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Abstract

The Cipher Block Chaining (CBC) Message Authentication Code (MAC) is an

authentication method which is widely used in practice. It is well known that the

naive use of CBC MAC for variable length messages is not secure, and a few rules

of thumb for the correct use of CBC MAC are known by folklore. The �rst rigorous

proof of the security of CBC MAC, when used on �xed length messages, was given

only recently by Bellare, Kilian and Rogaway [3]. They also suggested variants of

CBC MAC that handle variable length messages but in these variants the length of

the message has to be known in advance (i.e., before the message is processed).

We study CBC authentication of real time applications in which the length of the

message is not known until the message ends, and furthermore, since the application is

real-time, it is not possible to start processing the authentication only after the message

ends.

We �rst present a variant of CBC MAC, called double MAC (DMAC) which handles

messages of variable unknown lengths. Computing DMAC on a message is virtually

as simple and as e�cient as computing the standard CBC MAC on the message. We

provide a rigorous proof that its security is implied by the security of the underlying

block cipher. Next, we argue that the basic CBC MAC is secure when applied to pre�x

free message space. A message space can be made pre�x free by authenticating also

the (usually hidden) last character which marks the end of the message.

Keywords: Message authentication, Real time, Cipher block chaining, Block ciphers.

1 Introduction

The Cipher Block Channing (CBC) Massage Authentication Code (MAC) is an authentica-

tion method which is widely used in practice. To authenticate a messageX = (x

1

; x

2

; : : : ; x

m

)

amongst parties who share the secret key a, the following tag is added to the message:

f

(m)

a

(x)

def

= f

a

(f

a

(� � � f

a

(f

a

(x

1

)� x

2

)� � � � � x

m�1

)� x

m

):

�
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The function f

a

: f0; 1g

`

! f0; 1g

`

is some underlying block cipher such as Data Encryption

Standard (DES) and a is the secret key. Thus, f

(m)

a

is a function that takes a message

of m � 1 blocks (or m` bits) and assigns it a tag of one block. The CBC MAC is an

International Standard [8], widely used, especially with the DES as the underlying cipher

block function.

It is well known that the naive use of CBC MAC for variable length messages is not

secure, and a few rules of thumb for the correct use of CBC MAC are known by folklore. For

example, it is easy to show that after examining a few authentications, an adversary that

doesn't know the secret key can produce a valid authentication of a message that hasn't yet

been authenticated.

Until recently, no solid theoretical ground was suggested to deal with the security of this

method. The main interest is whether the security of the block cipher function f (e.g. DES)

implies the security of the CBC MAC f

(m)

. Bellare, Kilian, and Rogaway [3] were the �rst

to study this problem. They show that CBC MAC is secure when applied to messages of

�xed length. They also show variants of CBC MAC that are secure for the case of variable

length messages when the length of the message is known in advance, i.e., before the message

is given to the authentication procedure.

1.1 This work

We study the case of real time applications, in which the length of the message is not known in

advance. These include many important uses such as fax, real time speech transmission, real

time camera sources of video transmission, and other human-driven multimedia interactions.

We study how to use the popular CBC MAC approach in this scenario.

First, we suggest the following variant of CBC MAC to deal securely with the problem

of variable (unknown) length messages. We use the secret key a to produce two secret keys

a

0

= f

a

(0) and a

00

= f

a

(1). Using a

0

and a

00

we de�ne:

DMAC

a

0

;a

00

(x)

def

= f

a

00

(f

(m)

a

0

(x))

where m is the number of blocks in x. Namely, we �rst use a

0

to perform a regular CBC au-

thentication of the message. This can be done block by block as they are input to the authen-

tication procedure. Given f

(m)

a

0

(x) we perform one more operation and get DMAC

a

0

;a

00

(x).

Note that for each block x

i

we only use the encryption function once. The additional invo-

cation of f

a

00

is done only once in the end. Therefore, the e�ciency of this authentication

is virtually the same as the standard CBC MAC. We call this authentication DMAC (for

double MAC).

1

We then provide a rigorous proof that this method is secure. Our proof is

an extension of the proof in [3].

Next, we argue that the security of cipher block chaining (CBC) message authentication

code (MAC) applied on pre�x free message space is secure. If the part of the message which is

authenticated includes the (usually hidden) \end of message" character, then this condition

(of pre�x free messages) holds. The proof of this is an easy augmentation of the proof for

�xed length messages given in [3]. We remark that making such assumptions on the behavior

1

Actually, a di�erent method to deal with unknown lengths was suggested in [3]. Their method seems to

have a aw. See Appendix A for details.
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of the system is on one hand reasonable, but on the other hand, relies on the system being

used as it was meant to be used. The security of the system would be compromised if the

system is later modi�ed to authenticate the concatenation of a few messages (treating it as

if it was a single message to authenticate), thus loosing the pre�x free property. Therefore,

we recommend using DMAC even though one more operation of f is needed per message.

1.2 A remark on a single message authentication

Sometimes a key is used only once for authentication. For example, when a more complicated

cryptographic procedure is used to produce keys, one for each message, and then a simple

and e�cient cryptographic procedure is used with this key to authenticate one message. The

key is then discarded.

We would like to remark that the use of CBC-MAC with a key that is used only once is

a safe use of CBC-MAC. In [3] it is asserted that if the adversary only sees authentications

of messages of a �xed length, then he \cannot" succeed in producing an authentication of a

message of the same length that he hasn't already seen the authentication of. However, their

proof can be easily extended to show that the adversary \cannot" produce authentications

of messages on any length even di�erent from the length of the messages of all his queries.

Thus, seeing an authentication on one message cannot help the adversary authenticate any

other message.

1.3 The theoretical framework

We follow the approach suggested by Bellare, Kilian and Rogaway [3]. We describe it here

shortly, and we refer the reader to their paper for details and motivation.

We would like to show that if the underlying block cipher is secure then a message

authentication code is also secure. We call a block cipher secure if it is a pseudo random

function family with respect to e�cient computation. Namely, consider the block cipher

as a family of functions, so that each key determines a function in the family. Then we

assume that this family is a pseudo random family of functions. This approach to security

of a cipher scheme was suggested by Luby and Racko� [9, 10], and the notion of a family of

pseudo random functions was suggested by Goldreich, Goldwasser and Micali [5].

We say that a MAC from

�

f0; 1g

`

�

�

to f0; 1g

`

is secure if it resists existential forgery under

adaptive message attack. This adopts the viewpoints of Goldwasser, Micali and Rivest [6]

with regards to signature schemes. We shall follow [3] and actually show that the message

authentication code is secure in a very strong sense, i.e., that the DMAC we suggest, or the

application of CBC MAC on pre�x free message space, is actually a family of pseudo random

functions.

Bellare, Kilian and Rogaway have also provided an exact security analysis. Namely,

instead of arguing that if the underlying cipher block is robust against polynomial time attack

then the authentication procedure is robust against polynomial time attack, they actually

make a more exact statement. They state that if the authentication can be attacked by an

adversary running in time t, making q queries to the authentication scheme, and achieving

\advantage" � (for de�nition of advantage see Section 2), then there exists an adversary

which attacks the underlying cipher in time t

0

, makes at most q

0

queries to the cipher, and
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achieves advantage �

0

, where t

0

; q

0

, and �

0

are explicitly given as functions of q; t; �. In this

way, it is possible to study non-asymptotic ciphers schemes, such as DES (which is only

de�ned on a block of 64 bits). We follow this approach.

1.4 Related works

There are various approaches to authentication other than CBC MAC. Wegman and Carter

[17] suggested to hash a message using almost universal

2

family of hash functions and then

encrypt it (using probabilistic encryption). Following that, e�cient applications of this

procedure were suggested by Krawczyk [7], Stinson [16], Shoup [15], and Rogaway [14]. See

[14] for more details and references.

We also mention the work of Bellare, Guerin, and Rogaway [2], who suggested a new

type of (provably secure) authentication based on performing exclusive or's on encryptions

of the input blocks. This allows parallelizability and incrementality.

Bellare, Canetti, and Krawczyk [1] introduce two methods for message authentication

code: NMAC and HMAC. Both bear resemblence to our DMAC, but are also di�erent. In

the NMAC construction, they use two keys as in the DMAC, applying �rst some secure

compression hash function on the message with one key, and then applying the same com-

pression function with a second key on the of the previous iteration. A similar thing is done

in the HMAC except for the use of only one key, together with a predetermined mask which

is bit-wise exclusive or-ed with the key. Their constructions and proofs are not applicable

to the DMAC construction since the DMAC deals with an iteration that is not (weakly)

collision resistant for non-�xed size inputs. This bad property of the CBC MAC foils the

proof in [1] and therefore a proof is needed that the DMAC is indeed secure.

The ANSI standard X9.19 augmentats CBC-MAC using a DES cipher. The standard

suggests using two keys like our DMAC. The �rst is used to get a CBC-MAC on the message

using DES, then the second is used to decrypt the result with DES, and last, the �rst key

is used again to encrypt the outcome. This was done primarily to prevent exhaustive key

attacks, but has the same e�ect on variable length message attacks that DMAC does. The

construction of ANSI X9.19 involves an extra operation which, in view of our result, is not

really necessary. To the best of our knowledge, there is no published rigorous proof of security

for the ANSI X9.19 construction, which is di�erent from the DMAC.

Independently of this work, Bellare and Rogaway [4] consider the case in which private

keys are not allowed. They construct a mechanism to do that, which has a similar weakness

when variable length messages are hashed. They suggest the following mechanism to deal

with this problem: Hash the message using one key (in their scenario the key is revealed to

the adversary at a later stage) to get h

k

1

(X), and then append the length of X to h

k

1

(X)

and hash them together using a di�erent key k

2

. This construction is closely related to our

DMAC. It needs a bit more work in the second stage, but the proof of security becomes

easier.

Last, let us mention the birthday attacks of Preneel and Oorschot [11]. They show that

any MAC can be broken if enough (and/or long enough) messages are authenticated so

that a collision occurs, i.e., the breaker �nds two di�erent messages that get the same hash

value. These attacks are not avoided in CBC MAC or in our DMAC. Of-course, the security

parameters of the DMAC (or CBC MAC) should be set so that birthday attacks would be
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infeasible. In light of these attacks, our theorem should be interpreted as saying that nothing

more than these attacks is possible if the underlying block cipher is secure. In other words,

our theorem should be thought of: \If you can do better than birthday attacks then you can

break the underlying block cipher scheme". This is formalized in our main Theorem (see

Theorem 1 in Section 3).

1.5 Outline of the paper

In the following section we give the de�nitions and notations used throughout the paper. In

Section 3 we show that DMAC is (almost) as secure as the underlying block cipher used,

and in Section 4 we argue that it is secure to use CBC MAC on a pre�x free message space

(given that the underlying family is secure).

2 Preliminaries

We (basically) use the notation of [3]. The set of all functions from f0; 1g

`

to f0; 1g

`

is called

R

`!`

. Also, let the (in�nite) set of all functions from (f0; 1g

`

)

�

to f0; 1g

`

be called R

`

�

!`

.

Let A be a random access machine (RAM) with access to an oracle f (think of f as an

authentication function which A can access, or alternatively as a random function) then we

denote by Prob[A

f

= 1] the probability that A outputs 1 when accessing the function f as

an oracle. For a �nite family of functions F , we denote by Prob[A

F

= 1] the probability

that A, when accessing an oracle f which is uniformly chosen from F outputs 1. We will

also consider the in�nite set of functions from (f0; 1g

`

)

�

to f0; 1g

`

. In this case, instead of

thinking of A

R

`

�

!`

as a machine which uses a random function in this in�nite set, one may

think of the oracle answering each question of the machine with a random string in f0; 1g

`

.

Of-course, if the same question is asked twice, the same answer will be given.

In this paper, we would like to check the ability of A to tell between a function chosen from

a speci�c family F and a random function on the same domain. We denote the advantage of

A in making this distinction by advantage

A

(F ). Let F be a family of functions from f0; 1g

`

to f0; 1g

`

, then

advantage

A

(F )

def

=

�

�

�Prob[A

F

= 1]� Prob[A

R

`!`

= 1]

�

�

� :

(This notation follows [5].) We also use a similar de�nition for a family of functions F from

(f0; 1g

`

)

�

to f0; 1g

`

. In this case we de�ne

advantage

A

(F )

def

=

�

�

�Prob[A

F

= 1]� Prob[A

R

`

�

!`

= 1]

�

�

� :

A message space 
 is a set of strings in f0; 1g

�

. We say that a message space 
 is pre�x

free if there are no two strings x

1

; x

2

2 
 such that x

1

is a pre�x of x

2

.

2.1 The CBC MAC

Given a block cipher which uses a random key a 2 f0; 1g

k

, we de�ne a family of functions

F which includes a function for each possible key in f0; 1g

k

. Note that two di�erent keys
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may imply the same function. When we say that a function f 2 F is chosen uniformly at

random, we mean that a key is chosen at random in f0; 1g

k

and the implied function is used.

Given a set of functions F from f0; 1g

`

to f0; 1g

`

(denoted the underlying family of

functions) the CBC MAC authentication scheme MAC

F

is de�ned by choosing uniformly

at random a function f 2 F (unknown to the adversary) and then the authentication of a

message x of m blocks, i.e., x = (x

1

; x

2

; : : : ; x

m

) is de�ned as:

f

(m)

(x

1

; : : : ; x

m

) = f(f(: : : f(f(x

1

)� x

2

)� : : :� x

m�1

)� x

m

):

It will be convenient to also de�ne f

(0)

(�) = 0

`

(for the empty string �). Sometimes, we

prefer not to specify the length of x, and then we will write f

(�)

(x), which means the same

as above with m being the number of blocks in the input message x.

2.2 Double MAC

A variant of CBC MAC which we call DMAC (double MAC) is de�ned as follows. Let F

be a family of functions. Choose two functions f

1

; f

2

2 F uniformly and independently. On

a message X = (x

1

; x

2

; : : : ; x

m

) as above, we de�ne

DMAC

f

1

;f

2

= f

2

(f

(m)

1

(x)):

We remark that if only one secret function f is given instead of the pair f

1

; f

2

, one may use

the strings f(0) and f(1) to specify the two functions f

1

; f

2

. It is easy to show that if F is

a pseudo random family of functions then this additional step does not foil the security of

the system. We denote the use of DMAC with a family F by DMAC

F

.

3 Double MAC is secure

In this section, we would like to show that the security of DMAC

F

is implied by the security

of the family F . In the main theorem of [3] (where all messages had the same length) and

also in case the message space is pre�x-free, the adversary is limited in his queries, and this

is used in the proof. Here, the adversary is allowed to make any query. (Actually, we will

not allow more then a reasonable (i.e., an exponential) number of queries, and we will not

allow queries of exponential length.)

Let us state the theorem. In the sequel, we denote by ` the length of the blocks in the

block cipher. Namely, the functions in the family F are from f0; 1g

`

into f0; 1g

`

. Also, we

denote by jXj the number of blocks in the string X.

Theorem 1 Let F � R

`!`

be a family of functions. Let f

1

; f

2

be two functions selected

uniformly and independently in F . Suppose there is an adversary that gets to see the

DMAC

f

1

;f

2

authentication of messages X

1

;X

2

; : : : ;X

q�1

which he chooses adaptively, and

then with probability � is able to forge X

q

, i.e., output X

q

;DMAC(X

q

) for X

q

which is dif-

ferent from all the previous queries X

1

; : : : ;X

q�1

. Suppose that the adversary runs in time

t and that the total length of the queries satisfy

P

q

i=1

jX

i

j � 2

(`+1)=2

. Then, there exists an

adversary A for distinguishing a uniformly chosen function in F from a random function
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of f0; 1g

`

to f0; 1g

`

with the following properties. Adversary A achieves an advantage of at

least �=2� 2

�`

� (

P

q

i=1

jX

i

j)

2

� 2

�`

=2, after making at most

P

q

i=1

jX

i

j queries and working in

time at most t+ c`

P

q

i=1

jX

i

j, for some small constant c.

The constant c is a small number which depends on the computational model.

Proof: We extend the proof in [3] to deal with this case. The proof in [3] is composed of

three stages.

1. They start by considering the information theoretic case in which the function f is

really chosen at random between all functions from f0; 1g

`

to f0; 1g

`

. In this case,

the adversary is allowed unlimited computational power and we only check how many

queries he makes and how long the messages in each query are. In this case, they

show that the CBC-MAC (operated on �xed length messages) behaves almost as a

random function. Namely, the adversary cannot gain high advantage in distinguishing

CBC-MAC form a random function.

2. Second, they argue that if the family F , from which the function f is chosen, is only a

family of pseudo-random functions (and not really a random function as in step (1)),

then CBC-MAC applied on this family results in a family of pseudo random functions

as well.

3. Last, they show that if CBC MAC is a family of pseudo-random function then it is

also a secure authentication scheme.

The arguments given in [3] for Steps (2) and (3) are standard, except for the fact that

they computed the exact security of the reductions involved. The exact calculations, given

in [3], apply to our case too (with easy modi�cations in the presentations of the parameters).

We will spend most of this section on extending the �rst step so that it matches the DMAC

scenario.

3.1 The information theoretic case

Starting with Step (1) in the proof, i.e., the information theoretic case, we are going to show

the following lemma.

Lemma 3.1 Let ` � 1 be the block length. Suppose the adversary makes queries X

1

; : : : ;X

n

the accumulative length of which, i.e.,

P

n

i=1

jX

i

j, is less then 2

(`+1)=2

, then the adversary

cannot gain advantage greater than (

P

n

i=1

jX

i

j)

2

� 2 � 2

�`

.

In order to prove the lemma, we use the following steps. First, we show that when there are

no collisions, i.e., the underlying function f

1

is evaluated on a di�erent string each time, then

the adversary knows \nothing" except for the fact that there were no collisions. Then, we

show that the probability that the adversary can \cause" a collision based on his view (even

when using his unbounded computational capabilities) is small. We conclude with deducing

that the adversary has little advantage in breaking the system.

We start with formalizing the �rst argument. Since the adversary is not limited in

computational power we may assume he is deterministic. Therefore the distribution space
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is determined only by the random selection of f

1

and f

2

amongst all functions from f0; 1g

`

to f0; 1g

`

. We will actually prove a bit more then stated, in the sense that we are going

to let the adversary see all the authentications of all the pre�xes of his queries. Namely,

when the adversary makes a query X = (x

1

; x

2

; : : : ; x

m

), then he not only gets the value of

DMAC on X but also he gets all the DMAC's of all the pre�xes of X. Therefore, he gets:

f

2

(f

1

(x

1

)); f

2

(f

1

(f

1

(x

1

)� x

2

)); : : : ; f

2

(f

1

(� � � f

1

(f

1

(x

1

)� x

2

)� � � � � x

m

)).

In the �rst lemma (see Lemma 3.2 below) we assert that if there is no collision on the

queries done so far (including all sub-queries) then any f

1

that does not cause collision on

this set of queries is equally likely to be the one used, given the view of the adversary. Here,

we �x an f

1

and thus the distribution is only on the choice of f

2

. In the second lemma (see

Lemma 3.3 below) we show that this implies an almost uniform behavior of the values on

which f

2

is applied. (Recall that in DMAC we �rst perform a CBC MAC authentication

with f

1

and then we invoke f

2

once on the value got.) Using this, we show in the third

lemma (see Lemma 3.4 below) that the probability that a new query will cause a collision,

given the view of the adversary so far, is small. Intuitively, any speci�c query made will only

cause a collision to a small fraction of all the possible f

1

's. Having this, we prove that the

lemma holds. Let us start with the �rst lemma.

Lemma 3.2 Suppose the adversary makes queries X

1

;X

2

; : : : ;X

n

, and suppose that so far,

there was no collision in the values output by DMAC on the all queries and sub-queries.

Then all f

1

� R

`!`

which do not cause collision on this set of queries and sub-queries, are

equally likely to be used in the DMAC, when the function f

2

is uniformly chosen in the set

R

`!`

.

Proof: Fix a g 2 R

`!`

, which doesn't cause collision on the given set of queries and all

the implied sub-queries. Denote the values of CBC MAC, using the function g on all the

queries and sub-queries by �

1

; �

2

; : : : ; �

m

. If f

1

= g is used for the DMAC, then the output

given to the adversary is actually �

1

= f

2

(�

1

); �

2

= f

2

(�

2

); : : : ; �

m

= f

2

(�

m

). Note that the

�

i

's must be distinct, otherwise the output of DMAC would have collisions.

Now let's ask what is the probability that f

1

= g given the adversary's view:

(X

1

;X

2

; : : : ;X

n

; �

1

; : : : ; �

m

). The values �

i

, i = 1; : : : ;m are the outputs given to the adver-

sary on his set of queries. This includes the DMAC values on all the queries and sub-queries.

Using Bayes rule:

Prob

f

1

;f

2

[f

1

= gjView = (X

1

; : : : ;X

n

; �

1

; : : : ; �

m

)]

= Prob

f

1

;f

2

[View = (X

1

; : : : ;X

n

; �

1

; : : : ; �

m

)jf

1

= g] �

�

Prob

f

1

;f

2

[f

1

= g]

Prob

f

1

;f

2

[View = (X

1

; : : : ;X

n

; �

1

; : : : ; �

m

)]

= Prob

f

2

[^

m

i=1

f

2

(�

i

) = �

i

] �

Prob

f

1

;f

2

[f

1

= g]

Prob

f

1

;f

2

[View = (X

1

; : : : ;X

n

; �

1

; : : : ; �

m

)]

The �rst term, assuming that all �

i

's are distinct is exactly 2

�`m

since we �x m di�erent

values of the function f

2

. The dominator is exactly 1=jR

`!`

j since f

1

is picked at random

from R

`!`

. The denominator is independent of the function g. Thus, we get that this

expression is the same for all functions g which are collision free, and we are done.
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Recall that DMAC involves an intermediate computation of f

(�)

1

on the queryX, and then

a �nal computation of f

2

(f

(�)

1

(X)). In the following lemma, we assert that the intermediate

values are \hidden" even if the �nal values of the DMAC are given. Furthermore, we will

show that the exclusive or of two intermediate values are also \hidden". We formalize this

in the following lemma.

Lemma 3.3 Let X

1

; : : : ;X

n

be the queries made so far, let Y

1

; : : : ; Y

m

be all the sub-queries

implied by them (including the X

i

's). Also, let m

2

=4+m�1 � 2

`

=2 and let �

1

; : : : ; �

m

be the

DMAC values given to the adversary in response to his queries, i.e., �

i

= DMAC

f

1

;f

2

(Y

i

).

Suppose the �

i

's are all distinct (i.e., there is no collision), then for any string � 2 f0; 1g

`

it holds that

1. for any 1 � i � m,

Prob

f

1

;f

2

[f

(�)

1

(Y

i

) = �jView = (X

1

; : : : ;X

n

; �

1

; : : : ; �

m

)] � 2 � 2

�`

2. for any pair of indices i 6= k, 1 � i; k � m,

Prob

f

1

;f

2

[f

(�)

1

(Y

i

)� f

(�)

1

(Y

k

) = �jView = (X

1

; : : : ;X

n

; �

1

; : : : ; �

m

)] � 2 � 2

�`

Proof: Since we know that all the output strings �

i

's 1 � i � m are distinct, then it follows

that the strings �

i

def

= f

(�)

1

(Y

i

), 1 � i � m, must also be all distinct. Namely, the function f

1

must also be collision free on these queries. Let us also go one step inside the calculation of

the cipher block chaining f

(�)

1

(Y

i

) and recall that the last step in this calculation is always

an application of f

1

on some string gotten from previous step. So let 

i

be this string. (If

Y

i

= (y

1

; y

2

; : : : ; y

t

) then 

i

def

= f

(t�1)

1

(y

1

; : : : ; y

t�1

) � y

t

). Clearly, �

i

= f

1

(

i

), 1 � i � m.

Since there are no collisions, we get that all 

i

's must be distinct too.

Note that the �

i

's are random variables dependent on f

1

and f

2

and they are given to

the adversary, while the �

i

's and the 

i

's are random variables that depend only on f

1

and

they are not known to the adversary. (An exception is when Y

i

is of length one block, and

then 

i

is actually Y

i

which is determined by the adversary.) We would like to determine

the probability that �

i

= � for a string � and an index 1 � i � m, or the probability that

�

i

� �

k

= �, given the view of the adversary so far. To do that, we are going to show

that even if we �x the values of all the �

j

's except �

i

, then the value of f

(�)

1

(�

i

) is almost

uniform in f0; 1g

`

given the view of the adversary. This implies also that the value of the

exclusive or �

i

� �

k

is almost uniform. From this we conclude that also when we do not �x

the values of the �

j

's, it still holds that f

(�)

1

(�

i

) is still almost uniform, and also that the

value of f

(�)

1

(�

i

)� f

(�)

1

(�

k

) is almost uniform.

Fix all values �

j

for all j 6= i such that all these values are distinct and di�erent from

the given string �. We shall show that given any such �xing of the �

j

's, the probability that

�

i

= � is at most 2 � 2

�`

. Thus, this bound on the probability also hold when the �

j

's are

not �xed, but are rather random variables depending on f

1

.

By Lemma 3.2, all collision free f

1

's are equally likely given the output �

1

; : : : ; �

m

. Only

a subset of these f

1

's agree with the new constraint put through the values �

j

1 � j � m,

j 6= i, and we actually would like to know what the probability of f

1

(Y

i

) = � is, given this
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constraint. Thus, the distribution we have is a uniformly chosen function which is collision

free, and which satis�es f

(�)

1

(Y

j

) = �

j

for all 1 � j � m, j 6= i. Note that each function is

chosen with equal probability originally, and thus also each function that satis�es the new

constraint is equally likely to be chosen. Also, note that the constraint may be written as

f

1

(

j

) = �

j

for all j = 1; : : : ; i� 1; i + 1; : : : ;m. Since 

i

is di�erent from all the 

j

above,

and since f

1

is chosen between all collision free functions, we get that the value of f

1

(

i

) is

uniformly chosen between all values that do not cause a collision for f

1

. Let's determine how

many strings like that exist.

There are 2

`

possible strings to be output, but out of them we have already determined

m � 1 to be output on di�erent inputs, and thus are not allowed. Also, setting f

1

(

i

) to

be something speci�c, determines the values of 

k

for all Y

k

which are direct extensions of

Y

i

. Namely, if Y

i

= (y

1

; : : : ; y

t

) then any Y

k

of the form Y

k

= (y

1

; : : : ; y

t

; y

t+1

) has its 

k

determined as f

1

(

i

) � y

t+1

. So if there are s direct extension of Y

j

, then for each of them

m � s strings are forbidden, because their inputs should not collide with any input of the

other m� s sub-queries which are not direct extensions of Y

j

. So the number of forbidden

string that follows from this argument is s(m � s) � m

2

=4. To summarize, the number of

allowed strings is at least 2

`

�m

2

=4 �m� 1 � 2

`

=2. Since all of them are equally likely to

appear when f

1

is chosen as above, we get that the probability that f

1

(Y

i

) = �, given that

f

1

is collision free and consistent with f

(�)

(Y

j

) = �

j

for j = 1; 2; : : : ;m, j 6= i, is at most

2 � 2

�`

and we are done.

Building on this lemma, we can go on and prove that the probability that the prover will

manage to �nd collision given that there was no collision so far is small. Here we shall again

assume that the prover sees the DMAC values on all the sub-queries in addition to seeing

the DMAC values on the queries themselves. So we are going to ask what is the probability

that the prover can get a collision in any extension of the sub-queries done so far. By an

extension, we mean adding one block to a query made before. We claim that the probability

of a collision, given that there was no collision in the past is small.

We are going to assume that the number of outputs shown to the adversary is smaller

than

q

2

`

=2. Note that otherwise, there is a good chance that the adversary encounters a

collision even if he just randomly selects his queries (Recall that ` is the block size).

Lemma 3.4 Let Y

1

; Y

2

; : : : ; Y

m

be all the sub-queries (and queries) made so far and let �

i

=

DMAC(Y

i

) for i = 1; 2; : : : ;m. Suppose the �

i

's are distinct and that m

2

=4 +m� 1 < 2

l

=2.

Then, for any string ! 2 f0; 1g

`

it holds that

1. for any pair of indices j; k, 1 � j; k � m, if Y

j

6= Y

k

! then

Prob

f

1

;f

2

[f

(�)

1

(Y

j

) = f

(�)

1

(Y

k

!)jView = (X

1

; : : : ;X

n

; �

1

; : : : ; �

m

)] � 3 � 2

�`

:

2. for any index j, 1 � j � m, if Y

j

6= ! then

Prob

f

1

;f

2

[f

(�)

1

(Y

j

) = f

(�)

1

(!)jView = (X

1

; : : : ;X

n

; �

1

; : : : ; �

m

)] � 3 � 2

�`

:

Proof: We assume in proving the �rst part of the lemma that Y

k

! is not a query made

before. We assume the same for ! in the proof of the second part of the lemma. If this was

10



not the case, then the probability of collision would have been zero, since we know that all

previous queries are collision free.

We start with the �rst part of the lemma. One possible case is that Y

j

is composed of

more than one block, i.e., jY

j

j > 1. Denote the blocks of Y

j

by Y

j

= (Y

1

j

; Y

2

j

; : : : ; Y

t

j

). The

event that we are interested in is f

(�)

1

(Y

j

) = f

(�)

1

(Y

k

!) (given the view of the adversary)

which can be written as

f

1

(f

(�)

1

(Y

1

j

; Y

2

j

; : : : ; Y

t�1

j

)� Y

t

j

) = f

1

(f

(�)

1

(Y

k

)� !): (1)

One possibility of collision is that the inputs to f

1

on each side of the equation are

di�erent, but f

1

maps them both to the same value. If f

1

was computed on the value

f

(�)

1

(Y

k

) � ! for some other query Y

i

(i 6= k), then since there are no collisions, then the

probability that it would collide with Y

k

is 0. So we assume that f

1

was not yet computed

on the value f

(�)

1

(Y

k

)�!. Since all non-colliding f

1

's are equally likely given the view so far,

then any value of f

1

on the string f

(�)

1

(Y

k

)� ! appears with the same probability given the

current view. Therefore, the probability of forming a collision is at most 2

�`

.

The other possibility that the event in Equation (1) holds is that the inputs to f

1

collide.

Namely,

f

(�)

1

(Y

1

j

; Y

2

j

; : : : ; Y

t�1

j

)� Y

t

j

= f

(�)

1

(Y

k

)� !:

Note that (Y

1

j

; Y

2

j

; : : : ; Y

t�1

j

) is also a query, since it is a sub-query of another query. Thus,

we may apply the second Part of Lemma 3.3 to get that the probability of this event is at

most 2 � 2

�`

. To summarize this case (i.e., jY

j

j > 1), we get that the probability of forming

a collision is at most 3 � 2

�`

.

If, on the other hand, Y

j

has one block, then we ask what is the probability that

f

1

(Y

j

) = f

1

(f

(�)

1

(Y

k

)� !): (2)

Again, either f

1

is applied on a new value, i.e., f

(�)

1

(Y

k

)� ! such that this collision occurs,

and this happens with probability 2

�`

, or it holds that

f

(�)

1

(Y

k

) = Y

j

� !:

Again, by Lemma 3.3, this happens with probability at most 2 � 2

�`

and thus in this case

(i.e., Y

j

has one block) the probability of a new collision is also at most 3 � 2

�`

.

Now let us proceed with Part (2) of the lemma. Here we consider the event f

(�)

1

(Y

j

) =

f

(�)

1

(!) (given the view of the adversary) which can be written as

f

(�)

1

(Y

j

) = f

1

(!): (3)

Again, we partition the analysis according to the number of blocks in Y

j

. If Y

j

contains one

block, then the event in Equation (3) can be written as f

1

(Y

j

) = f

1

(!): Recall that ! is not

a copy of a query made so far, thus Y

j

6= !. Also, since f

1

is collision free on all the previous

queries, then f

1

was never evaluated on !. Therefore, any value is equally likely to be f

1

(!)

and we get f

1

(Y

j

) = f

1

(!) with probability at most 2

�`

.

If Y

j

= (Y

1

j

; : : : ; Y

t

j

) for t > 1, then the event in Equation (3) can be written as

f

1

(f

(�)

1

(Y

1

j

; : : : ; Y

t�1

j

) � Y

t

j

) = f

1

(!): This happens either if the inputs to f

1

are equal, i.e.,
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f

(�)

1

(Y

1

j

; : : : ; Y

t�1

j

) = Y

t

j

� !, or if the inputs are di�erent but f

1

makes them collide. The

�rst happens with probability at most 2 � 2

�`

by Lemma 3.3, and the second happens with

probability at most 2

�`

since f

1

has not been evaluated on ! before. Thus, we are done with

Lemma 3.4.

Based on this lemma, we may conclude that the probability that a collision occurs after

the adversary makes the queries X

1

;X

2

; : : : ;X

n

is at most (

P

n

i=1

jX

n

j)

2

� 4 � 2

�`

.

Corollary 3.5 Suppose the adversary makes the queries X

1

; : : : ;X

n

, and let Y

1

; : : : ; Y

m

be

all the sub-queries implied by these queries (including the queries themselves), suppose also

that m

2

=4 +m� 1 < 2

l

=2. Then the probability that a collision occurs on these queries is at

most (

P

n

i=1

jX

n

j)

2

� 2 � 2

�`

.

Proof: We prove the corollary by an induction on the sub-queries. The order of the sub-

queries for the purpose of the induction, is a sequence of sub-queries such that if a sub-query

(y

1

; : : : ; y

t

) appears at location i in the sequence, then the sub-query (y

1

; : : : ; y

t�1

) appears

at location j < i in the sequence. Clearly there exists such an order. Now, the probability

that a collision occurs after the �rst query is made is zero. Then, the probability that a

collision occurs when the i + 1'st query is made given that no collision occurred so far is

at most i � 4 � 2

�`

. The reason is as follows. By Lemma 3.4, the new query would cause a

collision on the f

(�)

1

values with any of the queries Y

1

; Y

2

; : : : ; Y

i

with probability at most

3 � 2

�`

. The probability that applying f

2

on two distinct values would cause a collision is at

most 2

�`

. So the probability that any collision will occur while making the i+ 1'st query is

at most i � 4 � 2

�`

.

Summing up over all i = 1; 2; : : : ;m, we get that the overall probability is at most

m

X

i=1

i � 4 � 2

�`

�

 

n

X

i=1

jX

n

j

!

2

� 2 � 2

�`

and we are done with the proof of the corollary.

Let us now �nish the proof of Lemma 3.1. First, we note that if the queries of the

adversary are collision free then the view of the adversary is completely random. Let f

1

be

any collision free function on the adversary queries, then what the adversary actually sees is

the output of f

2

on m di�erent inputs. As f

2

is chosen at random, this view of the adversary

behaves exactly like a random function on his queries. So here the adversary can gain no

advantage (no matter what his strategy is). On the other hand, if the adversary encounters

a collision, then he might be able to use it to distinguish between the DMAC and a random

function. In this case, we make a worst case assumption that the adversary always succeeds.

So it remains to use Corollary 3.5 and see that the advantage of the adversary does not

exceed (

P

n

i=1

jX

n

j)

2

� 2 � 2

�`

. as needed for Lemma 3.1, and we are done.

3.2 The computational case

Reducing DMAC to the underlying family of functions involves a standard reduction whose

exact analysis was done in [3]. The only di�erence in our case is that we get a distinguisher

which distinguishes a randomly chosen pair of functions f

1

; f

2

2 F from a randomly chosen

12



pair of random functions g

1

; g

2

2 R

`!`

. Our goal is to show the existence of a distinguisher

for a single function. Standard hybrid arguments imply that if there exists a distinguisher for

a pair which achieves advantage � then there exists another distinguisher for a single function

which achieves advantage at least �=2. This smaller advantage is embedded in Lemma 3.6

below.

Note that if we actually want to build this distinguisher (rather than just to state its

existence) then we can choose at random one of the two implied testers and use it on the

given (as an oracle) function h. This will give a distinguisher with advantage �=2 as needed.

Let us state our �nal lemma.

Lemma 3.6 Suppose there exists an algorithm A which makes q�1 queries X

1

; : : : ;X

q�1

to

DMAC

F

and then with probability � produces a query X

q

together with DMAC(X

q

). Suppose

also that A runs in time t and that the sum of lengths of the queries satisfy

P

q

i=1

jX

i

j �

2

(`+1)=2

. Then there exists an algorithm U that distinguishes the family F from a randomly

chosen function of f0; 1g

`

to f0; 1g

`

. The algorithm U runs in time t+ c`

P

q

i=1

jX

i

j for some

small constant c, makes at most

P

q

i=1

jX

i

j queries and achieves an advantage of at least

�=2 � (

P

q

i=1

jX

i

j)

2

� 2

�`

� 2

�`

=2.

This lemma is actually Theorem 1, and we are done.

4 Pre�x free message space guarantees security

In this section we argue that if the message space is pre�x free, then the security of CBC

MAC with an underlying family of functions F is implied by the security of the family F .

Recall that pre�x free means that if a message is authenticated, then we never authenticate

a pre�x or an extension of this message. This situation is always the case if the part of the

message which is authenticated actually includes the last character which marks the end of

the message.

After querying about the authentications of pre�x free messages, the adversary has to

output an authentication of a new message which has not been queried about. The message

that the adversary outputs is not required to satisfy the pre�x free demand. It may be

a pre�x or an extension of one of the queries. Still, the adversary has low probability in

succeeding to construct such an authentication.

Some notations (following [3]): Let the CBC MAC be used with a family F of functions

from f0; 1g

`

to f0; 1g

`

. The success of an algorithm to break the family F is measured by its

advantage of distinguishing a random function (from f0; 1g

`

to f0; 1g

`

) from a function chosen

uniformly at random in F . The success of an algorithm that tries to break the authentication

procedure is measured by the probability that it can forge an authentication of a message

whose authentication has not been given to him. The resources that the breaking algorithm

use are its running time, and the number of queries that he makes to the function or to the

authentication procedure.

Theorem 2 Suppose there is an adversary A which with probability � succeeds in breaking

CBC MAC with an underlying family F . To do that, A examines q � 1 authentications of

messages X

i

, i = 1; : : : ; q � 1, which are pre�x free. After working time t, he manages with

13



probability at least � to produces a new message X

q

which was not questioned before, together

with the correct authentication code of X

q

. Suppose that

P

q

i=1

jX

i

j � 2

(`+1)=2

. Then there

exists an algorithm U which breaks the family F with advantage �

0

= ��6(

P

q

i=1

jX

i

j)

2

2

�`

�2

�`

runs in time t+ c`

P

q

i=1

jX

i

j (for a small constant c) and makes at most

P

q

i=1

jX

i

j queries.

The proof of this theorem is a simple extension of the proof which was given in [3] for a

message space of �xed length messages. We briey mark the main di�erences. The di�erence

is in the main part of the proof - the information theoretic case. The reductions from the

information theoretic case to the computational case and the reduction from breaking the

MAC as a family of pseudo random functions to breaking the MAC as an authentication

scheme remain the same (with the appropriate change of parameters).

In what follows we assume that the reader is familiar with the proof and notations of

the original proof of [3]. To augment the proof of the information theoretic case, we rede�ne

border nodes. Instead of border nodes being exactly the nodes at depth m, border nodes

are de�ned to be the nodes which the adversary asks to see their content. The game tree

is not extended after a border node. Now, the main change in the argument is in the proof

of Lemma 3.4 of [3]. In this lemma, it is asserted that if there is no collision in the �rst n

queries then there is little chance of a collision in the next query. Here the fact that the

adversary doesn't get to see non-border nodes is used. If a collision occurs, then a \new"

node collides with some \old" node X

t

whose father's value is not given, and therefore is

distributed close to uniformly. In our case this fact remains valid, since if a node X

t

exists in

the tree, then by the pre�x free property, the value of his father is not given to the adversary.
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A A Flaw in one of the authentications suggested in

[3]

In their conference version, [3] suggest a few ways to deal with the authentication of variable

length messages. One of these suggestions appears to be good also for the case that the

15



length of the message is not known in advance. However, this suggestion has a aw and it

is not secure. In this appendix, we would like to point out this insecurity. We would like to

stress that this is not the major result in [3] but only one of a few suggestions meant to deal

with variable length authentication.

The suggested authentication is called Two steps MAC and it uses two secret keys a

0

; a

00

(or alternatively, uses one secret key a to produce the two secrets a

0

def

= f

a

(0) and a

00

def

= f

a

(1)).

The tag is de�ned as follows:

MAC

a

0

;a

00

(x) =

�

f

(m)

a

0

(x); f

(2)

a

00

(m; f

(m)

a

0

(x))

�

where x = x

1

� � � x

m

. We are going to present a counter example to the security of this

suggestion. Note that our suggestion for a secure protocol is a simpli�cation of this. Namely:

DMAC

a

0

;a

00

(x) = f

a

00

(f

(m)

a

0

(x)):

In order to show that the suggestion in [3] is not secure, we present an adversarial

procedure which asks to see authentications of three messages, and then it produces a forth

message (not equal to any of the �rst three messages) together with its authentication. The

adversarial procedure follows:

1. The adversary asks to see the authentication of the message 0. He gets the pair

�

f

(1)

a

0

(0); f

(2)

a

00

(1; f

(1)

a

0

(0))

�

: De�ne �

0

def

= f

(1)

a

0

(0) = f

a

0

(0).

2. The adversary asks to see the authentication of the message 1. He gets the pair

�

f

(1)

a

0

(1); f

(2)

a

00

(1; f

(1)

a

0

(1))

�

: De�ne �

1

def

= f

(1)

a

0

(1) = f

a

0

(1).

3. The adversary asks to see the authentication of the message (0; �

0

). He gets the pair

�

f

(2)

a

0

(0; �

0

); f

(2)

a

00

(2; f

(2)

a

0

(0; �

0

))

�

:

4. The adversary outputs the message (1; �

1

) with the authentication got in the previous

query, i.e.,

�

f

(2)

a

0

(0; �

0

); f

(2)

a

00

(2; f

(2)

a

0

(0; �

0

))

�

:

In order to see that this forgery is indeed valid, note �rst that it is enough to show that

f

(2)

a

0

(0; �

0

) = f

(2)

a

0

(1; �

1

) (regardless of the value of a

00

). Now, by de�nition of f

(2)

:

f

(2)

a

0

(0; �

0

) = f

a

0

(f

a

0

(0) � �

0

)

= f

a

0

(0)

= f

a

0

(f

a

0

(1) � �

1

)

= f

(2)

a

0

(1; �

1

)

and we are done.
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