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Abstract

The input to the Graph Clustering Problem consists of a sequence of integers m

1

; :::;m

t

and

a sequence of

P

t

i=1

m

i

graphs. The question is whether the equivalence classes, under the graph

isomorphism relation, of the input graphs have sizes which match the input sequence of integers.

In this note we show that this problem has a (perfect) zero-knowledge interactive proof system.

Keywords: Graph Isomorphism, Zero-Knowledge Interactive Proofs.

1 Introduction

The remarkable notion of perfect zero-knowledge proofs was introduced by Goldwasser, Micali and

Racko� [GoMiRa]. A perfect zero-knowledge proof system is a method for a prover to convince a

polynomial-time bounded veri�er with very high probability that a certain assertion is true without

revealing any additional information (in an information-theoretic sense). Not many are the languages

which have been shown to have a perfect zero-knowledge proof system; in particular, all of them share

number-theoretic or random self-reducibility properties [GoMiRa, GoMiWi, GoKu, ToWo, BoFrLu],

or are obtained by formulae compositions over such languages [DeDiPeYu]. Moreover, it is known that

it is unlikely that all languages in NP have a perfect zero-knowledge proof system, unless unexpected

consequences in complexity theory happen [Fo, AiHa]. Still, perfect zero-knowledge proofs are worth

to investigate since they seem to capture the intrinsic properties of the zero-knowledge notion.

Trying to extend the domain of perfect zero-knowledge, we consider the Graph Clustering Prob-

lem (GCP), formally de�ned below. Loosely speaking, the input to the problem consists of a sequence

of integers and a sequence of graphs, and the question is whether the equivalence classes { under the

�
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graph isomorphism relation { of the given graphs have sizes which match the given sequence of inte-

gers. GCP is related to Graph Isomorphism, known to have a perfect zero-knowledge proof [GoMiWi],

and yet seems more complex than it. The knowledge-complexity (cf., [GoMiRa, GoPe]) of GCP is

easily bounded by a function of the integral part of the instance, and for some years this problem

served as an example of a non-trivial case of bounded knowledge-complexity. We show that GCP

has a perfect zero-knowledge proof system.

Our proof proceeds by expressing GCP as a conjunction of a constant number of monotone

formulae over Graph Isomorphism (or Non-Isomorphism) statements. This allows us to apply a

general result of [DeDiPeYu]. Our technique can be adapted to other random self-reducible languages,

such as quadratic residuosity, discrete log, etc.

2 Preliminaries

We recall the de�nition of perfect zero-knowledge proof systems [GoMiRa].

De�nition 1 A pair of probabilistic interactive machines, (P;V) is called an interactive proof system

for the language L if V runs in polynomial-time and

1. (Completeness) For all x 2 L, and all constants c,

Pr(P$ V(x) = ACCEPT) � 1� jxj

�c

:

where here and below P$ V(x) denotes V's output after interacting with P on common input x.

2. (Soundness) For all x 62 L, all constants c, and all probabilistic Turing machines Pj,

Pr(P

�

$ V(x) = ACCEPT) � jxj

�c

:

De�nition 2 An interactive proof system (P;V) for L is called perfect zero-knowledge proof system

for L if for every probabilistic polynomial-time interactive machine, V

�

, there exists a probabilistic

polynomial-time machine, S

V

�

(called the simulator) such that for all x 2 L,

1. With probability at most 1=2, the output S

V

�
(x) is a special failure symbol, denoted ?.

2. Conditioned on S

V

�

(x) 6= ?, the distribution S

V

�

(x) is identical to P$ V

�

(x).

The above de�nition is taken from [G95], and is at least as strong as the original de�nitions [GoMiRa]

where the simulator is allowed to run for expected polynomial-time (but is not allowed to fail).

The Graph Clustering Problem. The Graph Clustering Problem, GCP, is de�ned as follows:

� Input: a sequence (G

1

; : : : ; G

m

;m

1

; : : : ; m

c

), where each G

i

is an n-node graph, each m

j

is a

positive integer, and it holds that

P

c

j=1

m

j

= m.

� Question: is there a partition (C

1

; : : : ; C

c

) of fG

1

; : : : ; G

m

g such that jC

j

j = m

j

, for j = 1; : : : ; c,

and

1. for any i 2 f1; : : : ; cg and any G

k

; G

l

2 C

i

, it holds that the graphs G

k

and G

l

are

isomorphic;

2. for any i; j 2 f1; : : : ; cg such that i 6= j, and any G

k

2 C

i

and G

l

2 C

j

, it holds that the

graphs G

k

and G

l

are not isomorphic.

Each set C

j

(j = 1; : : : ; c) will be called a cluster. We will use the symbols �; 6� to denote isomorphism

and non-isomorphism between graphs, respectively.
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Threshold. By Thresh

t;n

we denote the t-out-of-n threshold formula; that is, Thresh

t;n

(x

1

; :::; x

n

)

holds if and only if at least t out of the n Boolean variables (i.e., x

i

's) are true. We use throughout

the paper the fact that it is possible to construct, in time polynomial in n and t, a monotone formula

that computes Thresh

t;n

(x

1

; :::; x

n

). (A proof of existence of such a formula is given in [Va]; the

construction of such a formula can be derived by using the result in [AKS]; other constructions are

given in [Fr].)

Tools. We use the following results from [DeDiPeYu].

Theorem 1 [DeDiPeYu] The language of all true monotone formulae over graph isomorphism state-

ments has a perfect zero-knowledge proof system.

Theorem 2 [DeDiPeYu] The language of all true monotone formulae over graph non isomorphism

statements has a perfect zero-knowledge proof system.

3 A perfect zero-knowledge proof system for GCP

In this section we present a perfect zero-knowledge proof system for the language GCP. This result

can be extended to other random self-reducible languages, as quadratic residuosity and discrete log,

using known techniques. We start with an informal description of the protocol and then we give a

formal description and a proof of correctness.

An informal description. The protocol can be divided into four parts. The �rst two parts

are used to show that the m input graphs can be divided into exactly c (isomorphism) clusters.

Speci�cally, the �rst part will prove that the input graphs can be divided into at least c clusters,

and the second part will prove that the input graphs can be divided into at most c clusters. The

remaining two parts are used to show that if there are c clusters then the sizes of the clusters are

indeed equal to (m

1

; ::; m

c

). Speci�cally, the third part will be used to prove (tight) lower bounds

on the number of clusters of speci�c minimum size, and the last part will be used to prove (tight)

lower bounds on the number of clusters of speci�c maximum size.

The following four subsections formally describe these four parts, and prove some properties of

each subprotocol in each part. Finally, we present a proof that these four subprotocols are enough

to achieve our goal.

3.1 The input graphs fall to at least c clusters

We describe a subprotocol showing that there are at least c clusters in them-tuple input (G

1

; : : : ; G

m

).

This is expressed by requiring that at least c� 1 graphs are non-isomorphic to all their predecessors.

Formally, for i = 2; : : : ; m, de�ne the statement U

i

to hold if and only if for all j < i the graphs G

i

and

G

j

are not in the same cluster. Thus, U

i

can be expressed as a Boolean formula over non-isomorphism

statements; that is, we write each statement U

i

as formula f

i

= (^

j<i

(G

i

6� G

j

)). Then, in order to

prove that there are at least c clusters in (G

1

; : : : ; G

m

), the prover proves in zero-knowledge that the

formula

T

1

= Thresh

c�1;m�1

(f

2

; : : : ; f

m

)

is true, which convinces the veri�er that at least c�1 of the statementsU

2

; : : : ; U

m

are true. Adding-in

G

1

, we have proven that there exists at least c di�erent isomorphism clusters.
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Implementation. Clearly, each statement f

i

is an and over non-isomorphic statements, and thus

a monotone formula over non-isomorphic statements. Then formula T

1

is a threshold gate over

an and of non-isomorphic statements, which is again a (polynomial-size) monotone formula over

non-isomorphic statements, and can be proved in perfect zero-knowledge using Theorem 2.

Proof of correctness. We have the following proposition.

Proposition 1 The formula T

1

is true if and only if the m-tuple input contains at least c clusters.

Proof: Consider a generic cluster C and all formulae f

i

associated to each graph G

i

in C. Assume

G

1

2 C; then all such formulae f

i

are false. Instead, if G

1

62 C, then there exists exactly one formula

f

j

which is true, where j is the smallest index such that G

j

2 C. Therefore, the number of true

formulae f

i

is increased by 1 for all clusters but the one containing G

1

, from which it follows that

formula T

1

is true if and only if there are at least c clusters in the m-tuple input.

3.2 The input graphs fall to at most c clusters

We describe a subprotocol showing that there are at most c clusters in them-tuple input (G

1

; : : : ; G

m

).

This is expressed by requiring that at most (n � 1)� (c� 1) graphs are isomorphic to some prede-

cessor. For i = 2; : : : ; m, de�ne statement U

i

and formula f

i

as before. Then, in order to prove that

there are at least c clusters in (G

1

; : : : ; G

m

), the prover proves in zero-knowledge that the formula

T

2

= Thresh

m�c;m�1

(f

2

; : : : ; f

m

)

is true, where formula f

i

= :f

i

= _

j<i

(G

i

� G

j

). This convinces the veri�er that at most c� 1 of

the statements U

2

; : : : ; U

m

are true.

Implementation. Formula T

2

is a threshold gate over an or of isomorphism statements, which

is a (polynomial-size) monotone formula over isomorphism statements, and can be proved in perfect

zero-knowledge using Theorem 1.

Proposition 2 The formula T

2

is true if and only if the m-tuple input contains at most c clusters.

Proof: Consider a generic non-empty cluster C containing z graphs, and all formulae f

i

associated

to each graph G

i

in C. We see that the number of true such formulae f

i

is exactly z � 1, the only

false one being f

j

, where j is the smallest index such that G

j

2 C. Therefore, the number of true

formulae f

i

is equal to n minus the number of clusters, and formula T

2

is true if and only if n minus

the number of clusters is � n� c, that is, if and only if the number of clusters is at most c.

3.3 Lower bounds on the number of clusters of speci�c minimum size

We describe a subprotocol for proving lower bounds on the number of clusters having a given min-

imum size. Suppose that the input integer sequence, m

1

; :::; m

c

, is such that for every i = 1; :::; d

exactly n

i

integers equal s

i

> s

i�1

(i.e., n

i

= jfj : m

j

= s

i

gj), and c =

P

d

i=1

n

i

(with s

0

= 0). The

prover proves in zero-knowledge the following statements:

U

3:1

= `at least n

d

clusters have size at least s

d

';

U

3:2

= `at least n

d

+ n

d�1

clusters have size at least s

d�1

';

: : :
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U

3:d

= `all (

P

j

n

j

) clusters have size at least s

1

';

where a typical statement, at least x clusters have size at least y, is proven by saying that there all

but at most x of the graphs are either isomorphic to some predecessor or isomorphic to at least y

graphs (which wlog are not predecessors). (The excluded graphs are the ones �rst in each smaller

cluster.) Thus, to prove a statement of the form at least x clusters have size at least y, the prover

proves in zero-knowledge that the formula

T

3

= Thresh

m�c+x;m

(g

1

; :::; g

m

);

where g

i

= (_

j<i

(G

i

� G

j

)) _ (Thresh

y;m

((G

i

� G

1

); :::; (G

i

� G

m

))), is true. This subprotocol

assumes that the input graphs are divided into exactly c clusters, which in turn can be proved as

explained in the previous two subsections.

Implementation. Clearly, each formula g

i

is a monotone formula over isomorphism statements.

Then formula T

3

is a threshold gate over formulae g

i

and is again a (polynomial-size) monotone

formula over isomorphism statements, and can be proved in perfect zero-knowledge using Theorem 1.

Proposition 3 The formula T

3

is true if and only if the m-tuple input contains at least x clusters

having size at least y.

Proof: Consider a generic non-empty cluster of the input graphs, and let z be its size; then there

are z formulae g

i

, each associated to a distinct graph in this cluster. We see that if z � y these such

z formulae are true (by virtue of the threshold part of the g

i

). On the other hand, if z < y exactly

z � 1 out of these formulae are true (i.e., all but the �rst such g

i

hold by the or-part). Therefore,

the total number of true formulae g

i

can be written as

X

j:s

j

�y

n

j

� s

j

+

X

j:s

j

<y

n

j

� (s

j

� 1) =

X

j

n

j

� s

j

�

X

j:s

j

<y

n

j

= m�

0

@

c�

X

j:s

j

�y

n

j

1

A

Recalling that T

3

= Thresh

m�(c�x);m

(g

1

; :::; g

m

), the proposition follows.

3.4 Lower bounds on the number of clusters of speci�c maximum size

We describe a subprotocol for proving lower bounds on the number of clusters having a given maxi-

mum size. Again, this subprotocol assumes that the input graphs are divided into exactly c clusters

(and refers to n

i

's and s

i

's as above). Formally, we de�ne the following statements:

U

4:1

= `at least n

1

clusters have size at most s

1

';

U

4:2

= `at least n

1

+ n

2

clusters have size at most s

2

';

: : :

U

4:d

= `all (

P

j

n

j

) clusters have size at most s

d

';

where a typical statement, at least x clusters have size at most y, is proven by saying that there are

at least x graphs which are both non-isomorphic to all predecessors and non-isomorphic to at least

m � y graphs (which wlog are not predecessors). (The included graphs are the ones �rst in each

small-enough cluster.) Speci�cally, to prove a statement of the form at least x clusters have size at

most y, the prover proves in zero-knowledge that the formula

T

4

= Thresh

x;m

(g

1

; :::; g

m

);

where here g

i

= (^

j<i

(G

i

6� G

j

))^ (Thresh

m�y;m

((G

i

6� G

1

); :::; (G

i

6� G

m

))), is true.
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Implementation. Clearly, each formula g

i

can be written as a monotone formula over non-

isomorphism statements. Then formula T

4

is a threshold gate over formulae g

i

and is a (polynomial-

size) monotone formula over non-isomorphism statements, and can be proved in perfect zero-knowledge

using Theorem 2.

Proposition 4 The formula T

4

is true if and only if the m-tuple input contains at least x clusters

having size at most y.

Proof: Similar to the proof of Proposition 3.

3.5 The resulting protocol and its analysis

Let us denote by (P,V) the protocol constituted of the sequential composition of the subprotocols

described in Sections 3.1,

Completeness and soundness of (P,V). In order to prove the completeness and soundness

properties of (P,V), it is enough to show that the input (G

1

; : : : ; G

m

;m

1

; : : : ; m

c

) belongs to language

GCP if and only if the statements proved in the four subprotocols of (P,V) are true. Recall that

the subprotocols in Section 3.1 and Section 3.2 convince the veri�er that there are exactly c clusters

among the input graphs G

1

; : : : ; G

m

. Now, we consider the subprotocol in Section 3.3 and Section 3.4.

Proposition 5 Suppose that the input integer sequence, m

1

; :::; m

c

, is such that for every i = 1; :::; d

exactly n

i

integers equal s

i

(i.e., n

i

= jfj : m

j

= s

i

gj), and c =

P

d

i=1

n

i

. Furthermore, suppose that

exactly c of the statements U

i

's hold. Then, statements U

3:1

; : : : ; U

3:d

and U

4:1

; : : : ; U

4:d

all hold if

and only if the input is in GCP.

Proof: One may easily verify that for input in GCP all of the statements U

3:1

; : : : ; U

3:d

and

U

4:1

; : : : ; U

4:d

hold. We thus concentrate on proving the converse.

Let N

t

denote the number of (isomorphism) clusters of size t. We start by observing that, for every

j = 1; : : : ; d, the statement U

3:j

can be written as

X

t�s

d�j+1

N

t

� n

d

+ � � �+ n

d�j+1

(1)

where the l.h.s represents the actual number of clusters having size at least s

d�j+1

and the r.h.s the

corresponding lower bound. Analogously, each statement U

4:j

can be written as

X

t�s

j

N

t

� n

1

+ � � �+ n

j

(2)

Our aim is to establish, for every j = 1; : : : ; d, the equality N

s

j

= n

j

. Once this is done, the

proposition follows.

Recall that by the proposition hypothesis

P

t�1

N

i

= c and so

P

t�1

N

t

=

P

d

i=1

n

i

= c. Proceeding

by induction on i, we show that

P

t�s

i

N

t

= n

1

+ � � �+ n

i

(and so N

s

i

= n

i

).

Base case (i = 0): Using Eq. (1) for j = d, we have

P

t�s

1

N

t

� n

d

+ � � � + n

1

= c, and so that

P

t<s

1

N

t

= 0 as required.
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Inductive step (from i to i+1): Suppose that

P

t�s

i

N

t

= n

1

+ � � �+n

i

, and consider

P

t�s

i+1

N

t

. Using

Eq. (1) with j = d� i, we have

X

t�s

i+1

N

t

� n

d

+ � � �+ n

i+1

= c�

X

t�s

i

N

t

and thus,

P

t�s

i+1

N

t

=

P

t�s

i

N

t

+N

s

i+1

. Using Eq. (2) with j = i+ 1, we have

X

t�s

i+1

N

t

� n

1

+ � � �+ n

i+1

=

X

t�s

i

N

t

+ n

i+1

Thus, we have N

s

i+1

= n

i+1

, and so

P

t�s

i+1

N

t

= n

1

+ � � �+ n

i

+ n

i+1

.

Perfect zero-knowledge of (P,V). First of all we notice that protocol (P,V) is a sequential com-

position of many perfect zero-knowledge proof systems, proving formulae T

1

; T

2

; T

3

; T

4

. By the above

characterization, for each input (G

1

; : : : ; G

m

;m

1

; : : : ; m

c

) 2 GCP, all formulae T

1

; T

2

; T

3

; T

4

are true,

and therefore the protocols executed to prove them are also perfect zero-knowledge over the language

GCP (and not only over the speci�c language proven). Then, the perfect zero-knowledge property of

protocol (P,V) follows from the fact that a sequential composition of perfect zero-knowledge protocols

results in a perfect zero-knowledge protocol, as proved in [GoOr].

We thus obtain our main result

Theorem 3 The protocol (P,V) is a perfect zero-knowledge interactive proof system for GCP.
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