
Generalized Di�e-Hellman Modulo a Composite is not

Weaker than Factoring

Preliminary Version

Eli Biham

�

Dan Boneh

y

Omer Reingold

z

Abstract

The Di�e-Hellman key-exchange protocol may naturally be extended to k > 2 parties.

This gives rise to the generalized Di�e-Hellman assumption (GDH-Assumption). Naor and

Reingold have recently shown an e�cient construction of pseudo-random functions and

reduced the security of their construction to the GDH-Assumption. In this note, we prove

that breaking this assumption modulo a composite would imply an e�cient algorithm for

factorization. Therefore, the security of both the key-exchange protocol and the pseudo-

random functions can be reduced to factoring.

1 Introduction

The Generalized Di�e-Hellman (GDH) Assumption was originally considered in the context

of a key-exchange protocol for k > 2 parties (see e.g., [5, 6]). This protocol is an extension

of the (extremely inuential) Di�e-Hellman key-exchange protocol [1]. Given a group G

and an element g 2 G, the high-level structure of the protocol is as follows: Party i 2 [k]

def

=

f1; 2; : : : ; kg chooses a secret value, a

i

. The parties exchange messages of the form g

Q

i2I

a

i

for several proper subsets, I ([k]. Given these messages, each of the parties can compute

g

Q

i2[k]

a

i

and this value de�nes their common key (in some publicly known way). Since the

parties use an insecure (though authenticated) channel, it is essential that the messages

they exchange do not reveal g

Q

i2[k]

a

i

. The GDH-Assumption is even stronger: informally,

it states that it is hard to compute g

Q

i2[k]

a

i

from an algorithm that can query g

Q

i2I

a

i

for

any proper subset, I ([k] of its choice. The precise statement of the assumption is given

in Section 2.1.

�

Computer Science Department, Technion, Haifa 32000, Israel. E-mail: biham@cs.technion.ac.il

y

Dept. of Computer Science, Stanford University, Staford, CA, 94305-9045. E-mail:

dabo@cs.stanford.edu

z

Dept. of Applied Mathematics and Computer Science, Weizmann Institute of Science, Rehovot 76100,

Israel. Research supported by a Clore Scholars award and by a grant from the Israel Science Foundation

administered by the Israeli Academy of Sciences. E-mail: reingold@wisdom.weizmann.ac.il.

Recently, another application to the GDH-Assumption was proposed by Naor and Rein-

gold [3]. They showed an attractive construction of pseudo-random functions such that its

security can be reduced to the GDH-Assumption. Motivated by this application, we provide

in this note a proof that the GDH-Assumption modulo a Blum-integer is not stronger than

the assumption that factoring Blum-integers is hard. Similar reductions were previously

described in the context of the standard Di�e-Hellman assumption by McCurley [2] and

Shmuely [5]. In fact, Shmuely [5] also provided a related proof that the GDH-Assumption

(modulo a composite) itself can be reduced to factoring. Her reduction works when the algo-

rithm that breaks the GDH-Assumption succeeds in computing g

Q

i2[k]

a

i

for every choice of

values ha

1

; a

2

; : : : ; a

k

i (which is not su�cient for the applications of the GDH-Assumption).

In contrast, our reduction works even when the algorithm breaking the GDH-Assumption

only succeeds for some non-negligible fraction of the ha

1

; : : : ; a

k

i.

2 The Assumptions

In this section we de�ne the GDH-Assumption in Z

�

N

(the multiplicative group modulo N),

where N is a Blum-integer. We also de�ne the assumption that factoring Blum-integers is

hard. The restriction to Blum-integers is quite standard and it makes the reduction of the

GDH-Assumption to factoring much simpler. In order to keep our result general, we let N

(in both assumptions) be generated by some polynomial-time algorithm FIG (where FIG

stands for factoring-instance-generator):

De�nition 2.1 (FIG) The factoring-instance-generator, FIG, is a probabilistic polynomial-

time algorithm such that on input 1

n

its output, N = P � Q, is distributed over 2n � bit

integers, where P and Q are two n � bit primes and P = Q = 3 mod 4 (such N is known

as a Blum-integer).

A natural way to de�ne FIG is to let FIG(1

n

) be uniformly distributed over 2n � bit

Blum-integers but other choices were previously considered (e.g., letting P and Q obey

some \safety" conditions).

2.1 The GDH-Assumption

To formalize the GDH-Assumption (which is described in the introduction) we use the

following two de�nitions:

De�nition 2.2 Let N be any possible output of FIG(1

n

), let g be any quadratic-residue in

Z

�

N

and let ~a = ha

1

; a

2

; : : : ; a

k

i be any sequence of k elements of [N]. De�ne the function

h

N;g;~a

with domain f0; 1g

k

such that for any input, x = x

1

x

2

� � �x

k

,

h

N;g;~a

(x)

def

= g

Q

x

i

=1

a

i

mod N

De�ne h

r

N;g;~a

to be the restriction of h

N;g;~a

to the set of all k-bit strings except 1

k

(i.e., the

restriction of h

N;g;~a

to f0; 1g

k

n f1

k

g).

2

De�nition 2.3 (�-solving the GDH

k

-Problem) LetA be a probabilistic oracle machine,

k = k(n) an integer-valued function and � = �(n) a real-valued function. A �-solves the

GDH

k

-Problem if for in�nitely many n's

Pr[A

h

r

N;g;~a

(N; g) = h

N;g;~a

(1

n

)] > �(n)

where the probability is taken over the random bits of A, the choice of N according to the

distribution FIG(1

n

), the choice of g uniformly at random in the set of quadratic-residues

in Z

�

N

and the choice of each of the values in ~a = ha

1

; a

2

; : : : ; a

k(n)

i uniformly at random in

[N].

Informally, the GDH-Assumption is that there is no \e�cient" oracle machine A that

�-solves the GDH

k

-Problem for \non-negligible" �. We formalize this in the standard way of

interpreting \e�cient" as \probabilistic polynomial-time" and \non-negligible" as \larger

than 1=poly". However, our reduction (Theorem 3.1) is more quantitative.

Assumption 2.1 (The GDH-Assumption Modulo a Blum-Integer) Let A be any

probabilistic polynomial-time oracle machine and k = k(n) any integer-valued function that

is bounded by a polynomial (and is e�ciently-constructible). There is no positive constant

� such that A

1

n

�

-solves the GDH

k

-Problem.

2.2 The Factoring-Assumption

We formalize the assumption that factoring Blum-integers is hard in an analogous way:

De�nition 2.4 (�-factoring) Let A be a probabilistic Turing-machine and � = �(n) a

real-valued function. A �-factors if for in�nitely many n's

Pr[A(P �Q) 2 fP;Qg] > �(n)

where, the distribution of N = P �Q is FIG(1

n

).

Assumption 2.2 (Factoring Blum-Integers) Let A be any probabilistic polynomial-time

oracle machine. There is no positive constant � such that A

1

n

�

-factors.

3 Reducing the GDH-Assumption to Factoring

Theorem 3.1 Assumption 2.1 (the GDH-Assumption) is implied by Assumption 2.2 (Fac-

toring). Furthermore, assume that A is a probabilistic oracle machine with running-time

t = t(n) such that A �-solves the GDH

k

-Problem (where k = k(n), is an integer-valued

function that is e�ciently-constructible and � = �(n) a real-valued function). Then, there

exists a probabilistic Turing-machine A

0

with running time t

0

(n) = poly(n; k(n)) � t(n) that

�

0

-factors, where �

0

(n) = �(n)=2� O(k(n) � 2

�n

).

As an intuition to the proof, assume that A computes h

N;g;~a

(1

k

) for any sequence

~a = ha

1

; a

2

; : : : ; a

k(n)

i. The algorithm A

0

can use A to extract square-roots in Z

�

N

and

consequently A can factor N (as shown in [4]). This is done as follows: A

0

�rst samples v

3

uniformly at random in Z

�

N

and computes g = v

2

k

mod N . For every 0 < i < k, we have

that g

2

�i

= v

2

k�i

mod N . Let ~a = ha

1

; : : : ; a

k

i be the vector where for all i; a

i

=

1

2

mod `

(here ` is the order of g in Z

�

N

). It follows that algorithm A

0

can easily compute h

r

N;g;~a

(x)

for any x 6= 1

k

. Hence, A

0

can invoke A with input hN; gi and answer every query, q,

of A with h

r

N;g;~a

(q). Eventually, A outputs the value u = h

N;g;~a

(1

n

) = g

2

�k

mod N .

We now have that u

2

= v

2

mod N and that Pr[u = �v] = 1=2. This implies that

Pr[gcd(u� v;N) 2 fP;Qg] = 1=2 which enables A

0

to factor N . The complete proof fol-

lows the same lines along with additional \randomization" of the a

i

's (achieved by taking

a

i

= 2

�1

+ r

i

) which eliminates the assumption that A always succeeds.

Proof: Assume that A is as in Theorem 3.1, we de�ne the algorithm A

0

that is guaranteed

to exist by the theorem. Let N = P �Q be any 2n-bit Blum-integer. Given N as its input,

A

0

performs the following basic steps (we later describe how these steps can be carried out

in the required running time):

1. Sample v uniformly at random inZ

�

N

. Compute k = k(n) and g = v

2

k

mod N . Denote

by ` the order of g in Z

�

N

(note that ` is not known to A

0

).

Since N is a Blum-integer and g is a quadratic-residue we have that ` is odd. This

implies that 2 2Z

�

`

and therefore 2

�1

mod ` exists.

2. Sample each one of the values in hr

1

; r

2

; : : : ; r

k

i uniformly at random in [N]. For

1 � i � k, denote by a

i

the value r

i

+ 2

�1

mod ` (again, note that a

i

is not known to

A

0

). Denote by ~a the sequence ha

1

; a

2

; : : : ; a

k

i.

3. Invoke A with input hN; gi and answer each query, q, of A with the value h

r

N;g;~a

(q).

4. Given that A outputs the correct value | h

N;g;~a

(1

n

), compute u = g

2

�k

mod N . As

will be noted below, u

2

= v

2

mod N . If u 6= �v mod N , output gcd(u� v;N) which

is indeed in fP;Qg. Otherwise, output `failed'.

The Running-Time of A

0

:

Steps (1) and (2) can easily be carried out in time poly(n; k(n)). For steps (3) and (4) to

be carried out in time t

0

(n) = poly(n; k(n)) � t(n) it is enough to have that:

a. For every query q 2 f0; 1g

k

n f1

k

g the value h

N;g;~a

(q) can be computed in time

poly(n; k(n)).

b. Given h

N;g;~a

(1

n

), the value g

2

�k

mod N can be computed in time poly(n; k(n)).

The key-observation for showing the above is that for all 0 < i < k, we have that g

2

�i

=

v

2

k�i

mod N . For i = 1, this is implied by the fact that both g

2

�1

and v

2

k�1

are square

roots of g and they are both quadratic-residues. Since squaring is a permutation over the

set of quadratic-residues inZ

�

N

(for any Blum-integer, N) we must have that g

2

�1

and v

2

k�1

are equal. By induction on 0 < i < k, we get that g

2

�i

= v

2

k�i

mod N in the same way.

Therefore, for every q = q

1

q

2

: : : q

k

6= 1

k

:

h

N;g;~a

(q) = g

Q

q

i

=1

a

i

= g

Q

q

i

=1

(r

i

+2

�1

)

= g

P

k�1

j=0

�

j

2

�j

= v

P

k�1

j=0

�

j

2

k�j

mod N

4

where the values f�

j

g

k�1

j=0

can easily be computed in time poly(n; k(n)). Therefore, we get

that (a) holds. Similarly:

h

N;g;~a

(1

k

) = g

Q

k

i=1

a

i

= g

Q

k

i=1

(r

i

+2

�1

)

= g

2

�k

� g

P

k�1

j=0

�

j

2

�j

= g

2

�k

� v

P

k�1

j=0

�

j

2

k�j

mod N

where the values f�

j

g

k�1

j=0

can easily be computed in time poly(n; k(n)). We now get that

(b) holds since:

g

2

�k

= h

N;g;~a

(1

k

) �

�

v

P

k�1

j=0

�

j

2

k�j

�

�1

mod N

The Success-Probability of A

0

:

It remains to show that A

0

�

0

-factors, where �

0

(n) = �(n)=2� O(k(n) � 2

�n

). Recall that u

denotes the value g

2

�k

mod N . As shown above v

2

= g

2

�(k�1)

(= u

2

) mod N . Therefore, it

is not hard to verify that:

Pr[A

0

(N) 2 fP;Qg] = Pr

h

(u 6= �v mod N) and

�

A

h

r

N;g;~a

(N; g) = h

N;g;~a

(1

n

)

�i

Note that A

h

r

N;g;~a

(N; g) does not depend on v itself but rather on v

2

(i.e., A

h

r

N;g;~a

(N; g) is

equally distributed for any two assignments, u and v, of v as long as u

2

= v

2

mod N). We

therefore get that:

Pr[A

0

(N) 2 fP;Qg] = 1=2 � Pr[A

h

r

N;g;~a

(N; g) = h

N;g;~a

(1

n

)]

Let N be chosen from FIG(1

n

). We need to show that for in�nitely many n's

Pr[A

0

(N) 2 fP;Qg] > �

0

(n)

Which is equivalent to showing that for in�nitely many n's

Pr[A

h

r

N;g;~a

(N; g) = h

N;g;~a

(1

n

)] > �(n)� O(k(n) � 2

�n

)

To do so, let us �rst review a couple of simple facts on the distribution of g and of each

a

i

mod `:

Fact1 g is a uniformly distributed quadratic-residue in Z

�

N

.

Reason: v is a uniformly distributed quadratic-residue in Z

�

N

and squaring is a

permutation over the set of quadratic-residues in Z

�

N

(since N is a Blum-integer).

Fact2 Let r and a

0

be uniformly distributed in [N] and denote by a the value r+2

�1

mod `.

Then a and a

0

mod ` are of statistical distance O(2

�n

).

Reason: ` divides (Q � 1)(P � 1). Therefore the distribution of a conditioned on

the event that r 2 [(Q � 1)(P � 1)] is the same as the distribution of a

0

mod ` con-

ditioned on the event that a

0

2 [(Q� 1)(P � 1)] (and in both cases it is simply the

uniform distribution over Z

`

). It remains to notice that Pr [r 2 [(Q� 1)(P � 1)]] =

Pr [a

0

2 [(Q� 1)(P � 1)]] =

(Q�1)(P�1)

N

= O(2

�n

).

5

Let each value in

~

a

0

= ha

0

1

; a

0

2

; : : : ; a

0

k

i be uniformly distributed in [N]. Since A �-solves

the GDH

k

-Problem and given Fact1, we have that:

Pr[A

h

r

N;g;

~

a

0

(N; g) = h

N;g;

~

a

0

(1

n

)] > �(n)

Given Fact2, it is easy to verify that the two random variables h

N;g;~a

and h

N;g;

~

a

0

are of

statistical distance O(k(n) � 2

�n

). Therefore, we can conclude that:

Pr[A

h

r

N;g;~a

(N; g) = h

N;g;~a

(1

n

)] > �(n)� O(k(n) � 2

�n

)

which completes the proof of the theorem. 2

4 Conclusions

In this note it was proven that breaking the generalized Di�e-Hellman assumption modulo

a Blum-integer is at least as hard as factoring Blum-integers. This implies that the security

of the generalized Di�e-Hellman key-exchange protocol (which is mentioned in the intro-

duction) can be reduced to the assumption that factoring is hard. In addition, as shown in

[3], it implies the existence of e�cient pseudo-random functions which are at least as secure

as factoring.

A possible line for further research is the study of the generalized Di�e-Hellman assump-

tion in other groups and the relation between the generalized Di�e-Hellman assumption and

the standard Di�e-Hellman assumption. It is interesting to note that the decisional versions

of the generalized Di�e-Hellman assumption and the standard Di�e-Hellman assumption

are equivalent (as shown in [6]).

References

[1] W. Di�e and M. Hellman, New directions in cryptography, IEEE Trans. Inform. Theory,

vol. 22(6), 1976, pp. 644-654.

[2] K. McCurley, A key distribution system equivalent to factoring, J. of Cryptology, vol 1, 1988,

pp. 95-105.

[3] M. Naor and O. Reingold, Number-Theoretic constructions of e�cient pseudo-random functions,

to appear in: Proc. 38th IEEE Symp. on Foundations of Computer Science, 1997.

[4] M. O. Rabin, Digitalized signatures and public-key functions as intractable as factorization,

Technical Report, TR-212, MIT Laboratory for Computer Science, 1979.

[5] Z. Shmuely, Composite Di�e-Hellman public-key generating systems are hard to break, Techni-

cal Report No. 356, Computer Science Department, Technion, Israel, 1985.

[6] M. Steiner, G. Tsudik and M. Waidner, Di�e-Hellman key distribution extended to group

communication, Proceedings 3rd ACM Conference on Computer and Communications Security,

1996, pp. 31-37.

6

