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Abstract

We introduce delegation schemes wherein a user may delegate certain rights to himself, but may not
safely delegate these rights to others. In our motivating application, a user has a primary (long-term) key that
receives some personalized access rights, yet the user may reasonably wish to delegate these rights to new
secondary (short-term) keys he creates to use on his laptop when traveling, to avoid having to store his primary
secret key on the vulnerable laptop. We propose several cryptographic schemes, both generic ones under
general assumptions and more specific practical ones, that fulfill these somewhat conflicting requirements,
without relying on special-purpose (e.g., tamper-proof) hardware.
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1 Introduction

In a networked world, users are represented by their public keys. A message whose digital signature verifies
with a user’s public key is assumed to have been signed by that user. Hence, users have to maintain the secrecy
of their signing keys. In real life, however, they may wish to use relatively insecure computing devices, e.g.,
networked UNIX machines or laptops, for digital transactions. How can a user make use of such insecure
devices while preserving the secrecy of his secret key?

One natural solution is for the user to use the secret key of his primary (long-term) key pair only on secure
computing devices, and to create secondary (temporary, short-term) key pairs as needed for use on less secure
devices. The user delegates a restricted amount of authority from the primary key pair to such a secondary
key pair by signing a delegation certificate. This is simply a statement of the form “the secondary public key
hkey2i can be used instead of the primary public key hkey1i for the following purposes and under the following
conditions and/or limitations: hdescriptioni”. The statement is signed with the primary secret key. This
delegation certificate is transferred to the insecure device together with the secondary key pair, and is appended
to all messages signed with the secondary key, so that the recipient may verify the delegation. If a secondary
secret key is compromised, the loss is minimized because only a restricted amount of authority was delegated to
it.

This is a good solution for many cases, but fails in cases where personalized rights are assigned to a key.
Here the intention is to restrict the right to a specific person, and this is implemented by requiring a signature (or
identification) relative to the key associated with this person. This person may indeed give away its (primary)
secret key, and thus the requirement “for personal use” is not really enforced. However, the assumption behind
such schemes is that users are highly motivated not to give away their (primary) secret key because this key
allows others to do many more things in the user’s name. Thus, the user is deterred from propagating certain
personalized rights to others by the fact that other rights will be automatically propagated along with the former
rights. For example, a user may be willing to illegally propagate its personal subscription to some service, but
not if this is linked to the propagation of the right to withdraw money from his1 bank account.

The new problem introduced by using secondary keys in a setting where personalized rights are to be
enforced, is that the users are no longer deterred from propagating personalized rights which they may delegate
to secondary keys. This is the case since the delegation certificate may limit the rights of a secondary key to a
specific right (e.g., subscription), thus leaving no additional risk for the user if he propagates this secondary key
(and the subscription which goes with it). Hence, it seems that delegation of rights to secondary keys and the
enforcement of personalized rights are in conflict (see further discussion below). Resolving this conflict is the
central goal of this paper. Put in other words, we ask: How can delegation of rights be managed such that a
user can delegate these rights to himself, but not to others?

Corresponding to our motivating example – the use of insecure computing devices – we only consider
solutions that do not employ special-purpose hardware (e.g., tamper-resistant or with biometrics). We consider
two different approaches, which we term statutory and transparent. The latter means that the measures are
invisible to users except for the unavoidable fact that issuers, holders, and verifiers of a personalized right must
be aware that this right is personalized.

Both approaches only approximate the above goal. Loosely speaking, they do this by fulfilling the following
two weaker requirements (with respect to secondary keys to which personalized rights are delegated):

1. Restricted damage from loss of secondary keys: Loss of a few secondary secret keys causes no (or little)
damage to the user, beyond the loss and possible abuse (by the finder or thief) of the power delegated by
the user to these secondary keys.

1Throughout the paper we use the masculine form.
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2. Deterring propagation of secondary keys: Giving away many secondary secret keys to other users (e.g.,
friends) greatly endangers the user in the sense that this may have consequences which are highly
unpleasant to the user (and extend way beyond the rights associated with these secondary keys).

The slackness present in this formulation seems inevitable since the finder/thief in the first requirement is
“indistinguishable” from the friends in the second. Thus, the distinction is made quantitatively.

The paper focuses on the transparent approach, where the solutions are cryptographic. (These cryptographic
schemes may have applications beyond the scope of the self-delegation problem.) The statutory approach,
which has non-cryptographic solutions, is only discussed in the next subsection. We refrain from addressing
the non-technical question of which of the approaches is “better”. We note, however, that the solutions in the
two approaches differ in several aspects, and all aspects should be taken into account when evaluating these
solutions.

1.1 The Statutory Approach

Following the above paradigm, one may devise simple solutions in which trusted authorities (i.e., a judicial
system) inflict suitable punishments on users which are proven to have propagated personalized rights to others.
The case against a user will consist of sufficiently many secondary secret keys (with corresponding certificates
assigning personalized rights); it is assumed that no user is going to incriminate himself, whereas other users may
be less careful not to incriminate another user. Furthermore, users may even be encouraged (again by statutory
means; e.g., awards) to incriminate others. Such a judicial system is very flexible – it may consider special
circumstances and determine the verdict based on these. On the other hand, such a system has a significant
overhead.

Another type of statutory arrangement, closer in spirit to the solution presented next, is to define an action
taken with sufficiently many validated secondary secret key (regardless of their assigned rights) as if it was taken
by the user (i.e., with the corresponding primary key). However, in such a case, all verifiers of any signatures,
even those that have nothing to do with personalized rights, must be aware of this arrangement. Thus, this
solution too is not transparent.

1.2 The Transparent Approach

In the transparent approach, users are deterred from delegating personalized rights to others by ensuring that
the recipient learns something about the primary secret key of the delegator. A user will then again be highly
motivated not to delegate such rights so as not to risk giving up the fundamental rights associated with the
primary secret key. The basic principle of all our proposals is that the user has to validate his secondary keys with
respect to his primary secret key (in addition to signing an ordinary delegation certificate). As described below,
the validation process will deter the user from delegating personalized rights to others. Use of personalized rights
is granted only when one proves possession of a validated secondary-key (or possession of the primary-key, as
usual), mere possession of a secondary-key (without corresponding validation) will not do.

The conflicting goals stated above, are thus rephrased as follows:

1. Restricted damage from loss of secondary keys: Loss of a few validated secondary secret keys will not
endanger the security of the primary secret key. That is, they yield little or no knowledge about the
primary secret key.

2. Deterring propagation of secondary keys: Many validated secondary secret keys allow the recipient to
recover the primary secret key efficiently.
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We present several constructions achieving such a balance. These constructions differ in the techniques used
to encode the information about the delegator’s primary secret key (in the secret validation information). Our
constructions are categorized by the following parameters:

� Generic vs. specific: In Section 3, we present generic schemes which apply to any primary and secondary
keys. They rely on non-interactive zero-knowledge proofs [4], and can therefore be built from any trapdoor
one-way permutations [16, 24]. In Section 4, we present more specific and efficient constructions where
the primary key pair must belong to a discrete-logarithm based cryptographic scheme like Schnorr or DSS
signatures [30, 15].

� Gradual vs. threshold: In Constructions 1 thru 3, the security of the primary secret key degrades gradually
with the number of secondary secret keys available to an adversary until the primary secret key is totally
revealed. In Constructions 4 and 5, the primary secret key is fully secret up to a certain threshold number
of secondary secret keys available to an adversary (e.g., 3, 10, or 100), but is easily recovered from any
number of secondary secret keys larger than this or a second threshold.

Additionally, some schemes allow the application to freely fix after how many secondary secret keys
the adversary will get the primary secret key (i.e., the slope of the gradual degradation or the threshold,
respectively), whereas in others this number is predefined by other system parameters, e.g., the key length.

� Limitations for secondary keys: Apart from honest users, service providers will wish to limit the rights
associated with secondary keys to ensure that many different keys are needed for large-scale illegal
propagation of rights. We handle these limitations associated with a secondary key in a general way, and
call their description a limitations index. An archetypal example of limitations indices are time periods,
such as days, during which a secondary key is valid. Other examples include upper bounds on value of
transactions, lists of specific services, etc.

A relevant parameter for our schemes is the size of the domain of potential limitations indices. For
example, if secondary keys are associated with days, the domain of indices is relatively small. If, on
the other hand, limitations indices stand for arbitrary specification of rights such as expressed by 1000-
words English-text documents, then the domain is huge. The domain in Construction 3 is unbounded, in
Constructions 4 and 5 bounded, but exponentially large in the security parameter, and in Construction 2
relatively small. (Indeed, using appropriate hashing, one may use schemes with an exponentially large
domain of limitations indices as if their domain were unbounded.)

Our proposals for self-delegation of personalized rights are not in conflict with normal delegation of other types
of rights: Both types of rights can be given on the same primary and secondary keys and even with the same
delegation certificates. The only difference is that for personalized rights, verifiers will require the presence of
validation information related to the primary key of the original owner of the right, whereas in other cases they
only require a delegation certificate.

1.3 Related Work

Delegation certificates are merely documents which assert that certain rights associated to a specific public key
are to be passed to another public key. Such documents are verifiable with respect to the former public key,
and are binding (as all digital signatures) under certain statutory provisions. Technical problems with such
certificates occur where one makes additional requirements (e.g., anonymity, standardization of contexts, or
non-transferability) regarding such certificates. None of these extensions is required in our case.

In our case the goal is to restrict the delegation of some rights; specifically, of personalized rights. Thus,
ordinary delegation certificates will not do, unless they are augmented by either an auxiliary statutory arrangement
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or auxiliary validation information, as discussed above. (In fact, one may view the augmentation of delegation
certificates, suggested above, as a new type of certificate which one may call a self-delegation certificate.) Other
approaches to the issue of limiting the delegation of rights were suggested in [7, 8].

We note the analogy between the current work and [14]: The latter paper presents a transparent approach to
copyright protection, in contrast to the (typical) statutory approach based on fingerprinting [32, 5, 6, 29].

Some analogy exists also between self-delegation schemes and (� � 1)-spendable coins [10, 27]. Concep-
tually speaking, the problems are different since there is no requirement on personal use in the latter, and the
main issue is untraceability (otherwise identification of overspenders would be trivial). Technically speaking,
one can see that the analogy does not extend too far since here we construct self-delegation schemes based on
standard complexity assumptions, whereas such schemes are not known for untraceable cash.

2 The Model

Our model and constructions of self-delegation schemes only concern the core part of the applications described
so far, and are therefore largely independent of the concrete application. In particular, we only deal with the
primary and secondary keys, and not with certificates that third parties give to assign rights to the primary keys,
such as the above-mentioned certificate asserting subscriberhood – these can be realized in standard ways, for
example, by signatures with keys held by the third parties on the keys handled in the self-delegation scheme,
and thus be added to our constructions in a modular way.

Furthermore, we do not explicitly consider the user’s own authorization of the secondary keys, i.e., the
delegation certificates (from primary key to secondary key) as described in the introduction. This is not quite
as independent of our schemes as the statements by third parties, but whenever the underlying cryptographic
scheme is a signature scheme, the delegation certificates can be made in a standard way with the primary secret
key.

The notion of a generic scheme will more precisely mean the following: An arbitrary underlying crypto-
graphic scheme may be given that contains an algorithm for generating primary key pairs and one for generating
secondary key pairs, possibly depending on a primary key pair. The typical case is simply that an algorithm G

for generating one key pair is given, and all primary and secondary key pairs are generated independently with
this algorithm. Our mechanism allows to control propagation of such secondary keys without posing additional
dangers on the underlying scheme and without making assumptions about how the keys of the underlying scheme
may be used. For instance, signing (with a secret key) is not a zero-knowledge procedure, and in some protocols
secret keys may even sometimes be revealed. Our controlled self-delegation schemes should not pose any
additional risk to the keys, i.e., beyond the risk involved in using the given underlying cryptographic schemes.
The schemes in Section 3 are of this type, and those in Section 4 are only slightly less generic in that they assume
a specific generation algorithm for the primary secret key. We briefly mention variants that may be a little more
efficient, but require that primary and secondary keys are only used in well-defined ways, e.g., within a specific
signature scheme. In the rest of the model section, we concentrate on generic schemes.

We have to consider three types of parties: a server, which corresponds to a key certification infrastructure,
users, who have primary and secondary keys, and verifiers, with whom the users interact using their secondary
keys. A self-delegation scheme with controlled propagation has four protocols:

� Server setup: Here the server generates and publishes global parameters.

� Registration: Here the user, having generated a primary key pair (sk; pk) from an underlying cryptographic
scheme, registers the primary public key with the server. We call the secret information that the user stores
at the end of the registration his extended primary secret key, and the corresponding information published
by the server the user’s extended primary public key. For simplicity, we often omit the term “extended”,
and use (sk; pk) to denote also the extended key pair.
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� Secondary key validation: Here the user, having generated a secondary key pair (sk

`

; pk

`

) from the
underlying cryptographic scheme, wants to validate it for a certain limitations index `. He produces a
validation tag, denoted val

`

, that he will use later to convince verifiers of the validity of the secondary key
pair (when not having the primary secret key available).

� Verification: Here a user wants to convince a verifier, typically a service provider, that a certain public key
pk

`

can be used as a secondary key for the primary public key pk in the self-delegation scheme.

We stress that the user’s secret inputs are only sk

`

and val

`

; he no longer has the primary secret key
available.

The verifier also inputs the limitations index ` for which pk
`

is supposed to be valid and global parameters
published in server setup. Note that controlled propagation would make no sense if the verifier did not
check `; e.g., if ` denotes a specific date, the verifier must enter the current date rather than let the alleged
user enter a date of his choice (which would always be the one for which the key is valid).

These protocols must be efficient, preferably as efficient as the underlying cryptographic scheme. Clearly,
correctly validated secondary keys for correctly registered primary public keys should (almost) always be
accepted by honest verifiers.

We call a triple (sk

`

; val

`

; pk

`

) a correctly validated secondary key triple if it is a possible output of the
correct secondary key generation and validation program. This is what a thief gets from an honest user. However,
dishonest users who try to give away secondary keys to others are not restricted to correctly validated keys. We
say that a user gives a second person a valid secondary key triple (for a public key pk and a limitations index
`) if the information enables the second person to convince an honest verifier almost certainly. Formally, this
notion is only meaningful in connection with the second person’s program, which may be arbitrary, yet must be
efficient. For simplicity, we concentrate on users giving away full-quality secondary keys, but with definitions
as in [1] this can be generalized to giving away information that will only convince the verifier with a certain
probability.
Our two goals can now be formulated in more detail as follows:

� Restricted damage from key disclosure: If a certain user is honest, it should be infeasible for an adversary
(thief) who only obtains few correctly validated secondary key triples to generate additional valid secondary
key triples. Here, “additional” means for a limitations index `� for which the adversary has not obtained
a correctly validated secondary key triple. The adversary should also not get too much knowledge about
existing non-stolen secondary secret keys sk

`

nor about the primary secret key. More precisely, as we
concentrate on generic schemes, we have to speak about any knowledge gained by validation tags. A
suitable terminology is that of knowledge complexity (cf. [23, 22]).2

Specifically, gradual schemes have a parameter �, called the slope, so that each correctly validated
secondary key triple only gives � bits of knowledge. Schemes with threshold have a parameter � , called
the threshold, so that less than � correctly validated secondary key triples do not give the adversary any
knowledge.

� Controlled propagation: If a user gives a second person many different valid secondary key triples, then the
second person can efficiently compute the user’s primary secret key. Here, “different” means for different
limitations indices.

2Loosely speaking, saying that a protocol (or a message) gives � bits of knowledge with respect to a given state means that whatever
can be efficiently computed after the execution of the protocol (or receipt of the message) can also be computed efficiently with probability
at least 2�� from the state alone. Thus, for small �, more precisely � = O(log n) where n is the key length, if one can find the primary
secret key with non-negligible probability after receiving at most � bits of knowledge, then one can do the same without receiving these
bits. (Recall that f(n) is non-negligible if f(n) � 1=poly(n)).
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In schemes with threshold, “many” typically means at least � , but there are also schemes with a second
threshold �� > � (i.e., allowing a gap). Gradual schemes have a similar parameter �, which will typically
be about n=�, where n is the key length.

For simplicity, we assume that all the security parameters �; � etc., are chosen in server setup. Typically, users
are concerned with restricted damage from key disclosure and therefore wish � to be large (or � to be small),
whereas service providers, mainly concerned with propagation control, want the opposite.
We consider the following types of attacks:

� The adversary for the first goal, “restricted damage”, knows the user’s primary public key. It includes
(both other users and) verifiers who have verified any number of this user’s secondary public keys and
with whom the user has then interacted using these keys, e.g., by signing messages.

In a strong form of the requirement, the adversary also includes the server (i.e., the user may not want or
need to trust the server).

� The adversary for the second goal, “controlled propagation”, consists of any number of colluding users
and other verifiers. Typically, we only speak of “the user” because independence is clear. In some of
our constructions achieving this goal depends on proper behaviour of the server (which is supposed to
generate some random parameters).

In all the following schemes, the first goal, “restricted damage”, is stated and proven with respect to a static
adversary, i.e., the limitations indices of the revealed validation tags are determined beforehand rather than
chosen adaptively by the adversary.3 We also assume for the time being that each participant only carries out
one protocol at a time (i.e., we do not consider protocol interleaving).

3 Generic Schemes

The basic idea is that each validation tag val

`

contains some little “piece of information” �
`

about the primary
secret key sk. The holder of a secondary key can only convince verifiers if he knows this �

`

. Convincing the
verifier must be done in zero-knowledge, so that verifiers do not gain an advantage in finding a user’s primary
secret key. On the other hand, knowledge of �

`

’s is related to the gradual release of a secret (as introduced
for secret exchange in [3]): Knowledge of a few such pieces (i.e., �

`

’s) does not endanger the secret, whereas
knowledge of many “orthogonal” pieces does endanger it. A crucial point is to ensure this “orthogonality”
whenever many pieces are given to a second person in violation of the “controlled propagation” goal. To ensure
this, the value of �

`

is made to depend on the limitations index `. Our constructions differ in the way this is
achieved.

In the proof that he knows �
`

, the user also has to prove that �
`

is correct with respect to the primary secret
key sk, which is no longer available in the verification stage. Hence this part of the proof will be precomputed
in the secondary key validation protocol. We use a non-interactive zero-knowledge proof system [4], more
precisely one where one common random string Ref can be used for an arbitrary number of proofs [16]. (This
result also applies to the more efficient basic construction in [24].) In schemes with a small set of limitations
indices, we could improve efficiency by using a non-interactive zero-knowledge proof system capable of only
proving one assertion, and providing enough reference strings in advance.

Finally, we have to guarantee that all �
`

’s refer to the same primary secret key sk. This is easy if the
underlying cryptographic scheme guarantees that for every primary public key pk, there is only one possible
primary secret key sk and its validity can be verified in polynomial time. For example, this is the case with the
prime factorization of RSA moduli or the discrete logarithm of an element in logarithm-based schemes. Yet, in

3We retract an informal statement made in previous versions that we believe they are in fact also adaptively secure.
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other cases, additional information aux may be required to verify the validity of secrets with respect to publicly
available information. Typically, the randomness used in the key-generation process suffices. We then denote
by pk the entire information that is published. This motivates our interest in schemes where a 3-ary relation
Pred with the following properties exists:

� NP-recognition of secret keys: Pred is recognizable in polynomial-time. This implies that the set of valid
public keys

Pred

1

= fpkj9sk; aux : (sk; aux; pk) 2 Predg

and of valid key pairs

Pred

2

= f(sk; pk)j9aux : (sk; aux; pk) 2 Predg

are in NP and therefore have zero-knowledge proof systems [21].

� Unique secret keys: For every pk, there exists at most one sk such that (sk; pk) 2 Pred

2

.

� Key generation of the given cryptographic scheme produces triples (sk; aux; pk) 2 Pred.

� Validity: If (sk; pk) 2 Pred

2

, then there exists aux such that (sk; aux; pk) is in the range of the
key-generation algorithm.

For specific schemes, a weaker validity condition may suffice. For instance, for signature schemes it is sufficient
if (sk; pk) 2 Pred

2

implies that signing with sk yields valid signatures with respect to pk. This may sometimes
lead to more efficient membership proofs, while maintaining the same level of motivation for the user not to
give such an sk away. The following lemma shows that the requirement of unique secret keys is no serious
restriction.

Lemma 1 Suppose that one-way functions exist. Then, any cryptographic scheme where only computational
secrecy of sk is required can be transformed into one with unique secret keys. The keys in the transformed
scheme are augmentations of keys generated with the original key generation, and the other algorithms of the
scheme are not changed, i.e., they ignore the new components of the keys.

Proof sketch: We use the commitment scheme from [25]. It is unconditionally binding, has a non-interactive
opening stage, and can be based on any one-way function. In the commit stage, a random number R is
needed which may be chosen by a trusted server once and for all (see Section 5 in [25]). We modify the given
cryptographic scheme by adding a commitment C on sk to the original public key pk and defining aux to be the
pair (r

1

; r

2

) of random strings that were used in the generation of (sk; pk) and in generating the commitment
from sk and R, respectively. The predicate Pred is defined to contain all triples (sk; (r

1

; r

2

); (pk; C)) where
sk; pk, and C are generated correctly using r

1

and r
2

.
Uniqueness is clear by the unconditional binding property of the commitment, and the additional commitment

does not harm the computational secrecy of sk. Validity follows immediately from the definition of Pred. 2

3.1 Gradual schemes

The following construction is actually a framework for several slightly different versions with different properties.

Construction 1 (generic, gradual, framework): Let a cryptographic scheme with unique secret keys with a
relation Pred as above be given.
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� Server setup: The server chooses the length n of the secret keys and the slope �, where � divides n. It
randomly generates a reference string Ref 2 f0; 1g

poly(n) for the non-interactive zero-knowledge proof
system, and sets up a scheme that defines a sequence r

1

; r

2

; ::: of n-bit strings so that anyone can obtain
r

`

in poly(n; log `) time. Several such schemes are discussed below.

� Registration: Suppose a user has generated a primary key pair (sk; pk), together with the value aux so
that (sk; aux; pk) 2 Pred. The user proves to the server in zero-knowledge that pk is valid, i.e., lies in
Pred

1

.

� Secondary key validation: The validation tag for this user’s secondary key w.r.t. the limitations index ` is
the pair (�

`

; �

`

) where

1. �
`

is the inner product in GF(2

�

) of sk and r

`

, where both are considered as n=�-dimensional
vectors over GF(2�).

2. �
`

is a non-interactive zero-knowledge proof, with respect to the reference string Ref , that there
exists sk so that (sk; pk) 2 Pred

2

and �
`

is the inner product of sk and r
`

.

� Verification: The user gives the verifier an interactive zero-knowledge proof of knowledge [23, 1] that he
knows (�

`

; �

`

) such that �
`

is a valid non-interactive zero-knowledge proof as in Item (2) of the validation
protocol. The common input to the interactive proof consists of Ref , pk, and r

`

.

Proposition 1 (generic, gradual, framework): Any instantiation of Construction 1, that is, no matter how the
r

`

’s are determined, has the following properties:

1. Restricted damage from key disclosure: The scheme leaks no knowledge except � bits in each correct
validation tag. The user only needs to trust the server for the randomness of the reference string Ref .

2. Controlled propagation: If the user gives a second person valid secondary key triples for a certain set
of limitations indices, L, then the second person can efficiently compute the inner product of one fixed
primary secret key sk with each value r

`

corresponding to ` 2 L.

Proof sketch: We first prove Part 1 (“restricted damage”). First, one easily sees that in the registration and
verification protocols, the user does not give away any knowledge beyond the standard operation of the public key
infrastructure, because the rest of the protocols gives zero-knowledge proofs. Next, we consider the knowledge
an adversary gains by obtaining a correctly validated secondary key triple. Recall that we only need to consider
what is revealed on top of the secondary secret key itself, i.e., in the validation tag (�

`

; �

`

). These are merely �
bits of knowledge, since �

`

is only � bits long and �

`

is a zero-knowledge proof referring to �
`

and values the
adversary knows already. (Recall that knowledge complexity is bounded by the actual length of objects and at
most additive [22].)

We now prove Part 2 (“controlled propagation”). By the soundness of the interactive zero-knowledge proof
of knowledge, having a valid secondary key triple (i.e., information that enables the second person to convince an
honest verifier) implies that the second person knows a correct pair (�

`

; �

`

). More formally, there is an effective
way (called a knowledge extractor [1]) to reconstruct this pair given access to the second person’s strategy and
his auxiliary information. Now the soundness of the non-interactive zero-knowledge proof �

`

implies that �
`

is
in fact the inner product of the one fixed sk and r

`

. (Here the uniqueness property of Pred
2

is used.) Finally,
the validity property guarantees that this sk is a correct primary secret key. 2

The scheme defining the sequence r

1

; r

2

; ::: should guarantee that sufficiently many of these values span
almost the entire vector space, so that giving away many valid secondary keys compromises the primary key. Our
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first such scheme guarantees this in an optimal way, but can only be used for a domain of up to 2��1 limitations
indices. This value is small because � should be at most logarithmic in n to satisfy the restricted-damage
condition. Thus, this scheme is most adequate for cases like our motivating example where the limitations
indices correspond to days; e.g., � = 10 allows 1023 days, after which the primary key pairs could be renewed.

Construction 2 (generic, gradual, severely bounded limitations indices): We use Construction 1 with the
following r

`

’s: The server fixes an easily computable enumeration �

1

; :::; �

2

�

�1

of the non-zero elements of
GF(2

�

). The value r
`

is the vector (1; �
`

; :::; �

��1

`

), where � = n=�.

Proposition 2 (generic, gradual, severely bounded limitations indices): Construction 2 has the following
controlled-propagation property: Any � valid secondary key triples yield the primary secret key.

Proof sketch: Any � vectors r
`

form a Vandermonde matrix, which is always non-singular. Thus the system of
linear equations that the second person has (by the general controlled-propagation property of Construction 1)
is of full rank. The easily found solution is the primary secret key. 2

To use Construction 1 with a larger domain of limitations indices, we essentially use uniformly random values
r

`

. The server can set these up in different ways:

Construction 3 (generic, gradual, less bounded limitations indices): We use Construction 1 with one of the
following schemes for generating the r

`

’s:

1. For medium-sized limitations set: The server generates and publishes, as part of the setup stage, a list of
a certain number m of uniformly chosen values r

`

.

2. For unbounded limitations set: The server provides a “random oracle” (or Beacon) service throughout
the lifetime of the system; r

`

equals the answer of this random oracle on query `. The random oracle may
be implemented by the server by using a pseudorandom function [20].

In practice, one may be tempted to use a concrete publicly available function, typically a hash function, believed
to “behave randomly” (cf. [19, 2]). However, in connection with the role that m, the bound on the number
of function values an adversary can evaluate, plays in the proposition below, it would need to be a very slow
function. To analyze the controlled-propagation quality of these constructions, we need a technical lemma
about the probability that too many of the r

`

’s are linearly dependent. Note that when we talk of the rank of a
matrix chosen from a subset of a field, we mean its rank over the field (i.e., the maximum number of linearly
independent rows with respect to coefficients from the field).

Lemma 2 Let m;n; t; R be integers so that m > n > R and m � t � R, and q be a prime power. Let
S � GF(q). Then, the probability Pr

S

(m;n; t; R) that a uniformly chosen m-by-n matrix over S contains t
rows which together have rank at most R is bounded above by

Pr

S

(m;n; t; R) �

(2m)

t

t!

� jSj

�(n�R)�(t�R)

:

The proof is given in the appendix. For simplicity, we now restrict ourselves to the binary case, i.e., � = 1.

Proposition 3 (generic, gradual, less bounded limitations indices): For the first variant of Construction 3, with
� = 1, the following controlled-propagation property holds: With probability at least 1�2

�n, over the choice of
the r

`

’s, if a user gives away 2n valid secondary key triples to a second person, the second person can efficiently
list a set of at most m2 possibilities for the primary secret key. For the second variant of Construction 3, the
above holds provided the user makes at most m oracle queries.
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The second person can use the above list in different ways: For example, he can efficiently perform any task
requiring this secret key with probability 1=m

2, by uniformly selecting an element of this list. Alternatively,
in many applications, additional publicly available information can be used to determine which of these keys is
correct.
Proof sketch: We wish to show that it is infeasible for the user to find 2n limitations indices so that the
corresponding r

`

’s, considered as vectors over GF(2), span a linear subspace of “small” dimension, more
precisely smaller than n� 2 log

2

m. By the hypothesis, in both variants, the user can inspect at most m values
r

`

’s in this attempt. Without loss of generality, we can assume that the user will only give away secondary key
triples for limitations indices ` for which he has inspected r

`

(because inspecting 2n additional values is no
significant overhead and we could then work with m0

= m+ 2n). Invoking Lemma 2 with q = 2, S = f0; 1g,
t = 2n, and R = n � 2 log

2

m, we obtain that the probability that the m inspected r

`

’s contain such a subset
of 2n vectors is bounded by

Pr

f0;1g

(m;n; 2n;R) �

(2m)

2n

(2n)!

� 2

�(2 log

2

m)�(n+2 log

2

m)

< 2

�n

:

From this point on, we ignore this negligible probability event. Thus, we may assume that the corresponding
values r

`

span a linear subspace of dimension at least n � 2 log

2

m. By the general controlled-propagation
property of Construction 1, this implies that the second person has a system of at least n�2 log

2

m independent
linear equations modulo 2 about the n unknown bits of sk. He can easily list all the (at most m2) solutions of
the system, which correspond to up to m2 different possible values of sk. 2

3.2 A threshold scheme

We now show a generic threshold construction. The threshold � can be chosen freely between 1 and 2

n

� 1,
where n is the length of the keys. The set of limitations indices is bounded, but the bound can be much larger
than in Construction 2: It is now 2

n

� 1.

Construction 4 (generic, threshold, exponentially large domain): Let a cryptographic scheme with unique
secret keys with a relation Pred as above be given. Additionally, we need a secure commitment scheme that is
unconditionally binding; e.g., as in [25].

� Server setup: The server chooses parameters n for the length of secret keys and � for the threshold and
a reference string Ref 2 f0; 1g

poly(n) for the non-interactive zero-knowledge proof system. It fixes an
easily computable enumeration �

1

; :::; �

2

n

�1

of the non-zero elements of GF(2n).

� Registration: Suppose a user has generated a primary key pair (sk; pk), together with the value aux so
that (sk; aux; pk) 2 Pred. He first proves to the server in zero-knowledge that pk is valid, i.e., lies in
Pred

1

. Next, he uniformly selects a polynomial of degree � � 1 over GF(2n) with the primary secret key

as the constant coefficient, say, pol(x)
def

=

P

��1

j=0

c

j

� x

j with c

0

= sk. This corresponds to setting up a
secret sharing scheme as in [31]. He makes a commitment C to all the non-constant coefficients using the
given commitment scheme. Typically, the length of the commitment automatically shows that the content
is a polynomial of degree � � 1, otherwise this must be shown in zero-knowledge.

The user’s extended primary public key is (pk; C).

� Secondary key validation: The validation tag for this user’s secondary key for the limitations index ` is
the pair (�

`

; �

`

) where

1. �
`

is the value of the polynomial pol at the point �
`

;
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2. �
`

is a non-interactive zero-knowledge proof with respect to the reference string Ref that there
exist sk and pol so that (sk; pk) 2 Pred

2

, the non-constant coefficients of pol correspond to the
commitment C, the constant term c

0

equals sk, and �
`

= pol(�

`

).

� Verification: The user gives a zero-knowledge proof that he knows a correct pair (�
`

; �

`

).

Proposition 4 Construction 4 satisfies

1. Restricted damage from key disclosure: Public information and the validation tags of at most � � 1

correctly validated secondary key triples leak no knowledge. The user need not trust the server except for
the randomness of the reference string Ref .

2. Controlled propagation: Any � valid secondary key triples yield the primary secret key.

Proof sketch: The second part follows as in Proposition 2. For Part 1, the security of the commitment scheme
and the zero-knowledge proofs implies that the only non-negligible source of knowledge is in the values �

`

.
These are � � 1 shares of a secret sharing scheme with threshold � and therefore give no information about the
secret sk [31]. 2

4 Discrete-Logarithm Schemes

We now present a practical self-delegation scheme for cryptographic schemes based on discrete logarithms in
groups of prime order. Important examples are Schnorr and DSS signatures [30, 15]. The advantage over the
schemes in the previous section is that no general zero-knowledge proof techniques are needed, and the resulting
self-delegation schemes are essentially as efficient as the underlying schemes. The secondary keys can even be
from a different cryptographic scheme; only the primary key pair has to be from the discrete-logarithm-based
scheme.

More precisely, we assume an underlying cryptographic scheme with the following key generation: First
a prime q is chosen, typically 160 bits long; next a prime p, typically 512 bits, such that q divides p � 1; and
then an element g of order q in the multiplicative group modulo p. A secret key is a uniformly chosen value
sk 2 GF(q) = f0; :::; q� 1g, and the corresponding main part of the public key is pk = g

sk

mod p.
The actual scheme is a slight extension to Feldman’s Verifiable Secret Sharing (VSS) scheme based on

discrete logarithms [17]. The validation tags are simply shares of the secret key. We need two extra properties
for our application: First, if we want a large domain of limitations indices, the VSS scheme must allow a large
number of potential shares with an efficient way to index them. Secondly, in our case it is not the shareholders
who need to verify the validity of the shares (the shareholders in the motivating example are the laptops), but
external verifiers, i.e., we need an efficient zero-knowledge proof of knowledge of a proper share. Although these
extra properties are not required in the general definition of VSS (cf. [12]), they happen to hold in Feldman’s
VSS. This gives the following scheme, for any � � 2.

Construction 5 (discrete log, threshold, exponentially large domain): Let any cryptographic scheme based on
discrete logarithms in groups of prime order be given, i.e., the primary key generation is as described above.

� Server setup: For simplicity, we let the server generate the parameters (q; p; g) of the underlying scheme.
The domain of limitations indices is f1; :::; q� 1g. The server also selects an arbitrary threshold � .
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� Registration: Given a primary key pair (sk; pk) from the underlying discrete logarithm scheme, the user
randomly selects a polynomial pol of degree � � 1 over GF(q) with sk as its constant coefficient. That
is, it selects uniformly coefficients (c

1

; :::; c

��1

) in GF(q). This polynomial is the extended primary secret
key. The extended primary public key consists of pk and the values h

j

= g

c

j

mod p, for j = 1; :::; �� 1.
The server verifies that these values lie in the group generated by g (by verifying that their q-th power is
1).

� Secondary key validation: The validation tag for this user’s secondary key for the limitations index ` is
the value val

`

= pol(`), i.e.,

val

`

= sk+

��1

X

j=1

c

j

`

j

mod q:

Note that this validation tag can be seen as a secret key, denoted sk�
`

, of the underlying discrete logarithm
scheme; the corresponding public key would be pk�

`

= g

val

`

mod p.

� Verification: The verifier can compute this value pk�
`

as

pk

�

`

= pk �

��1

Y

j=1

h

`

j

j

mod p;

using the values h
j

in the user’s extended primary public key. Now the user has to give a zero-knowledge
proof of knowledge of val

`

, i.e., of the discrete logarithm of pk�
`

(cf. [9, 19]).4 An alternative is
Schnorr identification [30], which needs only one exponentiation on each side, but is only known to be
witness-hiding [18].

Proposition 5 Construction 5 satisfies

1. Restricted damage from key disclosure: Public information and the validation tags of at most ��1 correctly
validated secondary key triples leak no knowledge. The user need not trust the server except for the safe
choice of the parameters (q; p; g).

2. Controlled propagation: Any � valid secondary key triples yield the primary secret key.

Proof sketch: The first part follows immediately from the perfect security of the VSS scheme when the public
key is already given [28], and the fact that in addition the user only gives zero-knowledge proofs. For Part
2, the server’s verification in registration guarantees that the user sets up valid verification information for a
polynomial over GF(q). The proofs of knowledge guarantee that a person having a valid secondary key triple
can extract a value that passes verification as a share. Now the VSS scheme guarantees that � such shares enable
reconstruction of the uniquely defined secret. 2

If the set of limitations indices is much smaller than q (e.g., if it corresponds to days of a year), efficiency is
greatly improved since the evaluation of pk�

`

by a Horner-like schema only involves exponentiations with small
numbers. That is, pk�

`

can be computed from the h
j

’s and ` by iteratively computing v
i+1

= (h

��i

�v

i

)

`

mod p,
starting with v

1

= 1 and ending with pk

�

`

= v

�

� pk.

4The system from [9] is quite efficient, but it needs t rounds of communication (each with one exponentiation on both sides) for a
security level of 2�t. Actually, some of these can be executed in parallel with the usual trade-off between amount of parallelism and
tightness of the security, cf. [19]. However, t need not be very large, because we do not try to exclude every single case of propagation
anyway.
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An alternative way of using this core scheme is to use the values val

`

directly as secondary secret keys
(i.e., = sk

�

`

’s), instead of as validation tags for independently generated secondary key pairs. This improves
efficiency in cases where we can omit the proof of knowledge (because the subsequent usage of sk�

`

establishes
knowledge of it). However, in such a case we have to be careful about how the security of the underlying scheme
and our self-delegation scheme influence each other. In particular, the legitimate use of sk�

`

in the underlying
scheme is typically not zero-knowledge and might therefore additionally endanger the primary secret key sk

via the self-delegation scheme. Thus, security in such usage has to be considered specifically for each concrete
underlying scheme (e.g., for Schnorr or DSS signatures). Specifically, for the Schnorr identification scheme [30],
security does hold, as we will now show.

Construction 6 (Schnorr’s identification, threshold, exponentially large domain): Server setup, registration,
and the definition of values sk

�

`

and pk

�

`

are as in Construction 5. However, identification with respect to
limitations index ` is immediately conducted with respect to the public value pk�

`

, i.e., the honest user wishing
to identity itself uses sk�

`

as the secret key inside Schnorr’s identification protocol, and the verifier uses pk�
`

.

Proposition 6 Construction 6 satisfies

1. Restricted damage from key disclosure: For a thief who obtains less than � secondary secret keys, imper-
sonation with respect to a different limitations index is as difficult as impersonation in Schnorr’s original
scheme. We stress that this holds also when the thief can ask the user to repeatedly identify itself with
respect to various limitations indices.

2. Controlled propagation: Any � valid secondary secret keys yield the primary secret key.

A proof sketch is presented in the appendix.
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Appendix A: Proof of Lemma 1

The following lemma has to be proved:

Lemma 2 Let m;n; t; R be integers so that m > n > R and m � t � R, and q be a prime power. Let
S � GF(q). Then, the probability Pr

S

(m;n; t; R) that a uniformly chosen m-by-n matrix over S contains t
rows which together have rank at most R is bounded above by

Pr

S

(m;n; t; R)�

(2m)

t

t!

� jSj

�(n�R)�(t�R)

:

Recall that arithmetic is always in a (prime) finite field, even though elements are selected from the subset S of
the field.
Proof: Let Pr

S

(n; t; r) denote the probability that a uniformly chosen t-by-n matrix over S has rank r. Then,
our desired probability is upper bounded by

Pr

S

(m;n; t; R) �

 

m

t

!

�

R

X

r=0

Pr

S

(n; t; r) <

m

t

t!

�

R

X

r=0

Pr

S

(n; t; r): (1)

Next we bound Pr

S

(n; t; r) using the probability that t � r rows (over S) are in the linear space spanned by r
other rows. For any r-by-n matrix M , let PrM

S

denote the probability that a uniformly selected n-dimensional
vector over S � GF(q) resides in the linear subspace hMi spanned by M . We have

Pr

S

(n; t; r) �

 

t

r

!

�

X

M2S

r�n

:rk(M)=r

Prob(matrix M is chosen) � (PrM
S

)

t�r

�

 

t

r

!

� max

M2S

r�n

:rk(M)=r

n

(Pr

M

S

)

t�r

o

:

To bound PrM
S

for a matrix M of rank r, we consider a set of n�r row-reduced equations whose solution space
is precisely hMi. (Readers unfamiliar with dual vectorspaces may think ofM as the generator matrix of a linear
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code and the equations as a corresponding checkmatrix. Row-reduced means that there is an identity submatrix,
but not necessarily in adjacent columns.) The probability that a uniformly chosen vector over S � GF(q)

fulfills these equations is at most 1=jSjn�r: First randomly set the r elements not corresponding to the identity
submatrix. The remaining ones are then uniquely determined, and the solution may not even lie within Sn. We
therefore get

Pr

S

(n; t; r) �

 

t

r

!

� jSj

�(n�r)�(t�r)

�

 

t

r

!

� jSj

�(n�R)�(t�R)

:

Substituting this into Eq. (1), we obtain

Pr

S

(m;n; t; R) �

m

t

t!

� 2

t

� jSj

�(n�R)�(t�R)

;

which proves the lemma.

Appendix B: Proof of Proposition 6

Let us first recall Schnorr’s identification protocol [30], which is actually a proof of knowledge of a discrete
logarithm. Its key generation is exactly as described in Section 4, i.e., it yields public parameters q; p, and g, a
secret key sk 2 ZZ

q

and a main public key pk = g

sk

mod p. The following protocol is used to prove knowledge
of sk:

1. The prover uniformly selects x 2 ZZ

q

, computes y = g

x

mod p and sends y to the verifier.

2. The verifier uniformly selects (a challenge) � 2 ZZ

q

, and sends it to the prover.

3. The prover responds with � = x+ � � sk mod q.

4. The verifier accepts if and only if g� � y � pk

�

mod p:

We rename sk�
`

and pk

�

`

from Construction 5 into sk

`

and pk

`

because they are now real secondary keys.
We show that any restricted (as in Proposition 6) attack, A, against the self-delegation identification scheme

can be transformed into an equally successful attack, A0, against Schnorr’s original scheme.5 Consider such
an attack, A. First it expects to get the extended primary public key (pk, h

1

; :::; h

��1

), and then up to � � 1

secondary secret keys sk
`

1

, ..., sk
`

��1

. Moreover, the attacker can ask the user to identify itself with respect
to many other limitations indices. At the end, the attacker tries to impersonate the user with respect to some
limitations index `� 62 f`

1

; :::; `

��1

g.
We now describe an attack A0 against Schnorr’s original scheme. Its input is the user’s public key pk 2 ZZ

�

p

.
The attack A

0 starts by setting the grounds for emulating the attack A. It uses the given pk also as the
primary public key in the simulated self-delegation scheme (and thus also the same unknown sk). Now A

0

uniformly selects sk
`

1

, ..., sk
`

��1

from ZZ

q

(so that it can later hand these as secondary secret keys to A), and
sets pk

`

j

= g

sk

`

j

mod p for j = 1; :::; � � 1. The next step is to prepare a suitable extended primary public
key. Thus we determine the inverse transformation from the secondary keys to the primary key. Recall that the
secondary secret keys should be

sk

`

i

= sk+

��1

X

j=1

c

j

`

j

i

mod q for i = 1; :::; � � 1:

5Our argument resembles diverted and blinded proofs which have first appeared in [26, 11] (combined with Pedersen’s proof of the
Verifiable Secret Sharing).
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Together with the equation sk = sk, this is a � -by-� Vandermonde matrix. From its inverse, we obtain linear
equations of the form

c

i

= m

i;0

sk+

��1

X

j=1

m

i;j

sk

`

j

for i = 1; :::; � � 1:

With the same coefficients m
i;j

, we have

h

i

= pk

m

i;0

��1

Y

j=1

(pk

`

j

)

m

i;j for i = 1; :::; � � 1:

Thus, A

0 sets the h

i

’s like that, and invokes A providing it with the extended primary public key
(pk; h

1

; :::; h

�

) and the � � 1 “disclosed” secondary secret keys, sk
`

1

, ..., sk
`

��1

. Observe that A is invoked on
a distribution identical to the one for which its success probability is defined.

Now A will make requests to participate as verifier in self-delegation identification with respect to certain
limitations indices `. The algorithm A

0 handles such a request by requesting an identification in Schnorr’s
scheme, playing the role of the verifier. It thus obtains from the user some y = g

x, which it forwards to A.
When A responds with a challenge �, algorithm A

0 sets its challenge to

�

0

= � � (1 +

��1

X

i=1

m

i;0

`

i

) mod q:

When the user responds with �0, algorithm A

0 responds to A with

� = �

0

+ � �

��1

X

i=1

��1

X

j=1

m

i;j

sk

`

j

`

i

mod q:

We show that this response is correct, i.e., that indeed � � x + � � sk

`

(everything modulo q). (Note that sk
`

and also the c
i

’s are uniquely defined by the extended primary public key, although unknown to the algorithms.)
We know that the user’s answer is �0

= x+ �

0

� sk. Thus

� � (x+ �

0

� sk) + � �

��1

X

i=1

��1

X

j=1

m

i;j

sk

`

j

`

i

� x + � � (1 +

��1

X

i=1

m

i;0

`

i

) � sk+ � �

��1

X

i=1

��1

X

j=1

m

i;j

sk

`

j

`

i

� x + � � (sk+

��1

X

i=1

(m

i;0

sk+

��1

X

j=1

m

i;j

sk

`

j

)`

i

)

� x + � � (sk+

��1

X

i=1

c

i

`

i

)

� x + � � sk:

When A finally announces that it wants to try to impersonate with respect to some limitations index
`

�

62 f`

1

; :::; `

��1

g, then A

0 announces an attempt to impersonate in the basic Schnorr scheme. Algorithm A

0

forwards A’s first message, some y 2 ZZ

�

p

, to the verifier it wishes to fool. When the verifier responds with a

challenge �

0, algorithm A

0 forwards � = �

0

=(1 +

P

��1

i=1

m

i;0

`

�i

) mod q to A. The divisor is not zero: It is
the coefficient at sk when sk

`

� is represented as a linear combination of sk and the sk

`

i

’s using the inverse
Vandermonde matrix. (If it were zero, sk

`

�

= pol(`

�

) with `� 62 f`

1

; :::; `

��1

g would be a linear combination
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of the values sk
`

i

= pol(`

i

) with coefficients only dependent on the `’s. This would contradict the security
of the underlying secret sharing scheme.) When A now responds with a value �, algorithm A

0 responds to the
verifier with �

0

= � � � �

P

��1

i=1

P

��1

j=1

m

i;j

sk

`

j

`

�i

mod q. We show that if � was a correct response, i.e.,
g

�

� y � pk

�

`

�

mod p, then �

0 is also correct: First, we see that y is of the form g

x with x � � � � � sk

`

�

(everything modulo q). Thus

�

0

� (x+ � � sk

`

�
)� � �

��1

X

i=1

��1

X

j=1

m

i;j

sk

`

j

`

�i

� x+ � � (sk+

��1

X

i=1

c

i

`

�i

)� � �

��1

X

i=1

(c

i

�m

i;0

sk) � `

�i

� x+ � � (1 +

��1

X

i=1

m

i;0

`

�i

) � sk

� x+ �

0

� sk:

We conclude that whenever A succeeds in its impersonation attack against the self-delegation identification
scheme, A0 succeeds in its attack on the basic Schnorr scheme.
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