
An extended abstract of this paper appears in Advances in Cryptology { Eurocrypt 98 Proceedings,

Lecture Notes in Computer Science Vol. 1403, K. Nyberg ed., Springer-Verlag, 1998. This is the

full version.

Fast Batch Veri�cation for Modular Exponentiation

and Digital Signatures

Mihir Bellare

�

Juan A. Garay

y

Tal Rabin

z

June 1998

Abstract

Many tasks in cryptography (e.g., digital signature veri�cation) call for veri�cation of a basic

operation like modular exponentiation in some group: given (g; x; y) check that g

x

= y. This

is typically done by re-computing g

x

and checking we get y. We would like to do it di�erently,

and faster.

The approach we use is batching. Focusing �rst on the basic modular exponentiation oper-

ation, we provide some probabilistic batch veri�ers, or tests, that verify a sequence of modular

exponentiations signi�cantly faster than the naive re-computation method. This yields speedups

for several veri�cation tasks that involve modular exponentiations.

Focusing speci�cally on digital signatures, we then suggest a weaker notion of (batch) veri-

�cation which we call \screening." It seems useful for many usages of signatures, and has the

advantage that it can be done very fast; in particular, we show how to screen a sequence of RSA

signatures at the cost of one RSA veri�cation plus hashing.

�

Department of Computer Science & Engineering, Mail Code 0114, University of California at San Diego,

9500 Gilman Drive, La Jolla, CA 92093, USA. E-mail: mihir@cs.ucsd.edu. URL: http://www-cse.ucsd.edu/

users/mihir. Supported in part by NSF CAREER Award CCR-9624439 and a 1996 Packard Foundation Fellowship

in Science and Engineering.

y

IBM T.J. Watson Research Center, PO Box 704, Yorktown Heights, New York 10598, USA. E-mail: garay@

watson.ibm.com.

z

IBM T.J. Watson Research Center, PO Box 704, Yorktown Heights, New York 10598, USA. E-mail:

talr@watson.ibm.com.

Contents

1 Introduction 3

1.1 Batch veri�cation . 3

1.2 Batch veri�ers for modular exponentiation . 4

1.3 Screening: Fast but weak veri�cation for signatures 5

1.4 Batch program instance checking and other results 6

2 De�nitions 6

2.1 Batch veri�cation . 6

2.2 Signature screening: weak veri�cation . 7

2.3 Costs of Multiplication and Exponentiation . 7

3 Batch Veri�cation for Modular Exponentiation 8

3.1 Random subset test . 8

3.2 Computing a product of powers . 9

3.3 The Small Exponents Test . 9

3.4 The Bucket Test . 11

3.5 Prime versus non-prime order . 12

3.6 Performance . 12

4 Fast screening for RSA 13

5 Open problems 17

References 17

A Some Applications 19

A.1 Batch veri�cation for DSS signatures . 20

A.2 Discrete-log n-party signature protocols . 21

B Batch Veri�cation of Degree of Polynomials 22

C Batch program instance checking 24

C.1 Program checking: Background and issues . 24

C.2 Checking fast programs with slow ones . 25

C.3 De�nition . 26

2

1 Introduction

It is a consequence of the \adversarial" nature of cryptography that many of its computational

tasks are for the purpose of \verifying" some property or computation. For example, signatures

need to be veri�ed; the opening of a bit-commitment needs to be veri�ed; in protocols, various

claims about generated values and their relations need to be veri�ed.

These tasks are computationally important; for example, signature veri�cation is likely to be

done much more often than signature generation, as certi�cates and signed documents are circu-

lated.

At the heart of many of these veri�cation tasks is the problem of verifying a basic computational

operation like modular exponentiation in some group: given (g; x; y) check that g

x

= y. The naive

way to verify such a claim is to redo the operation and check we get back the same value: namely,

re-compute g

x

and check it equals y. We would like to �nd means of veri�cation, for such basic

operations, that are faster than re-computation, and thereby speed up any veri�cation process using

such operations.

In this paper we investigate the use of batching for the purpose of speeding up such veri�cation.

This is a natural idea since we often have to verify many instances simultaneously. For example,

a certi�cate chain can contain many signatures to check; a bank can be signing coins and we have

many coins to verify; ZK proofs use many bit commitments, whose decommitments need to be

veri�ed.

We consider batching for veri�cation in several contexts. The �rst is very general, namely batch

veri�cation for modular exponentiation itself. We provide several batch veri�ers for modular expo-

nentiation. These are probabilistic tests that verify the correctness of a batch of exponentiations

much faster than doing each veri�cation individually. We specify several uses for these tests, but

there are probably more. Next we suggest a new notion called \signature screening," which pro-

vides \weak but fast" veri�cation for signatures, and show how to implement it very e�ciently for

RSA signatures.

We also suggest a notion of batch program instance checking, and provide fast batch veri�cation

methods for degrees of polynomials which have applications in veri�able secret sharing and other

robust distributed tasks.

Following a brief discussion of previous work, we will look at all the above in more detail.

Previous work. The modular exponentiation operation itself can be made more e�cient via pre-

processing [14, 23] or addition chain heuristics [13, 32, 27]. What we are saying is that performing

modular exponentiation is only one way to perform veri�cation, and if the interest is veri�cation,

one can do better than any of these ways. In particular, our batch veri�ers will perform better than

the naive re-computation based veri�er, even when the latter uses the best known exponentiation

methods. In fact, better exponentiation methods only make our batch veri�ers even faster, because

we use these methods as subroutines.

The idea of batching in cryptography is of course not new: some previous instances are [18, 25,

8, 24, 34]. However, there seems to have been no previous systematic look at the general problem of

batch veri�cation for modular exponentiation, and our �rst set of results indicates that by putting

oneself above speci�c applications one can actually �nd general speed-up tools that apply to them;

in particular, we improve some of the mentioned works.

1.1 Batch veri�cation

Let R be a boolean relation. (Meaning R(inst) 2 f0; 1g for any instance inst of R. For example,

R(x; y) = 1 i� g

x

= y in some group of which g is a generator, or R might be a signature veri�cation

3

Test No. of multiplications

Naive ExpCost

n

G

(k

1

)

Random Subset (RS) nl=2 + ExpCost

l

G

(k

1

)

Small Exponents (SE) l + nl=2 + ExpCost

G

(k

1

)

Bucket min

m�2

l

l

m�1

m

� (n+m+ 2

m�1

m+ ExpCost

G

(k

1

))

Figure 1: Performance of algorithms for batch veri�cation of modular exponentiation. We indicate the

number of multiplications each method uses to get error 2

�l

. See the text for explanations of the parameters.

algorithm with respect to some �xed public key.) The veri�cation problem for R is: given an

instance inst, check whether R(inst) = 1. In the batch veri�cation problem we are given a sequence

inst

1

; : : : ; inst

n

of instances and asked to verify that for all i = 1; : : : ; n we have R(inst

i

) = 1. The

naive way is to compute R(inst

i

), and check it is 1, for all i = 1; : : : ; n. We want to do it faster.

To do this, we allow probabilism and an error probability. A batch veri�er (also called a test) is a

probabilistic algorithm V which takes inst

1

; : : : ; inst

n

and produces a bit as output. We ask that

when R(inst

i

) = 1 for all i = 1; : : : ; n, this output be 1. On the other hand, if there is even a

single i for which R(inst

i

) = 0 then we want that V (inst

1

; : : : ; inst

n

) = 1 with very low probability.

Speci�cally, we let l be a security parameter and ask that this probability be at most 2

�l

.

We stress that if even a single one of the n instances is \wrong" the veri�er should detect

it, except with probability 2

�l

. Yet we want this veri�er to run faster than the time to do n

computations of R.

1.2 Batch veri�ers for modular exponentiation

Let g be a generator of a (cyclic) group G, and let q denote the order of G. The modular exponen-

tiation function is x 7! g

x

, where x 2 Z

q

. De�ne the exponentiation relation EXP

G;g

(x; y) = 1 i�

g

x

= y, for x 2 Z

q

and y 2 G.

We design batch veri�ers for this relation. As per the above, such a veri�er is given a sequence

(x

1

; y

1

); : : : ; (x

n

; y

n

) and wants to verify that EXP

G;g

(x

i

; y

i

) = 1 for all i = 1; : : : ; n. The naive test

is to compute g

x

i

and test it equals y

i

, for all i = 1; : : : ; n, having cost n exponentiations. We want

to do better.

Three tests, the Random Subset Test, the Small Exponents Test and the Bucket

Test are presented, with analysis of correctness, in Section 3. Their performance is summarized

in Table 1, with the naive test listed for comparison. We explain the notation used in the table:

k

1

= lg(jGj); ExpCost

G

(k

1

) is the number of multiplications required to compute an exponentiation

a

b

for a 2 G and b an integer of k

1

bits; and ExpCost

s

G

(k

1

) is the cost of computing s di�erent such

exponentiations. (Under the normal square-and-multiply method, ExpCost

G

(k

1

) � 1:5k

1

multipli-

cations in the group, but it could be less [14, 23, 13]. Obviously ExpCost

s

G

(k

1

) � s �ExpCost

G

(k

1

),

but there are ways to make it strictly less [14, 23, 13], which is why it is a separate parameter.

See Section 2.3 for more information.) We treat costs of basic operations like exponentiation as

a parameter to stress that our tests can make use of any method for the task. In particular, this

explains why standard methods of speeding up modular exponentiation such as those mentioned

above are not \competitors" of our schemes; rather our batch veri�ers will always do better by

using these methods as subroutines.

Table 3 in Section 3.6 looks at some example parameter values and computes the speed-ups. We

see where are the cross over points in performance: for small values of n the Small Exponents

4

Test is better, while for larger values, Bucket Test wins. Notice that even for quite small values

of n we start getting appreciable speed-ups over the naive method, meaning the bene�ts of batching

kick in even when the number of instances to batch is quite small.

Asymptotically more e�cient tests can be constructed by recursively applying the tests we have

presented, but the gains kick in at values of n that seem too high to be useful, so we don't discuss

this.

Some applications. Applications are relatively obvious, namely to any discrete logarithm based

protocol in which discrete exponentiation needs to be veri�ed. In some cases, we need to tweak the

techniques.

DSS signatures [20] are a particularly attractive target for batch veri�cation because signing is

fast and veri�cation is slow. Naccache et al. [25] give some batch veri�cation algorithms for a slight

variant of DSS. We can adapt our tests to apply to this variant, and get faster batch veri�cation

algorithms. See Appendix A.

In many ZK or witness-hiding proofs, discrete exponentiation may be used to implement bit

commitment, and there are lots of such commitments. Our batch veri�ers will speed-up veri�cation

of the de-commitments. We can also improve the discrete log based n-party signature protocols of

Brickell et al. [15]. See Appendix A.

Exponentiation with common exponent. The version of the exponentiation problem that

underlies RSA is di�erent from the above in that the exponent, not the base, is �xed. The results

discussed above don't apply to this version. Batch veri�cation of RSA signatures can be done via

screening as we now discuss.

1.3 Screening: Fast but weak veri�cation for signatures

For the particular case of signature veri�cation, we suggest a di�erent notion of batch veri�cation,

called screening, which has weaker guarantees but can be achieved at much lower cost. In certain

usages of signatures, it is adequate and useful.

Fix some signature scheme and a public key pk for it. Let Verify

pk

(�; �) be the veri�cation

algorithm of this scheme, meaning a signature x of message M is valid if Verify

pk

(M;x) = 1. A

batch instance for signature veri�cation consists of a sequence (M

1

; x

1

); : : : ; (M

n

; x

n

) where x

i

is a

purported signature of M

i

relative to pk. Batch veri�cation in the sense we have been discussing

so far would mean batch veri�cation for the relation Verify

pk

(�; �): the test would reject with high

probability if there was any i 2 f1; : : : ; ng for which Verify

pk

(M

i

; x

i

) = 0. In screening, what

we ask is that if the batch instance (M

1

; x

1

); : : : ; (M

n

; x

n

) contains a forgery |meaning there is

some i such that M

i

was never signed by the signer| then our batch veri�er will reject, with high

probability. However, if the signer has in the past signed all the messages M

1

; : : : ;M

n

, then our

test might accept even if for some i the string x

i

is in fact not a valid signature of M

i

.

In other words, screening is the task of determining whether the signer has at some point

authenticated the text M

i

, rather than the task of checking that the particular string x

i

provided

is a valid signature of M

i

. The rationale is that in many applications, all that counts is whether or

not M

i

is authentic. Take for example a case where the M

i

are electronic coins. We may only really

care whether the coin is valid, not whether we actually hold a correct signature demonstrating the

validity of this particular coin.

In Section 4 we show how RSA signatures generated under the standard \hash-then-decrypt"

paradigm can be very e�ciently screened: the cost of batch veri�cation is that of one exponentiation

with the public RSA exponent plus some hashing.

5

1.4 Batch program instance checking and other results

The notion of batch veri�cation has on the face of it nothing to do with program checking since

there is no program in the picture that one is trying to check. Nonetheless, we apply this notion

to do program checking in a novel way. Our approach, called batch program instance checking,

permits fast checking, and also permits instance checking, not just program checking, in the sense

that (in contrast to standard program checking [11]), a correct result is not rejected just because the

program might be wrong on some other instance. We can do batch program instance checking for

any function f whose corresponding graph (the relation R

f

(x; y) = 1 i� f(x) = y) has e�cient batch

veri�ers, so that the main technical problem is the construction of batch veri�ers. See Section C for

more information including explanations of how this di�ers from other notions like batch program

checking [28].

In Appendix B we provide batch veri�cation algorithms for degrees of polynomials, which has

applications in veri�able secret sharing.

The idea of batch veri�cation introduced here was applied in [3] in the domain of fault-tolerant

distributed computing. They design a batch veri�able secret sharing protocol and use it to con-

struct \distributed pseudo-random bit generators," which are e�cient ways of generating shared

distributed coins.

An extended abstract of this paper appeared as [4]. An invited talk on batch veri�cation

including the material presented in this paper was given at LATIN '98 [5].

2 De�nitions

Here we provide formal de�nitions of the main new notions underlying this work, extending the

discussion in Section 1.

2.1 Batch veri�cation

Let R(�) be a boolean relation, meaning R(�) 2 f0; 1g. An instance for the relation is an input inst

on which the relation is evaluated. A batch instance for relation R is a sequence inst

1

; : : : ; inst

n

of

instances for R. (We call n the size of the instance, and also call this an n-instance for R.) We say

that the batch instance is correct if R(inst

i

) = 1 for all i = 1; : : : ; n, and incorrect if there is some

i 2 f1; : : : ; ng for which R(inst

i

) = 0.

De�nition 2.1 A batch veri�er for relation R is a probabilistic algorithm V that takes as input

(possibly a description of R), a batch instanceX = (inst

1

; : : : ; inst

n

) for R, and a security parameter

l provided in unary. It satis�es:

(1) If X is correct then V outputs 1.

(2) If X is incorrect then the probability that V outputs 1 is at most 2

�l

.

The probability is over the coin tosses of V only.

Obvious extensions can be made, such as allowing a slight error in the �rst case. We stress that if

there is even a single i for which R(inst

i

) 6= 1, the veri�er must reject, except with probability 2

�l

.

The naive batch veri�er , or naive test , consists of computing R(inst

i

) for each i = 1; : : : ; n, and

checking that each of these n values is 1.

In practice, setting l to be about 60, meaning an error of 2

�60

, should su�ce.

Variants. Several variants are easily derived, but since we won't use them in this paper we only

discuss them briey. One is an \average case" version of the notion in which the instances are

6

drawn from a distribution. Another is computational batch veri�cation in which it is possible, in

principle, to fool the batch veri�er, but computationally infeasible to �nd instances that do so.

These notions might be useful in cryptographic settings.

2.2 Signature screening: weak veri�cation

Signatures. A digital signature scheme, (Gen;Sign ;Verify), consists of a key generation algo-

rithm, a signing algorithm, and a veri�cation algorithm. The �rst is probabilistic; the second may be;

the third is not. A matching pair of public and secret keys can be generated via (pk; sk)

R

 Gen(1

k

)

where k is the security parameter. A message is signed via x

R

 Sign

sk

(M). A candidate message-

signature pair (M;x) is veri�ed by making sure Verify

pk

(M;x) = 1.

Screening. The notion was discussed in Section 1.3. We now provide the formalization. Fix a

signature scheme (Gen ;Sign;Verify). Recall that a batch instance for signature veri�cation consists

of a sequence (M

1

; x

1

); : : : ; (M

n

; x

n

) where x

i

is a purported signature of M

i

relative to some given

public key pk. Let ScreenTest be a (possibly probabilistic) algorithm, where ScreenTest

pk

((M

1

; x

1

);

: : : ; (M

n

; x

n

)) outputs a bit. We want to say what it means for this algorithm to be a good screening

algorithm for the signature scheme.

The �rst requierement is the natural \validity," meaning correct signatures are accepted. That

is, if Verify

pk

(M

i

; x

i

) = 1 for all i = 1; : : : ; n then ScreenTest

pk

((M

1

; x

1

); : : : ; (M

n

; x

n

)) outputs 1.

The second requirement is the security. An attacker A is given the public key pk. It tries to

produce a batch instance, and is said to be successful if the batch instance contains an unauthenti-

cated message but still passes the screening test. To make the notion strong, the attacker is allowed

a chosen-message attack.

In more detail, the game is like this. A has oracle access to Sign

sk

(�). After making some

number of signing queries it outputs a batch instance (M

1

; x

1

); : : : ; (M

n

; x

n

). We say that M

i

is a

not legally signed if it was not previously a query to the Sign

sk

(�) oracle. We say that A is successful

if the batch instance (M

1

; x

1

); : : : ; (M

n

; x

n

) contains a message M

i

that was not legally signed, but

ScreenTest

pk

((M

1

; x

1

); : : : ; (M

n

; x

n

)) = 1. We let Succ(A) denote the success probability of A.

The probability is over the choice of keys, the coins of the signing algorithm, the coins of A, and

the coins of the screening algorithm. Intuitively, the screening algorithm is good if Succ(A) is small

for any A whose computation time is not extraordinarily high. In the polynomial-time security

framework, we would say that the screen test is secure if Succ(A) is a negligible function of the

security parameter k for every probabilistic, polynomial time adversary A. In the theorems (cf.

Theorem 4.1) we will be more precise, quantifying the success probability as a function of the

running time and allowed number of oracle queries of the adversary.

Whenever we talk about the running time of an algorithm, it is the sum of the actual running

time (on some �xed RAM model of computation) and the size of the code.

2.3 Costs of Multiplication and Exponentiation

Let G be a (multiplicative) group. Many of our algorithms are in cryptographic groups like Z

�

N

or

subgroups thereof (N could be composite or prime). We measure cost in terms of the number of

group operations, here multiplications, and discuss these costs below.

Given a 2 G and an integer b, the standard square-and-multiply method computes a

b

2 G

at a cost of 1:5jbj multiplications on the average. Using the windowing method based on addi-

tion chains [13, 32], the cost can be reduced to about 1:2jbj; pre-computation methods have been

proposed to reduce the number of multiplications further at the expense of storage for the pre-

computed values [14, 23] (a range of values can be obtained here; we give some numerical examples

7

in Section 3.6). Accordingly it is best to treat the cost of exponentiation as a parameter. We let

ExpCost

G

(k

1

) denote the time to compute a

b

in group G when k

1

= jbj, and express the costs of

our algorithms in terms of this.

Suppose we need to compute a

b

1

; : : : ; a

b

n

, exponentiations in a common base a but with changing

exponents. Say each exponent is t bits long. We can certainly do this with n � ExpCost

G

(t)

multiplications. However, it is possible to do better, via the techniques of [14, 23], because in this

case the pre-computation can be done on-line and still yield an overall savings. Accordingly, we

treat the cost of this operation as a parameter too, denoting it ExpCost

n

G

(t).

Note squaring can be performed faster than general multiplication.

3 Batch Veri�cation for Modular Exponentiation

Let G be a group, and let q = jGj be the order of G. Let g be a primitive element of G. Hence, for

each y 2 G there is a unique i 2 Z

q

such that y = g

i

. This i is the discrete logarithm of y to the

base g and is denoted log

g

(y). De�ne relation EXP

G;g

(x; y) to be true i� g

x

= y. (Equivalently,

x = log

g

(y).) We let k

1

denote the length (number of bits) of q, and k

2

the length of g. With G; g

�xed we want to construct fast batch veri�ers for the relation EXP

G;g

.

3.1 Random subset test

The �rst thing that one might think of is to compute x =

P

n

i=1

x

i

mod q and y =

Q

n

i=1

y

i

(the

multiplications are in G) and check that g

x

= y. However it is easy to see this doesn't work: for

example, the batch instance (x + �; g

x

); (x � �; g

x

) passes the test for any � 2 Z

q

, but is clearly

not a correct instance when � 6= 0. A natural �x that comes to mind is to do the above test on a

random subset of the instances: pick a random subset S of f1; : : : ; ng, compute x =

P

i2S

x

i

mod q

and y =

Q

i2S

y

i

and check that g

x

= y. (The idea is that randomizing \splits" any \bad pairs"

such as those of the example above.) We call this the Atomic Random Subset Test. It works

in the sense of the following lemma.

Lemma 3.1 Given a group G and a generator g of G. Suppose (x

1

; y

1

); : : : ; (x

n

; y

n

) is an incorrect

batch instance of the batch veri�cation problem for EXP

G;g

(�; �). Then the Atomic Random

Subset Test accepts (x

1

; y

1

); : : : ; (x

n

; y

n

) with probability at most 1=2.

Proof: Let p = jGj. Since g is a generator of G there exist unique values x

0

1

; : : : ; x

0

n

2 Z

p

such that

g

x

0

i

= y

i

for all i = 1; : : : ; n. Let �

i

= x

i

� x

0

i

mod p. By assumption there exists an i such that

�

i

6= 0. For notational simplicity we may assume (wlog) that this is true for i = 1. (Note: This

does not mean we are assuming �

j

= 0 for j > 1. There may be many j > 1 for which �

j

6= 0.)

Now, suppose the test accepts on a particular subset S. Then it must be that

P

i2S

x

i

=

P

i2S

x

0

i

,

both sums being modp. Thus

P

i2S

�

i

= 0. Now suppose T � f2; : : : ; ng. Then note that

P

i2T

�

i

= 0 =)

P

i2T[f1g

�

i

6= 0 :

So if the test succeeds on S = T then it must fail on S = T [f1g. This means the test must fail

on at least half the sets S.

But 1=2 is not a low enough error. (One can show the analysis is tight, so no better is expected.)

To lower the error to the desired 2

�l

we must repeat the atomic test independently l times, yielding

the Random Subset Test of Figure 2. However, the repetition is costly: the total cost is now

nl=2 + ExpCost

l

G

(k

1

) multiplications. This is not so good, and, in many practical instances may

8

even be worse than the naive test, for example if n � l. (Since l should be at least 60 this is not

unlikely.)

The conclusion is that repeating many times some atomic test which itself has constant error

can be costly even if the atomic test is e�cient. Thus, in what follows we will look for ways to

directly get low error. First, lets summarize the results we just discussed in a theorem.

Theorem 3.2 Given a group G, a generator g of G. The Random Subset Test is a batch veri�er

for the relation EXP

G;g

(�; �) with cost nl=2 + ExpCost

l

G

(k

1

) multiplications, where k

1

= dlg(jGj)e.

3.2 Computing a product of powers

Before presenting the next test, we present a general algorithm we will use as a subroutine. Suppose

a

1

; : : : ; a

n

2 G. Suppose b

1

; : : : ; b

n

are integers in the range 0; : : : ; 2

t

�1 < jGj. We write them all as

strings of length t, so that b

i

= b

i

[t] : : : b

i

[1]. The problem is to compute the product a =

Q

n

i=1

a

b

i

i

,

the operations being in G. The naive way to do this is to compute c

i

= a

b

i

i

for i = 1; : : : ; n and

then compute a =

Q

n

i=1

c

i

. This takes ExpCost

n

G

(t) + n � 1 multiplications, where k

2

is the size

of the representation of an element of G. (Using square-and-multiply exponentiation, for example,

this works out to 3ntk

2

=2+n�1 multiplications; with a faster exponentiation it may be a bit less.)

However, drawing on some ideas from [14], we can do better, as follows:

Algorithm FastMult((a

1

; b

1

); : : : ; (a

n

; b

n

))

a := 1;

for j = t downto 1 do

for i = 1 to n do if b

i

[j] = 1 then a := a � a

i

;

a := a

2

return a

This algorithm does t multiplications in the outer loop and nt=2 multiplications on the average

for the inner loop. Hence, for computing y we get a total of t+ nt=2 multiplications.

3.3 The Small Exponents Test

We can view the Atomic Random Subset Test in a di�erent way. Namely, pick bits s

1

; : : : ; s

n

2

f0; 1g at random, let x =

P

n

i=1

s

i

x

i

and y =

Q

n

i=1

y

s

i

i

, and check that g

x

= y. (This corresponds to

choosing the set S = f i : s

i

= 1 g.) We know this test has error 1=2. The idea to get lower error

is to choose s

1

; : : : ; s

n

from a larger domain, say t bit strings for some t > 1. There are now two

things to ask: whether this does help lower the error faster, and, if so, at what rate as a function

of t; and then as we increase t, how performance is impacted. Let's look at the latter �rst.

If we can keep t small, then we have only a single exponentiation to a large (ie. k

1

-bit) exponent,

as compared to l of them in the random subset test. That's where we expect the main performance

gain. But now we have added n new exponentiations. However, to a smaller exponent. Thus, the

question is how large t has to be to get the desired error of 2

�l

.

We use some group theory to show that the tradeo� between the length t of the s

i

's and the

error is about as good as we could hope as long as the order q of the group is prime, namely setting

t = l yields the desired error 2

�l

. (See Section 3.5 for discussion of what happens when q is not

prime.) The corresponding test is the Small Exponents (SE) Test and is depicted in Figure 2.

Theorem 3.3 Given a group G of prime order q and a generator g of G. Then Small Exponents

Test is a batch veri�er for the relation EXP

G;g

(�; �) with cost l + n(1 + l=2) + ExpCost

G

(k

1

)

multiplications, where k

1

= jqj.

9

Given: g a generator of G, and (x

1

; y

1

); : : : ; (x

n

; y

n

) with x

i

2 Z

p

and y

i

2 G.

Also a security parameter l.

Check: That 8i 2 f1; : : : ; ng : y

i

= g

x

i

.

Random Subset (RS) Test: Repeat the following atomic test, independently l times,

and accept i� all sub-tests accept:

Atomic Random Subset Test:

(1) For each i = 1; : : : ; n pick b

i

2 f0; 1g at random

(2) Let S = f i : b

i

= 1 g

(3) Compute x =

P

i2S

x

i

mod q, and y =

Q

i2S

y

i

(4) If g

x

= y then accept, else reject.

Small Exponents (SE) Test:

(1) Pick s

1

; : : : ; s

n

2 f0; 1g

l

at random

(2) Compute x =

P

n

i=1

x

i

s

i

mod q, and y =

Q

n

i=1

y

s

i

i

(3) If g

x

= y then accept, else reject.

Bucket Test: Takes an additional parameter m � 2. Set M = 2

m

. Repeat the following

atomic test, independently dl=(m� 1)e times, and accept i� all sub-tests accept:

Atomic Bucket Test:

(1) For each i = 1; : : : ; n pick t

i

2 f1; : : : ;Mg at random

(2) For each j = 1; : : : ;M let B

j

= f i : t

i

= j g

(3) For each j = 1; : : : ;M let c

j

=

P

i2B

j

x

i

mod q, and d

j

=

Q

i2B

j

y

i

(4) Run the Small Exponent Test on the instance (c

1

; d

1

); : : : ; (c

M

; d

M

) with secu-

rity parameter set to m.

Figure 2: Batch veri�cation algorithms for exponentiation with a common base.

Proof: First let us see how to get the claim about the performance. Instead of computing y

s

i

i

individually for each value of i and then multiplying these values, we compute the product y =

Q

n

i=1

y

s

i

i

directly and more e�ciently as y = FastMult((y

1

; s

1

); : : : ; (y

n

; s

n

)), the algorithm being

that of Section 2.3. Since s

1

; : : : ; s

n

were random l-bit strings the cost is l + nl=2 multiplications

on the average. Computing x takes n multiplications. Finally, there is a single exponentiation to

the power x, giving the total number of multiplications stated in the theorem.

That the test always accepts when the input is correct is clear. Now we prove the soundness. Let

the input (x

1

; y

1

); : : : ; (x

n

; y

n

) be incorrect. Let x

0

i

= log

g

(y

i

) for i = 1; : : : ; n. For i = 1; : : : ; n let

�

i

= x

i

� x

0

i

. Since the input is incorrect there is an i such that �

i

6= 0. For notational simplicity

we may assume (wlog) that this is true for i = 1. (Note: This does not mean we are assuming

�

j

= 0 for j > 1. There may be many j > 1 for which �

j

6= 0.) Now suppose the test accepts on a

particular choice of s

1

; : : : ; s

n

. Then

g

s

1

x

1

+���+s

n

x

n

= y

s

1

1

� � � y

s

n

n

: (1)

But the right hand side is also equal to g

s

1

x

0

1

+���+s

n

x

0

n

. Hence, we get g

s

1

x

1

+���+s

n

x

n

= g

s

1

x

0

1

+���+s

n

x

0

n

,

or g

s

1

�

1

+���+s

n

�

n

= 1. Since g is a primitive element of the group, it must be that s

1

�

1

+� � �+s

n

�

n

�

10

0 mod q. But �

1

6= 0. Since q is prime, �

1

has an inverse �

1

satisfying �

1

�

1

� 1 mod q. Thus, we

can write

s

1

� ��

1

� (s

2

�

2

+ � � �+ s

n

�

n

) mod q : (2)

This means that for any �xed s

2

; : : : ; s

n

, there is exactly one (and hence at most one) choice of

s

1

2 f0; 1g

l

(namely that of Equation 2) for which Equation 1 is true. So for �xed s

2

; : : : ; s

n

, if we

draw s

1

at random the probability that Equation 1 is true is at most 2

�l

. Hence the same is true

if we draw all of s

1

; : : : ; s

n

independently at random. So the probability that the test accepts is at

most 2

�l

.

3.4 The Bucket Test

We saw that the Small Exponents Test was quite e�cient, especially for an n that was not too

large. We now present another test that does even better for large n. Our Bucket Test, shown

in Figure 2, repeats m times an Atomic Bucket Test for some parameter m to be determined.

In its �rst stage, which is steps (1){(3) of the description, the atomic test forms M \buckets"

B

1

; : : : ; B

M

. For each i it picks at random one of the M buckets, and \puts" the pair (x

i

; y

i

) in

this bucket. (The value t

i

in the test description chooses the bucket for i.) The x

i

values of pairs

falling in a particular bucket are added while the corresponding y

i

values are multiplied; this yields

the values c

j

; d

j

for j = 1; : : : ;M speci�ed in the description. The �rst part of the analysis below

shows that if there had been some i for which g

x

i

6= y

i

then except with quite small probability

(2

�m

) there is a \bad bucket," namely one for which g

c

j

6= d

j

.

Thus we are reduced to another instance of the same batch veri�cation problem with a smaller

instance size M . Namely, given (c

1

; d

1

); : : : ; (c

M

; d

M

) we need to check that g

c

j

= d

j

for all

j = 1; : : : ;M . The desired error is 2

�m

.

We can use the Small Exponents Test to solve the smaller problem. (Alternatively, we

could recursively apply the bucket test, bottoming out the recursion with a use of the SE test after

a while. This seems to help, yet for n so large that it doesn't really matter in practice. Thus, we

shall continue our analysis under the assumption that the smaller sized problem is solved using the

Small Exponents Test.) This yields a test depending on a parameter m. Finally, we would

optimize to choose the best value of m. Note that until these choices are made we don't have a

concrete test but rather a framework which can yield many possible tests. To enable us to make the

best choices we now provide the analysis of the Atomic Bucket Test and Bucket Test with

a given value of the parameter m, and evaluate the performance as a function of the performance

of the inner test, which is SE. Later we can optimize. Since we use Small Exponents Test, we

require the order of the group to be prime.

Lemma 3.4 SupposeG is a group of prime order q, and g is a generator of G. Suppose (x

1

; y

1

); : : : ;

(x

n

; y

n

) is an incorrect batch instance of the batch veri�cation problem for EXP

g

(�; �). Then the

Atomic Bucket Test with parameter m accepts (x

1

; y

1

); : : : ; (x

n

; y

n

) with probability at most

2

�(m�1)

.

Proof: As in the proof of Theorem 3.3, let x

0

i

= log

g

(y

i

) and �

i

= x

i

�x

0

i

for i = 1; : : : ; n. We may

assume �

1

6= 0. Say that a bucket B

j

is good (1 � j � M) if g

c

j

= d

j

. Let r be the probability,

over the choice of t

1

; : : : ; t

n

, that all buckets B

1

; : : : ; B

M

are good. We claim that r � 1=M = 2

�m

.

To see this, �rst note that if a bucket B

j

is good then

P

i2B

j

�

i

� 0 mod q. Now assume t

2

; : : : ; t

n

have been chosen, so that (x

2

; y

2

); : : : ; (x

n

; y

n

) have been allotted their buckets. Let B

0

j

= f i > 1 :

t

i

= j g| these are the current buckets. Say B

0

j

is good if

P

i2B

0

j

�

i

� 0 mod q. If all of B

0

1

; : : : ; B

0

M

11

are good, then after x

1

is assigned, there is at least one bad bucket, because �

1

6= 0. This means

that there exists a j such that B

0

j

is bad. (This doesn't mean it's the only one, but if there are

more bad buckets the test will fail. Thus we can assume that there is a single j.) The probability

that B

1

; : : : ; B

M

are good after x

1

is thrown in is at most the probability that x

1

falls in bucket j,

which is 1=M . So r � 1=M .

By assumption the test in Step (4) has error at most 2

�m

so the total error of the atomic bucket

test is 2 � 2

�m

= 2

�(m�1)

.

Regarding performance, it takes n multiplications to generate the buckets and the smaller instance.

To evaluate the smaller instance using SE with parameters 2

m

;m; jqj; k

2

takes m+ 2

m

m=2 + 2

m

+

ExpCost

G

(jqj) multiplications by Theorem 3.3. This process is repeated dl=(m� 1)e times. When

we run the test, we choose the optimal value of m, meaning that which minimizes the cost. Thus

we have the following.

Theorem 3.5 Given a group G of prime order q, and a generator g of G. Then the Bucket Test

(with m set to the optimal value) is a batch veri�er for the relation EXP

G;g

(�; �) with cost

min

m�2

��

l

m� 1

�

� (n+m+ 2

m�1

(m+ 2) + ExpCost

G

(k

1

))

�

multiplications, where k

1

= jqj.

To minimize analytically we would set m � log(n+k

1

)� log log(n+k

1

), but in practice it is better

to work with the above formula and �nd the best value of m by search. This is what is done to

compute the numbers in Table 3.

3.5 Prime versus non-prime order

The analysis of the Small Exponents Test as given by Theorem 3.3 (and hence of the Bucket

Test as given by Theorem 3.5) is for groups of prime order. We are not working in Z

�

q

(which

has order q � 1, not a prime) but in a group G which has order q a prime. In practice this is not

really a restriction. As is standard in many schemes, we can work in an appropriate subgroup of

Z

�

p

where p is a prime such that q divides p� 1. In fact, prime order groups seem superior to plain

integers modulo a prime in many ways. The discrete logarithm problem seems harder there, and

they also have nice algebraic properties which many schemes exploit to their advantage.

When the order is not prime, the Small Exponents Test (and hence the Bucket Test)

do not work; it is easy to �nd counter-examples. For example, let p be a prime, and consider

G = Z

�

p

, which has non-prime order p� 1. Let g 2 G be a generator of G and consider the batch

instance (x;�y mod p� 1); (x; y) where y = g

x

mod p. The Small Exponents Test will accept

this instance whenever s

1

is even, which happens half the time, so its error will not be 2

�l

, but

only 1=2. (Obvious �xes like using only odd values of s

i

don't work.)

3.6 Performance

Table 3 looks at the concrete performance of the tests as we vary the size n of the batch instance.

We have set k

1

= 1024, and l = 60. (Meaning the exponentiation is for 1024 bit moduli, and

the error probability will be 2

�60

.) We count the number of multiplications. We compare with

the naive batch test, but this test is not naively implemented, in the sense that to be fair we use

fast exponentiation as per [14, 23] to get the numbers in the �rst column. (Our tests use the

same fast exponentiation methods as subroutines.) We assume a single exponentiation requires 200

12

n No. of multiplications used by di�erent tests

Naive Random Subset Small Exponents Bucket

5 1K 12K 0.4K 4.3K

10 2K 12.5K 0.6K 4.4K

50 10K 13.5K 1.8K 5K

100 20K 15K 3.2K 5.7K

200 40K 18K 6.2K 7.1K

500 100K 27K 15.2K 10.7K

1,000 200K 42K 30.2K 16.5K

5,000 1000K 162K 150K 56K

Figure 3: Example: For increasing values of n, we list the number of 1024-bit multiplications (in thousands,

rounded up), for each method to verify n exponentiations with error probability 2

�60

. The lowest number

for each n is underlined.

multiplications [23]. (Using other storage to time tradeo�s as per [23] doesn't change the results,

namely that our tests consistently perform better.)

Observe that which test is better depends on the value of n. As we expected, the RS test is

actually worse than naive for small n. Until n about 200, the Small Exponents Test test is the

best. From then on, the Bucket Test performs better. But at least one of our tests always beats

the naive one. Furthermore, observe that bene�ts come in even for small values of n: at n = 5 the

SE test is a factor of 2 better than naive. The factor of improvement increases with n: at n = 200

we can do about 6 times better than naive (using SE); at n = 5000, about 17 times better (using

Bucket).

4 Fast screening for RSA

Batch veri�cation for digital signature veri�cation is a particular case of the general batch ver-

i�cation problem in which the relation is the signature veri�cation relation. In particular, the

above results help to get faster batch veri�cation for discrete logarithm-based signatures like DSS

(cf. Section A). However, we can do even better if we focus speci�cally on signatures, via the notion

of screening presented in Section 2.2.

This is particularly interesting for RSA signatures. Here the veri�cation relation is modular

exponentiation, but with a common exponent, namely the relation R

N;e

(x; y) = 1 i� x

e

� y mod N ,

and thus the above batch veri�ers, which are for modular exponentiation in a common base, don't

address this problem. (The tests are easily adapted to the common exponent case, but since the

group is not of prime order, they don't work.) However, we present screening algorithms for the

standard \hash-the-sign" type RSA signatures that are much faster than any of the above batch

veri�ers.

Note that RSA signature veri�cation may be relatively fast anyway if one chooses a small public

exponent, like three. Yet, there are various reasons one might want to use a bigger veri�cation

exponent (for example, to play with the signing exponent and speed up the signing). Actually

our screening tests improve over the standard veri�cation method even for small exponents, but

13

Given: N; e and (M

1

; x

1

); : : : ; (M

n

; x

n

) with x

i

2 Z

�

N

, and oracle access to hash function H

FDH-RSA Signature Screening Test

(1) Pruning: (Remove duplicates) This step returns a sublist (M

1

; �x

1

); : : : ; (M

�n

; �x

�n

) of the

original input list (M

1

; x

1

); : : : ; (M

n

; x

n

) with two properties:

No Duplicates: M

1

; : : : ;M

�n

are distinct

Representative: For every i 2 f1; : : : ; ng there is a j 2 f1; : : : ; �ng such that M

i

=M

j

.

See the text for ways to implement this step.

(2) Main Test:

If (

Q

�n

i=1

�x

i

)

e

=

Q

�n

i=1

H(M

i

) mod N then return 1 else return 0

Figure 4: FDH-RSA signature screening test.

obviously the gains are larger for large exponents.

Hash-then-decrypt RSA schemes. The user has public key N; e and secret key N; d where

N is an RSA modulus, e 2 Z

�

'(N)

an encryption exponent, and d the corresponding decryption

exponent. De�ne functions f; f

�1

: Z

�

N

! Z

�

N

by f(x) = x

e

mod N and f

�1

(y) = y

d

mod N . The

standard paradigm for signing with RSA in practice is to let Sign

N;d

(M) = H(M)

d

mod N for some

hash function H. A pair (M;x) is veri�ed by checking that x

e

= H(M) mod N . This was named

the \hash-then-decrypt" paradigm and studied recently in [7] who point out that collision-freeness

of H is not a strong enough requierement to guarantee security of this scheme based on the one-

wayness of RSA. To get a better security guarantee without sacri�cing performance, [7] appeals to

the random oracle paradigm [6] and considers a couple of schemes in this setting. The simplest is

the Full Domain Hash (FDH-RSA) scheme, which assumes H is a random oracle mapping f0; 1g

�

to Z

�

N

, and they show that FDH-RSA scheme is secure assuming RSA is a one-way function.

Screening for FDH-RSA. Our screening algorithm, called FDH-RSA Signature Screening

Test, is presented in Figure 4. The main test is very simple: it simply multiplies all signatures,

then raises the product to the encrpytion exponent, and checks whether or not this equals the

product of the hashes of the messages. This main test needs to be preceded by a pruning stage,

whose only purpose is to make sure that the messages going into the main test are all distinct.

1

Note there is no security parameter l in our test: the failure probability of the test is related

only to the di�culty of inverting RSA as Theorem 4.1 indicates.

This test is very e�cient. In the main test there are n hashings (cheap), 2n multiplications,

and then a single exponentiation, so that the total number of multiplication is 2n+ExpCost

Z

�

N

(jej)

multiplications. This compares very favorably with our batch veri�ers.

The pruning problem is essentially that of eliminating duplicates in a given list: for any message

M 2 fM

1

; : : : ;M

n

g we want to keep exactly one pair of the form (M;x), discarding any other pairs

of the form (M;x

0

) (regardless of whether or not x = x

0

). This can be done in a variety of ways via

standard data structures and algorithms. Our suggestion is to work with the hashes so that one

does not need to process a message (which may be long) more than once. The simplest thing to

do is compute the hashes of all the messages, and then sort these values. If there are duplicates in

1

In the preliminary version of this paper [4] we had omitted the pruning step, implicitly assuming (both in the

test and in the analysis) that all messages M

1

; : : : ;M

n

going into the main test were distinct. A fully speci�ed test

should not make such an assumption, so we have now added the explicit pre-processing step that guarantees the

message distinctness. At Eurocrypt 98, David Naccache has given an example that shows that the main test can fail

when the messages are not distinct, indicating that the pruning step is necessary.

14

this hash list, then keep one representative pair and discard any other pairs of which the message is

the same. (The collision intractability of the hash function means that collisions in the hash values

correspond to equal messages.) Using such an approach it should be possible to do the pruning

with only a logarithmic overhead in time. Note once computed the hashes can be used in the main

test; they do not need to be re-computed.

Note that the test is valid, meaning correct signatures are accepted. That is, if x

i

= H(M

i

)

d

mod

N for all i = 1; : : : ; n then our test accepts with probability one. Our concern is the security, namely

what happens when some signatures are invalid.

Also note this test does not provide a batch veri�er in the sense of De�nition 2.1. For example,

let x be a valid signature of message M and � some value in Z

�

N

� f1g. Then the batch instance

(M;x�); (M;x=�) is incorrect, but passes the above test. This is not a problem from the screening

perspective, because the property we want here is only that one cannot create such incorrect batch

instances without knowing the signatures of the messages in the instance. Indeed, above, we had

to know x to create the incorrect instance, meaning M is valid, even if the given signature is not.

Thus, this example is not a counter-example to the screening property.

However it may not be a priori clear that our test really has the screening property: maybe

there is a clever attack. Below, we show there is not, unless inverting RSA is easy.

Correctness of the screen test. Since this is based on the hardness of RSA we �rst recall

the latter, following the concrete treatment of [7]. Fix some prime number e. The RSA generator,

RSA

(e)

, on input 1

k

, picks a pair of random distinct (k=2)-bit primes p; q such that neither p�1 nor

q� 1 are multiplies of e, lets N = pq, and computes d so that ed � 1 mod '(N). It returns N; e; d.

The success probability of an inverting algorithm I is the probability that it outputs y

d

mod N on

input N; e; y when N; e; d are obtained by running RSA

(e)

(1

k

) and y = x

e

mod N for an x chosen at

random from Z

�

N

. We say that I (t; �)-breaks RSA

(e)

, where t: N! N and �: N! [0; 1], if, in the

above experiment, I runs for at most t(k) steps and has success probability at least �(k). We say

that RSA

(e)

is (t; �)-secure collection of one-way functions if there is no inverter which (t; �)-breaks

RSA

(e)

.

The following theorem says that if RSA is one-way then an adversary can't produce a batch

instance for FDH-RSA Signature Screening Test that contains a message that was never

signed by the signer but still passes the test. Furthermore we indicate the \concrete security" of

the reduction. Refer to Section 2.2 for de�nitions. Note that in our case the treatment there is

\lifted" to the random oracle model and we need to consider an additional parameter, namely the

number of hash queries by the adversary.

Theorem 4.1 Suppose RSA

(e)

is a (t

0

; �

0

)-secure collection of one-way functions. Let A be an

adversary who after a chosen message attack on the FDH-RSA signature scheme outputs a batch

instance, for the FDH-RSA signature veri�cation relation, in which at least one message was never

legally signed. Suppose this batch instance is of size n; suppose that in the chosen message attack A

makes q

sig

FDH signature queries and q

hash

hash queries; and suppose the total running time of A is

at most t(k) = t

0

(k)�
(nk log(nk))�
(k

3

)�(n+q

sig

+q

hash

). Then the probability that FDH-RSA

Signature Screening Test accepts the batch instance is at most �(k) = �

0

(k) � (n+ q

sig

+ q

hash

).

Proof: Given A we construct an inverter I for the RSA

(e)

family and then relate the parameters.

I gets input N; e; y and is trying to �nd x = y

d

mod N . It creates the public key pk = (N; e) and

runs A(pk). The latter will make signature queries and hash queries, which I will answer itself, in

a manner we will indicate below. Finally A will output some batch instance, from which I will �nd

the desired x. The full description of I follows.

Let q = n + q

sig

+ q

hash

. I begins by picking at random l 2 f1; : : : ; qg. It initializes a counter

15

c 0. In the process of answering oracle queries, it builds a table, storing for each message M that

is queried a pair (x

M

; y

M

) of points in Z

�

N

, with one special entry: if this is the l-th hash query

then x

M

is unde�ned and y

M

= y. Speci�cally, a hash oracle query of M is answered by running

subroutine H(M) and a sign oracle query is answered by running subroutine Sign(M), where{

Subroutine H(M)

c c+ 1

If c = l

then y(M) y ; M

�

 M

else x(M)

R

 Z

�

N

; y(M) x(M)

e

mod N

return y

M

Subroutine Sign(M)

If M was not previously a hash query

then y(M) H(M)

If c = l

then abort

else return x(M)

After all queries have been made and replies obtained, A outputs a batch instance

(M

1

; x

1

); : : : ; (M

n

; x

n

) :

I runs the pruning step of the test on this instance to get the pruned sublist (M

1

; �x

1

); : : : ; (M

�n

; �x

�n

).

We know that the messages M

1

; : : : ;M

�n

in this list are all distinct but also representative in the

sense that any message of the original list is also a message in the new list. This means that if the

original list contained a message that was never legally signed, so does the new one, and in addition

this message appears only once in the new list. This will be used below.

For any i for which M

i

was not previously a hash query, I goes ahead and makes a hash query

H(M

i

), so that we may assume hash queries corresponding to M

1

; : : : ;M

n

have been made. By

assumption there is some m 2 f1; : : : ; �ng such that M

m

was not legally signed, meaning not a sign

query, and we �x one such m for the analysis. If M

�

6= M (meaning I did not correctly guess a

message that would be in the output batch instance but not legally signed) then I aborts. (We can

assume wlog that all hash queries are distinct, so this is not ambiguous. This assumption is made

also below.) Else, meaning if M

�

=M , it sets

x =

Q

�n

i=1

�x

i

h

Q

m�1

i=1

x(M

i

)

i

�

h

Q

�n

i=m+1

x(M

i

)

i

mod N : (3)

It then outputs x and halts.

Claim. x

e

= y mod N with probability at least Succ(A)=q.

Proof. If the batch instance output by A passes the FDH-RSA signature batch veri�cation test

then we know that

�

Q

�n

i=1

�x

i

�

e

=

Q

�n

i=1

H(M

i

) mod N :

We know that H(M

i

) = y(M

i

) for all i = 1; : : : ; �n. Plug this in and then solve for y(M

m

) to get

y(M

m

) =

Q

�n

i=1

�x

e

i

h

Q

m�1

i=1

y(M

i

)

i

�

h

Q

�n

i=m+1

y(M

i

)

i

mod N :

Let's assumeM

�

=M

m

, meaning the guess l made by I was correct. Then we know that x(M

i

)

e

=

y(M

i

) for all i 6= m. (Notice we use here the fact that M

m

is not equal to M

i

for all i 6= m, which

is guaranteed by the pruning.) From the above we have

y(M

m

) =

Q

�n

i=1

�x

e

i

h

Q

m�1

i=1

x(M

i

)

e

i

�

h

Q

�n

i=m+1

x(M

i

)

e

i

mod N :

Now look at Equation 3. With the above it implies y(M

m

) = x

e

mod N . But if M

�

= M

m

we

have y = y(M

m

) so this means x

e

= y mod N as desired.

16

It remains to check that the probability of this event is as claimed. With probability at least 1=q

the choice of l gives us M

�

=M

m

, in which case I does not abort (while answering sign queries or

later) and outputs x. Conditional on this event, the view of A while interacting with I is exactly the

one it has in the real experiment de�ning its success, in which it interacts with the real oracles, and

we know that its success probability in that experiment is Succ(A). So I succeeds with probability

at least Succ(A)=q as claimed. 2

To conclude the proof, we notice that the running time of I is at most t(k)+
(nk log(nk))+
(k

3

)�q

where t(k) is the running time of A. (The factor of nk log(nk) comes from the cost of the pruning,

which is akin to sorting the hashed values of the messages.) The choice of t makes this at most

t

0

(k). The assumption that RSA

(e)

is (t

0

; �

0

)-secure then implies that I is successful with probability

at most �

0

(k). So by the Claim we have Succ(A)=q � �

0

(k), meaning Succ(A) � q�

0

(k). This is

exactly what the theorem claims.

5 Open problems

There are a number of good issues for further investigation:

� Devise fast batch veri�cation algorithms for modular exponentiation in groups of non-prime

order, and also devise such algorithms for the case of modular exponentiation with a �xed

exponent rather than a �xed base. Perhaps begin by looking at important special cases like Z

�

p

where p is prime or Z

�

N

where N is an RSA modulus.

� Find fast screening algorithms for other signature schemes like DSS.

� Extend our screen test for FDH-RSA to other RSA based signature schemes like PSS [7] which

have tighter security, and try to get tighter reductions of the security of the screen test to that

of RSA as a one-way function.

Acknowledgments

We thank the (anonymous) referees of Eurocrypt 98 for their comments. We also thank David

Naccache for pointing out that the presentation of our RSA screen test in the preliminary version

of this work [4] made the assumption that the messages are distinct. Accordingly we have added

the pruning step in Figure 4.

References

[1] L. Adleman and K. Kompella. Fast Checkers for Cryptography. Advances in Cryptology {

Crypto 90 Proceedings, Lecture Notes in Computer Science Vol. 537, A. J. Menezes and S. Vanstone

ed., Springer-Verlag, 1990.

[2] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof veri�cation and hardness

of approximation problems. Proceedings of the 33rd Symposium on Foundations of Computer Science,

IEEE, 1992.

[3] M. Bellare, J. Garay and T. Rabin. Distributed pseudo-random bit generators| a new way to

speed-up shared coin tossing. Proceedings Fifteenth Annual Symposium on Principles of Distributed

Computing, ACM, 1996.

[4] M. Bellare, J. Garay and T. Rabin. Fast batch veri�cation for modular exponentiation and digital

signatures. Advances in Cryptology { Eurocrypt 98 Proceedings, Lecture Notes in Computer Science

Vol. 1403, K. Nyberg ed., Springer-Verlag, 1998.

17

[5] M. Bellare, J. Garay and T. Rabin. Batch veri�cation with applications to cryptography and

checking (Invited Paper), Latin American Theoretical INformatics 98 (LATIN '98) Proceedings, LNCS

Vol. 1830, C. Lucchesi and A. Moura eds., Springer-Verlag, 1998.

[6] M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing e�cient

protocols. First ACM Conference on Computer and Communications Security, ACM, 1994.

[7] M. Bellare and P. Rogaway. The exact security of digital signatures: How to sign with RSA

and Rabin. Advances in Cryptology { Eurocrypt 96 Proceedings, Lecture Notes in Computer Science

Vol. 1070, U. Maurer ed., Springer-Verlag, 1996.

[8] M. Beller and Y. Yacobi. Batch Di�e-Hellman key agreement systems and their application to

portable communications. Advances in Cryptology { Eurocrypt 92 Proceedings, Lecture Notes in Com-

puter Science Vol. 658, R. Rueppel ed., Springer-Verlag, 1992.

[9] E. Berlekamp and L. Welch. Error correction of algebraic block codes. US Patent 4,633,470.

[10] M. Blum, W. Evans, P. Gemmell, S. Kannan, and M. Naor. Checking the Correctness of

Memories. Proceedings of the 32nd Symposium on Foundations of Computer Science, IEEE, 1991.

[11] M. Blum and S. Kannan. Designing programs that check their work. Proceedings of the 21st Annual

Symposium on the Theory of Computing, ACM, 1989.

[12] M. Blum, M. Luby, and R. Rubinfeld. Self-Testing/Correcting with Applications to Numerical

Problems. Journal of Computer and System Sciences, 47:549{595, 1993.

[13] J. Bos and M. Coster. Addition chain heuristics. Advances in Cryptology { Crypto 89 Proceedings,

Lecture Notes in Computer Science Vol. 435, G. Brassard ed., Springer-Verlag, 1989.

[14] E. Brickell, D. Gordon, K. McCurley and D. Wilson. Fast exponentiation with precomputa-

tion. Advances in Cryptology { Eurocrypt 92 Proceedings, Lecture Notes in Computer Science Vol. 658,

R. Rueppel ed., Springer-Verlag, 1992.

[15] E. Brickell, P. Lee and Y. Yacobi. Secure audio teleconference. Advances in Cryptology {

Crypto 87 Proceedings, Lecture Notes in Computer Science Vol. 293, C. Pomerance ed., Springer-

Verlag, 1987.

[16] D. Chaum and J. van de Graaf. An Improved Protocol for Demonstrating Possession of a Discrete

Logarithm and Some Generalizations. Advances in Cryptology { Eurocrypt 87 Proceedings, Lecture

Notes in Computer Science Vol. 304, D. Chaum ed., Springer-Verlag, 1987.

[17] F. Ergun, S. Ravi Kumar, and R. Rubinfeld. Approximate Checking of Polynomials and Func-

tional Equations. Proceedings of the 37th Symposium on Foundations of Computer Science, IEEE,

1996.

[18] A. Fiat. Batch RSA. Journal of Cryptology, Vol. 10, No. 2, 1997, pp. 75{88.

[19] A. Fiat and A. Shamir. How to Prove Yourself: Practical Solutions to Identi�cation and Signature

Problems. Advances in Cryptology { Crypto 86 Proceedings, Lecture Notes in Computer Science

Vol. 263, A. Odlyzko ed., Springer-Verlag, 1986.

[20] National Institute for Standards and Technology. Digital Signature Standard (DSS). Federal

Register, Vol. 56, No. 169, August 30, 1991.

[21] P. Gemmell, R. Lipton, R. Rubinfeld, M. Sudan, and A. Wigderson. Self-testing/correcting

for polynomials and for approximate functions. Proceedings of the 23rd Annual Symposium on the

Theory of Computing, ACM, 1991.

[22] R. Heiman. Secure Audio Teleconference: A Practical Solution. Advances in Cryptology { Euro-

crypt 92 Proceedings, Lecture Notes in Computer Science Vol. 658, R. Rueppel ed., Springer-Verlag,

1992.

18

[23] C. Lim and P. Lee. More exible exponentiation with precomputation. Advances in Cryptology {

Crypto 94 Proceedings, Lecture Notes in Computer Science Vol. 839, Y. Desmedt ed., Springer-Verlag,

1994.

[24] D. M'Ra

�

�hi and D. Naccache. Batch exponentiation - A fast DLP based signature generation

strategy. 3rd ACM Conference on Computer and Communications Security, ACM, 1996.

[25] D. Naccache, D. M'Ra

�

�hi, S. Vaudenay and D. Raphaeli. Can D.S.A be improved? Complexity

trade-o�s with the digital signature standard. Advances in Cryptology { Eurocrypt 94 Proceedings,

Lecture Notes in Computer Science Vol. 950, A. De Santis ed., Springer-Verlag, 1994.

[26] K. Ohta and T. Okamoto. A Modi�cation of the Fiat-Shamir Scheme. Advances in Cryptology

{ Crypto 88 Proceedings, Lecture Notes in Computer Science Vol. 403, S. Goldwasser ed., Springer-

Verlag, 1988.

[27] P. de Rooij. E�cient exponentiation using precomputation and vector addition chains. Advances in

Cryptology { Eurocrypt 94 Proceedings, Lecture Notes in Computer Science Vol. 950, A. De Santis

ed., Springer-Verlag, 1994.

[28] R. Rubinfeld. Batch Checking with applications to linear functions. Information Processing Letters,

42:77{80, 1992.

[29] R. Rubinfeld. On the Robustness of Functional Equations. Proceedings of the 35th Symposium on

Foundations of Computer Science, IEEE, 1994.

[30] R. Rubinfeld. Designing Checkers for Programs that Run in Parallel. Algorithmica, 15(4):287{301,

1996.

[31] R. Rubinfeld and M. Sudan. Robust Characterizations of Polynomials with Applications to Pro-

gram Testing. SIAM Journal on Computing, 25(2):252{271, 1996.

[32] J. Sauerbrey and A. Dietel. Resource requirements for the application of addition chains mod-

ulo exponentiation. Advances in Cryptology { Eurocrypt 92 Proceedings, Lecture Notes in Computer

Science Vol. 658, R. Rueppel ed., Springer-Verlag, 1992.

[33] D. Stee, L. Strawczynski, W. Diffie, and M. Wiener. A Secure Audio Teleconference Sys-

tem. Advances in Cryptology { Crypto 88 Proceedings, Lecture Notes in Computer Science Vol. 403,

S. Goldwasser ed., Springer-Verlag, 1988.

[34] S. Yen and C. Laih. Improved Digital Signature suitable for Batch Veri�cation. Technical Report,

Dept. of Electrical Engineering, Laboratory of Cryptography and Information Security, December 1994.

A Some Applications

Since veri�cation of modular exponentiations is such a prevalent operation, there are many places

where our tests help. In the domain of protocols, for zero-knowledge, bit commitment, veri�able

secret sharing, and fancy kinds of digital signatures. In the latter, quite large value of n arise.

We can imagine many settings (e.g., Internet applications, electronic commerce, etc.) in which

one has to simultaneously check a number of signatures. For example, one may receive many

certi�cates, containing public keys signed by a certi�cation authority, and one can check all the

signatures simultaneously. Or a bank may be signing coins and we have to check a lot of them. So

batching is a natural idea in signature veri�cation.

Two things we want to discuss in more depth are batch veri�cation for DSS signatures [20] and

improvements to multi-party identi�cation protocols [16] via batching.

19

A.1 Batch veri�cation for DSS signatures

DSS signatures [20] are a particularly attractive target for batch veri�cation because here signing is

fast and veri�cation is slow (it involves two modular exponentiations). Batch veri�cation for DSS

itself appears di�cult. But Naccache et al. [25] introduced a slight variant of DSS for which they

were able to give some batch veri�cation algorithms. (This variant has slightly longer signatures

than DSS.) We can adapt our tests to apply to this variant, and get faster batch veri�cation

algorithms than [25]. (Batch veri�cation of modular exponentiation does not apply directly, because

in the veri�cation equation, certain numbers appear both in the base and the exponent, and are

intertwined in strange ways, so we have to adapt.)

The DSS scheme. Recall that in DSS, the following are �xed and public, common to all users: a

prime p (say 512 bits); a prime q (160 bits) such that q divides p� 1; and a generator h of Z

�

p

. We

let g = h

(p�1)=q

mod p. This g generates a subgroup of Z

�

p

that we call G. Note G = f g

i

: i 2 Z

q

g

has prime order q. So the exponents are in a �eld, namely Z

q

.

A particular user has secret key x 2 Z

q

and public key y = g

x

2 G. Let m 2 Z

q

be the message

to be signed. (This is actually the hash of the real message.) The signer picks k 2 Z

�

q

at random,

sets � = g

k

2 G, and sets r = � mod q. It then lets s = k

�1

(m+ xr), these computations being in

the �eld Z

q

. The signature is (r; s), which is 320 bits long. To verify this signature, the veri�er,

who has m; r; s, computes w = s

�1

2 Z

q

and then checks that r = g

mw

y

rw

mod q. This last is

called the veri�cation equation.

Let's look at veri�cation more closely. The computation in the exponents is in Z

q

, and then

we do the two exponentiations. These are performed in Z

�

p

, the big underlying group in which the

arithmetic takes place, so they are 512 bit exponentiations, and hence expensive.

DSS

�

. Naccache et al. [25] consider DSS modi�ed as follows. The signature is (�; s), not (r; s).

That is, they forbear from \hashing" � down to 160 bits. The veri�cation equation now drops the

mod q: we check � = g

mw

y

rw

, operations in Z

�

p

. The signature is now 512 + 160 = 672 bits long.

But the \essence" of DSS is preserved. Lets call this DSS

�

.

For DSS

�

, Naccache et al. [25] give some very nice batch veri�cation algorithms. We can improve

them by applying ideas of the Bucket Test.

Batch verification for DSS

�

. Given a batch instance (�

1

; s

1

;m

1

); :::; (�

n

; s

n

;m

n

), we would

like to verify that for all i the pair (�

i

; s

i

) is a valid DSS

�

signature for m

i

. We shall slightly

reorganize the batch instance in order to simplify the exposition of the test. The batch instance

will be (�

1

; a

1

; b

1

); : : : ; (�

n

; a

n

; b

n

) where a

i

= s

�1

i

m

i

and b

i

= s

�1

i

�

i

. Now, the veri�cation of the

signature consists of checking that �

i

= g

a

i

y

b

i

. This in fact is not just a notational di�erence as

there is computation involved in changing the batch instance, but these multiplications will be

dominated by the computation carried out in the veri�cation and hence do not change the analysis

of e�ciency for the batch.

We describe in Figure 5 the small exponents test and the bucket test for DSS

�

. The �rst is

extremely similar to the test of [25], the di�erence only in the domains from which the exponents

are chosen, and the analysis: unlike them, we do not need to assume DSS is unforgeable to prove

the test works. The main reason to describe it is only that we need it in the better bucket test that

follows. (We drop RS because the test of [25] was better than this anyway.)

Performance. Given that the size of p is 512 bits and q is 160 bits, we have that the Small

Exponents Test carried out 480 + 60n multiplications modp. The Bucket Test carries out

60(480+60�2

m

)

m�1

multiplication modp. The analysis of when it is advantageous to use the Bucket

Test as opposed to the Small Exponents Test is fairly similar to analysis in the general

20

Given: DSS public parameters p; q; g, a public key y, and (�

1

; a

1

; b

1

); : : : ; (�

n

; a

n

; b

n

)

Also a security parameter l � 159.

Check: That 8i 2 f1; : : : ; ng : �

i

= g

a

i

y

b

i

.

Small Exponents (SE) Test:

(1) Pick l

1

; : : : ; l

n

2 f0; 1g

l

at random

(2) Compute A =

P

n

i=1

a

i

l

i

mod q, B =

P

n

i=1

b

i

l

i

mod q and R =

Q

n

i=1

�

l

i

i

(3) If R = g

A

y

B

then accept, else reject.

Bucket Test: Takes an additional parameter m � 2. Set M = 2

m

. Repeat the following

atomic test, independently dl=(m� 1)e times, and accept i� all sub-tests accept:

Atomic Bucket Test:

(1) For each i = 1; : : : ; n pick t

i

2 f1; : : : ;Mg at random

(2) For each j = 1; : : : ;M let B

j

= f i : t

i

= j g

(3) For each j = 1; : : : ;M let c

j

=

Q

i2B

j

�

i

, d

j

=

P

i2B

j

a

i

mod q, and e

j

=

P

i2B

j

b

i

mod q

(4) Run the Small Exponent Test on the instance (c

1

; d

1

; e

1

); : : : ; (c

M

; d

M

; e

M

) with

security parameter set to m.

Figure 5: Batch veri�cation algorithms for DSS

�

discrete log based batching as the bulk of the computation in both instances is the same, and the

fact that in DSS

�

there is a need for two small exponentiations just gives a factor of two on the

small factor of the computation. Thus, we refer to Table 3 for the advantages of the Bucket Test

over the Small Exponents Test.

Correctness. For the soundness of these tests, it is important to observe that the group G is

of order q which is a prime, and all the computations are being done in G. (Even though the

arithmetic must be performed in the bigger group, the operands always stay in the subgroup!) So

we can use the same techniques as before to prove that the tests are sound. Details omitted due to

page limits.

A.2 Discrete-log n-party signature protocols

Multi-party identi�cation protocols based on the discrete log problem were �rst considered by

Chaum and van de Graaf [16]. One of the applications of these protocols is teleconferencing, where

all the participants are connected to a central facility called a bridge. The bridge receives signals

from the participants, operates on these signal in an appropriate way, and then broadcasts the result

back to the participants.

2

In [15], Brickell, Lee and Yacobi present an e�cient n-party signature

protocol based on discrete log. The protocol, however, requires that each of the participants

have k secrets (private keys) in order to achieve an error probability of 2

�k

. We can apply the

batch veri�cation ideas of Section 3 to achieve the same error probability and computation and

2

In the application we consider, the bridge or conference unit does not need to know any security information

from the participants. When con�dentiality of the teleconference is required, solutions have been proposed [33, 22]

that avoid sharing the participants' secrets with the bridge. These solutions are also amenable to batching.

21

Given: g a generator of G, n users, each with secret x

i

; g

�x

i

is public.

h a collision-resistant hash function. m the message to be signed.

� the list of the n users. Also a security parameter l.

Check: That all n parties sign message m (participate in the session),

with probability at least 1� 2

�l

.

n-Party Signature Protocol:

(1) Party i, 1 � i � n, picks r

i

2

R

Z

p

, computes a

i

= g

r

i

, and sends it to the bridge.

(2) The bridge computes A =

Q

n

1

a

i

, and broadcasts it.

(3) Each party i computes s

1

; : : : ; s

n

2 f0; 1g

l

by computing h(m;A;�; j), j = 1; 2; : : :

i then computes y

i

= r

i

+ s

i

x

i

mod p, and sends it to the bridge.

(4) The bridge computes Y =

P

n

1

y

i

, and broadcasts it.

(5) Each party i computes W =

Q

n

i

w

s

i

i

, and then Z = g

Y

�W .

(6) If Z = A, then OK.

Figure 6: The n-party signature protocol with small exponents.

communication costs, while requiring the participants to have only one secret. (We note that n-

party identi�cation and signature protocols based on modi�cations of the Fiat-Shamir identi�cation

scheme [19] also require one secret integer [26]. However, as pointed out in [15], shift register

technology makes discrete log-based schemes almost an order of magnitude faster in computation

time than systems based on the di�culty of extracting L-th roots.)

For simplicity, we sketch the protocol based on the small exponents test. The protocol, shown in

Figure 6, has the same general structure as those of [19, 15]. The proof is omitted from this extended

abstract. In the proof, we think of h as a random oracle; in practice, it could be instantiated by,

say, SHA-1. Depending on the actual values of n and l, h is applied in step (3) as many times as

needed in order to obtain the n small exponents. (Alternatively, the exponents could be computed

by the bridge and broadcast to everybody.)

B Batch Veri�cation of Degree of Polynomials

Roughly, the problem of checking the degree of a polynomial is as follows: Given a set of points,

determine whether there exists a polynomial of a certain degree, which passes through all these

points. More formally, let S

def

= (�

1

; :::; �

m

) denote a set of points. We de�ne the relation

DEG

F ;t;(�

1

;:::;�

m

)

(S) = 1 i� there exists a polynomial f(x) such that the degree of f(x) is at

most t, and 8i 2 f1; ::;mg, f(�

i

) = �

i

, assuming that all the computations are carried out in the

�nite �eld F .

Let the batch instance of this problem be S

1

; :::; S

n

, where S

i

= (�

i;1

; ; :::; �

i;m

). The batch

instance is correct if DEG

F ;t;(�

1

;:::;�

m

)

(S

i

) = 1 for all i = 1; :::; n; incorrect otherwise.

The relation DEG can be evaluated by taking t + 1 values from the set and interpolating a

polynomial f(x) through them. This de�nes a polynomial of degree at most t. Then verify that all

the remaining points are on the graph of this polynomial. Thus, a single veri�cation of the degree

requires a polynomial interpolation. Hence, the naive veri�er for the batch instance would be highly

expensive. The batch veri�er which we present here carries out a single interpolation in a �eld of

22

Given: S

1

; :::; S

n

where S

i

= (�

i;1

; :::; �

i;m

); �

1

; :::; �

n

;

security parameter l; value t.

Check: That 8i 2 f1; : : : ; ng : 9f

i

(x) such that deg(f

i

) � t and f

i

(�

1

) = �

i;1

; :::f

i

(�

m

) = �

i;m

:

Random Linear Combination Test:

1. Pick r 2

R

F

2. Compute

i

def

= r

n

�

i;n

+ : : : + r�

i;1

. (This can be e�ciently computed as (� � � ((r�

i;n

+

�

i;(n�1)

)r + �

i;(n�2)

) � � �)r + �

i;1

)r.)

3. If DEG

F ;t;(�

1

;:::;�

m

)

(

1

; :::;

m

) = 1, then output \correct," else output \incorrect."

Figure 7: Batch veri�cation algorithm for checking the degree of polynomials.

size jFj, and achieves a probability of error less than

n

jFj

. The general idea is that a random linear

combination of the shares will be computed. This in return will generate a new single instance of

DEG. The correlation will be such that, with high probability, if the single instance is correct then

so is the batch instance. Hence, we can solve the batch instance computing a single polynomial

interpolation, contrasting O(m

2

n) multiplications with O(mn) multiplications.

We will be working over a �nite �eld F whose size will be denoted by p (not necessarily a

prime).

3

We will be measuring the computational e�ort of the players executing a protocol by the

number of multiplications that they are required to perform. Note that the size of the �eld is of

relevance, as the naive multiplication in a �eld of size 2

k

takes O(k

2

) steps. We note that the �elds

in which the computations are carried out can be specially constructed in order to multiply faster.

The test (protocol), which we call Random Linear Combination Test, appears in Figure 7.

Theorem B.1 Assume 9j such that for all polynomials f

j

(x) which satisfy that 8i 2 f1; :::;mg,

f

j

(�

i

) = �

i

, it holds that the degree of f

j

(x) is greater than t. Then Random Linear Combina-

tion Test is a batch veri�er for the relation DEG

F ;t;(�

1

;:::;�

m

)

(�) which runs in time O(mn) and

has an error probability of at most

n

p

.

Notation: Given a polynomial f

i

(x) = a

m

x

m

+ :::+ a

1

x+ a

0

, where a

m

6= 0, denote by

f

i

(x)j

t+1

def

= a

m

x

m

+ :::+ a

t+1

x

t+1

:

If m � t, then f

j

(x)j

t+1

= 0.

Proof: In order for Random Linear Combination Test to output \correct," it must be the case

that DEG

F ;t;(�

1

;:::;�

m

)

(

1

; ; :::;

m

) = 1. Namely, there exists a polynomial F (x) of degree at most t

which satis�es all the values in S. Let f

i

(x) be the polynomial interpolated by the set S

i

; it might

be that deg(f

i

) > t. By de�nition, the polynomial F (x) =

P

n

i=1

r

i

f

i

(x). As deg(F) � t, it holds

that

P

n

i=1

r

i

f

i

(x)j

t+1

must be equal to 0. This is an equation of degree n and hence has at most

n roots. In order for Random Linear Combination Test to fail, namely, to output \correct"

when in fact the instance is incorrect, r must be one of the roots of the equation. However, this

can happen with probability at most

n

p

.

3

At this point we shall assume that the instances are computed in the same �eld F as the new instance that we

generate. Later we shall show how to dispense with this assumption.

23

Each linear combination of the shares requires O(mn) multiplications, and the �nal interpolation

requires O(m

2

) multiplications.

Batch veri�cation of partial de�nition of polynomials. A variant of the DEG

F ;t;(�

1

;:::;�

m

)

problem is the following: Given the set S as above and a value t, there is an additional value s, and

the requirement is that there exists a polynomial f(x) of degree at most t such that for all but s

of the values f(�

i

) = �

i

. As this is in essence an error correcting scheme, some limitations exist on

the value of r. The best known practical solution to this variation is given by Berlekamp and Welch

[9]. It requires solving a linear equation system of size m. Hence, again, using a naive batch veri�er

to check a batch instance would be highly ine�cient. Random Linear Combination Test can

be modi�ed to solve this variant e�ciently as well.

Di�erent �elds. It might be the case that the original instances were all computed in a �eld F of

size p. Yet,

1

p

is not deemed a small-enough probability of error. Therefore, we create an extension

�eld F

0

of the original �eld, containing F as a sub�eld. For example, view F as the base �eld and

let F

0

= F [x]= < r(x) > for some irreducible polynomial of the right degree (namely, of a degree

big enough to make F

0

of the size we want). Thus, if F = GF (2

k

) we will get F

0

= GF (2

k

0

), for

some k

0

> k, and the former is a sub�eld of the latter. It must be noted that if the extension �eld

is considerably larger than the original �eld, then the computations in the extension �eld are more

expensive. Thus, in this case there is a trade-o� between using the sophisticated batch veri�er and

using the naive veri�er.

C Batch program instance checking

We introduce the notion of batch instance checking and show how to achieve it using batch veri�-

cation. We begin with some background and motivation, present the approach, and conclude with

the formal de�nition of the notion.

C.1 Program checking: Background and issues

Let f be a function and P a program that supposedly computes it. A program checker, as introduced

by Blum and Kannan [11], is a machine C which takes input x and has oracle access to P . It calls

the program not just on x but also on other points. If P is correct, meaning it correctly computes f

at all points, then C must accept x, but if P (x) 6= f(x) then C must reject x with high probability.

Program checking has been extensively investigated, and checkers are now known for many

problems [11, 1, 10, 21, 12, 29, 30, 17]. Checking has also proven very useful in the design of

probabilistic proofs [31, 2].

Batch program checking was introduced by Rubinfeld [28]. Here the checker gets many instances

x

1

; : : : ; x

n

. Again if P is entirely correct the checker must accept. And if P (x

i

) 6= f(x

i

) for some i

the checker must reject with high probability. Rubinfeld provides batch veri�ers for linear functions.

(Speci�cally, the mod function.) A similar notion is used by Blum et al. [10] to check programs

that handle data structures.

The little-oh constraint. To make checking meaningful, it is required that the checker be

\di�erent" from the program. Blum captured this by asking that the checker run faster than any

algorithm to compute f , formally in time little-oh of the time of any algorithm for f .

24

We will see that with our approach, we will use a slow program as a tool to check a fast one.

Nonetheless, the checker will run faster than any program for f , so that Blum's constraint will be

met.

Problems with checking. Program checking is a very attractive notion, and some very elegant

and useful checkers have been designed. Still the notion, or some current implementations, have

some drawbacks that we would like to address:

� Good results can be rejected: Suppose P is correct on some instances and wrong on others. In

such a case, even if P (x) is correct, the checker is allowed to (and might) reject on input x. This

is not a desirable property. It appears quite plausible, even likely, that we have some heuristic

program that is correct on some but not all of the instances. We would like that whenever P (x)

is correct the checker accepts, else it doesn't. (As usual it is to be understood that in such

statements we mean with high probability in both cases.) This is to some extent addressed by

self-correction [12], but that only works for problems which have a nice algebraic structure, and

needs assumptions about the fraction of correct instances for a program.

� Checking is slow: Even the best known checkers are relatively costly. For example, just calling

the program twice to check one instance is costly in any real application, yet checkers typically

call it a constant number of times to just get a constant error probability, meaning that to get

error probability 2

�l

the program might be invoked
(l) times. Batch checking improves on

this to some extent, but, even here, to get error 2

�l

, the mod function checker of [28] calls the

program
(nl) times for n instances, so that the amortized cost per instance is
(l) calls to the

program, plus overhead.

What to check? We remain interested in designing checkers for the kinds of functions for which

checkers have been designed in the past. For example, linear functions. The approach discussed

below applies to any function, but to be concrete we think of f as the modular exponentiation

function. This is a particularly interesting function because of the wide usage in cryptography, so

that fast checkers would be particularly welcome.

C.2 Checking fast programs with slow ones

Our approach. To introduce our approach let us go back to the basic question. Let f be the

function we want to check, say modular exponentiation. Why do we want to check a program P

for f? Why can't we just put the burden on the programmer to get it right? After all modular

exponentiation is not that complicated to code if you use the usual (simple, cubic time) algorithm.

It should not be too hard to get it right.

The issue is that we probably do NOT want to use the usual algorithm. We want to design a

program P that is faster. To achieve this speed it will try to optimize and cut corners in many

ways. For example, it would try heuristics. These might be complex. Alternatively, it might be

implemented in hardware. Now, we are well justi�ed in being doubtful that the program is right,

and asking about checking.

Thus, we conclude that it is reasonable to assume that it is not hard to design a reliable but

slow program P

slow

that correctly computes f on all instances. Our problem is that we have a fast

but possibly unreliable program P that claims to compute f , and we want to check it.

Thus, a natural thought is to use P

slow

to check P . That is, if P (x) returns y, check that

P

slow

(x) also returns y. Of course this makes no sense. If we were willing to invest the time to run

P

slow

on each instance, we don't need P anyway. Formally, we have violated the little-oh property:

our checker is not faster than all programs for f , since it is not faster than P

slow

.

25

However, what we want is to essentially do the above in a meaningful way. The answer is

batching. However we will not do batch program checking in the sense of [28]. Instead we will be

batch-verifying the outputs of P , using P

slow

, and without invoking P at all.

More precisely, de�ne the relation R, for any inst = (x; y), by R(x; y) = 1 i� f(x) = y. Let's

assume we could design a batch veri�er V for R, in the sense of Section 1.1. (Typically, as in our

later designs, V will make some number of calls to P

slow

. But much fewer than n calls, since its

running time is less than n times the time to compute R.) Our program checker is for a batch

instance x

1

; : : : ; x

n

. Say we have the outputs y

1

= P (x

1

); : : : ; y

n

= P (x

n

) of the program, and

want to know if they are correct. We simply run V on the batch instance (x

1

; y

1

); : : : ; (x

n

; y

n

) and

accept if V returns one. The properties of a batch veri�er as de�ned in Section 1.1 tells us the

following. If P is correct on all the instances x

1

; : : : ; x

n

, then we accept. If P is wrong on any

one of these instances then we reject. Thus, we have a guarantee similar to that of batch program

checking (but a little stronger as we will explain) and at lower cost.

Since V makes some use of P

slow

we view this as using a slow program to check a fast one.

Features of our approach. We highlight the following bene�ts of our batch program checking

approach:

� Instance correctness: In our approach, as long as P is correct on the speci�c instances x

1

; : : : ; x

n

on which we want results, we accept, even if P is wrong on other instances. (Recall from the

above that usual checkers can reject even when the program is correct on the instance in

question, because it is wrong somewhere else, and this is a drawback.) In this sense we have

more a notion of \program instance checking."

� Speed: In our approach, the program is called only on the original instances, so the number of

program calls, amortized, is just one! Thus, we only need to worry about the overhead. However,

with good batch veri�ers (such as we will later design), this can be signi�cantly smaller than

the total running time of the program on the n calls. Thus the amortized additional cost of

our checker is like o(1) program calls, and this is to achieve low error, not just constant error.

This is very fast.

� O�-line checking: Our checking can be done o�-line as in [10]. Thus, for example, we can use

(slow) software to check (fast) hardware.

Of course batching carries with it some issues too. When an error is detected in a batch instance

(x

1

; y

1

); : : : (x

n

; y

n

) we know that some (x

i

; y

i

) is incorrect but we don't know which. There are

several ways to compensate for this. First, we expect to be in settings where errors are rare. (As

bugs are discovered they are �xed, so we expect the quality of P to keep improving.) In some

cases it is reasonable to discard the entire batch instance. (In cryptographic settings, we are often

just trying to exponentiate random numbers, and can throw away one batch and try another.)

Alternatively, �gure out the bad instance o� line; if you don't have to do it too often, it can be

OK.

C.3 De�nition

We conclude by summarizing the formal de�nition of our notion of batch program instance checking.

Similarly to relations, a batch instance for a (not necessarily boolean) function f is simply a

sequence X = x

1

; : : : ; x

n

of points in its domain. A program P is correct on X if P (x

i

) = f(x

i

)

for all i = 1; : : : ; n, and incorrect if there is some i 2 f1; : : : ; ng such that P (x

i

) 6= f(x

i

). If f is

a function we let R

f

be its graph, namely the relation R

f

(x; y) = 1 if f(x) = y, and 0 otherwise.

Notice that P is correct on X i� (x

1

; P (x

1

)); : : : ; (x

n

; P (x

n

)) is a correct instance of the batch

veri�cation problem for R

f

.

26

De�nition C.1 A batch program instance checker for f is a probabilistic oracle algorithm C

P

that

takes as input (possibly a description of f), a batch instance X = (x

1

; : : : ; x

n

) for f , and a security

parameter l provided in unary. It satis�es:

(1) If P is correct on X then C

P

outputs 1.

(2) If P is incorrect on X then the probability that C

P

outputs 1 is at most 2

�l

.

We wish to design such batch program instance checkers which have a very low complexity and

make only marginally more than n oracle calls to the program. As indicated above, this is easily

done for a function f if we have available batch veri�ers for R

f

, so we have such checkers for

modular exponentiation as considered in Section 3.

27

