
An extended abstract of this paper appears in Advances in Cryptology { Crypto 97 Proceedings,

Lecture Notes in Computer Science Vol. ??, B. Kaliski ed., Springer-Verlag, 1997. This is the full

version.

Collision-Resistant Hashing: Towards Making

UOWHFs Practical

Mihir Bellare

�

Phillip Rogaway

y

July 10, 1997

Abstract

Recent attacks on the cryptographic hash functions MD4 andMD5 make it clear that (strong)

collision-resistance is a hard-to-achieve goal. We look towards a weaker notion, the universal one-

way hash functions (UOWHFs) of Naor and Yung, and investigate their practical potential. The

goal is to build UOWHFs not based on number theoretic assumptions, but from the primitives

underlying current cryptographic hash functions like MD5 and SHA-1. Pursuing this goal leads

us to new questions. The main one is how to extend a compression function to a full-
edged

hash function in this new setting. We show that the classic Merkle-Damg�ard method used in

the standard setting fails for these weaker kinds of hash functions, and we present some new

methods that work. Our main construction is the \XOR tree." We also consider the problem

of input length-variability and present a general solution.
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1 Introduction

A cryptographic hash function is a map f which takes a string of arbitrary length and maps it to a

string of some �xed-length c. The property usually desired of these functions is collision-resistance:

it should be \hard" to �nd distinct strings M and M

0

such that f(M) = f(M).

Cryptographic hash functions are much used, most importantly for digital signatures, and cheap

constructions are highly desirable. But in recent years we have seen a spate of attacks [10, 11, 12, 13]

bring down our most popular constructions, MD4 and MD5 [25, 26]. The conclusion is that the

design of collision-resistant hash functions may be harder than we had thought.

What can we do? One approach is to design new hash functions. This is being done, with SHA-1

[22] and RIPEMD-160 [14] being new designs which are more conservative then their predecessors.

In this paper we suggest a complementary approach: weaken the goal, and then make do with hash

functions meeting this weakened goal. Ask less of a hash function and it is less likely to disappoint!

Luckily, a suitable weaker notion already exists: universal one-way hash functions (UOWHF),

as de�ned by Naor and Yung [21]. But existing constructions, based on general or algebraic

assumptions [21, 28, 17], are not too e�cient. We take a di�erent approach. We integrate the

notion with current hashing technology, looking to build UOWHFs out of MD5 and SHA-1 type

primitives.

The main technical issue we investigate is how to extend the classic Merkle-Damg�ard paradigm

[20, 9] to the UOWHF setting. In other words, how to build \extended" UOWHFs out of UOW

compression functions. We address practical issues like key sizes and input-length variability. Our

main construction, the \XOR tree," also turns out to have applications to reducing key sizes for

some existing constructions of UOWHFs. To make for results more directly meaningful to practice

we treat security \concretely," as opposed to asymptotically.

Unfortunately, the name UOWHFs does not re
ect the property of the notion, which is a weak

form of collision-resistance. We will call our non-asymptotic version target collision-resistance

(TCR). We refer to the customary notion of collision resistance as any collision-resistance (ACR).

1.1 Background

Let � = f0; 1g be the binary alphabet. Informally, a function f : Msgs ! �

c

on some domainMsgs

is a \compression function" if Msgs is the set of strings of some small length (eg., Msgs = �

640

for the compression function of MD5). It is an \extended hash function" if Msgs = �

�

(or at

least some big subset of �

�

). Either way, a collision for f is a pair M;M

0

2 Msgs such that

M 6= M

0

but f(M) = f(M

0

). Still informally, f is said to be \any collision-resistant" (ACR) if it

is computationally hard to �nd a collision.

The MD method. The Merkle-Damg�ard construction [20, 9] takes a function f : �

c+m

! �

c

and

extends it to a function MDf : �

�

! �

c

. Assume for simplicity that M =M

1

� � �M

n

is a sequence

of exactly n blocks, each block of m bits. Fix C

0

2 �

c

. Then compute C

i

= F (C

i�1

kM

i

) and set

MDf(M) = C

n

. Roughly said, the property of this method is that if it is hard to �nd collisions

in f then it is hard to �nd collisions in MDf .

Most of the popular hash functions (MD4, MD5, SHA-1 and RIPEMD-160) use the MD con-

struction. Thus the crucial component of each algorithm is the underlying compression function,

and we want it to be ACR. But the compression function of MD4 is not: following den Boer

and Bosselaers [10], collisions were found by Dobbertin [12]. Later, collisions were found for the

compression function of MD5, again by den Boer and Bosselaers [11], and in a stronger form by

Dobbertin [13]. These attacks are enough to give up on MD4 and MD5 from the point of view
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of ACR. No collisions have been found for the compression functions of SHA-1 and RIPEMD-160,

and these may well be stronger.

Keying. In the popular hash functions mentioned above there is no explicit key. But Damg�ard

[8, 9] de�nes ACR via keyed functions, and it is in this setting that he proves the MD construction

correct [9]. Keying hash functions seems essential for a meaningful formalization of security.

When one treats things carefully, then, a hash function F should not have the signature de-

scribed above: it must take two arguments| one for the key K and one for the message M . To

use F one selects a random key K, publishes it, and from then on you hash according to F

K

. In

essence, the key for F speci�es the particular function f = F

K

which is used to hash strings.

1.2 Target Collision-Resistance

With an ACR hash function F the key K is announced and the adversary wins if she manages to

�nd any collision M;M

0

for f = F

K

. The points M and M

0

may depend arbitrarily on K; any

pair of distinct points will do. In the notion of Naor and Yung [21] the adversary no longer wins

by �nding just any collision. The adversary must choose one point, say M , in a way which does

not depend on K, and then, later, given K, the adversary must �nd a second point M

0

(this time

allowed to depend on K) such that M;M

0

is a collision for F

K

. While it might be easy to �nd

a collision M;M

0

in F

K

by making both M;M

0

depend on K, the adversary may be unable to

�nd collisions if she is forced to \commit" to one point of the collision before seeing K. We call

this weakened notion of security target collision-resistance (TCR). (In the terminology of [21] it is

universal one-wayness.)

Naor and Yung [21] formalize this via the standard \polynomial-time adversaries achieve negli-

gible success probability" approach of asymptotic cryptography. In order to get results which are

more directly meaningful for practice, our formalization is non-asymptotic. See Section 2.

No birthdays. Besides being a weaker notion (and hence easier to achieve) we wish to stress one

important practical advantage of TCR over ACR: because x must be speci�ed before K is known,

birthday attacks to �nd collisions are not possible. This means the hash length c can be small,

like 64 or 80 bits, as compared to 128 or 160 bits for an ACR hash function. This is important to

us for several reasons and we will appeal to it later.

Good enough for signing. In weakening the security requirement on hash functions we might

risk reducing their utility. But TCR is strong enough for the major applications, if appropriately

used. In particular, it is possible to use TCR hash functions for hashing a message before signing.

See Section 7. The idea is to pick a new key K for each message M and then sign the pair

(K;F

K

(M)), where F is TCR. This works best for short keys. When they are long some extra

tricks can be used, as described in Section 7, but we are better o� with small keys. Thus there is

a strong motivation for keeping keys short.

1.3 Making TCR Functions out of Standard Hash Functions

The most convenient way to make a TCR hash function is to directly key an existing hash function

such as MD5 or SHA-1. We caution that one must be careful in how this keying is done. If not,

making a TCR assumption about the keyed function may really be no weaker than making an ACR

assumption about the original hash function. See Section 4.
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Method Key length See

Basic Linear Hash

H 7! LH

Lk=m Section 5.2 and Figure 3

XOR Linear Hash

H 7! XLH

k + Lc=m Section 5.3 and Figure 4

Basic Tree Hash

H 7! TH

k log

d

(L=c) Section 5.4 and Figure 5

XOR Tree Hash

H 7! XTH

k + dc log

d

(L=c) Section 5.5 and Figure 6

Figure 1: The schemes of this paper which turn a TCR compression function H into an extended TCR hash

function. Here k is the key length of H . For the �rst two schemes H

K

: �

c+m

! �

c

and for the next two

schemes H

K

: �

dc

! �

c

, for some d � 2 and any k-bit key K. In all cases, L is the length of the message

to be hashed (measured in bits).

1.4 Extending TCR Compression Functions to TCR Hash Functions

Instead of keying the entire hash function at once a good strategy might be to key just the compres-

sion function. Then one could hope to transform this TCR compression function into an extended

TCR hash function using some simple construction. The question we investigate is how to do this

transformation. This turns out to be quite interesting.

The MD method does not work for TCR. Suppose we are given a TCR compression func-

tion H in which each k-bit key speci�es a map H

K

: �

m+c

! �

c

. We want to build a TCR hash

function H

0

in which each key K speci�es a map H

0

K

on arbitrary strings. The obvious thought is

to apply the MD method to H

K

. However, we show in Section 5.1 that this does not work. We

give an example of a compression functions which is secure in the TCR sense but for which the

resulting hash function is not.

Let us clarify one point. Doesn't the function resulting from the MD construction meet even the

stronger notion of ACR? The problem is that we are starting from a weaker compression function:

our compression function is only TCR. We �nd this is not enough to imply that the hash function

meets the weaker TCR notion.

Linear hash: Basic and XOR. To preserve TCR, the most direct extension we found to the MD

construction is to use a di�erent key at each stage. This works, and its exact security is analyzed

in Section 5.2. But the method needs a long key.

1

We provide a variant of the above scheme which uses only one key for the compression function,

but also uses a number of auxiliary keys, which are XORed in at the various stages. This can

slightly reduce key sizes, and it also has some advantages from a key-scheduling point of view (eg.,

it may be slow to \set up" the key of a compression function, so it's best if this not be changed too

often).

The basic tree hash. To get major reductions in key size we turn to trees. Wegman and

Carter [31] give a tree-based construction of universal hash functions that reduces key sizes, and

Naor and Yung have already pointed out that key lengths for UOWHFs can be reduced by the

1

It may be worth remarking that the obvious idea for reducing key size is to let the key be a seed to a pseudorandom

number generator and specify longer keys by stretching the seed to any desired length. The problem is that our keys

are public (they are available to the adversary) and pseudorandom generators are of no apparent use in such a context.
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same method [21, Section 2.3]. We recall this basic tree construction in Section 5.4 and provide a

concrete analysis of its security. Then we look at key sizes. Suppose we start with a compression

function H with key length k mapping dc bits to c bits, and we want to hash a L bit message down

to m bits. The basic tree construction yields a hash function with a key size of k log

d

(L=c) bits.

Key lengths have been reduced, but one can reduce them more.

The XOR tree hash. Our main construction is the XOR tree scheme. Here, the hash function

uses only one key for the compression function and some auxiliary keys. If we start with a com-

pression function with key length k mapping dc bits to c bits, and we want to hash L bits to c bits,

the XOR tree construction yields a hash function with a key size of k + dc log

d

(L=c) bits.

Here c is short, like 64 bits, since we do not need to worry about birthday attacks for TCR

functions. On the other hand, k can be quite large (and in many constructions, it is). So the key

length for the XOR tree hash will usually be much better than the key length for the basic tree

hash.

Summary. For a summary of the constructions and their key lengths, see Figure 1.

1.5 Other Results

Reducing key sizes for other constructions. Our main motivation has been building TCR

hash functions from primitives underlying popular cryptographic hash functions. But XOR trees

can also be used to reduce key sizes for TCR hash functions built from combinatorial or algebraic

primitives. For example, the subset sum based construction of [17] uses a key of size Ls bits to

hash L bits to s bits, where s is a security parameter which controls subset sum instance sizes.

(Think of s as a few hundred.) So the size of the key is even longer than the size of the data.

The basic (binary) tree scheme can be applied to reduce this: starting with a compression function

taking 2s bits to s bits (it has key length k = 2s

2

) the key size of the resulting hash function

is k lg(L=s) = 2s

2

lg(L=s). With our (binary) XOR tree scheme, the key size of the resulting

function is k+2s lg(L=s) = 2s(s+ lg(L=s)). The latter can be quite a bit smaller. For example for

s = 300 and a message of length L = 10 KBytes, the key length for the basic tree scheme is about

182 KBytes while that for the XOR trees scheme is about 23 KBytes, so that the gain is a factor

of about 8.

Domains and collision lengths. Strings to be hashed may be of (virtually) any length at all.

Nonetheless, it is often convenient to think of messages as having lengths which are multiples of

some �xed block size, like 512. This restriction can be removed using simple padding techniques.

(For example, append to each message a \1" bit and then the minimal number of \0" bits so that

the padded message is in the domain of the hash function. This method, and many others, provably

preserve TCR, and ACR, too.) For details, see Section 6.

Our proofs of security will rule out adversaries who can �nd collisions for equal-length strings

M;M

0

. In practice, collisions between strings of unequal length have to be prevented, too. To handle

this we again provide a general construction. But this time the standard padding techniques do

not necessarily work. We give a method that does. It turns a hash function secure against equal-

length strings M;M

0

2 Msgs into a hash function secure against collisions of arbitrary strings

shortMsg ; longMsg 2 Msgs. The method requires just one extra application of the compression

function. See Section 6.

It is the above two results which e�ectively justify our restricting our attention to hash functions

that resist equal-length collisions for some set of convenient input lengths.
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1.6 Related Work

We have already described the most closely related work, which is due to Naor and Yung [21],

Merkle [20], and Damg�ard [8, 9].

The general approach to concrete, quantitative security that we are following began with [3].

A good deal of work has gone into keying hash functions for message authentication [1, 29, 18,

23]. In particular, HMAC is a popular solution to this problem [1, 19]. The di�erence is that in the

message authentication setting, parties share a secret key, which is used to key the hash function; in

our setting, there are no secret keys, and the hash function is to be keyed with a key that, although

chosen at random, is eventually available to the adversary.

Bellare, Canetti and Krawczyk [2] considered keyed compression functions as pseudorandom

functions, and showed that applying the MD construction then yields a pseudorandom function.

Again, the di�erence is that the notion of pseudorandomness relies on the secrecy of the key.

A weaker-than-standard notion of hashing is considered in [1]. However their notion is based on

a hidden key and hash functions meeting their notion, although useful in the message authentication

setting, don't su�ce for digital signatures, where the computation of the hash function must be

public to enable signature veri�cation.

A preliminary version of this paper appeared as [4]. This is the full version.

2 Notions of Hashing

Hash functions like MD5 or SHA-1 have no explicit key. But no notion of collision-freeness has

been o�ered for such a keyless setting. To get a sense why this is so, suppose f is a function

f : �

�

! �

c

, for some integer c. We would like to say it is collision-free if there is no e�cient

program that can �nd collisions in f . But in fact, no matter what is f , there is such a program.

Clearly there exists a pairM;M

0

which is a collision for f , and hence there exists a program which

very quickly �nds collisions, namely the program that has the description of M;M

0

embedded in

its code, and just outputs M;M

0

. While, in practice, it may be \di�cult" to explicitly �nd this

program, a formalization in terms of the existence of collision-�nding programs is ruled out. It

seems the natural way to get a meaningful notion of security is to talk about families of functions.

Families of hash functions. In a family of hash functions F each key K speci�es a particular

hash function f = F

K

in the family. Each such function maps Msgs to �

c

where Msgs � �

�

is

some set of messages associated to the family, and c is the hash length (output length) associated

to the family. The key K will be taken from some key space �

k

, and k will be called the key length.

If Msgs = �

`

for some ` then ` is called the input length.

Formally, a family F of (keyed) hash functions is a map F : �

k

� Msgs ! �

c

. We de�ne

F

K

: Msgs ! �

c

by F

K

(M) = F (K;M) for each K 2 �

k

and each M 2 Msgs. We use either the

notation F

K

(M) or F (K;M), as convenient.

The hash family F is a compression function if the domain is Msgs = �

`

for some small

constant ` (eg., ` = 512). It is an extended hash function if Msgs is contains long strings.

We say that f : Msgs ! �

�

is length consistent if jf(M)j = jf(M

0

)j whenever jM j = jM

0

j. A

family of hash functions F is length consistent if jF

K

(M)j = jF

K

0

(M

0

)j whenever jM j = jM

0

j and

jKj = jK

0

j.

Collisions. Recall a collision for a function f de�ned on a domain Msgs is a pair of strings

M;M

0

2 Msgs such that M 6= M

0

but f(M) = f(M

0

). In our setting the function of interest will

be f = F

K

for a randomly chosen key K. Security of a hash family talks about the di�culty of
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�nding collisions in F

K

. There are two notions of security. We will de�ne both below. First some

technicalities.

Programs and timing. We �x some RAM (random access machine) model of computation,

including pointers, as in any algorithms text (eg. [6]), and we measure execution time of a program

with respect to that model. An adversary is a program for our model, written in some �xed

programming language. Any program is allowed randomness: the programming language supports

a �(log n)-time operation FlipCoin(n) which returns a random number between 1 and n. By

convention, when we speak of the running time of an adversary we mean the actual execution

time in the �xed model of computation, plus the length of the description of the program. (This

prevents, for example, the possibility of declaring very e�cient a program that stores in its code a

table giving collisions for lots of di�erent key values.) If F : �

k

�Msgs ! �

c

is a family of hash

functions we let T

F

indicate the worst-case time to compute F

K

(M), in the underlying model of

computation, when K 2 �

k

and M 2 Msgs . This may be in�nite or enormous if Msgs is. To

handle that possibility we let T

F;`

denote the worst-case time to compute F

K

(M) when K 2 �

k

and M 2 Msgs \ �

�`

.

2.1 Any Collision-Resistance | ACR

The \standard" notion of collision resistance for a function f is that given f it is hard to �nd a

an M;M

0

for f . In the keyed setting, it can be formalized like this (cf. [8, 9]). An adversary CF,

called a collision-�nder, is given K chosen at random from �

k

and is said to succeed if it outputs

a collision M;M

0

for F

K

. We measure the quality of a hash function by seeing how successful

an adversary can be when compared against the adversary's resource expenditure. Formally, a

collision-�nder CF is said to (t; �; �)-break the family of hash functions F : �

k

�Msgs ! �

k

if the

running time of the adversary is at most t, strings M;M

0

that CF outputs have length at most �,

and the probability that CF, on input K, outputs a collision M;M

0

for F

K

is at least �. Here the

probability is take over K (a random point in �

k

) and CF's random coins.

Note that the adversary is given the (random) point K (the key is \announced") and only then

is the adversary asked to �nd a collisions for F

K

. So the adversary may employ a strategy in which

the collision which is found depends on K. This makes the notion very strong.

Often we don't care about the length of the collisions that an adversary may �nd. In this case

we omit � from the notation above.

Informally, we say that F is \any collision-resistant" (ACR) if for every collision-�nder who (t; �)-

breaks F , the ratio t=� is large.

2.2 Target Collision-Resistance | TCR

In the notion of [21] the adversary does not get credit for �nding any old collision. The adversary

must still �nd a collision M;M

0

, but now M is not allowed to depend on the key: the adversary

must choose it before the key K is known. Only after \committing" to M does the adversary

get K. Then it must �nd M

0

.

Formally, the adversary CF = (CF-I;CF-II) (called a target collision �nder) consists of two

algorithms, CF-I and CF-II. First, CF-I is run, to produce M and possibly some extra \state

information," State , that CF-I wants to pass to CF-II. We call M the target message. Now, a

random key K is chosen and CF-II is run. Algorithm CF-II is given K;M;State and must �nd M

0

di�erent fromM such that F

K

(M) = F

K

(M

0

). We callM

0

the sibling message. The sibling message

can depend on the key, but the target message can not.
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The formalization of [21] was asymptotic. Here we provide a concrete one, and call this version

of the notion target collision-resistance (TCR).

We begin with some special cases. A target collision �nder CF = (CF-I;CF-II) is called an equal-

length target collision �nder if the messages M;M

0

which CF-I outputs always satisfy jM j = jM

0

j.

It is called a variable-length target collision �nder when no such restriction is made on the relative

lengths of M;M

0

.

Let CF = (CF-I;CF-II) be a target-collision �nder. We say that it (t; �; �)-breaks F if its

running time is at most t, the strings M;M

0

output by CF are of length at most �, and CF �nds a

collision with probability at least �. The running time is the sum of the running times for CF-I and

CF-II, and the probability is over the coins of CF and the choice of K. We say that F is (t; �; �)-

resistant to equal-length target collisions if there is no equal-length target collision �nder which

(t; �; �)-breaks F . We say that F is (t; �; �)-resistant to variable-length target collisions if there is

no variable-length target collision �nder which (t; �; �)-breaks F . If we say that F is (t; �; �)-TCR,

or (t; �; �)-resistant to target collisions, we mean it is (t; �; �)-resistant to variable-length target

collisions.

We will sometimes write ProbSuccess(CF; F ) to denote the probability that CF �nds a collision

in F .

Often we don't care about the length of the collisions that an adversary may �nd. In this case

we omit � from the notations above.

Informally, we say F is \target collision-resistant" (TCR) (or, resp., TCR to equal-length col-

lisions) if it for every (resp., equal-length) target collision-�nder who (t; �)-breaks F , the ratio t=�

is large.

Remark 2.1 Notice that we do not restrict the adversary to any particular attack strategy. If a

family of hash functions meets this notion of security, then it is secure against all attacks that can

be run given the prescribed resources. This is the advantage of the \provable security" approach.

Remark 2.2 Resistance to equal-length target collisions is a weaker notion than resistance to

variable-length target collisions: in the former, the adversary is only being given credit if it �nds

collisions where the messages are of the same length. In practice, we want resistance to variable-

length target resistance. However, it turns out the convenient design approach is to focus on

resistance to equal-length target collisions and then achieve resistance to variable-length target

collisions via a general transformations we present in Section 6.

Remark 2.3 Consider the following alternative syntax for a target collision-�nder: it is an algo-

rithm B together with a string M . The associated notion for target collision-resistance is that

(B;M) is successful in attacking F if, on input K, algorithm B outputs an M

0

such that M

0

6=M

and F

K

(M) = F

K

(M

0

). This de�nition is in some ways simpler than our \�nd-target/�nd-sibling"

notion, since there is only one algorithm involved and, consequently, we have no state information

to communicate from one algorithm to another.

The two notions are actually equivalent. Certainly the alternative notion is not stronger: given

(B;M), we could have constructed CF = (CF-I;CF-II) where CF-I outputs M;� (where � is the

empty string) and CF-II behaves like B. To see that the alternative notion is not weaker, start

with a collision �nder CF = (CF-I;CF-II). Consider the random coins that cause CF-I to maximize

the probability that CF will succeed. For these random coins there is a resulting (M;State) which

CF-I will output. Construct a (M;B) using this message M and letting B be the algorithm which

behaves like CF-II started in the state indicated by State . The success probability of B will be at

least the success probability of CF.

9



Why did we select our \�nd-target/�nd-sibling" formalization instead of the alternative one?

First, the �nd-target/�nd-sibling formalization more directly mirrors our intuition, re
ecting the

observation that, in the real world, there is computation associated to �nding the target message.

Second, if one considers a parameterized collection of hash families, a di�erent family for each key

length k, then our �nd-target/�nd-sibling notion immediately generalizes to give a proper, uniform

notion for security for such objects. This is not true for the alternative notion.

3 Composition Lemmas

It is useful to hash a long string in stages, �rst cutting down its length via one hash function, then

applying another to this output to cut it down further. Naor and Yung [21] considered this kind of

composition in the context of TCR hash functions. We �rst state a concrete version of their lemma

and then extend it to an equal-length collision analogue which is in fact what we will use.

LetH

1

: �

k

1

��

`

1

! �

`

2

andH

2

: �

k

2

��

`

2

! �

c

be families of hash functions. The composition

H

2

�H

1

: �

k

1

+k

2

� �

`

1

! �

c

is the family de�ned by

(H

2

�H

1

)(K

1

K

2

; M) = H

2

(K

2

; H

1

(K

1

;M)) ;

for all K

1

2 �

k

1

, K

2

2 �

k

2

, and M 2 �

`

1

. From the proof of Naor and Yung's composition lemma

[21] we extract the concrete security parameters to get the following. For completeness a proof is

provided in Appendix A.

Lemma 3.1 (TCR composition lemma) Let H

1

: �

k

1

��

`

1

! �

`

2

and H

2

: �

k

2

��

`

2

! �

c

be

families of hash functions. Assume the �rst is (t

1

; �

1

)-secure against target collisions and the second

is (t

2

; �

2

; �

2

)-secure against target collisions. Then the composition H = H

2

�H

1

is (t; �; �)-secure

against target collisions, where

t = min(t

1

��(k

2

); t

2

� T

H

1

;�

2

��(k

1

))

� = �

2

� = �

1

+ �

2

:

In this paper we also need such a lemma for the case of equal-length TCR. This requires an extra

condition on the �rst family of hash functions, namely that it be length consistent. See Appendix A

for the proof.

Lemma 3.2 (TCR composition lemma for equal-length collisions) Let H

1

: �

k

1

� �

`

1

!

�

`

2

and H

2

: �

k

2

� �

`

2

! �

c

be families of hash functions. Assume the �rst is length consistent

and (t

1

; �

1

)-resistant to equal-length target collisions. Assume the second is (t

2

; �

2

; �

2

)-resistant to

equal-length target collisions. Then the compositionH = H

2

�H

1

is (t; �; �)-resistant to equal-length

target collisions, where

t = min(t

1

��(k

2

); t

2

� 2T

H

1

;�

2

��(k

1

))

� = �

2

� = �

1

+ �

2

:

4 TCR Hash Functions from Standard Hash Functions

The most direct way to construct a TCR hash function is to key a function like MD5 or SHA-1.

We point out the importance of doing this keying with care.

10



M 1 M 2 M 3

K K K

0 C1 C2 C3H H H

Figure 2: Construction MDH | The Merkle-Damg�ard construction with a common key K. It is

possible for H to be TCR and yet MDH might fail to be.

Suppose, for example, that one keys MD5 through its 128-bit initial chaining value, IV. Denote

the resulting hash function family by MD5

�

. Then breaking MD5

�

(in the sense of violating TCR)

amounts to �nding collisions in an algorithm which is identical to MD5 except that it begins with

a random, known IV (as opposed to the published one). It seems unlikely that this task would be

harder than �nding collisions in MD5 itself. It could even be easier!

Alternatively, suppose one tries to use the well-known \envelope" method, setting MD5

��

K

(M) =

MD5(KkMkK). It seems likely that any extension of Dobbertin's attack [13] which �nds collisions

in MD5 would also defeat MD5

��

. Letting md5 denote the compression function of MD5, note that

if for any C 2 �

128

you can �nd distinct M;M

0

2 �

512

such that md5(CkM) = md5(CkM

0

), then

you have broken MD5

��

.

A safer approach might be to incorporate key bits throughout the message being hashed. For

example, with jKj = 128 one might intertwine 128 bits of key and the next 384 bits of message into

every 512-bit block. (For example, every fourth byte might consist of key.) Now the cryptanalyst's

job amounts to �nding a collision M;M

0

in MD5 where we have pre-speci�ed a large number of

(random) values to be sprinkled in particular places throughout M and M

0

. This would seem to

be very hard.

Note that the approach above (shu�ing key bits in with and message bits) is equally at home

in de�ning a TCR compression function based on the compression function underlying a map like

MD5 or SHA-1. The resulting keyed compression function can then be extended to an extended

keyed hash function using the constructs of this paper. Doing this one will gain in provable-security

but lose out in increased key length.

5 TCR Hashing based on TCR Compression Functions

Throughout this section messages will be viewed as sequences of blocks each of which has some

�xed length of m bits. For notational simplicity, let �

m

= �

m

be the space of possible message

blocks. A message is then regarded as M = M

1

� � �M

n

where M

i

2 �

m

for each i = 1; : : : ; n. The

number of m-bit blocks in such a message M is denoted by n = jM j

m

. Typically N will stand for

some maximum number of allowed blocks, so that n � N .

We are given a TCR compression function H. We wish to build an extended function H

0

. We

begin by looking at the method used in the ACR setting.

5.1 The MD Construction Doesn't Propagate TCR

Suppose we start with a compression function H: �

k

��

c+m

! �

c

and we want to hash a message

M

1

� � �M

n

2 �

n

m

. The MD method gives a keyed family of functions MDH

n

: �

k

� �

n

m

! �

c

as

11



follows. First �x some c-bit initial vector IV, say IV = 0

c

. We then de�ne MDH according to:

Algorithm MDH

n

(K; M)

C

0

 IV

for i = 1; : : : ; n do

C

i

 H(K; C

i�1

kM

i

)

return C

n

For a picture, see Figure 2.

Damg�ard [9] shows that if H is ACR then so is MDH

n

. It would be nice if this worked for

TCR too. But it does not. The reason is a little subtle. If H is TCR it still might be easy to �nd

collisions in H

K

if we knew K in advance (meaning we were allowed to see K before specifying any

point for the collision). However, a few MD iterations of H on a �xed point can e�ectively surface

the key K, causing subsequent iterations to misbehave.

This intuition above can be formalized by giving an example of a compression function H which

is TCR but for which MDH

n

is not. To give such an example we must �rst assume that some

TCR compression function exists (else the question is moot). Calling this F , we construct H so

that H is still TCR, but MDH

n

is not TCR, for some integer n. The proposition below gives the

exact bounds with which H, on the one hand, inherits the TCRness of F , and, on the other hand,

MDH

n

can be broken.

Proposition 5.1 Suppose there exists a compression function F : �

k

� �

c+m

0

! �

c

with m

0

> k

such that F is (t

0

; �

0

)-resistant to target collisions. Then there exists a compression function H such

that

(1) H is (t; �)-resistant to target collisions for t = t

0

��(k +m

0

) and �

0

= �+ 2

�k+1

(2) There is a collision-�nder that (t; �)-breaks MDH

2

, where t = �(m

0

) and � = 1� 2

�k

.

Proof: We setm = m

0

�k, which is positive by assumption. We will construct H: �

k

��

(c+k)+m

!

�

c+k

such that H is TCR but MDH

2

is not. The construction of H is like this. For K 2 �

k

,

x 2 �

c

, y 2 �

k

and z 2 �

m

, let

H(K;x k y k z) = H

K

(x k y k z) =

(

F

K

(x k y k z) kK if y 6= K

1

c

k 1

k

if y = K.

First we claim H is TCR secure. Second we claim that MDH

2

is not. Lets check the latter �rst.

Let IV = IV

1

k IV

2

be the (c+ k)-bit initial vector. (IV

1

is the �rst c bits and IV

2

the rest. This

is chosen independently of H and our attack works regardless of its value.) Here is the attack. In

the �rst stage our collision �nder must output a two block string M . It outputs M = 0

m

k 0

m

.

(Recall the block length of H is m.) Now, in the second stage, the collision �nder receives K. It

ignores K and outputs M

0

= 1

m

k 0

m

. Since K is chosen at random, it is di�erent from IV

2

with

high probability (at least 1� 2

�k

), and under this assumption one can check that

MDH

K

(0

m

k 0

m

) = H

K

(H

K

(IV k 0

m

) k 0

m

) = H

K

(F

K

(IV k 0

m

) kK k 0

m

) = 1

c

k 1

k

MDH

K

(1

m

k 0

m

) = H

K

(H

K

(IV k 1

m

) k 0

m

) = H

K

(F

K

(IV k 1

m

) kK k 0

m

) = 1

c

k 1

k

:

So M;M

0

is a collision for MDH

2

, meaning the latter is not TCR.

Now we need to check that H, however, was TCR. We claim this is true because by assumption F

is TCR. The intuition is that as long as y 6= K, the �rst block of the output of H is just the output

of F and so one can't �nd collisions here. But since the target message must be speci�ed before

seeing K, the adversary has only a 2

�k

chance of having y = K in the target message x k y k z.
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M 1 M 2 M 3

K1 K2 K3

0 C1 C2 C3H H H

Figure 3: Construction LH | The basic linear scheme. If H is TCR then LH is TCR, too.

Formally we claim that if F was (t

0

; �

0

)-resistant to target collisions thenH is (t; �)-resistant to target

collisions for t = t

0

��(k + c+m) and � = �

0

+ 2

�k+1

. To see this, suppose CF = (CF-I;CF-II) is

a target collision �nder which (t; �)-breaks H. We construct a collision �nder CF

0

= (CF-I

0

;CF-II

0

)

which (t

0

; �

0

)-breaks F . CF-I

0

runs CF-I to get a target message M

1

= x

1

k y

1

k z

1

, and outputs

the same target message. Now CF-II

0

receives a random k-bit key K, and is given M

1

. It wants to

�nd M

2

= x

2

k y

2

k z

2

so that M

1

;M

2

is a collision for F

K

. If K = y

1

it aborts, but this happens

only with probability 2

�k

. Now it gives K to CF-II, along with M

1

. CF-II outputs a message

M

2

= x

2

k y

2

k z

2

. Suppose M

1

;M

2

is a collision for H

K

. We now consider two cases, that y

2

= K

and y

2

6= K. In the former case the probability that H

K

(M

1

) = H

K

(M

2

) is at most 2

�k

, because

it can only happen if K = 1

k

, and K was chosen at random. (The last block of H

K

(M

2

) is 1

k

and

the last block of H

K

(M

1

) is K.) In the latter case, having H

K

(M

1

) = H

K

(M

2

) means we must

have F

K

(M

1

) = F

K

(M

2

), so that M

1

;M

2

is a collision for F

K

. Thus the collision �nder CF

0

runs

in time t+O(k + c+m) and ProbSuccess(CF

0

; F ) � 1� 2

�k+1

. The result follows.

One might criticize the example above for being somewhat \arti�cial." But recall the goal is to

�nd general constructions that work for any compression function. What the above shows is that

this hope is lost for the standard MD construction.

Remark 5.2 There is a possible source of confusion on the subject of how a concrete hash function

like MD5 can be seen as an application of the MD construction. In functions like MD5 there is no

explicit key, so the relationship is not so obvious. There is, however, a compression function, call it

md5, and one often thinks of this compression function as taking two arguments: a 128-bit chaining

value, C, and the 512-bit message block, M . From that one might assume that md5(C;M) is the

concrete realization of a family of family of hash functions H

C

(M). But what happens in MD5

would then be completely di�erent from what Damg�ard de�ned| and rightly so, since it is easy to

see that chaining H

C

(M) as it is done in MD5 would not preserve collision resistance in the sense of

ACR or TCR. Instead, the proper viewpoint for seeing MD5 as an instance of the MD-construction

is to think of the input message to md5 as the entire 640-bits, so that H

K

(CkM) = md5(CkM).

Thus md5 corresponds to H

K

. What, then, is K? In essence, it is unpredictable choices that were

involved in deciding on the md5 algorithm itself| Rivest choose the key K and that key is md5.

Only under this viewpoint are the MD4-family of hash functions instances of the Merkle/Damg�ard

construction.

5.2 The Basic Linear Hash

Given that the MD construction doesn't propagate TCR, a natural approach is to iterate just as

in MDH

n

but with a di�erent key at each round. We will show that this does preserve TCR.
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LetH: �

k

��

c+m

! �

c

be the given TCR compression function. To hashM =M

1

: : :M

n

2 �

n

m

we use n keys, K

1

; : : : ;K

n

, one key for each application of the underlying compression function.

Namely, �xing some IV, for concreteness IV = 0

c

, we have:

Algorithm LH(K

1

: : : K

n

; M)

C

0

 IV

for i = 1; : : : ; n do

C

i

 H(K

i

; C

i�1

kM

i

)

return C

n

This is depicted in Figure 3. The family of hash functions LH

N

: �

Nk

� �

�N

m

! �

c

is de�ned by

letting LH

N

(K

1

: : : K

N

;M) = LH(K

1

: : : K

n

;M) where n = jM j

m

, for every K

1

; : : : ;K

N

2 �

k

and

everyM 2 �

�N

m

. For notational convenience we de�ne LH

0

(�; �) = 0

c

and notice that for all n � 1,

LH(K

1

� � �K

n

; M

1

: : : M

n

) = H

K

n

(LH(K

1

� � �K

n�1

; M

1

� � �M

n�1

) kM

n

) :

The following theorem says that if the compression function H is resistant to target collisions then

so is the extended hash function LH

N

.

Theorem 5.3 SupposeH: �

k

��

c+m

! �

c

is (t

0

; �

0

)-resistant to target collisions. SupposeN � 1.

Then LH

N

: �

Nk

� �

�N

m

! �

c

is (t; �)-resistant to equal-length target collisions, where � = N�

0

and t = t

0

��(N) � (T

H

+m+ k + c).

Proof:We begin with the following observation. IfM;M

0

2 �

n

m

is a collision for LH

N

(K

1

: : : K

N

; �)

|meaning M 6= M

0

but LH

N

(K

1

: : : K

N

;M) = LH

N

(K

1

: : : K

N

;M

0

)| then there exists a j 2

f1; : : : ; ng such that the following hold:

(

LH

K

1

:::K

j

(M

1

: : :M

j

) = LH

K

1

:::K

j

(M

0

1

: : :M

0

j

)

LH

K

1

:::K

j�1

(M

1

: : :M

j�1

) kM

j

6= LH

K

1

:::K

j�1

(M

0

1

: : :M

0

j�1

) kM

0

j

:

(1)

This is not hard to see, by \tracing back" the collision. We propose to exploit this to �nd collisions

in H.

For the proof, suppose CF = (CF-I;CF-II) is a equal-length target collision �nder which (t; �)-

breaks LH

N

. We construct a target collision �nder CF

0

= (CF-I

0

;CF-II

0

) which (t

0

; �

0

)-breaks H.

The de�nition of CF

0

is as follows:

Algorithm CF-I

0

(M;State) CF-I and n jM j

m

i

R

 f1; : : : ; ng

K

1

; : : : ;K

i�1

R

 �

k

x LH(K

1

: : : K

i�1

;M

1

: : :M

i�1

) kM

i

return (x; (i;K

1

; : : : ;K

i�1

;M;State))

Algorithm CF-II

0

(K;x; (i;K

1

; : : : ;K

i�1

;M;State))

K

i

 K

K

i+1

; : : : ;K

N

R

 �

k

M

0

 CF-II(K

1

: : : K

N

;M;State)

x

0

 LH(K

1

: : : K

i�1

;M

0

1

: : :M

0

i�1

) kM

0

i

.

return x

0

We must now bound the probability that x; x

0

is a collision for H(K; �) in the experiment describing

the attack of CF

0

on H. Notice that the distribution on the keys K

1

; : : : ;K

N

is uniform (remember

K = K

i

too is chosen at random in the experiment) and so CF �nds a collision with probability

ProbSuccess(CF;LH

N

) > �. The distribution of the keys is also independent of i, and the latter

was chosen at random, so if M;M

0

is a collision for LH

N

(K

1

: : : K

N

; �) then we have i = j (where

j is the value of Equation (1)) with probability 1=n � 1=N . So �

0

> �=N .

The running time of CF

0

is that of CF plus the overhead. This overhead is �(N)[m+ T

H

+ k + c].

The choice of t in the theorem statement makes all this at most t

0

, from which we conclude the

result.
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M 1 M 2 M 3

K K K

C1  C2 C3H H H+ ++

K1 K2 K3

0

Figure 4: Construction XLH | The XOR linear scheme. Compared to LH , the key size may be

reduced. But it is still long.

Remark 5.4 We emphasize that, with the above theorem, when the keyK is given to the adversary

following the adversary's identifying the target collision M = M

1

� � �M

n

, it is the entire key K =

K

1

� � �K

N

which is given to the adversary, and not just the pre�x of it K

1

� � �K

n

. This makes the

result stronger. Subsequent theorems will be the same.

5.3 The XOR Linear Hash

We present a variant of the above in which the compression function uses the same key K in each

iteration, but an auxiliary \mask" key K

i

, depending on the iteration number i, is XORed to the

chaining variable in the i-th iteration. One advantage is that the key size is reduced compared to

the basic scheme for some choices of the parameters. Another advantage is in key scheduling. If

the compression function is being computed in hardware it may be preferable to �x the key for the

compression function. In software too there can be a penalty for key \setup."

More precisely, to hash M = M

1

: : :M

n

2 �

n

m

(n � N) we use one key K 2 �

k

for the

compression function and auxiliary keys K

1

; : : : ;K

n

2 �

c

, as follows. As usual IV = 0

c

.

Algorithm XLH(KK

1

: : : K

n

; M)

C

0

 IV

for i = 1; : : : ; n do

D

i�1

 K

i

� C

i�1

C

i

 H(K

i

;D

i�1

kM

i

)

return C

n

This is depicted in Figure 4. The family of hash functions XLH

N

: �

k+Nc

��

�N

m

! �

c

is de�ned

by letting XLH

N

(KK

1

: : : K

N

;M) = XLH(KK

1

: : : K

n

;M) where n = jM j

m

, for every K 2 �

k

,

every K

1

; : : : ;K

N

2 �

c

, and every M 2 �

�N

m

. For notational convenience we de�ne XLH(K;�) =

0

c

and notice that for all n � 1

XLH(KK

1

: : : K

n

;M

1

: : :M

n

) = H

K

( (K

n

�XLH(KK

1

: : : K

n�1

;M

1

: : :M

n�1

) ) kM

n

) :

The following theorem says that if the compression function H is resistant to target collisions then

so is the extended hash function XLH

N

.

Theorem 5.5 SupposeH: �

k

��

c+m

! �

c

is (t

0

; �

0

)-resistant to target collisions. SupposeN � 1.

Then XLH

N

: �

k+Nc

��

�N

m

! �

c

is (t; �)-resistant to equal-length target collisions, where � = N�

0

and t = t

0

��(N) � (T

H

+m+ k + c).

Proof: We follow and modify the proof of Theorem 5.3. The starting observation is that ifM;M

0

2

�

n

m

is a collision for XLH

N

(KK

1

: : : K

N

; �) |meaning M 6= M

0

but XLH

N

(KK

1

: : : K

N

;M) =
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XLH

N

(KK

1

: : : K

N

;M

0

)| then there exists a j 2 f1; : : : ; ng such that the following hold:

(

XLH

KK

1

:::K

j

(M

1

: : :M

j

) = XLH

KK

1

:::K

j

(M

0

1

: : :M

0

j

)

XLH

KK

1

:::K

j�1

(M

1

: : :M

j�1

) kM

j

6= XLH

KK

1

:::K

j�1

(M

0

1

: : :M

0

j�1

) kM

0

j

:

(2)

Again this is not hard to see, by \tracing back" the collision, and also cancelling the value of K

j

which is XORed to he output of the (j � 1)-th stage for both messages. Now given equal-length

target collision �nder CF = (CF-I;CF-II) which (t; �)-breaks XLH

N

we construct target collision

�nder CF

0

= (CF-I

0

;CF-II

0

) as follows:

Algorithm CF-I

0

(M;State) CF-I and n jM j

m

i

R

 f1; : : : ; ng

D

R

 �

c

x D kM

i

return (x; (i;D;M;State))

Algorithm CF-II

0

(K;x; (i;D;M;State ))

K

1

; : : : ;K

i�1

;K

i+1

; : : : ;K

N

R

 �

c

C  XLH(KK

1

: : : K

i�1

;M

1

: : :M

i�1

)

K

i

 D�C

M

0

 CF-II(KK

1

: : : K

N

;M;State)

D

0

 K

i

�XLH(KK

1

: : : K

i�1

;M

0

1

: : :M

0

i�1

)

x

0

 D

0

kM

0

i

return x

0

The idea is that CF

0

wants K to play the role of the primary key for XLH

N

. It is also hoping

that i = j. It wants that the collision for H

K

be x; x

0

where x = D

i�1

kM

i

and x

0

= D

0

i�1

kM

0

i

where D

i�1

;D

0

i�1

, are, respectively, the values of the masked chaining variables for M;M

0

, after

the (i � 1)-st stage in XLH

N

, namely D

i�1

= K

i

�XLH(KK

1

: : : K

i�1

;M

1

: : :M

i�1

) and D

0

i�1

=

K

i

�XLH(KK

1

: : : K

i�1

;M

0

1

: : :M

0

i�1

). However, before it knows K, it has no way of knowing

D

i

, because the latter is a function of K, so how can it output a target message? The trick

is to set x = D kM

i

for some random D. Later, after knowing K, CF-II will pick K

i

so that

this value of D is correct, ie. indeed D = D

i�1

for the chosen keys. This is done by choosing

K

i

= D�XLH(KK

1

: : : K

i�1

;M

1

: : :M

i�1

). Notice that this K

i

chosen by CF-II is random and

independent of all other keys because C was random. So the distribution on the key for XLH

N

that is provided to CF-II is correct.

Given this the probability that x; y is a collision for H(K; �) can be computed as in the proof of

Theorem 5.3, based on Equation (2), and the bound on the running time can be made similarly.

5.4 The Basic Tree Hash

A tree can be used to reduce the key size. We are slightly more general than [21], considering d-ary

trees for d � 2, and also allowing the message to be hashed to have a number of blocks less than

the maximum, as opposed to mandating that all messages have the maximum number of blocks.

We start with a compression function H: �

k

��

dc

! �

c

. We �rst describe a primitive we will

use.

Parallel hash. We are given a message M with length a multiple of dc, and view it as M =

M

1

: : :M

n

where M

i

2 �

dc

. We hash each block using the compression function and concatenate

the results. More precisely,

Algorithm PH (K;M)

n jM j

dc

for i = 1; : : : ; n do
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N

i

 H(K;M

i

)

return N

1

k � � � kN

n

For any N � 1 the above de�nition gives rise to a family of hash functions PH

N

: �

k

�(�

c

[�

�N

dc

)!

�

�N

c

de�ned as follows:

PH

dN

(K;M) =

(

PH (K;M) if jM j is a multiple of dc

M if jM j = c

Notice that only one key is used. Notice too that PH

N

agrees with H when the input is of dc bits.

Lemma 5.6 Suppose H: �

k

� �

dc

! �

c

is (t

0

; �

0

)-resistant to target collisions. Suppose N � 1.

Then PH

dN

: �

k

� (�

c

[ �

�N

dc

) ! �

�N

c

is (t; �)-resistant to equal-length target collisions, where

� = N�

0

and t = t

0

��(Ndc).

Proof: We extend and \concretize" the proof sketch in [21, Section 2.3].

Suppose CF = (CF-I;CF-II) is an equal length target collision �nder which (t; �)-breaks PH

N

. We

construct an equal length target collision �nder CF

0

= (CF-I

0

;CF-II

0

) which (t

0

; �

0

)-breaks H, as

follows:

Algorithm CF-I

0

(M;State) CF-I

if jM j = c then x M and i 0

else

n jM j

dc

i

R

 f1; : : : ; ng

x M

i

return (x; (i;M;State))

Algorithm CF-II

0

(K;x; (i;M;State ))

M

0

 CF-II(K;M;State)

if jM

0

j = c then x

0

 M

0

else

x

0

 M

0

i

return x

0

We must now bound the probability that x; x

0

is a collision for H(K; �). Suppose M;M

0

is a

collision for PH

N

(K; �). We know that jM j = jM

0

j. Thus there are two cases: either M;M

0

2 �

c

or M;M

0

2 �

n

dc

for some n � N .

Notice that in the �rst case, it is impossible for M;M

0

to be a collision for PH

N

(K; �) because

PH

N

(K;M) = M and PH

N

(K;M

0

) = M

0

and the only way we could have PH

N

(K;M) =

PH

N

(K;M

0

) is when M = M

0

, which is outlawed for collisions. So we can assume we are in the

second case.

This means M;M

0

2 �

n

dc

for some n � N . That M;M

0

is a collision for PH

N

(K; �) means that

H(K;M

j

) = H(K;M

0

j

) for all j = 1; : : : ; n. But sinceM 6=M

0

there is some j such that M

j

6=M

0

j

.

With probability 1=n � 1=N we have i = j. So the probability that x; x

0

is a collision for H(K; �)

is at least �=N .

Finally, the running time of CF

0

is that of CF plus an overhead that amounts to �(Ndc). The result

follows.

Basic tree hash. Assume that we wish to hash a message M =M

1

: : : M

n

down to c bits, where

each block M

i

2 �

c

consists of c bits, and the number of blocks is n = d

l

for some l � 1. We can

do the hashing by applying the parallel hash l times. A di�erent key is used for each application

of the parallel hash. That is:
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Figure 5: Construction TH | The basic tree scheme, illustrated for the case of d = 3, l = 3.

Algorithm TH(K

1

� � �K

l

; M)

Level [0] M

for j = 1; : : : ; l do

Level [j] PH

d

l�j

(K

j

; Level [j � 1])

return Level [l]

Visualize this as building a d-ary tree of depth l. The leaves correspond to the message blocks and

the root corresponds to the �nal hash value. Group the nodes at level 0 (the leaves) into runs of

size d (that is, each run consists of d blocks, each block being c bits long) and hash each group via

H(K

1

; �). (This process is represented succinctly in the algorithm as an application of the parallel

hash.) This yields d

l�1

values, each a c-bit block, which form the nodes at level 1 of the tree. Now

continue the process. At each level we use a di�erent key. Thus H(K

j

; �) is the function used to

hash the nodes at level j � 1 of the tree. At level l � 1 we have d nodes, which are hashed under

H(K

l

; �) to yield the root, which, at level l, is the �nal hash value. See Figure 5.

As usual, we extend the hash function to allow inputs of various lengths. Assume that all

messages we will hash have a number of c-bit blocks which is at most N = d

`

, for some ` � 1.

For simplicity, further assume that any message M to be hashed has a number of blocks which is

a power of d. Then we can de�ne TH

N

: �

`k

�

S

`

l=0

�

d

l

c

! �

c

by setting TH

N

(K

1

� � �K

l

;M) =

TH (K

1

� � �K

l

;M), where l = log

d

(jM j

c

).

Notice that one key is used for every hash of a given level of the tree, but the key changes across

levels. The key length of TH

N

is thus k � ` = k � log

d

N = k � log

d

(L=c) where L = c � d

`

is the

maximum message length.

Notice that this hash family can be viewed as a composition of the parallel hash families, namely

TH

d

`

= PH

d

0

� PH

d

1

� PH

d

2

: : : � PH

d

`�1

: (3)

We can now assess the security by applying the composition lemma and the analysis of the security

of the parallel hash.

Theorem 5.7 Suppose H: �

k

��

dc

! �

c

is (t

0

; �

0

)-resistant to target collisions. Suppose N = d

`

where ` � 1. Then TH

N

: �

`k

�

S

`

l=0

�

d

l

c

! �

c

is (t; �)-resistant to equal-length target collisions,

where � = (N � 1)�

0

=(d � 1) and t = t

0

��(N) � (T

H

+ k + c).

Proof: For each l = 0; : : : ; ` � 1, Lemma 5.6 says that PH

d

l

is (t

l

; �

l

)-resistant to equal-length
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collisions, where

t

l

= t

0

��(cd

l+1

) (4)

�

l

= d

i

�

0

: (5)

Note that each PH

d

l

is length consistent. Now look at Equation (3) and apply Lemma 3.2 ` times.

Let's analyze this inductively. Namely say PH

d

0

� : : : � PH

d

i

is (��

i

;

�

t

l

)-resistant to equal-length

collisions, i = 0; : : : ; `� 1. We know ��

0

= �

0

= �

0

and

�

t

0

= t

0

= t

0

��(dc). Now for l � 1 we view

PH

d

0

� : : : � PH

d

i

as

(PH

d

0

� PH

d

1

� : : : � PH

d

l�1

)

| {z }

H

2

�PH

d

l

| {z }

H

1

:

By Lemma 3.2 we have

�

t

l

= min(t

l

� k;

�

t

l�1

� 2T

PH

d

l

� k) (6)

��

l

= �

l

+ ��

l�1

: (7)

Lets simplify these in turn, beginning with the probability.

We are interested in � = ��

`�1

. Applying Equation (7) and Equation (5) we have

� = �

0

+ : : : + �

`�1

= (d

0

+ : : :+ d

`�1

)�

0

=

d

`

� 1

d� 1

� �

0

=

N � 1

d� 1

� �

0

:

Now we want to compute t =

�

t

`�1

. We start from Equation (6) and try to get a simpler expression

for

�

t

i

. It must be that

�

t

l�1

� t

0

. Using this and Equation (4) we have

�

t

l

= min(t

l

� k;

�

t

l�1

� 2T

PH

d

l

� k)

�

�

t

l�1

��(d

l+1

c)� 2T

PH

d

l

� k

=

�

t

l�1

��(d

l+1

c)� 2d

i

T

H

� k :

This means

�

t

`�1

�

�

t

0

�

`�1

X

l=1

(�(d

l+1

c) + 2d

l

T

H

+ k)

� t

0

��(dc)�

`�1

X

l=1

(�(d

l+1

c) + 2d

l

T

H

+ k)

� t

0

��(d

`

) � (c+ k)� 2d

`

T

H

:

Thus we can set t as in the theorem statement, and the result follows.

5.5 The XOR Tree Hash

In the basic tree hash we key the compression function anew at each level of the tree. Thus the key

length (to hash an nc-bit message) is k � log

d

(n), which can be large, because k may be large. In

the XOR variant there is one key K de�ning H(K; �) and this is used at all levels. However, there

are auxiliary keys K

1

; : : : ;K

d

, one per level. These are not keys for the compression function: they

are just XORed to the data at each stage. As described in Section 5.2, the motivation is that we

can get shorter keys, and also better key scheduling.
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Figure 6: Construction XTH | The XOR tree scheme, illustrated for m = 3 an d = 3. Notice that

H is always keyed with K, while an auxiliary key, di�ering for each level, is XORed just before the

application of H

K

.

Speci�cally, to hash a message M 2 �

d

l

c

(l � `) we use one key K 2 �

k

for the compression

function (this is called the primary key) and auxiliary keys K

1

; : : : ;K

l

2 �

dc

. Before describing

the algorithm we need some notation. Namely for a string X and integer j � 1 let

X

(j)

= X k � � � kX

| {z }

j

denote the string formed by concatenating j copies of X.

We hash a message M =M

1

� � �M

n

, where n = d

l

and jM

j

j = c, as follows:

Algorithm XTH(K K

1

: : : K

l

; M)

Level [0] M

for j = 1; : : : ; l do

Level

�

[j � 1] Level [j � 1]�K

(d

l�j

)

j

Level [j] PH

d

l�j

(K; Level

�

[j � 1])

return Level [l]

In other words, a d

l

block messageM = Level [0] is hashed in l stages, resulting in strings Level [0]

1

!

Level [1]

2

! � � �

l

! Level [l]. The last of these is the hash of M . Each stage cuts the message size by

a factor of d. Stage j begins by XORing to Level [j � 1] a su�cient number of copies of K

j

. Then

it applies the parallel hash to cut the length. Note that all applications of the parallel hash are

under the same key K.

For any d � 2 and ` � 1 we de�ne a family of hash functions XTH

N

: �

k+`dc

�

S

`

l=0

�

d

l

c

! �

c

by XTH

d

`

(KK

1

: : : K

`

;M) = XTH(KK

1

: : : K

l

;M) for any K 2 �

k

, any K

1

; : : : ;K

`

2 �

dc

, any

l 2 f0; : : : ; `g and any M 2 �

d

l

c

.

Once again one can again the construction as a d-ary tree of depth l. The leaves correspond to

the message blocks and the root corresponds to the �nal hash value. Group the nodes at level 0
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(the leaves) into runs of size d, XOR each group with the auxiliary key K

1

, and then hash each

group via H(K; �). This yields a d

l�1

values, each a c-bit block, which form the nodes at level 1

of the tree. Now continue the process. At each level we use a di�erent auxiliary key but the same

hash function. At level l� 1 we have d nodes, which are XORed with K

l

and hashed with H(K; �)

to yield the root, which, at level l, is the �nal hash value. See Figure 6.

Note key length to hash a nc bit message is k + dc � log

d

(n). For example, when d = 2, c = 64,

the resulting key length of k+128 lg n is signi�cantly smaller than for the basic tree scheme in the

case where the key size of the compression function is quite big, as happens for examples in the

constructions of [17].

We now proceed with the analysis. Suppose � 2 f0; : : : ; l � 1g is a level of the tree. There are

d

l��

nodes at this level, divided into d

l���1

groups of d. For M 2 �

d

l

c

we will use the notation

M [�; �] = M

(��1)d

�

+1

: : : M

�d

�

to describe the part of the message M which hashes to the �-th group of nodes at level �, where

� 2 f1; : : : ; d

l���1

g. This means that XTH

d

�

(K K

1

: : : K

�

;M [�; �]) is the �-th node at level � of

the tree.

For l � 1 and M 2 �

d

l

c

it is convenient to de�ne

Algorithm XTHI(KK

1

: : : K

l�1

;M)

Level [0] M

for j = 1; : : : ; l � 1 do

Level

�

[j � 1] M [j � 1]�K

(d

l�j

)

j

Level [j] PH

d

l�j+1

(K;Level

�

[j � 1])

return Level [l � 1]

In other words, do all but the last stage of the XOR tree hash. This means the output Level [l� 1]

is a member of �

d

c

. Now XTH

d

l

(KK

1

: : : K

l

;M) = PH

d

(Level [l� 1]�K

(d)

l

). But this last parallel

hash is just the compression function H(K; �), so that we have the relation

XTH(KK

1

: : : K

l

;M) = H(K ; XTHI(KK

1

: : : K

l�1

;M)�K

(d)

l

) : (8)

We will use this later.

We can no longer appeal to the composition lemma in proving security, because the di�erent

parallel hashes use a common key K. Instead we give a direct proof of security.

Theorem 5.8 Suppose H: �

k

��

dc

! �

c

is (t

0

; �

0

)-resistant to target collisions. Suppose N = d

`

where ` � 1. Then XTH

N

: �

k+`dc

�

S

`

l=0

�

d

l

c

! �

c

is (t; �)-resistant to equal-length target

collisions, where � = (N � 1)�

0

=(d� 1) and t = t

0

��(N) � (T

H

+ dc+ k).

Proof: Suppose M;M

0

2 �

d

l

c

is a collision for XTH

d

l

(KK

1

� � �K

`

; �). We observe that there is

then a level � 2 f1; : : : ; lg of the tree, and a � 2 f1; : : : ; d

l���1

g, for which

(

XTH

d

l

(K

1

� � �K

�

;M [�; �]) = XTH

d

l

(K

1

� � �K

�

;M

0

[�; �])

XTHI(K

1

� � �K

��1

;M [�; �]) 6= XTHI(K

1

� � �K

��1

;M

0

[�; �]) :

(9)

This can be seen by reverse induction on the tree level, beginning with the fact that XTH

d

l

(KK

1

� � �

K

`

;M) = XTH

d

l

(K

1

� � �K

`

;M

0

). In combination with Equation (8) this tells us how to �nd

collisions for H(K; �) given collisions in XTH

d

l

(K K

1

� � �K

`

; �). We will exploit this below.

Suppose CF = (CF-I;CF-II) is a target collision �nder which (t; �)-breaks XTH

N

. We construct a

target collision �nder CF

0

= (CF-I

0

;CF-II

0

) which (t

0

; �

0

)-breaks H, as follows:
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Algorithm CF-I

0

x

R

 �

dc

return x

Algorithm CF-II

0

(K;x)

(M;State)

R

 CF-I and l log

d

(jM j

c

)

r

R

 f1; : : : ; lg and j

R

 f1; : : : ; d

l�r

g

K

1

; : : : ;K

r�1

;K

r+1

; : : : ;K

`

R

 �

dc

z  XTHI(KK

1

: : : K

r�1

;M [r; j])

K

r

 z�x

M

0

 CF-II(K K

1

� � �K

`

;M;State)

x

0

 K

r

�XTHI(K

1

� � �K

r�1

;M

0

[r; j])

return x

0

The target message �nding algorithm CF-I is very simple: it just outputs some random string x

of length dc. The sibling �nder CF-II begins by letting M be the target message output by CF-I.

It then picks a tree level r 2 f1; : : : ; lg at random. Recall that at level r we have d

l�r

nodes. We

group them into groups of size d, so that we view them as forming a set of d

l�r�1

strings, each dc

bits long. After XORing each of these with K

r

we get the inputs to the compression function for

this stage. Our goal is to make x one of these inputs, namely x should be K

r

XORed with one of

the groups at level r. The key idea is that K

r

will be chosen as a function of x to make this happen.

How? CF-II

0

picks j 2 f1; : : : ; d

l�r

g at random and sets z;K

r

as indicated in the code. Notice

that since x was chosen randomly and independently of anything else, the keys K

1

; : : : ;K

`

are all

random and independent of each other. Now CF-II

0

gives key K K

1

� � �K

`

to CF-II, along with

State as state information. CF-II outputs a message M

0

. (We know that jM j = jM

0

j. Also, if we

are lucky, M;M

0

is a collision for XTH

d

l

(K K

1

� � �K

`

; �), and we proceed under this assumption.)

CF-II

0

computes, for this message, the value at the same node as before, namely x

0

, and outputs

this.

We must now bound the probability that x; y is a collision for H(K; �). We use Equation (9). The

number of possibilities for (�; �) is at most d

0

+ � � �+d

`�1

= (d

`

�1)=(d�1). Since r; j were chosen

at random we have probability at least (d� 1)=(d

`

� 1) that (r; j) = (�; �). So the probability that

x; y is a collision for H(K; �) is �

0

� �(d� 1)=(d

`

� 1) � �(d� 1)=(n � 1). The time bounds can be

veri�ed by looking at the pseudocode.

6 Message Lengths

The constructions and results in Section 5 make two restrictions we will now indicate how to remove.

First, we proved security against equal-length target collisions. In practice one requires security

against variable-length target collisions. Second, we assumed message lengths are multiples of some

�xed number, like a block size, or even a power of some �xed number, like in the tree schemes. In

reality any length should be allowed.

We begin by showing how to extend a TCR hash function secure against equal-length collisions

into a TCR hash function secure against variable-length collisions. Then we will see how to handle

strings of any length.

6.1 Length Variability

Suppose we have a hash function secure against equal-length collisions. We want to address input-

length variability, meaning make it secure against variable-length collisions.

It is often assumed that input-length variability can be handled by padding the �nal block of a

message M to be hashed so that it unambiguously encodes jM j. For example, say the block length
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is 512. One might append a \1" to the message, and then the minimal number of zeros so that

the length becomes 64 bits shy of a multiple of 512 bits, and then append jM j

64

| the length

of M , encoded as a 64-bit binary number (assuming jM j < 2

64

). (This is the padding method used

in [25] and many other hash function.) Let Pad(�) denote such a padding function. If H is secure

against equal-length target collisions is is H � Pad secure against variable-length target collisions?

Not necessarily. And the same applies to ACR. It is easy to construct such examples.

Here, instead, is a general technique to achieve input-length variability. Namely, we �rst hash

the message using one key. Then we concatenate the message length to the result, and hash

again, using a second key. The second hashing typically requires just one extra application of the

compression function, since we are hashing a small, �xed length message. If the hash functions

used are secure against equal-length target collisions, the result is secure against variable-length

target collisions.

Theorem 6.1 Fix m > 0 and let Msgs

1

be a set of strings each of length less than 2

m

. Let

H

1

: �

k

1

� Msgs

1

! �

l

1

and H

2

: �

k

2

� �

l

1

+m

! �

c

be families of hash functions. Assume H

1

is (t

1

; �

1

)-secure against equal-length target collisions and H

2

is (t

2

; �

2

)-secure against equal-length

target collisions. De�ne H: �

k

1

+k

2

�Msgs

1

! �

c

by

H(K

1

K

2

;M) = H

2

(K

2

;H

1

(K

1

;M) k hjM ji

m

)

where hjM ji

m

is the length of M written as a string of exactly m bits, M 2 Msgs

1

, K

1

2 �

k

1

,

and K

2

2 �

k

2

. Then H is (t; �)-secure against variable-length target collisions, where t = min(t

1

�

k

2

; t

2

� k

1

� 2T

H

1

� 2l

1

� 2) and � = �

1

+ �

2

.

Proof: Let CF = (CF-I;CF-II) be a target collision �nder for H which runs in time t. Consider

the experiment describing CF's attack on H, namely

(M;State) CF-I ; K

1

R

 �

k

1

; K

2

R

 �

k

2

; M

0

 CF-II(K

1

K

2

;M;State) : (10)

Let x = H

1

(K

1

;M) and x

0

= H

1

(K

1

;M

0

). Now let E

1

be following event: CF is successful and

x = x

0

and jM j = jM

0

j. Let E

2

be the following event: CF is successful, and either x 6= x

0

or

jM j 6= jM

0

j. Let p

1

= Pr[E

1

] and p

2

= Pr[E

2

], the probabilities being under the experiment of

Equation (10). Notice that E

1

; E

2

are disjoint events with union the event that CF is successful, so

we have ProbSuccess(CF;H) = p

1

+ p

2

. Thus it su�ces to upper bound p

1

; p

2

.

We do this by de�ning a target collision �nder CF

1

= (CF-I

1

;CF-II

1

) for H

1

and a target collision

�nder CF

2

= (CF-I

2

;CF-II

2

) forH

2

so that ProbSuccess(CF

1

;H

1

) = p

1

and ProbSuccess(CF

2

;H

2

) =

p

2

. We make sure that the running time of CF

1

is at most t

1

and that of CF

2

is at most t

2

.

Out assumptions about the security of H

1

;H

2

then imply that p

1

� �

1

and p

2

� �

2

, so that

ProbSuccess(CF;H) � �

1

+ �

2

.

It remains to de�ne the two algorithms. They are:

Algorithm CF-I

1

(M;State)

R

 CF-I

return (M;State)

Algorithm CF-I

2

(M;State)

R

 CF-I and K

1

R

 �

k

1

x H

1

(K

1

;M)

y  x k jM j

m

return (y; (M;State ;K

1

))

Algorithm CF-II

1

(K

1

;M;State)

K

2

R

 �

k

2

M

0

R

 CF-II(K

1

K

2

;M;State)

return M

0

Algorithm CF-II

2

(K

2

; y; (M;State ;K

1

))

M

0

R

 CF-II(K

1

K

2

;M;State)

x

0

 H

1

(K

1

;M

0

)

y

0

 x

0

k jM

0

j

m

return y

0
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For the analysis, �rst consider the experiment describing CF

1

's attack on H

1

. Let x = H

1

(K

1

;M)

and x

0

= H

1

(K

1

;M

0

). CF

1

is successful in breaking H

1

when jM j = jM

0

j but M 6=M

0

and x = x

0

.

Notice x = x

0

and jM j = jM

0

j implies H

2

(K

2

; x k jM j

m

) = H

2

(K

2

; x

0

k jM

0

j

m

) where K

2

is the key

chosen by CF-II

1

. This means that if M;M

0

is an equal length collision for H

1

then it will also be

an equal length collision for H. This means M;M

0

is an equal length collision for H

1

(K

1

; �) with

exactly the probability that event E

1

occurs in the experiment of Equation (12). It follows that

ProbSuccess(CF

1

;H

1

) = p

1

.

Now consider the experiment describing CF

2

's attack on H

2

. By de�nition CF

2

is successful in

breaking H

2

when jyj = jy

0

j but y 6= y

0

and H

2

(K

2

; y) = H

2

(K

2

; y

0

). But we always have jyj = jy

0

j

because the domain of H

2

only contains strings of a �xed length, namely l

1

+m. Since y = xkjM j

m

and y

0

= x

0

k jM

0

j

m

we have y 6= y

0

if either x 6= x

0

or jM j 6= jM

0

j. This means y; y

0

is a collision for

H

2

(K

2

; �) with exactly the probability that event E

2

occurs in the experiment of Equation (10). It

follows that ProbSuccess(CF

2

;H

2

) = p

2

.

It remains to bound the running times. That of CF

1

is t+ k

2

and this is at most t

1

for the choice

of t in the lemma statement. That of CF

2

is t + k

2

+ 2T

H

1

+ 2m which by the choice of t

2

in the

lemma statement is at most t

2

.

While length-indicating padding doesn't work in general, does it work for the schemes of Section 5?

For LH the answer is no: starting with an arbitrary TCR compression function H

0

one can con-

struct a TCR compression function H for which LH � pad is insecure against variable-length target

collisions. For XLH the answer is yes: if H is a TCR compression function then XLH � pad

is guaranteed to be secure against target collisions; one can appropriately modify the proof of

Theorem 5.5 to show this. We did not investigate the analogous questions for TH and XTH.

6.2 Padding

Combining the methods of Sections 5 and 6.1 we have constructions for TCR hash functions which

are secure against variable-length collisions on a domain that has \gaps"| our domains only include

strings that have length a multiple of some block length, or even, in the case of the tree schemes, a

power of some integer d. To wrap things up we must eliminate the restriction that lengths are of

some particular values. Simple padding schemes work �ne. This is shown by the following result.

Theorem 6.2 Let `

1

< � � � < `

max

be numbers, Msgs =

S

max

i=1

�

`

i

, MAX < `

max

, and Msgs

�

=

�

�MAX

. Let Pad : Msgs

�

! Msgs be a length consistent injective function with inverse, Unpad ,

computable in time T

Unpad

. Suppose H : �

k

�Msgs ! �

c

and de�ne H

�

: �

k

�Msgs

�

! �

c

by

H

�

(M) = H(Pad(M)). Suppose H is (t; �)-resistant to equal-length target collisions. Then H

�

is

(t

�

; �

�

)-resistant to equal-length target collisions, where t

�

= t� 2T

Unpad

and �

�

= �.

Proof: Let CF

�

= (CF-I

�

;CF-II

�

) be a target collision �nder for H

�

which runs in time t

�

. We

de�ne a target collision �nder CF = (CF-I;CF-II) for H as follows:

Algorithm CF-I

(M

�

;State)

R

 CF-I

�

M  Unpad(M

�

)

return (M;State)

Algorithm CF-II(K;M;State)

M

0

�

R

 CF-II(K;M;State)

M

0

 Unpad(M

0

�

)

return M

0

Because Pad is injective and length-consistent each collision (M

�

;M

0

�

) found by CF

�

yields a collision

(M;M

0

) found by CF of equal-length strings in the domain of H. Thus ProbSuccess(CF;H) =
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ProbSuccess(CF

�

;H

�

) and we have justi�ed the claimed value for choice of �

�

. It remains to look

at the running time of adversary CF. This is just t+2T

Unpad

, from which the theorem follows.

7 Signing with a TCR Hash Function

Consider the RSA signature primitive [27], where one signs the number x 2 Z

N

by SignRSA

d;N

(x) =

x

d

mod N , for appropriately chosen numbers d;N . The usual practice, dating back to [32], is to

compute the signature s of a string M according to s = SignRSA

d;N

(h(M)), where h is some sort

of hash function.

When signing as above there are actually two unrelated reasons for using the hash function h.

The �rst reason is to map the (in�nite or enormous) spaceMSGS of strings that we may wish to sign

down to the (small) space Msgs of strings that our primitive knows how to handle. (For example,

one might have Msgs � �

1024

if one is using SignRSA.) The second reason for applying h is to help

mask algebraic structure in the underlying cryptographic primitive. In particular, SignRSA does

not, by itself, have the properties one expects of a secure signature scheme, due to its algebraic

structure| and yet SignRSA�h seems to be a good way to sign when the hash function h is chosen

well.

In the current work we are only concerned with reducing lengths, not in covering up algebraic

properties of the underlying primitive. Thus we will assume that we already have in hand a secure

signature scheme. Examples of such schemes are [5, 15, 7]. (The �rst requires ideal hash functions,

aka random oracles, in addition to the assumption that RSA is one-way, while the second and third

require only the assumption that RSA is one-way, but are less e�cient. There are also, of course,

many more schemes, but these are less e�cient still.) We imagine that the only problem with Sign

is its small domain,Msgs, and we simply want to enlarge the domain to make a function Sign which

can sign messages on all of MSGS . The domain should be either MSGS = �

�

or MSGS = �

�`

for

some enormous number `.

It is a folklore result that if h : MSGS ! �

c

is a randomly selected hash function from an

ACR family of hash functions, and if Sign is a secure signing function with domain �

c

, then

SIGN = Sign � h provides a secure way to sign messages on the domain MSGS .

Here we extend the above approach to use TCR hash function. First we will need some basic

de�nitions on signatures and their security.

Syntax of signature schemes. A digital signature scheme, (Gen;Sign;Verify), consists of a key

generation algorithm, a signing algorithm, and a verifying algorithm. The �rst of these algorithms

will always be probabilistic; the second algorithm might or might not be; the third algorithm is

always deterministic. A digital signature scheme has an associated message space, Msgs , where

Msgs � �

�

. The key generation algorithm 
ips coins and outputs a matching public and secret

key, (pk; sk)

R

 Gen(). The signing algorithm takes a message M 2 Msgs and a secret key sk and

it returns a signature s

R

 Sign

sk

(M). The verifying algorithm takes a message M , a candidate

signature s

0

, and the public key pk, and it returns a bit ok  Verify

pk

(M; s

0

), with 1 signifying

\accept" and 0 signifying \reject." We demand that if s was produced via s

R

 Sign

sk

(M) then

Verify

pk

(M; s) = 1. We let T

Gen

denote the worst case time for Gen to produce a pair (pk; sk)

and we let T

Sign

(m) be the worst case time to compute Sign

sk

(M) for M 2 Msgs \�

�m

. We write

interchangeably Sign

sk

(M) and Sign(sk;M).

Security of signature schemes. De�nitions for the security of signatures in an asymptotic

setting were provided by Goldwasser, Micali and Rivest [16]. Concrete security de�nitions were

provided in [5]. We follow the latter.
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M 

K

H
Sign

S

sk

sC

Figure 7: How to extend a signing primitive to a larger domain using a TCR hash function. Key

K is chosen anew for each message. The signature of M is S = Kks.

A forgery �nder FF takes as input a public key pk, and FF tries to forge a signature with

respect to pk. To do this it is allowed a chosen message attack. This means that FF can request

and obtain signatures of any messages it wants. This is modeled by providing FF with oracle access

to the signing algorithm. The forgery �nder is deemed successful if it outputs a valid forgery| a

message/signature pair (M; s) such that Verify

pk

(M; s) = 1 and yet M was not a message of which

a signature was requested of the signing oracle. The forgery �nder FF is said to be a (t; q; �)-forgery

�nder if its running time (including the description size of FF, as per our conventions) is at most t,

and FF makes at most q queries of its signing oracle, and the length of these queries, as well as the

length of the strings (M; s) output by FF, is at most �. time to answer the signing queries. Such a

forgery �nder FF is said to (t; q; �; �)-break the signature scheme if the probability that FF outputs

a valid forgery is at least �. The probability is over the random choices of FF as well as the random

choices of Gen and Sign. We say that the signature scheme is (t; q; �; �)-secure if there is no forgery

�nder FF which (t; q; �; �)-breaks it.

Signing with an TCR hash family | Basic method. Let (Gen;Sign ;Verify) be a signature

scheme having associated message space Msgs. We want to extend this to a signature scheme

(GEN ;SIGN ;VERIFY ) with an associated (larger) message space MSGS . We desire a method

with the simplicity of SIGN = Sign � h, yet we want to avoid the use of an ACR hash family.

Assuming that �

c

� Msgs for some constant c, one might �rst try letting H be TCR and using

the same scheme sketched above. Namely, �x a random key K 2 �

k

, let h = H

K

, and sign M

by s

R

 Sign

sk

(h(M)). The key K is a public constant associated to the signature scheme. This

approach works for H : �

k

�MSGS ! �

c

being ACR but it does not work for H being TCR. The

reason is simple: in an adaptive chosen message attack the adversary, knowing K, may be able to

�nd two messages, M and M

0

, which collide under H

K

. If so, the adversary asks the signing oracle

for the signature of M and from this the adversary immediately knows a valid forgery for M

0

.

Instead, the signing algorithm can choose K anew for each message. The key K is included

with the signature; it is not secret. We have to adjust slightly the domain Msgs; now we need that

�

k+c

� Msgs. Here, formally, is the signature scheme. It is pictured in Figure 7.

Algorithm GEN

(pk; sk)

R

 Gen()

return (pk; sk)

Algorithm SIGN

sk

(M)

K

R

 �

k

s

R

 Sign(K kH

K

(M))

return (K; s)

Algorithm VERIFY

pk

(M; (K; s))

ok  Verify

pk

(H

K

(K kM); s)

return ok

We then have the following theorem.

Theorem 7.1 Let (Gen ;Sign;Verify) be a (t

1

; q

1

; �

1

; �

1

)-secure signature scheme with associated

domainMsgs � �

�

. Let H : �

k

�MSGS ! �

c

be a family of hash function which is (t

2

; �

2

)-resistant
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to target collisions. Assume �

k+c

� Msgs. Then the signature scheme (GEN ;SIGN ;VERIFY )

constructed from (Gen ;Sign;Verify) and H is (t; q; �; �)-secure, where t = minft

1

� (q+1)T

H;�

1

�

qT

Sign

(k+ c)�O(k+ c); t

2

� (q+1)T

H;�

1

�T

Gen

� qT

Sign

(k+ c)�O(k+ c)g, q = q

1

, � = �

1

� c�k,

and � = �

1

+ q

1

�

2

.

Proof: Let FF be a (t; q; �; �)-forgery �nder for (GEN ;SIGN ;VERIFY ). We wish to bound �

Consider the experiment de�ning FF's attack, namely

(pk; sk)

R

 GEN () ; (M; (K; s))

R

 FF

Sign(sk;�)

(pk) : (11)

Suppose FF asks its oracle M

1

; : : : ;M

q

, obtaining responses (K

1

; s

1

); : : : ; (K

q

; s

q

), respectively.

Let E be the event that (M; (K; s)) is a valid forgery. Let E

1

be the event that (M; (K; s)) is

a valid forgery and K 62 fK

1

; : : : ;K

1

g, or else (M; (K; s)) is a valid forgery and K = K

i

for some

i 2 f1; : : : ; qg and for every i 2 f1; : : : ; qg for which K = K

i

we have that H

K

(M) 6= H

K

(M

i

). Let

E

2

be the event that (M; (K; s)) is a valid forgery and for some i 2 f1; : : : ; qg we have that K = K

i

and H

K

(M) = H

K

(M

i

). Let p

1

= Pr[E

1

] and let p

2

= Pr[E

2

]. Then E is the union of disjoint

events E

1

and E

2

, and so � = p

1

+ p

2

. We will thus upper bound � by upper bounding p

1

and p

2

.

First let us upper bound p

1

. Using FF, which attacks (GEN ;SIGN ;VERIFY ), we construct a

forgery �nder �, which attacks (Gen ;Sign;Verify), as follows:

Algorithm �

Sign(sk;�)

(pk)

Run FF(pk)

When FF makes its ith oracle query, M

i

,

K

i

R

 �

k

C

i

 H(K

i

;M

i

)

Use �'s oracle to obtain s

i

R

 Sign(sk;K

i

kC

i

)

Respond to FF's query with (K

i

; s

i

)

When FF outputs (M; (K; s)), output (KkH

K

(M); s)

When pk is sampled according to (pk; sk)

R

 Gen() the adversary � creates for the FF which it

runs an environment identical to that corresponding to Equation (11). From this and the de�nition

of event E

1

, the probability that � succeeds in forgery is at least p

1

. The time t

1

which � requires

is at most t

1

= t+ (q+1)T

H;�

+O(k+ c). The number of queries q

1

made by � is precisely q

1

= q.

Queries asked by � are of length c + k, while the strings output by � have length at most � + k.

Consulting the bounds for t, q and � in the theorem statement we conclude that p

1

� �

1

.

Next we upper bound p

2

. To do this we construct a collision �nder CF = (CF-I;CF-II) for H:
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Algorithm CF-I

j

R

 f1; : : : ; qg

(pk; sk)

R

 Gen()

Run FF(pk)

When FF makes its ith oracle query, M

i

,

K

i

R

 �

k

C

i

 H(K

i

;M

i

)

s

i

R

 Sign(sk;K

i

kC

i

)

if i = j then

Let FF-state = the state of FF

Output (M

i

;FF-state) and halt

Respond to FF's query with (K

i

; s

i

)

Algorithm CF-II(K;M;FF-state)

Continue running FF, starting in FF-state

When FF makes its ith oracle query, M

i

,

if i = j

then K

i

 K

else K

i

R

 �

k

C

i

 H(K

i

;M

i

)

s

i

R

 Sign(sk;K

i

kC

i

)

Respond to FF's query with (K

i

; s

i

)

When FF outputs M

0

, output M

0

and halt

Collision �nder CF creates for FF an environment identical to that corresponding to Equation (11).

From this and the de�nition of event E

2

, the probability that � succeeds in forgery must be at least

p

2

=q. This is because every time that FF forges with a pair of points (M; (K; s)) and (M

0

; (K; s))

where H

K

(M) = H

K

(M

0

) there is a 1=q chance that the key K given as input to CF-II was the

key with respect to which the forgery was accomplished. The time t

2

which CF requires is at most

t

1

= t+ (q+1)T

H;�

+ T

Gen

+ qT

Sign

(k+ c) +O(k+ c). Consulting the bounds for t in the theorem

statement we conclude that p

2

=q � �

2

.

Putting our results together we have that � � p

1

+ p

2

� �

1

+ q�

2

for the given t; q; �.

Handling long keys. One potential di�culty in using the above approach is that the signature

primitive Sign might have a domain Msgs too small to accommodate (the hash of message M

together with) the entire hash key K. This could happen if hash keys are quite long. When using

an ad. hoc. construction of the sort discussed in Section 4 this will not be a problem, for such cases

the key length will be small and independent of the message length. But suppose we are using

XOR trees, for example. Then the length of the key grows logarithmically with m = jM j. If M is

long then jKj might get too big to �t (along with C) in the scope of Sign.

To handle this possibility we can hash multiple times. Suppose we start with a long messageM ,

where m = jM j. Use a TCR hash family H

1

: �

k

1

��

m

! �

c

. If one is using XOR trees, say, then

k

1

is O(lgm). Choose K

1

R

 �

k

1

and compute C

1

 H

K

1

(M). If k

1

+ c is too long to for Sign then

let H

2

: �

k

2

� �

k

1

+c

! �

c

and pick a random key K

2

R

 �

k

2

. Assuming now that �

k

2

+c

� Msgs,

the signature of M is de�ned as K

1

kK

2

kSign

sk

(K

2

kH

2

(K

2

;H

1

(K

1

;M))). See Figure 8.

What about the e�ciency? Things are quite reasonable. We use only one application of Sign

and some hashing, regardless of message length. The concern may be that we transmit more data

since we have to send both the keys K

1

;K

2

. But K

1

is much shorter than M so the overhead, and

K

2

is much shorter than K

1

, so if we are already sending M , the overhead in additional bits is not

signi�cant.

Of course one may use more than two iterations. In general, we hash as often as necessary

to bring the �nal key size down to a small enough value that the �nal key can �t in the scope of

the given signature function. Using a scheme like XOR trees, the reduction in key sizes proceeds

exponentially, so that only O(log

�

m) iterations are needed to hash a string of lengthm. In practice,

this is bounded by a small constant.
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M 

K1

H1
Sign S

sk

sH2
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C1 C2

Figure 8: Signing with a TCR hash function using multiple levels of hashing. The technique is

useful when key sizes grow with the message lengths, and message may be long.
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A Proofs of the Composition Lemmas

Proof of Lemma 3.1: Let CF = (CF-I;CF-II) be a target collision �nder for H which runs in

time t. Consider the experiment describing CF's attack on H, namely

(M;State)

R

 CF-I ; K

1

R

 �

k

1

; K

2

R

 �

k

2

; M

0

R

 CF-II(K

1

K

2

;M;State) : (12)

Let x = H

1

(K

1

;M) and x

0

= H

1

(K

1

;M

0

). Now let E

1

be following event: CF is successful and

x = x

0

. Let E

2

be the following event: CF is successful, and x 6= x

0

. Let p

1

= Pr[E

1

] and

p

2

= Pr[E

2

], the probabilities being under the experiment of Equation (12). Notice that E

1

; E

2

are

disjoint events with union the event that CF is successful, so we have ProbSuccess(CF;H) = p

1

+p

2

.

Thus it su�ces to upper bound p

1

; p

2

.

We do this by de�ning a target collision �nder CF

1

= (CF-I

1

;CF-II

1

) for H

1

and a target collision

�nder CF

2

= (CF-I

2

;CF-II

2

) forH

2

so that ProbSuccess(CF

1

;H

1

) = p

1

and ProbSuccess(CF

2

;H

2

) =

p

2

. We make sure that the running time of CF

1

is at most t

1

and that of CF

2

is at most

t

2

. Out assumptions about the security of H

1

;H

2

imply that p

1

� �

1

and p

2

� �

2

, so that

ProbSuccess(CF;H) � �

1

+ �

2

.

It remains to de�ne the two algorithms. They are:

Algorithm CF-I

1

(M;State)

R

 CF-I

return (M;State)

Algorithm CF-I

2

(M;State)

R

 CF-I and K

1

R

 �

k

1

x

R

 H

1

(K

1

;M)

return (x; (M;State ;K

1

))

Algorithm CF-II

1

(K

1

;M;State)

K

2

R

 �

k

2

M

0

R

 CF-II(K

1

K

2

;M;State)

return M

0

Algorithm CF-II

2

(K

2

; x; (M;State ;K

1

))

M

0

R

 CF-II(K

1

K

2

;M;State)

x

0

R

 H

1

(K

1

;M

0

)

return x

0
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The experiment describing CF

1

's attack on H

1

is

(M;State)

R

 CF-I

1

; K

1

R

 �

k

1

; M

0

R

 CF-II

1

(K

1

;M;State) : (13)

Let x = H

1

(K

1

;M) and x

0

= H

1

(K

1

;M

0

). By de�nition CF

1

is successful in breaking H

1

when

M 6=M

0

but x = x

0

. Notice x = x

0

implies H

2

(K

2

; x) = H

2

(K

2

; x

0

) where K

2

is the key chosen by

CF-II

1

. Furthermore from the de�nitions of CF-I

1

;CF-II

1

it is easy to see that the experiment of

Equation (13) mimics that of Equation (12). This means (M;M

0

) is a collision for H

1

(K

1

; �) with

exactly the probability that event E

1

occurs in the experiment of Equation (12). It follows that

ProbSuccess(CF

1

;H

1

) = p

1

.

The experiment describing CF

2

's attack on H

2

is

(x; (M;State ;K

1

))

R

 CF-I

2

; K

2

R

 �

k

2

; x

0

R

 CF-II

2

(K

2

; x; (M;State ;K

1

)) : (14)

By de�nition CF

2

is successful in breaking H

2

when x 6= x

0

but H

2

(K

2

; x) = H

2

(K

2

; x

0

). From

the de�nitions of CF-I

2

;CF-II

2

it is easy to see that the experiment of Equation (14) mimics that

of Equation (12). This means (x; x

0

) is a collision for H

2

(K

2

; �) with exactly the probability that

event E

2

occurs in the experiment of Equation (12). It follows that ProbSuccess(CF

2

;H

2

) = p

2

.

It remains to bound the running times and output lengths. The running time of CF

1

is at most

t+O(k

2

), and this is at most t

1

for the choice of t in the lemma statement. The running time of CF

2

is at most t+2T

H

1

(�)+O(k

1

), which is at most t

2

for the choice of t in the lemma statement. The

output length of CF

2

is at most �

2

. The result follows.

Proof of Lemma 3.2: We follow the proof of Lemma 3.1. The constructions are the same. We

only need a few additional observations to justify them.

Note that we are guaranteed jM j = jM

0

j in the collision (M;M

0

) found by CF, because the latter

is now by assumption an equal-length collision �nder. This means, �rst, that collisions found

by CF

1

are also equal-length ones. It also means that jxj = jx

0

j (where x = H

1

(K

1

;M) and

x

0

= H

1

(K

1

;M

0

)) because H

1

is length-consistent. The latter means that the collisions found by

CF

2

are also equal-length ones. Put these observations together with the previous proof and we are

done.
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