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Abstract

We present e�cient zero-knowledge proof systems for quasi-safe prime

products and other related languages. Quasi-safe primes are a relaxation

of safe primes, a class of prime numbers useful in many cryptographic

applications.

Our proof systems achieve higher security and better e�ciency than

all previously known ones. In particular, all our proof systems are per-

fect or statistical zero-knowledge, meaning that even a computationally

unbounded adversary cannot extract any information from the proofs.

Moreover, our proof systems are extremely e�cient because they do not

use general reductions to NP-complete problems, can be easily parallelized

preserving zero-knowledge, and are non-interactive for computationally

unbounded provers. The prover can also be e�ciently implemented given

some trapdoor information and using very little interaction.

We demonstrate the applicability of quasi-safe primes by showing how

they can be e�ectively used in the context of RSA based undeniable sig-

natures to enforce the use of \good" public keys, i.e., keys such that if a

signer can convince a recipient of the validity of a signature, then he won't

be able to subsequently deny the same signature in case of a dispute.

Keywords: safe primes, zero-knowledge, non-interactive proofs, RSA,

undeniable signatures.

1 Introduction

An odd prime P = 2p+1 is called safe if p is prime. Safe primes are an important

class of prime numbers useful in many cryptographic applications. For example,

the use of safe primes has been recommended in the choice of RSA moduli

because prime products N = PQ are believed to be harder to factor when P and
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Q are safe. The undeniable signature scheme in [4] requires the RSA modulus

to be the product of safe primes in order to achieve undeniability. [5] uses safe

prime products to prove modular polynomial relations in zero-knowledge.

In general, safe prime products have proven particularly useful in crypto-

graphic application due to the special structure of Z

�

PQ

when P and Q are safe

primes. However, restricting P and Q to be safe also raises the following prob-

lem: how to prove that N = PQ is the product of two safe primes without

giving out the factorization of N . In particular we would like to be able to

prove that a number is a safe prime product in zero-knowledge [6]. Certifying

a number N = PQ as the product of two safe primes is of critical importance

in applications such as the undeniable signature scheme in [4], where if P and

Q are not safe the signer can convince somebody of the validity of a signature,

and subsequently deny the same signature in case of a dispute.

Although zero-knowledge proofs for the language of safe prime products can

be constructed using general results on NP languages [7, 2, 3, 8, 1], these general

solutions are not e�cient and achieve only computational zero-knowledge (i.e.,

no computationally bounded adversary can extract information from the proof).

It is therefore both a theoretically interesting and practically important ques-

tion whether safe prime products have proof systems which are more e�cient

than those guaranteed by general constructions and achieve stronger notions of

security (e.g., perfect or statistical zero-knowledge).

Both questions for safe prime products are still open. In this paper we

introduce a relaxation of safe primes, called quasi-safe primes, and show that,

for a wide class of quasi-safe prime products, membership can be e�ciently

proved in statistical zero-knowledge. Namely, an odd prime P = 2p̂ + 1 is

quasi-safe if p̂ is a prime power, i.e., p̂ = p

�

for some prime p. We give an

e�cient one-sided error non-interactive statistical zero-knowledge (NIZK [2])

proof system for the language of quasi-safe prime products N = PQ such that

P = 2p

�

+ 1; Q = 2q

�

+ 1; p; q are distinct odd primes satisfying P;Q; p; q 6� 1

(mod 8), P 6� Q (mod 8) and p 6� q (mod 8). Quasi-safe primes have in

common enough properties with safe primes, to be useful in many applications

designed to work with safe primes.

The rest of the paper is organized as follows. In section 2 we introduce some

basic de�nitions and notation regarding number theory and zero-knowledge

proof systems. Our proof system for quasi-safe prime products is presented

in section 3 where we assume the prover is computationally unbounded. In

section 4 we show how the prover can be e�ciently implemented using some

trapdoor information. Finally in section 5 we demonstrate the applicability of

quasi-safe primes by discussing their use in the context of RSA-based undeniable

signature.
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2 De�nitions

In this section we review some de�nition and notation from number theory and

zero-knowledge proof systems that will be use in the rest of the paper.

2.1 Number Theory

Let a; b; n be integers. We say that n divides a (written nja) if a = nb for some b,

a and b are congruent modulo n (written a � b (mod n)) if n divides a� b. A

safe prime is an odd prime P = 2p+1 such that p is an odd prime. A quasi-safe

prime is an odd prime P = 2p̂+ 1 such that p̂ = p

�

is an odd prime power. A

number N is square free if m

2

does not divide N for any m > 1. For any N , let

odd(N ) be the greatest odd number m such that m divides N . Let P and Q be

two primes. We say that P and Q are disjoint if odd(gcd(P � 1; Q � 1)) = 1,

i.e., P � 1 and Q� 1 have no odd common factors.

A numberN is a quasi-safe prime product ifN = PQwhere P = 2p

�

+1, Q =

2q

�

+ 1, p and q are distinct odd primes. For technical reasons we will restrict

our attention to quasi-safe prime products such that P;Q; p; q 6� 1 (mod 8),

P 6� Q (mod 8) and p 6� q (mod 8).

2.2 Languages

In section 3 we will give proof systems for various combinations of the following

languages:

� ODD: The set of odd numbers. ODD can be easily decided in the obvious

way.

� FP (fermat primes): The set of prime numbers of the form 2

k

+ 1. FP is

also easily decidable due to the following fact: n = 2

k

+ 1 is prime i� k is

a power of two and either n = 5 or 5

2

k=2

� �1 (mod n).

� SF (square free): The set of all square free integers.

� SF

0

: The same as SF with the additional requirement that for any two

primes P;Q dividing N , it must be P 6 j(Q� 1).

� PPP (prime power product): The set of all N with at most two distinct

odd prime factors.

� PPP

0

: The same as PPP with the additional requirement that the two odd

prime factors P;Q satisfy P;Q 6� 1 (mod 8) and P 6� Q (mod 8).

� PP (prime product): The set of all N which are the product of at most

two distinct primes. Notice that PP = SF \ PPP.
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� DPP (disjoint prime product): The set of all N = PQ which are the

product of two disjoint primes, i.e., P �1 and Q�1 have no odd common

factors.

� ASPP (almost safe prime product): The set of all N = PQ such that

P = 2

a

p

�

+ 1; Q = 2

b

q

�

+ 1; p; q are distinct primes satisfying p; q 6� 1

(mod 8) and p 6� q (mod 8).

� QSPP (quasi safe prime product): The set of all N = PQ such that

P = 2p

�

+ 1; Q = 2q

�

+ 1; p; q are distinct primes satisfying P;Q; p; q 6� 1

(mod 8) and P 6� Q (mod 8) and p 6� q (mod 8).

2.3 Non-Interactive Zero-Knowledge

In this section we briey review the de�nition of non-interactive zero-knowledge

proof system. The reader is referred to [1] for a complete description.

In a non-interactive proof system, a prover wants to convince a veri�er that

a string x (the common input) belongs to some language L. The interaction

between the prover and the veri�er is minimal: both the prover and the veri�er

have access, in addition to the common input x, to a common random string

r which can be thought as provided by a trusted third party. On input x and

r, the prover P (x; r) computes a string � (a purported proof of membership of

x in L with respect to random string r). Subsequently, the veri�er V (x; r; �)

either accepts or rejects the string � produced by the prover as a valid proof

of x 2 L with respect to the same random string r. (P; V ) is a non-interactive

proof system for a language L if V is polynomial time and the following two

conditions hold

� Completeness: For every x 2 L, PrfV (x; r; P (x; r)) = 1g > 1� �

� Soundness: For every x 62 L, Prf9�:V (x; r; �) = 1g < �

where the probabilities are computed with respect to the choice of the com-

mon random string r and the coin tosses of algorithm P (V is a deterministic

machine.)

The values � and � are called the completeness and soundness error and are

usually set to 1=3. The proof system is said one-sided error if the completeness

error is zero, i.e., V (x; r; P (x; r)) for all x 2 L and all r. In the soundness con-

dition � is often restricted to strings computable (not necessarily in polynomial

time) from x and R.

The random string r is usually chosen uniformly at random from the set

f0; 1g

p(jxj)

of all string of some �xed length p(jxj) polynomial in the size of the

common input. We will consider a variant to the model in which the random

string r is chosen from a set R

x

� f0; 1g

�

which may depend on the string x. It

is easy to see that if R

x

is e�ciently samplable, the two models are equivalent

(indeed given random input r uniformly distributed in f0; 1g

p(jxj)

, to generate
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a string r

0

according to distribution R

x

, just run the sampling algorithm with

coin tosses r.)

A non-interactive proof system (P; V ) is perfect zero-knowledge if there exists

a probabilistic polynomial time algorithm S (the simulator) such that for all x 2

L, the output of S(x) is distributed identically to (R

x

; P (x;R

x

)). It is statistical

zero-knowledge if the statistical di�erence between S(x) and (R

x

; P (x;R

x

)) is

negligible in jxj, i.e., for all polynomial p(�) and for all long enough x,

X

r2R

x

X

�2f0;1g

�

jPrfS(x) = (r; �)g � PrfR

x

= rgPrfP (x; r) = �gj <

1

p(jxj)

:

Let L � L

0

be two languages. We say that (P; V ) is a non-interactive zero-

knowledge proof system for L in L

0

, if the soundness condition is required to

hold only for those x in L

0

n L. This correspond to having already proved that

x 2 L

0

and using the proof system (P; V ) to prove some additional property

about x (namely x 2 L).

3 Proving Quasi-Safe Prime Products

We give a non-interactive one-sided error statistical zero-knowledge proof system

for the language QSPP of quasi-safe prime products.

We break the proof system in several stages for clarity of exposition and

because some stages could be of independent interest by themselves. Moreover,

all but the last stage we are going to describe are perfect zero-knowledge, and

only the last stage is actually statistical zero-knowledge.

Notice however that since all stages are non-interactive they can be composed

in parallel resulting in a single non-interactive statistical zero-knowledge proof

system.

For clarity of exposition, we will �rst assume that the prover is computa-

tionally unbounded as it is customary in statistical zero-knowledge proofs. In a

later section we will show how the prover can be e�ciently implemented using

some trapdoor information and any commitment scheme.

3.1 Stage 1: Square Free

First of all, we give a proof system for the language SF

0

of all square free N

such that for any distinct primes P;Q dividing N , it holds P 6 j(Q� 1).

Theorem 1 The non-interactive proof system de�ned by

� Common Input: N

� Random Input: x 2 Z

�

N

� Prover: compute M = N

�1

mod �(N ) and output y = x

M

mod N
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� Verifier: accept i� y

N

= x mod N .

is one-sided error perfect zero-knowledge with soundness error 1=d for the lan-

guage SF

0

, where d is the smallest factor of N .

Proof: We have to prove that the above proof system is complete, sound and

zero-knowledge.

� Completeness: If N 2 SF

0

then gcd(N;�(N )) = 1 and N has a multi-

plicative inverse M modulo �(N ). Therefore y

N

� (x

M

)

N

� x

MN

� x

1

(mod N ) and the veri�er always accepts.

� Soundness: If N 62 SF

0

then gcd(N;�(N )) = d > 1 and jfx

N

j x 2

Z

�

N

gj = jZ

�

N

j=d. Therefore given a random x 2 Z

�

N

the probability that

x � y

N

(mod N ) for some y is at most 1=d.

� Zero-Knowledge: The simulator chooses y 2

R

Z

�

N

and outputs (y

N

mod

N; y). Notice that if N 2 SF

0

then gcd(N;�(N )) = 1 and x = y

N

mod N

is uniformly distributed over Z

�

N

.

3.2 Stage 2: Prime Power Product

We give a proof system for the language PPP

0

of all prime power products

N = P

�

Q

�

such that P;Q 6� 1 (mod 8) and P 6� Q (mod 8).

Theorem 2 The non-interactive proof system de�ned by

� Common Input: N 2 ODD

� Random Input: x 2 Z

�

N

� Prover: output a square root r modulo N of one of �x;�2x.

� Verifier: accept i� r

2

is congruent to �x or �2x modulo N

is one-sided error perfect zero-knowledge with soundness error 1=2, for the lan-

guage PPP

0

.

Proof: We have to prove that the above proof system is complete, sound and

zero-knowledge.

� Completeness: Assume N 2 PPP

0

, i.e., N = P

�

Q

�

for primes P and Q

such that P;Q 6� 1 (mod 8) and P 6� Q (mod 8). Notice that �1 is a

square modulo P (resp. Q) i� P � 1 (mod 4) (resp. Q � 1 (mod 4))

and 2 is a square modulo P (resp. Q) i� P � �1 (mod 8) (resp. Q � �1

(mod 8)). It follows that for any x 2 Z

�

N

one and only one of �x;�2x is

a square modulo PQ. Therefore the prover can always extract the square

root moduloN = P

�

Q

�

of one of �x;�2x and the veri�er always accepts.
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� Soundness: If N is not in PPP

0

then no prover can convince the veri�er

with probability better than 1=2. We show this by cases: if N 62 PPP,

then N has more than two odd prime factors and the probability that a

random x 2 Z

�

N

is a square is at most 1=8. Therefore with probability

at least 1=2 none of �x and �2x has a square root modulo N and the

veri�er will reject with probability 1=2. If N 2 PPP, but N 62 PPP

0

then

N has at most two prime factors P and Q, but either P � 1 (mod 8),

Q � 1 (mod 8) or P � Q (mod 8). Then either �1; 2 or �2 is a square

and the probability that for a random x the set fx;�x; 2x;�2xg contains

a square is 1=2 (1=4 if both P � Q � 1 (mod 8)).

� Zero-Knowledge: The simulator chooses r 2

R

Z

�

N

and � 2

R

f�1;�2g

at random, computes x = r

2

=� mod N and outputs (x; r).

3.3 Stage 3: Disjoint Prime Product

Assume we already proved that N 2 PP = SF \ PPP, i.e., N is the product of

at most two primes both with exponent 1. We want to prove that N 2 DPP,

i.e., N = PQ is the product of exactly two primes, and these two primes P and

Q are disjoint.

Theorem 3 The non-interactive proof system de�ned by

� Common Input: N 2 PP

� Random input: x 2 Z

�

N

� Prover: output y = x

M

mod N , where M is the inverse of odd(N �1)

�1

modulo �(N ).

� Verifier: check that N =2 FP and if so accept i� y

odd(N�1)

= x mod N .

is one-sided error perfect zero-knowledge with soundness error 1=d (d the small-

est factor of odd(N � 1)) for the language DPP in PP.

Proof: Assume N 2 PP, i.e., N is either a prime or the product of two distinct

primesPQ. Notice that ifN is a prime, gcd(odd(N�1); �(N )) = odd(N�1) = 1

i�N 2 FP, but such a possibility is ruled out by the deterministic test the veri�er

carries on N (see Section 2.2). If N = PQ is the product of two distinct primes

gcd(odd(N � 1); �(N )) = 1 i� N 2 DPP. Therefore assumed N 2 PP � FP,

N 2 DPP i� gcd(odd(N � 1); �(N )) = 1.

� Completeness: If gcd(odd(N � 1); �(N )) = 1, then odd(N � 1) has a

multiplicative inverse M modulo �(N ) and the veri�er always accepts.
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� Soundness: If gcd(odd(N � 1); �(N )) = d > 1, then given a random

x 2 Z

�

N

the probability that x � y

odd(N�1)

(mod N ) for some y 2 Z

�

N

is at most 1=d.

� Zero-Knowledge: The simulator chooses y 2

R

Z

�

N

, computes x =

y

odd(N�1)

mod N and outputs (x; y).

3.4 Stage 4: Almost Safe Prime Product

Assume N is in DPP, i.e., N = PQ where P and Q are two odd primes such

that odd(gcd(P � 1; Q � 1)) = 1. We want to prove that N 2 ASPP, i.e.,

p̂ = odd(P � 1) = p

�

and q̂ = odd(Q� 1) = q

�

are two prime powers such that

p; q 6� 1 (mod 8) and p 6� q (mod 8).

Theorem 4 The non-interactive proof system de�ned by

� Common Input: N 2 DPP

� Random Input: g 2 Z

�

N

; y 2 hgi

� Prover: computes x = log

g

y and outputs a square root r mod odd(�(N ))

of one of �x;�x=2.

� Verifier: let  = 2

jN j

and accept i� y



mod N is equal to g

�r

2

mod N

or g

�2r

2

mod N .

is one-sided error statistical zero-knowledge for ASPP in DPP with soundness

error 9=10.

Proof:

� Completeness: If N 2 ASPP, then odd(�(N )) = p

�

q

�

has exactly two

prime factors such that p; q 6� 1 (mod 8) and p 6� q (mod 8). Therefore

at least one of �x and �x=2 is a square modulo odd(�(N )). Let r

2

be

congruent to �x or �x=2 modulo odd(�(N )). Then x will be congruent

to �r

2

or �2r

2

modulo odd(�(N )). Since �(N )=odd(�(N )) divides

2



, the last congruence holds also modulo �(N ), and therefore y



= g

x

is congruent to g

�r

2

or g

�2r

2

modulo N and the veri�er always accepts.

� Soundness: Assume N 2 DPP but N 62 ASPP, i.e., N = PQ and

gcd(p̂; q̂) = 1 (where p̂ = odd(P � 1), q̂ = odd(Q � 1)), but either

odd(�(N )) = p̂q̂ has more then two odd prime factors, or it has only

two prime factors p and q, but either p � 1 (mod 8) or q � 1 (mod 8)

or p � q (mod 8).
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If �(N ) has more than 2 odd prime factors, with probability at least

(2=3)(4=5)(6=7) = 16=35 the order of g has at least 3 odd prime factors

and the probability that x is invertible modulo these three factors is also at

least 16=35. Therefore with probability at least (16=35)

2

=2 > 1=10 none of

�x or �x=2 is a square modulo the order of g. Now assume odd(�(N )) =

p

�

q

�

but either p � 1 (mod 8), q � 1 (mod 8) or p � q (mod 8).

Then either �1; 1=2 or �1=2 is a square modulo pq. The probability that

the order of g is divided by pq, and that x is invertible modulo pq are

both at least (2=3)(4=5) = 8=15. Consequently, with probability at least

(8=15)

2

=2 > 1=10 none of �x or �x=2 will be a square modulo the order

of g.

� Zero-Knowledge: The simulator chooses g 2 Z

N

, r 2 f0; : : : ; N

2

g and

� 2 f1;�1; 2;�2g at random, computes y = g

�r

2

mod N and outputs

(g; y; r). Notice that r mod �(N ) is statistically close to uniform and

therefore the value y computed by the simulator is distributed almost

uniformly in hgi.

3.5 Combining All Stages: QSPP

It is easy to see that in order to get a NIZK proof system forQSPP it is enough to

run the four stages outlined before. The four stages can be run simultaneously.

If the desired soundness error probability is �, each stage must be repeated

enough times to make the error probability of each stage smaller than �=4. This

can be e�ciently done in parallel given the parallel composition properties of

NIZK proofs.

The soundness error can be easily bounded in stages 2 and 4 where the

error probability is a constant. In stage 4, the soundness error can be re-

duced if we assume p; q > d for some constant d. In particular, for d = 3

this can be easily checked by the veri�er as follows. Since gcd(p̂; q̂) = 1,

p; q 6= 3 i� N � 1 (mod 3). This will reduce the soundness error in stage

4 to 1 � (1=2)((4=5)(6=7)(10=11))

2

� 4=5. More complicate techniques can be

used to lower the soundness error to almost 1=2.

In step 1 and 3 instead the soundness error is bounded by 1=d where d is

the smallest factor of N and odd(N � 1) respectively. Therefore, if we restrict

P;Q; p and q to be large enough, say not smaller then 1024, (which can be

deterministically checked by the veri�er by trial division), the soundness error

will be 2

�10

, and the error probability can be lowered to 2

�100

by only ten

parallel executions of stages 1 and 3. Notice also that the two stages can be

combined in a single proof system where the prover given a random y 2 Z

�

N

outputs a x such that x

odd(N �(N�1))

= y (mod N ).
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4 Implementing the Prover

In the previous section we assumed a computationally unbounded prover and

the availability of a common random input.

We now show how the selection of the random input and the operations of

the prover can be e�ciently implemented using any commitment scheme and

some trapdoor information.

In stage 1 and 3 the prover needs to compute the inverses modulo �(N ) of

N and odd(N � 1). This inverses can either be given as trapdoor information,

or can be computed directly by the prover given �(N ) or the factorization of

N .

In stages 2 and 4 the prover needs to compute square roots modulo N and

�(N ). This can be e�ciently done if the prover knows the factorization of N

and �(N ). In particular, if N = PQ is a quasi-safe prime product and the

prover knows P and Q, square roots can be e�ciently be computed.

We still need to show how to randomly sample Z

�

N

or the subgroup generated

by some element g 2 Z

�

N

in such a way that the prover can compute discrete

logarithms base g of the samples.

It is important to notice that in order to implement this step with a poly-

nomial time prover, we do need interaction between the prover and the veri�er.

We stress that such interaction is not necessary when the prover is unbounded.

4.1 Sampling Z

�

N

The prover and the veri�er want to choose a z is such a way that if either of

them is honest, the result is uniformly distributed in Z

�

N

.

1. The veri�er randomly chooses x 2 Z

N

and send commit(x) to the prover

2. The prover randomly chooses y 2 Z

N

and send it to the veri�er

3. The veri�er decommits x.

4. Output: Let z = x+ y mod N . If z 2 Z

�

N

output z, otherwise output ?.

If either the prover or the veri�er is honest, the conditional distribution of

the above protocol, given z 6= ?, is uniform over Z

�

N

.

4.2 Sampling f(g; g

i

) j g 2 Z

�

N

; i 2 Z

o(g)

g

In stage 4, the random input is a pair g; y where g 2 Z

�

N

and y 2 hgi are uni-

formly distributed. Moreover, the prover needs to know the discrete logarithm

base g of y.

The base g can be randomly chosen from Z

�

N

using the protocol in the

previous section. However, since stage 4 is zero-knowledge for any value of

g 2 Z

�

N

, we can more simply let the veri�er choose g at random (there is no
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need to protect the prover >from the veri�er choosing g not at random). Ideally

the veri�er would like g to be a generator of the order (P�1)(Q�1)=2 subgroup

of Z

�

N

, but not knowing how to �nd such a generator, the veri�er can still achieve

a bounded soundness error by choosing g at random.

Once g has been chosen, the following protocol can be used to select an

element of hgi in such a way that the prover knows its discrete logarithm.

1. The veri�er randomly chooses x 2 Z

N

2
and send commit(x) to the prover

2. The prover randomly chooses y 2 Z

N

2
and send g

y

(mod N ) to the

veri�er

3. The veri�er decommits x.

4. Output: z = g

x+y

(mod N � 1)

Notice that at the end of the interaction the prover knows log

g

z = x + y.

The above protocol does not guarantee that z 2 hgi if the prover is cheating.

However, in our proof system the prover has only to loose by not following the

above protocol because if x 62 hgi the veri�er will certainly reject the input in

stage 4 of the proof system.

5 Applications: Undeniable Signatures

In [4] a new undeniable signature scheme was presented based on the RSA

signature algorithm. The scheme is proven secure under the assumption that

the composite modulus N is the product of two safe primes P and Q.

This assumption is needed in order to bound the probability of cheating by

the prover during the con�rmation and denial protocol. While in general one

trusts the prover to choose a \safe" N as it appears to be in his own interest,

the undeniable signature scheme of [4] is an example of a scheme where the

prover might have an interest in choosing N di�erently as that could give him

the possibility to deny valid signatures. A problem left open in [4] was how to

make sure that the signer had chosen N correctly

1

.

In [4] the proven bound on the probability of cheating is

O(1)

p

where N = PQ

and P = 2p+ 1 and Q = 2q + 1, p < q.

It turns out that one can relax the condition on P and Q to be quasi-safe

primes, and the proof still carries through

2

. That is the probability of cheating

for the prover remains

O(1)

p

where N = PQ and P = 2p

�

+ 1, Q = 2q

�

+ 1,

p < q.

1

In [4] two partial solutions are presented but neither of them is fully satisfactory either

in security or in e�ciency

2

This is an easy exercise for the reader, the �nal paper will present the full details of this

proof
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However in [4] one could say that jpj = O(jN j) and from that establish that

the probability of error was negligible. What can we say in the case of quasi-safe

primes?

The point is to notice that if the prover chooses p so that the cheating

probability is non-negligible, i.e. a small prime, then he is also allowing an

adversary to easily factor N . Indeed if

O(1)

p

is non-negligible in a security

parameter k then p is polynomially large in k, which means that one could

guess p among a polynomial set of candidates and then test if 2p

�

+ 1 divides

N for all � < lgN .

Thus e�ectively quasi-safe primes are su�cient for the security of the [4]

undeniable signature scheme.
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