

) := kw

t

k

2

2

= ~c

t+1

+

 

k

X

i=t

~u

i

�

i;t

!

2

k

^

b

t

k

2

2

The core of the block reduction algorithm of [SE94] is a procedure ENUM

2

that generates the

shortest non{trivial lattice vector

�

b in a �{block �

j

(b

j

); : : : ; �

j

(b

k

) k = j + � � 1 by complete enu-

meration in depth �rst search order. Ritter has shown that the running time of the enumeration is

O(�) 1=(� �

1

4

)

O(�

2

)

[R97].

For �xed ~u

t+1

; : : : ; ~u

m

the enumeration order of the ~u

t

{values is controlled by the variables �

t

and

�

t

; which are the same as in [SE94].

Procedure ENUM

2

(j; k)

INPUT c

i

:= k

^

b

i

k

2

2

; �

i;t

for j � t � i � k

1. FOR i = j; : : : ; k + 1

~c

i

:= u

i

:= ~u

i

:= v

i

:= y

i

:= �

i

:= 0; �

i

:= 1; w

i

:= (0; : : : ; 0)

u

j

:= ~u

j

:= 1; s := t := j; �c

j

:= kb

j

k

2

2

2. WHILE t � k

~c

t

:= ~c

t+1

+ (y

t

+ ~u

t

)

2

c

t

IF ~c

t

< �c

j

THEN IF t > j
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THEN t := t� 1; �

t

:= 0; y

t

:=

P

s

i=t+1

~u

i

�

i;t

~u

t

:= v

t

:= d�y

t

c; �

t

:= 0

IF ~u

t

> �y

t

THEN �

t

:= �1

ELSE �

t

:= 1

ELSE (u

j

; : : : ; u

k

) := (~u

j

; : : : ; ~u

k

)

�c

j

:= ~c

j

ELSE t := t+ 1

s := max(t; s)

IF t < s

THEN �

t

:= ��

t

IF �

t

�

t

� 0 THEN �

t

:= �

t

+ �

t

~u

t

:= v

t

+�

t

END while

OUTPUT the minimum �c

j

of c

j

(u

j

; : : : ; u

k

) and the coordinates (u

j

; : : : ; u

k

) 2 ZZ

k�j+1

� 0

k�j+1

The algorithm enumerates in depth �rst search order all nonzero integer vectors (~u

t

; : : : ; ~u

k

) for t =

k; : : : ; j satisfying ~c

t

(~u

t

; : : : ; ~u

k

) < �c

j

, where �c

j

is the current minimum for the function ~c

j

(~u

j

; : : : ; ~u

k

).

In the factoring algorithm we replace the enumeration step 2 by a more powerful variant due

to Ritter [R97]. Ritter prunes the enumeration of points (~u

j

; : : : ; ~u

k

) with ~c

t

(~u

j

; : : : ; ~u

k

) < �c

j

by a

heuristic approach but guarantees on each stage t a �xed probability of �nding the shortest vector

in �

t

(L(b

t

; : : : ; b

k

)) : The depth �rst search enumeration of ENUM

2

is cut o� if the probability of

missing an `

2

{shortest vector in �

t

(L(b

t

; : : : ; b

k

)) on stage t does not exceed a given threshold. The

probability on each stage t is independent of the previously visited stages. Using this pruning rule the

mod�ed algorithm becomes exponentially faster while guaranteeing a given success rate of �nding the

`

2

{shortest vector in �

j

(L(b

j

; : : : ; b

k

)) : We give an outline of the method.

We represent enumerated points (~u

t

; : : : ; ~u

k

) by nodes on di�erent stages of (k � j + 1){deep sub-

trees where the root corresponds to the k{th coordinate ~u

k

and coordinates ~u

j

to leaves. Each

enumerated point (~u

t

; : : : ; ~u

k

) corresponds to a traversed path in the subtree and is assigned a weight

(�c

j

�

e

c

t

)

t�j

2

=

Q

k

i=j

k

^

b

i

k : By the Gaussian volume heuristic the weight may be regarded as the num-

ber of points (~u

j

; : : : ; ~u

t�1

; ~u

t

; : : : ; ~u

k

) with ~c

j

(~u

j

; : : : ; ~u

k

) < �c

j

for �xed coordinates (~u

t

; : : : ; ~u

k

) : The

Gaussian volume heuristic estimates the number of points of a lattice L in a sphere S (with uni-

fomly distributed center `modulo' the lattice L) as vol(S)=det(L) [SH95, R97]. Given a set of paths

f(~u

t

; : : : ; ~u

k

) 2 A

t

g traversed in depth �rst search order the probability of �nding a remaining path

with minimum ~c

j

(~u

j

; : : : ; ~u

k

) is the fraction of the sum of all weights visited so far and the sum of all

weights of all possible paths from the current stage t : The traversion of nodes is cut o� if this probabil-

ity exceeds a given threshold p

t

: Hence, the probability of �nding a shortest vector in �

j

(L(b

j

; : : : ; b

k

))

is at least

Q

k

t=j

p

t

:

Ritter's enumeration variant in step 2 of ENUM

2

can be informally decribed as follows: (For a detailed

description and analysis we refer to [R97].)

Pruned ENUM

2

(j; k)

1. initialize A

t

:= B

t

:= 0

2. for t = j + 1; : : : ; s and �xed (

e

u

t+1

; : : : ;

e

u

s

) traverse all nodes

e

u

t

with

e

c

t

:=

e

c

t

(

e

u

t+1

; : : : ;

e

u

s

) < �c

j

in

ascending order w.r.t.

e

c

t

and add the `weight' (�c

j

�

e

c

t

)

t�j

2

to B

t

;

3. if A

t

=B

t

� p

t

(the probability threshold for stage t) take the next value

e

u

t

(or increment t if all nodes

e

u

t

have already been visited); otherwise add the `weight' to A

t

and decrement t ;

4. if t = j determine

e

u

j

with minimum

e

c

j

; if

e

c

j

< �c

j

update �c

j

=

e

c

j

; (u

j

; : : : ; u

k

) = (

e

u

j

; : : : ;

e

u

s

; 0; : : : ; 0).

Schnorr and H�orner [SH95] gave a local variant of Ritter's algorithm where the enumeration of the

subtree of some node is cut o� if the probability of �nding a shorter vector in the subtree is less than
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a given threshold. However, this method does not provide a lower bound on the probability of �nding

a shortest vector in the whole enumeration tree for points (

e

u

1

; : : : ;

e

u

m

) 2 ZZ

m

:

4 Algorithm Details and Practical Results

For our experiments we randomly generate two distinct prime numbers P and Q with equal bitlength

and set N = P Q : We transform the problem of �nding `

2

{close vectors z 2 L

�;c

to a �xed point

N= (0; : : : ; 0

| {z }

t

; N

c

logN) to the problem of �nding `

2

{short vectors in the lattice spanned by the

vector b

0

:= (1; 0; : : : ; 0

| {z }

t

; N

c

logN)

>

and the row vectors of the basis matrix of the lattice L

�;c

each

with an additional 0{entry in the �rst coordinate. Moreover, for experiments we have to approximate

the oating point entries of the resulting basis matrix by rationals where we use the log{routine of

Mathematica Package 2.0 with a precision of c

1

respectively c

2

� c

1

� c log

10

N decimals right from

the point:

e

B :=

0

B

B

B

B

B

@

1 0 0 � � � 0 10

c

1

logN

0 10

c

2

log 2 0 0 10

c

1

log 2

0 0 10

c

2

log 3 0 10

c

1

log 3

.

.

.

.

.

.

.

.

.

.

.

.

0 0 0 � � � 10

c

2

log p

t

10

c

1

log p

t

1

C

C

C

C

C

A

:

For every lattice vector z = (z

0

; : : : ; z

t+1

)

>

=

P

t

i=0

e

i

b

i

with j

e

z

0

j = 1 we de�ne the associated pair

(u(z); v(z)) by

u(z) :=

t

Y

i=1

e

0

e

i

<0

p

je

i

j

i

and v(z) :=

t

Y

i=1

e

0

e

i

>0

p

je

i

j

i

:

Then the necessary and su�cient condition (6),(7) for ju(z) � v(z)N j < p

�

t

, transforms into

jz

0

j = 1 ;

1

2

10

�c

2

t

X

i=1

jz

i

j � 10

�c

1

jz

t+1

j+ log jz

t+1

j < c

1

log 10 + � log p

t

�

1

2

logN ; (8)

jz

0

j = 1 ;

1

2

10

�c

2

t

X

i=1

jz

i

j+ 10

�c

1

jz

t+1

j+ log jz

t+1

j < c

1

log 10 + � log p

t

�

1

2

logN ; resp. (9)

For our practical tests we use integral lattices by omitting the denominators of the columns in the

rational basis matrix, i.e.,

B :=

0

B

B

B

B

B

@

1 0 0 � � � 0 d10

c

1

logNc

0 d10

c

2

log 2c 0 0 d10

c

1

log 2c

0 0 d10

c

2

log 3c 0 d10

c

1

log 3c

.

.

.

.

.

.

.

.

.

.

.

.

0 0 0 � � � d10

c

2

log p

t

c d10

c

1

log p

t

c

1

C

C

C

C

C

A

:

Enumeration of pairs (u

i

; v

i

)

INPUT N; t; c

1

; c

2

; �; �; p;R

1. Compute the lattice basis B = (b

0

; b

1

; : : : ; b

t

)

T

;

2. L

3

{reduce b

0

; : : : ; b

t

with � = 0:99, i.e., block{reduce b

0

; : : : ; b

t

with � = 0:99 and blocksize 2 ;

3. Randomly permute the basis vectors b

0

; : : : ; b

t

;

4. Perform a block{reduction of b

0

; : : : ; b

t

with � = 0:99 and blocksize �.

Repeat steps 3 and 4 up to R times.
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For the enumeration procedure within the block{reduction of step 4 we invoke Pruned ENUM

2

(j; k)

with �xed success probability p : Setting p

t

= p

1=(k�j+1)

; t = j : : : ; k; Pruned ENUM

2

(j; k) returns the

non{trivial vector

P

k

i=j

u

i

b

i

with minimal �c

j

= c

j

(u

j

; : : : ; u

k

) = k�

j

(

P

k

i=j

u

i

b

i

)k

2

: Hereafter we size{

reduce the vector z :=

P

k

i=j

u

i

b

i

with respect to all vectors b

j�1

; : : : ; b

1

such that j < z;

^

b

i

> j=k

^

b

i

k

2

�

1=2 for i = 1; : : : ; j � 1 : We test whether the pair (u; v) associated with the reduced vector satis�es

condition (6) and whether ju� v N j factorizes over p

1

; : : : ; p

t

: The algorithm stops if t+ 2 such pairs

have been found.

The practical tests have been performed on a HP{Workstation 735 with 125 MHz and 57.4

MFLOPS.

Results for N = 2131438662079

t c

1

c

2

� � p run.{time rounds

125 12 3 3.0 30 0.05 04:18.35 12

125 13 4 3.0 30 0.04 03:57.45 10

125 13 4 3.0 30 0.05 04:17.00 11

125 13 4 3.0 30 0.06 03:04.95 7

125 14 4 3.0 30 0.05 02:06.74 4

125 15 3 3.0 30 0.05 02:23.92 4

125 15 4 3.0 30 0.05 02:10.89 3

125 15 5 3.0 30 0.05 02:48.50 5

125 16 4 3.0 30 0.05 02:32.94 5

125 20 4 2.0 40 0.01 12:50.38 13

125 20 4 2.0 50 0.01 13:35.91 3

125 20 4 3.0 30 0.05 05:20.81 5

Results for N = 250518388711599163

t c

1

c

2

� � p run.{time rounds

160 18 5 5.0 100 0.001 2:59:43.12 27

180 15 1 5.0 80 0.001 2:34:15.52 22

For the factorization of N = 2131438662079 Schnorr uses the parameters t = 125; c

1

= 25;

c

2

= 1; � = 32; � = 1 and performs a complete enumeration without any pruning [Sc93]. Instead of

condition (6) Schnorr tests whether

jz

0

j = 1 and kzk

1

< 2c

1

log 10 + 2� log p

t

� logN (10)

which is | without regarding rounding errors | equivalent to condition (8). In order to �nd a single

pair (u; v) Schnorr's algorithm took a couple of hours on a SUN{Sparc 1+ Workstation which are a

couple of minutes on a HP{Workstation 735.

For t = 125; c

1

= 15; c

2

= 4; � = 30; � = 3:0 and p = 0:05 the new algorithm determines all

t+ 2 = 127 pairs (u

i

; v

i

) in 2 minutes where steps 3 and 4 are repeated 3 times.

For N = 250518388711599163 and parameters t = 160; c

1

= 18; c

2

= 5; � = 100; � = 5; p = 0:001

the algorithm terminates after 27 rounds and takes 3 hours to �nd all t+ 2 = 162 pairs (u

i

; v

i

).

5 Conclusion

We have proposed an e�cient method to factorize composite numbers up to bitlength 60 by using

strong lattice reduction algorithms. Moreover, we have provided a detailed analysis of the practical

performance of our techniques. The generation of su�ciently many `

1

{close vectors to a �xed point

remains the bottleneck of the factoring method. However, the techniques presented in this report give

evidence that intricate enumeration algorithms might solve the factoring problem for bitlength up to

100 in reasonable time.

It should be pointed out that the enumeration of lattice vectors in the `

2

{norm seems to be most

e�cient. Experiments where we directly perform the enumeration in the `

1

{norm do not reduce the

running time of our algorithm (see [R97] for more details).

Since the strategy of the pruned enumeration relies on the traversion of weighted subtrees in

depth �rst search order we have implemented a simple version of the `Go with the winners'{scheme as

8



proposed in [AV94]. The few experiments done with the parameters given in the table did not improve

the running time of our enumeration. Nevertheless, this topic may be of further interest.
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