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Abstract

We introduce the notion of escrowed identity, an application of key-escrow ideas

to the problem of identi�cation. In escrowed identity, one party A does not give his

identity to another party B, but rather gives him information that would allow an

authorized third party E to determine A's identity. However, B receives a guarantee

that E can indeed determine A's identity. We give protocols for escrowed identity

based on the El-Gamal (signature and encryption) schemes and on the RSA function.

A useful feature of our protocol is that after setting up A to use the system, E is only

involved when it is actually needed to determine A's identity.
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1 Introduction

Key escrow has proven an active and contentious �eld of research and discussion (c.f. [20,

21, 18, 13, 15, 19, 22]). Essentially all of the attention in this area has been restricted to

the simple case of communication: party A sends an encrypted message E

K

(M) to party B;

some centralized authority is given the capability to recover either K or the speci�c message

M . We consider a new domain for the application of key escrow ideas: Escrow in identity

schemes.

Some distinctive features of this application are that

� Escrowed identity may actually enhance privacy. By default, many identity schemes

often require a person to give their entire identity \up front." A protocol in which this

information is only released under special circumstances may prove an acceptable, and

more private substitute.

� Escrowed identity schemes work to the advantage of at least one of the parties invoking

them. In traditional key escrow systems, both party only lose by following the escrow

system, and have everything to gain by bypassing it (which is generally quite easy to

do).

�
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1.1 Motivation

The motivation for traditional identi�cation schemes in access control, communication and

commerce need not be discussed. A rapidly increasing number of interactions take place

on the purely information level, and are likely to become ubiquitous. As just one example,

on some toll bridges one can now electronically identify oneself to a toll booth instead of

waiting in line to pay a toll. Although this application is cost e�ective (or will be) and more

convenient, it raises critical issues of privacy; a more pervasive toll collection system might

as a side e�ect allow the tracing of people's movements to an unprecedented degree. (See

Subsection 1.3 for comparison with the solutions proposed for electronic cash).

We address the tension between party A's desire for privacy and anonymity and B's (and

society's) desire to know who they are interacting with. This balance point of this tension can

shift under certain often rare circumstances. For example, consider an automated parking

garage. What is paramount to the garage is that the person entering it is authorized to

do so; the person's precise identity is normally not a valid concern. However, suppose that

on some night a person was murdered in the garage. At this point, the garage owner and

society at large may have a legitimate interest in knowing who was there on that night. Or,

one might wish to have a computer \chat room" in which one has conditional anonymity

messages: As long as one follows the rules laws, ones identity is secure from even the system

administrator. But if one agrantly breaks the rules (such as arranging drug deals in the

\Lion King" kiddie chat room), suitable law enforcement agencies can be appealed to in

order to determine one's identity.

Traditionally, access control has been all or nothing. One obtains all the information

about the other person up front, with no recourse to learn more if circumstances warrant.

This rigidity generally leads one to allow less privacy, since one is likely to want as much

information as one can get just in case a \bad case" arises. We give a more exible alternative.

1.2 Escrowed Identity

We consider a more exible, two-tier approach to identi�cation. On the lower tier, a person

gives only as much information about themselves as is strictly necessary for ordinary circum-

stances. In the garage example above, this means proving authorization to use the garage.

On the second tier, a person gives a more precise statement of their identity that may be

needed in extraordinary circumstances. This second tier is only accessible with the help of

a third party, i.e., the escrow agency, which is preferably separate from and not under the

control of the party managing access (such as the garage owners).

An escrowed identity system consists of the following parties:

Identi�er: The identi�er is the party who identi�es themselves to the veri�er. (The user of

the garage in the above example.)

Issuer: The issuer issues certi�cates that allow the identi�er to identify themselves in an

escrowed manner.

Veri�er: The veri�er is typically the access provider who veri�es the �rst-tier identity process

as well as the escrow proof for the second-tier identity. (This is the garage keeper in

the above example.)
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Escrow Agent(s): The escrow agent(s) use information forwarded by the veri�er to make a

second-tier identi�cation of the identi�er.

These parties execute the following protocols:

Issuing a certi�cate: In this protocol, the certi�cate issuer gives a certi�cate to the identi�er.

Checking the weak identity: In this protocol, the identi�er convinces the veri�er that he has

a certi�cate, gives an escrowed certi�cate and convinces the veri�er that the escrowed

certi�cate is valid.

Recovering the complete identity: In this protocol, the veri�er gives the escrow agent(s) the

escrowed certi�cate, and the escrow agent(s) recover the original certi�cate.

Our demands from a secure identity escrow system are given formally in Section 2, but

let us say informally what we expect from such a scheme.

The identi�cation procedure works: If a user receives a legitimate certi�cate from the issuer,

and if he follows his protocol, then he will succeed in convincing a veri�er that he is a

legitimate user (i.e. has a certi�cate) with probability 1.

Faking a legitimate identity is hard: A computationally bounded user that has not been issued

a certi�cate by the issuer will fail to convince the veri�er of having a certi�cate with

probability almost 1.

The escrowed identity is hidden: The checking identity protocol is zero knowledge to the ver-

i�er. Namely, the veri�er gets only the fact that the user has a certi�cate and nothing

else.

Ducking the escrow is hard: The probability that a computationally bounded user passes the

check for weak identity but his identity cannot be recovered from the transcript by the

escrow agents is almost 0.

Enhanced security: Even the escrow agency, after recovering many identities of many users

from the transcripts of weak identity proofs, cannot fake any legitimate identity in

the sense described above. This implies that the escrowed identity does not reveal the

certi�cate of the user.

As well as introducing the notion of escrowed identity we give two concrete implementa-

tions. One is based on the RSA encryption scheme and the other on the El-Gamal signature

and encryption schemes. We do not make use of the ine�cient general constructions for

zero-knowledge proofs, but instead use in a strong way the algebraic properties of RSA and

El-Gamal.

Remarks: In the El-Gamal based implementation described in this paper the issuer and

the escrow agent are the same, but in the RSA based implementation we allow them to be

distinct. We believe it may be possible to extend our El-Gamal protocol to allow for this

distinctness, though perhaps with more heuristic security assumptions.

We also note that it is somewhat less crucial for the Escrow Agents to be more than one

person. There is a further check on a rogue escrow agent, which is that the veri�er has to ask
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for a more precise identi�cation. Key escrow for communication is typically coercive, and

requires that someone be able to obtain the ciphertext of any two people's communications

without their request or consent. Thus, the possibilities for widespread abuse are greater

than with our scenario. Nevertheless, it is only prudent to allow for multiple escrow agents;

the escrow agents in our protocols can be made to work using simple group cryptography

(e.g. [9, 24]).

It might also be useful for the identity issuer to be implemented using group cryptography.

For the RSA based scheme, the issuer needs to create a standard RSA public key, agree on

a random string and perform RSA decryptions. Recently, all the necessary RSA operations

(including setting up the public key) have been implemented in the group cryptography

framework [4].

1.3 Related work on electronic cash

Some works on electronic commerce considered a similar problem. One particular such paper

is by Frankel, Tsiounis and Yung [12]. In this work, a protocol is given for electronic cash

transactions for which a trusted party can later reveal the identity of the payer. This is the

�rst work that allows the transaction to be made without the trusted party playing any role

during the transaction itself, and thus has the avor of identity escrow: The identity of the

user is not revealed during the transaction, but can be determined later by the trusted party.

Although this task seems to be of similar avor, we note there is one important di�erence

between this type of transaction and identity escrow. The user of electronic cash is allowed

to use his cash only once. If he uses his coins more than once, all guarantees for his privacy

become invalid. Usually, two transcripts of such transactions allow e�cient computation of

the users identity. In the protocol of [12] this complete collapse of security does not happen,

but still something bad happens: The veri�er will be able to tell if a user identi�es more

than once. Namely, after a user identi�es himself once, the veri�er can tell whenever the

user comes to visit again. This is something we would not like to have in an identity escrow

scheme, and we believe that designing a good identity escrow scheme on top of e�cient

protocols for electronic transactions is an interesting open problem.

1.4 Road-map

In Section 2 we give the formal de�nition of an identity escrow system. In Section 3 we

describe some of the building blocks we use for our implementations. In Section 4 we show

an RSA-based implementation of an escrowed identity scheme. In Section 5 and 5.1 we

show an implementation of an escrowed identity scheme based on the El-Gamal encryption

and signature schemes. Last, in Section 6 we provide our zero knowledge test to check that

a number is small which we need for our El-Gamal based scheme and which might be of

independent use.

2 Identity Escrow: De�nition

Let us start with a formal de�nition of an identity escrow scheme.
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The parties

As described in the introduction, an escrowed identity system consists of the following parties:

Identi�er: The identi�er is the party who identi�es himself to the veri�er.

Issuer: The issuer issues certi�cates that allow the identi�er to identify himself in an escrowed

manner.

Veri�er: The veri�er is typically the access provider who veri�es the �rst-tier (regular) iden-

tity process as well as the escrow proof for the second-tier identity (i.e., a possibility

of revealing the identity of the user in extreme cases according to court order).

Escrow Agent(s): The escrow agent(s) use information forwarded by the veri�er to make a

second-tier identi�cation of the identi�er.

The protocols

These parties execute the following possible protocols:

Issuing a certi�cate: In this protocol, the certi�cate issuer is given his private key, an identity

of an identi�er that should get a certi�cate, all the public information (such as public

keys in the scheme), and a security parameter. The identi�er is given his keys, his iden-

tity, the public information, and the security parameter in the input. The issuer and

the identi�er engage in a protocol, by the end of which the identi�er gets a legitimate

certi�cate to be used in the \checking a certi�cate" protocol.

Checking a certi�cate: In this protocol, the identi�er convinces the veri�er that he has a

certi�cate, gives an escrowed certi�cate and convinces the veri�er that the escrowed

certi�cate is valid. The input to the identi�er is his certi�cate got from the \issuing

a certi�cate" protocol, his keys, his identity, the public information, and the secu-

rity parameter. The input to the veri�er is the security parameter and the public

information.

Recovering the complete identity: In this protocol, the veri�er gives the escrow agent(s) the

escrowed certi�cate, and the escrow agent(s) recover the original certi�cate. The input

to the veri�er is the transcript of a \checking the certi�cate" protocol, which he sends

to the escrow agents. The escrow agents are given the transcript, their secret keys, the

public information, and the security parameter, and they come up with the identity

of the veri�er in that transcript. They reveal this identity to the authorities and not

necessarily to the veri�ers.

The requirements

The above three protocols form an identity escrow scheme with error parameter � if the

following conditions hold:
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The identi�cation procedure works: If the issuer follows his protocol and issues a certi�cate

to User U , and if User U uses this certi�cate to escrow identity to a veri�er V , and if

all parties honestly follow their protocols then the veri�er is always convinced that the

user has a proper certi�cate.

Faking a legitimate identity is hard: For any probabilistic polynomial time machine A, if A is

given the inputs of the identi�er but not including the issued certi�cate (i.e., Machine

A gets the keys of the identi�er, the public information, and the security parameter),

then A passes a certi�cate check with the veri�er accepting his proof, with probability

at most �. The probability is taken over the coin-tosses of the veri�er and Machine

A in the certi�cate-check protocol, and over the random choice of keys for the issuer,

and identi�er. (Note that this implies that producing a certi�cate without knowing

the issuers private key is computationally hard.)

The escrowed identity is hidden: The proof of identity given by the user in the certi�cate-check

protocol is zero knowledge. Namely, if the user has a valid certi�cate and is following

his role in the protocol, then for any (possibly cheating) probabilistic polynomial time

veri�er V

�

, there exists a probabilistic polynomial time simulator S

V

�

, such that the

view of V

�

in the certi�cate-check protocol (when V

�

is input the public information,

the security parameter, and any auxiliary input a of length polynomial in the security

parameter k) is computationally indistinguishable from the output of S

V

�

on the same

input.

Ducking the escrow is hard: Let A be any probabilistic polynomial time machine. Suppose

A gets the inputs of a legitimate identi�er in the \checking a certi�cate" protocol.

Namely, A gets a legitimate certi�cate got from the \issuing a certi�cate" protocol, his

keys, his identity, the public information, and the security parameter. Suppose also

that A engages in the \checking a certi�cate" protocol with a veri�er V . Assume also

that V follows the protocol of the veri�er honestly whereas A may be cheating while

playing the role of the identi�er. Later, the transcript of the conversation is used in

the \recovering the complete identity" protocol between the veri�er and the escrow

agents, and both the veri�er and the escrow agents follow their protocols honestly.

Then, the probability that the veri�er accept in the \checking a certi�cate" protocol,

but the escrow agents fail to come up with the identity of the identi�er as input to A,

is at most �. Here, the distribution is taken over the choice of keys for the issuer, and

the escrow agents, and over the coin tosses of the issuer (while issuing the certi�cate

that A gets) the coin tosses of Machine A and the coin tosses of the veri�er.

Enhanced security: Even the escrow agency, after recovering many identities of many users

from the transcripts of weak identity proofs, cannot fake any legitimate identity with

probability greater than � in the sense described above. This implies that the escrowed

identity does not reveal the certi�cate of the user.

3 Preliminaries

We describe some of the basic building blocks we use in our protocol.
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3.1 Bit Commitments

We include a short and informal presentation of commitment schemes. For more details

and motivation, see [23]. A commitment scheme involves two parties: The sender and the

receiver. These two parties are involved in a protocol which contains two phases. In the �rst

phase the sender commits to a bit, and in the second phase he reveals it. A useful intuition to

keep in mind is the \envelope implementation" of bit commitment. In this implementation,

the sender writes a bit on a piece of paper, puts it in an envelope and gives the envelope

to the receiver. In a second (later) phase, the reveal phase, the receiver opens the envelope

to discover the bit that was committed on. In the actual digital protocol, we cannot use

envelopes, but the goal of the cryptographic machinery used, is to simulate this process .

More formally, a commitment scheme consists of two phases. First comes the commit

phase and then we have the reveal phase. We make two security requirements which (loosely

speaking) are:

Secrecy: At the end of the commit phase, the receiver has no knowledge about the value

committed upon.

Non-ambiguity: It is infeasible for the sender to pass the commit phase successfully and

still have two di�erent values which he may reveal successfully in the reveal phase.

Various implementations of commitment schemes are known, each has its advantages in terms

of security (i.e., non-ambiguity for the receiver and secrecy for the receiver), the assumed

power of the two parties etc.

We work in the argument framework of Brassard, Chaum and Cr�epeau [5]. In this

paradigm, all parties are assumed to be computationally bounded. It is shown in [5] how to

commit to bits in statistical zero-knowledge, based on the intractability of certain number-

theoretic problems. D�amgard, Pedersen and P�tzmann [8] give a protocol for e�ciently

committing to and revealing strings of bits in statistical zero-knowledge, relying only on the

existence of collision-intractable hash functions. This scheme is quite practical and is used

heavily in our protocol. For simplicity, we will simply speak of committing to and revealing

bits when referring to the protocols of [8].

For our RSA based implementation we also commit to strings by probabilistic encryption

[14] using the public key of the escrow agency. These commitments are only computationally

secure, but allow for the escrow agents to recover the values of these commitments. This

allows for the escrow agents to recover the value of these commitment in addition to those

revealed in the course of the zero-knowledge proof.

3.2 The El-Gamal signature and encryption schemes

We base our implementation of escrowed identity on the El-Gamal signature and encryp-

tion schemes [10], which we summarize, following [25], with slight modi�cations to suit our

purposes.

In both schemes, there is a common prime p, which for our purposes is of the form 2q+1

where q is a prime. Let g 2 Z

�

p

have order q. For the encryption scheme each party has a

private key X 2 Z

q

and a public key Y = g

X

mod p. For the signature scheme we denote

the secret key by S 2 Z

q

and the public key by P = q

S

mod p (the di�erent variables are

purely notational).
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To encrypt a message M 2 Z

p

given public key P , the sender uniformly generates r 2 Z

q

and computes E

Y

(M; r) = (g

r

mod p;MY

r

mod p). The decryption function is given by

D

X

(A;B) = B=A

X

mod p.

The signer signs a message M 2 Z

p�1

as follows.

1. The signer uniformly generates r 2 Z

q

, computes a = g

r

mod p, and casting it as an

integer in 0::p� 1. This step is repeated until a and p � 1 are relatively prime.

2. Using the extended Euclidean algorithm, the signer computes b 2 Z

p�1

such that

Sa+ rb = M mod p� 1.

3. The signer returns (a; b).

To verify a signature (a; b) for M , the veri�er checks that P

a

a

b

= g

M

mod p.

3.2.1 Signing the \0" document is not secure

We remark on a weakness in the El-Gamal signature scheme. The document \0" can be

signed e�ciently by a party that does not have the secret key S. For example, by setting

a = P and b = �P mod q we have P

a

a

b

= P

P

P

�P

= q

0

. More generally, we can set

a = P

k

mod p and setting b = �a=k mod q. For this reason, we use El-Gamal signatures

for 1 instead of 0. We assume that given a number of signatures for 1 it is impossible to

generate a di�erent signature for 1. This assumption is plausible, but we do not know of any

more standard assumptions that imply it. We remark that other weak forgeries (i.e., signing

random messages) are known (see [26] Page 206-207).

3.3 The RSA encryption scheme

In the RSA encryption scheme the public key consists of n = pq where p and q are prime

and an exponent e, where e is relatively prime to n and �(n). For our purposes, e should

be chosen randomly; we do not use small-exponent RSA. A message M is encrypted by

computing M

e

mod n. The private key consists of d such that de = 1 mod (p � 1)(q � 1)

(strictly, de = 1 mod �(n) su�ces), and M

e

is decrypted by computing (M

e

)

d

= M mod n.

We make an additional assumption beyond the security of RSA. We assume that for a

random � it is hard to �nd (a; b) such that a

e

� b

e

= � mod n. Furthermore, we assume that

given a set of such pairs f(a

i

; b

i

)g it is hard to generate a new pair. Given d, it is easy to

generate a pair (a; b) with given value of a

e

by computing a = (a

e

)

d

and b = (a

e

� �)

d

.

4 The RSA-based identi�cation scheme

In this section we implement an identi�cation scheme whose underlying cryptographic scheme

is RSA. This scheme is more e�cient than the El-Gamal scheme described in Section 5 below.

In our RSA based system, the public key consists of n = pq and e (the secret key is d such

that de = 1 mod (p � 1)(q � 1)) and a new parameter �. The parameter � can be either set

randomly or to a �xed number di�erent than 0 or 1, but it must be �xed throughout the

execution of the scheme. A certi�cate is a pair (a; b) such that a

e

� b

e

= �. Good pairs are

trivial to generate by anyone who knows d.
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The issuer publishes n; e; and �. His secret is d. To issue an identity to a new user, the

issuer chooses a pair (a; b) such that a

e

� b

e

= �. Note that knowing d, the issuer can do

that for any choice of a

e

. He chooses a

e

to be the identity of the new user. The user gets

(a; b) as his secret information for future identi�cations.

In order to prove that he has proper identity, the user proves in zero knowledge that he

knows a pair (a; b) satisfying a

e

� b

e

= � mod n. The proof will be zero knowledge to the

veri�er, but will disclose the identity of the user, i.e., the value of a

e

, to the escrow agency.

All calculations are done modulo n.

4.1 The identi�cation process

Here is how a user proves that he knows a proper certi�cate (a; b). The identi�er is going to

commit to a few values, and then the veri�er chooses a test in which the identi�er opens some

of the committed values and the veri�er checks that the values match their supposed values.

To this end, the identi�er chooses independently and uniformly at random two numbers

a

1

; b

1

both relatively prime to n. he then sets a

2

; b

2

to be the numbers satisfying a = a

1

a

2

and b = b

1

b

2

. This partition is done to later hide the actual value of a and b from the veri�er.

The identi�er also chooses uniformly and independently at random two numbers x; y such

that x and y are relatively prime to n.

The identi�er commits on the values of a

1

, a

2

, b

1

, b

2

, (a

1

)

e

, (a

2

)

e

, (b

1

)

e

, (b

2

)

e

, x, y,

x(a

1

)

e

, x(b

1

)

e

, x(a

1

a

2

)

e

+ y, and x(b

1

b

2

)

e

+ y. He commits to (a

1

)

e

and (a

2

)

e

by probabilistic

encryption, using the escrow agents public key. (Note that the public key of the escrow

agent is not the pair (n; e) which is the public key of the issuer.) He commits to the other

variables using statistical zero-knowledge commitments. The following �ve tests are used by

the veri�er to check that the committed values are correct and that the implied a = a

1

a

2

and b = b

1

b

2

satisfy a

e

� b

e

= �. The veri�er will pick one of them at random and check that

it holds.

1. The identi�er opens the commitments on x, a

1

, (a

1

)

e

, x(a

1

)

e

, b

1

, (b

1

)

e

and x(b

1

)

e

, and

the veri�er checks that all the values match their supposed relations.

2. The identi�er opens the commitments on a

2

, (a

2

)

e

, b

2

, (b

2

)

e

, and the veri�er checks

that all the values match their supposed relations.

3. The identi�er opens the commitments on x(a

1

)

e

, (a

2

)

e

, y and x(a

1

a

2

)

e

+ y, and the

veri�er checks that the values match their supposed relations.

4. The identi�er opens the commitments on x(b

1

)

e

, (b

2

)

e

, y and x(b

1

b

2

)

e

+ y, and the

veri�er checks that the values match their supposed relations.

5. The identi�er opens the commitments on x, on x(a

1

a

2

)

e

+ y, and on x(b

1

b

2

)

e

+ y, and

the veri�er checks that x is relatively prime to n and that

x(a

1

a

2

)

e

+ y � (x(b

1

b

2

)

e

+ y) = �x:

Note that the tests all hold i� (a

1

a

2

)

e

� (b

1

b

2

)

e

= �. Thus, a cheating identi�er is caught

with probability 1=5. The error probability can be decreased to � by repeating this protocol
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5 log(1=�) times. Also, if the identi�er has a good certi�cate pair (a; b), then he can always

pass all tests. Last, the view of the veri�er in each of the tests can be simulated by an

e�cient machine.

Since the commitment on the (a

1

)

e

and (a

2

)

e

were done by probabilistic encryption, using

the escrow agents public key, then the escrow agents can read the value of (a

1

)

e

and (a

2

)

e

and thus get a

e

which is the identity of the user. Although the protocol is repeated many

times, one proper execution is enough to have the identity escrowed. Note that the issuer

need not play any role after issuing certi�cates and the escrow agent need not play any role

until being called in to determine someone's identity. Finally, it can be veri�ed that knowing

(a

1

)

e

and (a

2

)

e

and seeing the rest of the proof reveals nothing about b. Hence, even after

determining the identi�er's identity, the escrow agency and the veri�er cannot team up to

impersonate the identi�er.

The hardness assumptions that we make are that it is hard to �nd a pair (a; b) so that

a

e

� b

e

= � mod n (so no one can fake an identity), that given (a; b) satisfying the above, it

is hard to produce a di�erent pair (a

0

; b

0

) with the same property (so the user must escrow

the real a

e

), and that given a

e

it is not possible to �nd the appropriate (a; b) (so that the

escrow agency cannot fake the user identity). The last condition is implied by the �rst one,

since it is easy to produce a

e

for any arbitrary a.

5 The El-Gamal identi�cation system

We construct an identity escrow system using the El-Gamal signature scheme as the un-

derlying cryptographic primitive. The identities are distributed by an authorized issuer.

The issuer begins by choosing keys for the encryption scheme and for the signature scheme.

For both schemes he chooses a big prime p satisfying p = 2q + 1 for a prime q, and a

random quadratic residue g 6= 1 in Z

�

p

(g is a random element of order q). The issuer

then chooses a secret key S for the signature scheme and computes the related public key

P = g

S

mod p. The issuer also chooses a secret key X for the encryption scheme and com-

putes Y = g

X

mod p. The issuer publishes g; p; P; Y . In the sequel all operations are done

modulo p unless speci�cally otherwise stated.

Legitimate identities will be the set of all signatures on the number 1. Namely, legitimate

identities will be all pairs (a; b) satisfying P

a

a

b

= g mod p.

Choosing an identity for a user: To choose an identity for a new user U , the issuer

selects a random signature of \1" which is a pair (a; b), and sends (a; b) to U . The issuer

checks that a doesn't equal q. If it does, the issuer chooses another signature on 1 so that a

is not q.

1

For future identi�cation, the issuer saves the number a together with the name

of the user U . This will be U 's identi�er.

To be more speci�c, the issuer chooses a random number r 2 [0::q � 1] and computes

a = g

r

. (Note that a is a random quadratic residue modulo p.) The issuer tries again if

a = q, otherwise, the issuer computes the number b satisfying aS + rb = 1 mod q. (This is

standard calculation in the �eld Z

q

.) The issuer sends (a; b) to the user and saves a as the

identi�er of U .

1

The number a equals q that with negligible probability 2=(p� 1).
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The identi�cation process: We go into the details of this process in Section 5.1 below.

But in a nutshell, in order to identify himself as a proper user, the user provides an (El-

Gamal) encryption of a, and then proves in perfect zero knowledge that he knows a pair

(a; b) such that P

a

a

b

= g mod p and such that a is encrypted in the cipher-text he provided.

Identifying a user in case of court decision: If the identity of a user has to be revealed,

the issuer gets the encryption of a, he decrypts it, and discloses the identity of the user.

Privacy: When a user U identi�es himself to a party A, Party A gets zero knowledge

from the identi�cation process. In particular, Party A cannot fake U 's identity in future

interactions. This follows from the fact that in order to identify himself, a user must prove

in zero knowledge that he knows (a; b) such that P

a

a

b

= g mod p.

We now go on and give the details of the veri�cation process.

5.1 Verifying the identity in zero knowledge

Let us get into the details of the identity veri�cation process. Recall that Party A should

not get any knowledge from the interaction with U , but only be convinced that U is a proper

user. To this end, U commits on a few numbers, and by A's request, U opens a few of them.

A learns nothing from seeing the opened commitments, but if U tries to cheat, A catches him

with a constant probability. Thus, repeating the process O(log(1=�)) times, A is convinced

that indeed U has a proper identity with probability 1� �.

User U begins by encrypting a, i.e., selecting uniformly at random R 2 Z

q

and computing

the encryption (�; �) = (g

R

; Y

R

� a), which he sends to A. Next, U partitions a; b and R

into shares in the following manner. For b and for R the user U chooses a sum partition

at random modulo q. Namely, he chooses uniformly at random b

1

; R

1

2 Z

q

, and then sets

b

2

= b � b

1

mod q and R

2

= R � R

1

mod q. The value of a is partitioned in a more

involved manner. User U splits it into a product a

1

� a

2

which equals a both modulo p

and modulo q. He does this in the following manner. U chooses uniformly at random a

number a

1

2 [1::pq � 1] such that a

1

is relatively prime to pq. Next, U chooses the unique

a

2

2 [1::pq � 1] satisfying a

2

= a=a

1

mod p and a

2

= a=a

1

mod q. This can be done by the

Chinese Remainder Theorem. Note that for any �xed a (which is assumed to be relatively

prime to pq), a

2

(as well as a

1

) is randomly distributed amongst the numbers in [1::pq � 1]

which are relatively prime to pq.

We �rst describe the tests on a high level; a more detailed explanation follows. We �rst

specify some of the commitments that U makes. These commitments are the ones needed to

state the high level tests, but more commitments will be required by the implementations of

these tests.

Commitments: U commits to each of the following values: a

1

, a

2

; b

1

, b

2

, R

1

, R

2

, Y

R

1

,

Y

R

2

, (a

1

)

b

1

, (a

1

)

b

2

, (a

2

)

b

1

, (a

2

)

b

2

, g

R

1

, g

R

2

, Y

a

1

, Y

a

2

.

Tests: We describe on a high level a set of checks. A picks one check at random, and U

proves that the test holds by opening some of his commitments. There are 34 low-level tests

which are described in high level by the following 6 tests:
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1. A multiplication test that Y

R

1

� Y

R

2

� a

1

� a

2

= �. Note that each of the multiplicands

is a random number that can be simulated, and g is public. (This consists of 6 basic

tests which are described in Subsection 5.2 below.)

2. A multiplication test that g

R

1

� g

R

2

= �. Note that each of the multiplicands is a

random number that can be simulated, and g and � are public. (This consists of 5

basic tests which are described in Subsection 5.2 below.)

3. A multiplication test that (P

a

1

)

a

2

� (a

1

)

b

1

� (a

2

)

b

1

� (a

1

)

b

2

� (a

2

)

b

2

= g. (This consists of 8

tests which are described in Subsection 5.2 below.)

4. U proves to A that a

1

�a

2

mod pq is a number in the range 1::p�1. See Section 6 for the

details of implementing this test (which consists of 9 basic tests). See also Appendix

A to see why this is a crucial test.

5. For i = 1; 2 and for j = 1; 2 the user U opens the commitments on a

i

on b

j

and on

(a

i

)

b

j

and A checks that indeed the value of the exponentiation is correct. (These are

4 basic tests.)

6. For i = 1; 2 the user U opens the commitments on R

i

; a

i

and on g

R

i

and on Y

a

i

and A

checks that both exponentiations are correct. (These are two basic tests.)

These techniques are quite standard, and one may check that seeing one of these tests

is perfectly simulatable. Also, if all tests hold then the multiplications hold as well. And

�nally, if the multiplications hold, and the user follows the protocol as above, then he never

fails to convince A.

5.2 Implementing the multiplication tests

Let us describe the standard manner in which the multiplication tests are implemented. In

these tests, at most one of the operands is revealed; we use the test in situations where this

leakage does not pose a problem. The �rst test we are interested in is a multiplication test

that Y

R

1

�Y

R

2

� a

1

� a

2

= �. The value of � is given to A. To this end U chooses uniformly at

random and independently 4 numbers t

1

; t

2

; t

3

; t

4

in Z

�

p

. U commits on the values of t

1

Y

R

1

,

t

2

Y

R

2

, t

3

a

1

, t

4

a

2

, and t

1

t

2

t

3

t

4

all modulo p. The following 6 tests check the multiplication.

1. U opens the commitments on t

1

, Y

R

1

, and t

1

Y

R

1

and A checks that the values match.

2. U opens the commitments on t

2

, Y

R

2

, and t

2

Y

R

2

and A checks that the values match.

3. U opens the commitments on t

3

, a

1

, and t

3

a

1

and A checks that the values match.

4. U opens the commitments on t

4

, a

2

, and t

4

a

2

and A checks that the values match.

5. U opens the commitments on t

1

, t

2

, t

3

, t

4

, and t

1

t

2

t

3

t

4

and A checks that the values

match.

6. U opens the commitments on t

1

Y

R

1

, t

2

Y

R

2

, t

3

a

1

, t

4

a

2

, t

1

t

2

t

3

t

4

, and U checks that the

multiplication t

1

Y

R

1

� t

2

Y

R

2

� t

3

a

1

� t

4

a

2

equals t

1

t

2

t

3

t

4

�.
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In a similar manner one can construct 5 basic tests and the corresponding commitments to

check that g

R

1

g

R

2

= �.

The second multiplication test should check that (P

a

1

)

a

2

� (a

1

)

b

1

� (a

2

)

b

1

� (a

1

)

b

2

� (a

2

)

b

2

= g.

For this test, U chooses independently and uniformly at random 5 numbers t

5

; t

6

; t

7

; t

8

; t

9

in

Z

�

p

. U commits on each of these 5 values and also on P

a

1

t

5

, (P

a

1

)

a

2

� t

5

a

2

, (a

1

)

b

1

t

6

, (a

2

)

b

1

t

7

,

(a

1

)

b

2

t

8

, and (a

2

)

b

2

t

9

, and on the value of (t

5

)

a

2

t

6

t

7

t

8

t

9

. The following 8 tests check the

validity of the commitments and the correctness of the multiplication asserted.

1. U opens the commitments on t

5

, on a

1

and on P

a

1

t

5

, and A checks that the values

match.

2. U opens the commitments on P

a

1

t

5

, on a

2

, and on (P

a

1

)

a

2

� t

5

a

2

and A checks that the

values match.

3. U opens the commitments on t

6

, on (a

1

)

b

1

and on (a

1

)

b

1

t

6

, and A checks that the values

match.

4. U opens the commitments on t

7

, on (a

2

)

b

1

, and on (a

2

)

b

1

t

7

, and A checks that the

values match.

5. U opens the commitments on t

8

, on (a

1

)

b

2

and on (a

1

)

b

2

t

8

and A checks that the values

match.

6. U opens the commitments on t

9

, on (a

2

)

b

2

, and on (a

2

)

b

2

t

9

and A checks that the values

match.

7. U opens the commitments on values of all t

5

; t

6

; : : : ; t

9

, on the value of a

2

and on the

value of the product (t

5

)

a

2

t

6

t

7

t

8

t

9

, and A checks that the values match.

8. U opens the commitments on (P

a

1

)

a

2

� t

5

a

2

, (a

1

)

b

1

t

6

, (a

2

)

b

1

t

7

, (a

1

)

b

2

t

8

, and (a

2

)

b

2

t

9

, and

on the value of (t

5

)

a

2

t

6

t

7

t

8

t

9

. A checks that the product

(P

a

1

)

a

2

� t

5

a

2

� (a

1

)

b

1

t

6

� (a

2

)

b

1

t

7

� (a

1

)

b

2

t

8

� (a

2

)

b

2

t

9

equals the product � � (t

5

)

a

2

t

6

t

7

t

8

t

9

.

6 Testing a range property modulo n = pq

Let q; p be two primes such that q < p. A useful tool in our system is a zero knowledge test

which veri�es that a given pair of numbers a

1

; a

2

2 [0; 1; : : : ; pq�1] satis�es that a

1

a

2

mod pq

is a number in the range [0::p�1]. A solution to this problem, for a general range, is given by

Bellare and Goldwasser [1]; for greatest e�ciency they use an improvement due to Cramer

based on the techniques of [7]. In their scenario, the prover commits on the value a (which

has to be in the right range) by committing on each of the bits in its binary representation.

This is not applicable to our case, in which we commit on two random a

1

; a

2

whose product

is a (the value of interest). We use this speci�c commitment in our other tests as well. Thus,

we provide an alternate scheme which is adequate for our purposes.

Our scheme holds for arbitrary ranges, but for simplicity we describe it for the speci�c

range needed in our identi�cation protocol. We assume a; a

1

; a

2

are all relatively prime to

pq. We start with the following simple observation.
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Observation 6.1 Let x be a number such that 2

x+1

< p < 2

x+2

. The number a

1

a

2

mod pq

is in the range [0::p � 1] i� it is a sum of a subset of the following multi-set of numbers:

f0; 2

0

; 2

1

; : : : ; 2

x

; p� 2

x+1

g modulo pq. (Note that each number may be used in the sum only

as many times as it appears in the multi-set.)

For the zero knowledge property, it would be harmful if each pair (a

1

; a

2

) had a di�erent

number of terms in the summation. Therefore we restate the above observation as:

Observation 6.2 The number a

1

a

2

mod pq is in the range [0::p� 1] i� s can be expressed

as a sum of x+3 numbers of the multiset containing zero x+2 times and then the numbers:

f0; 2

0

; 2

1

; : : : ; 2

x

; p� 2

x+1

g. Summation is done modulo pq. (Note that each of these number

may be used in the sum at most once. Thus zero may be used at most x+ 3 times.)

Denote the multiset of the above observation by W . Next, we would like to present a

perfect zero knowledge test for the condition of Observation 6.2. The secret information is

the multiplication value a

1

a

2

mod pq. We do not worry about leakage of one of the numbers

in the pair. The prover is going to show that there is a subset of x+3 elements in W which

sum up to a

1

a

2

modulo pq. Note that in order to achieve zero knowledge the veri�er should

not be allowed to see any of the elements that are used in the sum.

The veri�er starts by partitioning each w 2 W into w

1

and w

2

such that w

1

is a random

element in [0; pq � 1] and w

2

satis�es w

2

= w � w

1

mod pq. The prover then randomly

permutes the order of the 2x + 5 elements and commits on the shares of each of these

elements. These are 4x+ 10 commitments. Denote the committed shares by w

j

i

for j = 1; 2

and i = 1; : : : ; 2x + 5. Next the prover chooses the indices I = fi

1

; : : : ; i

x+3

g such that

the numbers committed on in these places add up to a

1

a

2

mod pq. These indices exist

by Observation 6.2. The prover also commits on these indices. The goal of the prover is

to show that

P

i2I

w

i

= a

1

a

2

mod pq. To this end, the prover chooses a random number

r 2 [0::pq � 1] and he will actually show that

P

i2I

w

i

+ r = a

1

a

2

+ r mod pq. The prover

commits also on r, on the result of summing (

P

i2I

w

1

i

)+r, and on the result of the summation

(

P

i2I

w

2

i

) � (a

1

a

2

+ r). Next, we would like to describe a commitment on a

1

a

2

+ r that is

checkable without yielding the value of a

1

a

2

.

We use the Chinese Remainder Theorem. Let t

q

be the number in [0::pq � 1] which

satis�es

t

q

= 1=a

2

mod q

t

q

= 0 mod p

and let t

p

be the number in [0::pq � 1] which satis�es

t

p

= 0 mod q

t

p

= 1=a

1

mod p:

We can always �nd such t

p

and t

q

since a

1

and a

2

are relatively prime to pq. We �rst note

that t

p

a

2

+ t

q

a

1

equals 1 both modulo p and modulo q. Therefore it is also 1 modulo pq.

Thus, we get

(a

1

+ t

q

� r) � (a

2

+ t

p

� r) = a

1

a

2

+ r mod pq:
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The prover commits on a

1

a

2

+ r mod pq, but also to some intermediate results in this

calculations so that it can be checked. So the prover also commits on t

p

r; t

q

r, and on the

values of (a

1

+ t

q

� r) and (a

2

+ t

p

� r) In what follows, we describe 9 tests that check the

validity of the committed values and the correctness of the assertion. The following 5 tests

verify that indeed the commitment on a

1

a

2

+ r is valid.

1. The prover opens the commitment on a

1

, on r and on t

p

r and the veri�er checks that

t

p

r is properly set.

2. The prover opens the commitment on a

2

, on r and on t

q

r and the veri�er checks that

t

q

r is properly set.

3. The prover opens the commitment on a

1

, on t

q

r and on a

1

+ t

q

r and the veri�er checks

that the values match.

4. The prover opens the commitment on a

2

, on t

p

r and on a

2

+ t

p

r and the veri�er checks

that the values match.

5. The prover opens the commitment on a

1

+ t

q

r, on a

2

+ t

p

r and on a

1

a

2

+ r and the

veri�er checks that the later is the product of the �rst two (modulo pq).

The next 4 tests verify that the summation is proper and the the assertion holds.

1. The prover opens all the commitments on all w

j

i

for j = 1; 2 and i = 1; : : : ; 2x+5 and

the veri�er checks that they indeed present a permutation of the multi-set W .

2. The prover opens the commitments on I, on w

1

i

for all i 2 I, on r, and on the summation

(

P

i2I

w

1

i

)+ r, and checks that jIj = x+3 and that the commitment on the summation

matches the real sum.

3. The prover opens the commitments on I, on w

2

i

for all i 2 I, on a

1

a

2

+ r, and on the

summation (

P

i2I

w

2

i

)�(a

1

a

2

+r), and checks that jIj = x+3 and that the commitment

on the summation matches the real sum.

4. The prover opens the commitments on the summation (

P

i2I

w

1

i

) + r and the commit-

ment on the summation (

P

i2I

w

2

i

) � (a

1

a

2

+ r), and the veri�er checks that sum of

these two numbers is 0 mod pq.

The veri�er chooses at random one of these tests and asks the prover to open the relevant

commitments so that he can verify the correctness of the test.

Clearly, if a

1

a

2

mod pq is in the range [0::p� 1] then the prover can commit on values as

instructed by the above protocol and pass any of these tests with probability 1. On the other

hand, if all tests hold, then a

1

a

2

mod pq must be in the right range. (This assumes that

the veri�er cannot break the commitment scheme.) Thus, if a

1

a

2

mod pq is not in the right

range, then at least one of the tests must fail. The veri�er will �nd this out with probability

at least 1=9. The soundness error probability can be decreased by repetitions, but since we

only present this as a tool, we leave the ampli�cation to be done by the calling protocol.

Last, in each of the 9 possible tests the veri�er only gets to see random numbers (in the

corresponding ranges) and his view can be perfectly simulated.
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7 Extensions and related work

Krawczyk and Rabin [17] present an implementations of Chameleon signatures which requires

no interaction during the signature process. A Chameleon signature has the property that

the party that gets the signature cannot prove to anyone that indeed it has such a signature.

Other than this property, a Chameleon signature has all the good properties of a digital

signature, and in particular, the judge can verify the validity of the signature. The judgment

phase requires interaction in their implementation. We remark that our work can be extended

to construct Chameleon signatures which require no interaction in the judgment phase, but

requires interaction in the signing phase. The way to do it, is to encrypt a (standard)

signature using the public key of the judge, and prove in zero knowledge that indeed this

is an encryption of the correct signature. The implementation is similar to our El-Gamal

identity escrow scheme.

Another extension concerns key escrow. Enhancing the security of the user is a prime

objective in many recent papers on key escrow. Using our method, one can allow the user a

new kind of security: Choose your own escrow agents. The advantage with our mechanism,

is that the escrow agents need not be involved in the process until a court order is set to

wiretap the user. Thus, many people may o�er their services as escrow agents, a job which

may turn highly pro�table for trustworthy persons, and which requires only a small amount

of work in some rare occasions. Using our mechanism, the user can escrow his key to the

authorities such that only selected agents that he trust will be able (together) to reveal his

key. More details may be obtained from [16]
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A Breaking the El-Gamal-based identi�cation scheme

when a

1

a

2

mod pq is not smaller than p

In this appendix we note that if we do not check that a

1

a

2

mod pq is smaller than p then the

user can break the scheme. Namely, the user can prove a proper identity without actually

escrowing his key. Recall that the user U has (a; b) such that P

a

a

b

= g mod p.

The user chooses at random 1 � x � q � 1 and computes:

c

1

= a+ bx mod q

c

2

=

a

P

x

mod p

Next, U uses the Chinese Remainder Theorem to compute c 2 [0::pq � 1] such that c =

c

1

mod q and c = c

2

mod p. For this c it holds that

P

c

c

b

= g mod p

Thus, the user may choose to identify using a

1

; a

2

whose product is c, and be able to pass

all tests, except of-course for the test that c has to be smaller than p modulo pq.

If, however, c < p�1 modulo pq, then we can be certain that having c mod p (decrypted

by the issuer) gives us a value c satisfying that (c; b) is a signature for the message \1".

Faking such a c is equivalent to getting another signature for the message \1".
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