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Abstract

We present a general framework for constructing and analyzing authentication protocols in

realistic models of communication networks. This framework provides a sound formalization

for the authentication problem and suggests simple and attractive design principles for general

authentication and key exchange protocols. The key element in our approach is a modular

treatment of the authentication problem in cryptographic protocols; this applies to the de�nition

of security, to the design of the protocols, and to their analysis. In particular, following this

modular approach, we show how to systematically transform solutions that work in a model of

idealized authenticated communications into solutions that are secure in the realistic setting of

communication channels controlled by an active adversary.

Using these principles we construct and prove the security of simple and practical authentica-

tion and key-exchange protocols. In particular, we provide a security analysis of some well-known

key exchange protocols (e.g. authenticated Di�e-Hellman key exchange), and of some of the

techniques underlying the design of several authentication protocols that are currently being

deployed on a large scale for the Internet Protocol and other applications.
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1 Introduction

A major task in cryptographic research is to de�ne, and provide sound and e�cient solutions for, the

problem of secure communications. We need models and tools that enable the analysis of existing

protocols as well as the development and analysis of new, improved solutions. Furthermore, in

today's environment |we are seeing a rapidly growing demand for Internet security solutions| it

is important to keep practical issues in mind from the start. This means that one cannot a�ord

a signi�cant sacri�ce of simplicity and performance in order to achieve provability. Similarly, one

cannot a�ord de�nitions which are an `overkill' of the problem. It also requires a careful de�nition

of the adversarial model in order to capture the real threats of today's global communications

scenarios. Elements such as the concurrent execution of many instances of the same protocol by

di�erent parties, the inherent asynchrony of actual message-driven network protocols, and the scale

of today's networks and applications must be considered.

1.1 The problems

The problem of \secure communications" is very broad, and encompasses a variety of sub-problems

and goals. The focus of this paper is authentication in communications, with special emphasis on

the related problem of key exchange.

Authenticated communications. In a nutshell, the authentication problem deals with curbing

adversaries that actively control the communication links used by the legitimate parties. They

may modify and delete messages in transit, and even inject false ones; they also control the delays

of messages. (These adversaries may have additional capabilities, for instance corrupting parties.)

Our goal is to guarantee authenticity of the communicated data; that is, make sure that the system

behaves (as much as possible) as if the links were \physically authenticated" and no message was

modi�ed en-route or its origin misrepresented. Clearly, solving this problem is an essential step

towards enabling secure communications in a realistic network environment.

The authentication problem has received less attention than secrecy and privacy issues, espe-

cially in the context of cryptographic protocols. Many of the fundamental works and techniques

for the design of cryptographic protocols were developed under the idealized assumption of \au-

thenticated links" between the communicating parties. Prime examples are the Di�e-Hellman key

exchange protocol [DH] as well as much of the work on secure distributed function evaluation (eg,

[Y, GMW, BGW, CCD]). This abstraction of the authentication problem is of great value when

developing higher level protocols. However, implementing these \authenticated links" in realistic

environments is far less trivial than one would have initially imagined. In particular, networks are

often asynchronous in nature, and protocols are often message-driven. Here authentication cannot

be achieved by simply applying signatures or message authentication codes to the transmitted data

(although these primitives are useful tools in the design of complete solutions).

Several facets of the authentication problem have received a rigorous treatment, most notably

entity authentication between two parties [BR1] and authenticated message transmission [Ra].

However there are basic and general questions that still remain untreated. The �rst part of our

e�ort will go into properly formulating and then solving these. The tools that emerge are not only

useful in their own right, but enable us to treat a more popular but notoriously di�cult problem,

namely authenticated key exchange, in e�ective ways.

Key exchange. An authenticated key exchange protocol enables two parties to end up with

a shared secret key in a secure and authenticated manner. That is, no (computationally limited)

adversary can impersonate any party during the protocol or learn any information about the value of
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the exchanged secret. Such protocols are an essential piece in the process of providing authenticated

communication. On the other hand, they are themselves examples of problems in the domain of

authenticated communications.

Authenticated key exchange has been extensively studied (we survey some of this work at the

end of this section). Experience indicates that it is far more subtle and harder to achieve than

may appear at �rst glance. A very large number of proposed protocols succumb to attacks not

envisioned by their designers.

The �rst works to provide formal foundations in this area were those of Bellare and Rogaway

[BR1, BR2]. They addressed the problems of entity authentication and key exchange in the two

party, shared key model, and the problem of three party key distribution (Needham Schroeder [NS],

or Kerberos [SNS] model). Generalizations are possible in order to accommodate other tasks and

models of interest. But these formalizations are not always easy to work with. They also regard

key-exchange as a stand-alone problem without putting it in a the wider context of authentication.

Most importantly, each new key exchange protocol must be re-analyzed from scratch, and a proof

provided that it meets one of the de�nitions.

1.2 Our approach and contributions

We present de�nitions and analysis techniques that provide a uni�ed treatment of the di�erent

aspects of the authentication problem, thus leading us to to simplify the process of designing and

analyzing authentication protocols. The key element is our modular treatment of the authentication

problem. We start with solutions that work in a model of idealized authenticated communications

and then transform these solutions, via automatic techniques (or \compilers"), into solutions that

work in the realistic unauthenticated setting.

Authenticators. The core component in our modular approach is the construction of \universal

compilers" C that transform (or emulate) any protocol � in an ideally authenticated model into

a protocol �

0

= C(�) that achieves essentially the same task as � (in a well de�ned sense) but

withstands a much stronger and realistic adversary; not only can this adversary corrupt a subset

of the parties, but it also has total control over the communication links connecting all the parties

(corrupted or not). We call such a compiler C an authenticator. We formalize this notion and show

several constructions of authenticators.

In particular, we show how the construction of authenticators is greatly simpli�ed by reducing

their design to that of much simpler protocols, called mt-authenticators, whose goal is limited to

authenticate a simple exchange of messages between the parties. (Here mt stands for \message

transmission".) These protocols have a very limited scope and are signi�cantly easier to build and

analyze than general authentication protocols. We show constructions of mt-authenticators based

on standard cryptographic functions such as message authentication codes, digital signatures and

public key encryption.

Following our methodology, a protocol intended to work in an unauthenticated network can

be designed (or analyzed) in two independent stages: �rst design and prove the protocol in the

authenticated model; then apply a particular authenticator. It is now guaranteed that the \com-

piled" protocol maintains, in the unauthenticated environment, the same behavior that the original

one has in an ideally authenticated environment. The analysis of these two pieces is independent

of each other and each piece can be \re-used" separately to get di�erent protocols with di�erent

avors of authentication. For example, one can use any of the basic authenticators proven in this

paper in new authentication protocols without the need to re-prove the properties of these au-

thenticators. In particular, one gets the security of the authenticated protocol solely based on the
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strength of the cryptographic functions underlying the design of the (mt-) authenticators. This

modular approach has important practical consequences: it simpli�es the design and analysis work,

and helps building the protocol in ways that are easier to implement and maintain in practice. It

also provides a \debugging tool" for the protocol designer and may help cleaning protocols from

unnecessary elements. We exemplify these aspects through our construction and analysis of key

exchange protocols as discussed below.

The definitional approach. The de�nition of authenticators involves a formal treatment of

the authenticated and the unauthenticated models, as well as de�ning the notion of equivalence

between protocols running in these di�erent models. A basic ingredient in our formalization work is

the notion of emulation of one protocol by another. This captures the idea of \equivalent behavior"

of protocols running in di�erent models of communication. (Below we illustrate this notion by

sketching how it is used to de�ne secure key-exchange protocols.) The notion draws from general

de�nitions of secure multi-party protocols [MR, Bea, Ca1].

This de�nitional approach has several important properties which distinguish our work from

previous treatment of the authentication problem: it makes the intuition behind the de�nitions

clearer, it provides with uniform de�nitions for the di�erent models of communication, and, very

importantly, it enables our constructive methodology of transforming secure protocols from the

idealized models to the realistic ones. In particular, this uniform treatment helps positioning key

exchange in the broader context of the authentication problem.

Key Exchange. A main bene�ciary of the above approach is the key exchange problem. We

de�ne this problem and its security requirements in a way that can �t both the authenticated and

unauthenticated models. We do that by �rst de�ning an ideal key exchange process, where a fully

honest and trusted party provides other parties, upon request, with shared secret keys. A secure

key exchange protocol, in either the authenticated or unauthenticated model, is then de�ned as

one where the result of the actions of the adversary can be e�ciently simulated (or emulated, using

our terminology) in the ideal model. In particular this means that \bad events" (such as secrecy

compromise, replay of exchanges, impersonation, etc.) can happen in the actual protocols only if

they could have happened in the ideal model. In order to achieve meaningful results, we carefully

de�ne the attacker in the ideal model to capture some of the unavoidable capabilities of a realistic

attacker such as the ability to control the scheduling of key exchanges, and to corrupt all, or parts,

of the information kept by the communicating parties.

This approach has as a prime advantage that it is applicable to di�erent avors of key exchange

protocols, such as public key and shared key protocols, and can accommodate particular variants

(e.g., identity protection, perfect forward secrecy, etc.) without requiring a complete re-de�nition

of the problem.

Once the problem of key exchange is formally de�ned, we use the above modular authentica-

tion techniques to build and analyze speci�c key exchange protocols: we start with a key-exchange

protocol that is proven secure in the simpler authenticated model, and then apply to it an au-

thenticator that transforms it into a key exchange protocol secure in the unauthenticated model.

We exemplify this process using the basic Di�e-Hellman protocol for idealized authenticated links

[DH] and transforming it into several avors of \authenticated Di�e-Hellman" through di�erent

mt-authenticators. As said before this reduces to only proving the basic Di�e-Hellman protocol

in the much simpler authenticated model. Remarkably, we are able to provide in this way with

analysis of several of the underlying key exchange mechanisms used in some well known practical

key distribution protocols (see [DOW, Kra, ISO, HC]).

As another demonstration of the power of these tools, and as a signi�cant result by itself,
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we prove validity of the following common approach to authenticating bulk communications: the

parties �rst exchange a key using a particular key exchange protocol and then use this key to

compute a MAC (message authentication code) function on the transmitted information. Using

our methodology we show that any secure key exchange combined with a secure MAC function in

this way represents a good authenticator.

Related work. As indicated above, the design of these protocols has a long history in which many

protocols are proposed and broken. The works of Bird et al. [BGH+] and Di�e et al. [DOW], the

�rst in the model of shared secrets and the second in the public key model, exposed several of the

subtleties involved. This included issues like dealing with interleaving of di�erent runs (or sessions)

of a protocol and the importance of binding identities of sender and receiver to the exchanged

information. These works also made clear the fact that no satisfactory de�nitions existed in the

literature for this kind of protocols (in particular, they point out that previous extensive work in

formalization of cryptographic primitives and protocols did not cover these basic authentication

protocols).

The above-mentioned works of Bellare and Rogaway [BR1, BR2] provided formalizations for

certain cases. They introduced the model of an adversary in charge of all communications, modeled

sessions and session key reveal attacks, and suggested that the session key should be strongly secure,

in the sense of semantic security. They also provided and proved secure some simple protocols.

Various works address extending their framework to other settings and problems; for example,

Shoup and Rubin to smart card settings [SR]; Lucks to consider dictionary attacks [Luc]; Blake-

Wilson, Johnson and Menezes [BlMe, BJM] and Bellare, Petrank, Racko� and Rogaway [BPRR]

for the public key setting. See [MVV, Chapter 12] for general background and information on the

subject of authenticated key exchange.

A di�erent approach to the analysis of authentication and key exchange protocols is provided

through the use of logic tools. The best known example is the BAN logic of [BAN]. This approach,

however, abstracts out the cryptographic mechanisms and replace them with ideal primitives, thus

limiting the signi�cance of a successful analysis of a given protocol (on the other hand, these tools

have proven useful to \debug" some weaknesses from certain authentication protocols).

Finally we note that a similar notion of an \authenticator" is used in [CHH]. There, however,

both the setting and the solution are quite di�erent: they design a proactive authenticator against

a mobile adversary and in an ideally synchronized network.

Organization. In Section 2 we present our communication models and formulate the central

notion of an authenticator, i.e. a compiler for authenticated networks. We show how to build such

an authenticator out of a much simpler protocol (an mt-authenticator) intended to authenticate

a simple exchange of messages. In Section 3 we present two simple such mt-authenticators based

on public key techniques. In Section 4 we de�ne key exchange protocols and show how to use such

protocols to construct authenticators which in turn form the basis for authentication of bulk data

over typical communication networks. In Section 5 we show the application of the tools developed in

previous sections to the construction of speci�c secure key exchange protocols. This is exempli�ed

through several important variants of the authenticated Di�e-Hellman protocol. Proofs are omitted

throughout, for lack of space. They appear in [BCK].

2 Authenticators

We introduce authenticators, i.e. compilers for unauthenticated networks, and show how to build

them from simple protocols. Informally, an authenticator takes a protocol for (ideally) authen-
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ticated networks and turns it into a protocol that has similar input-output characteristics in an

unauthenticated network. Here we formalize this notion and present a general methodology for

building authenticators.

In existing unauthenticated networks (such as the Internet) an adversary may have control over

the delay and ordering of messages. This control gives the adversary considerable powers, and in

particular allows a host of attacks called man-in-the-middle attacks. In addition, protocols that

do not depend on timings of messages are typically preferable in practice. In order to capture

these concerns we allow our adversaries total control over the scheduling of messages. Formally,

this modeling is reminiscent of the asynchronous model used in the theory of secure distributed

computing (see [BCG] for instance). Yet, it is stressed that the notion of asynchrony there is

di�erent from the one here in several respects; in addition the motivations are di�erent.

In Section 2.1 we present basic de�nitions that are central for our formalization and techniques.

These include a formalization of (message-driven) protocols and of the adversarial model for au-

thenticated and unauthenticated networks, as well as the de�nition of protocol emulation and of

authenticators. In Section 2.2 we present a re�nement of these de�nitions aimed at capturing the

peculiarities of protocols that involve di�erent sessions. In Section 2.3 we present a general ap-

proach for designing and analyzing authenticators. The approach regards an authenticator as a

`lower layer' communication protocol; this considerably facilitates designing and proving security of

authenticators. In the rest of this work we concentrate on authenticators built using this approach.

2.1 Basic de�nitions

Message-driven protocols. A message-driven protocol is an iterative process described as

follows. The protocol is invoked by a party with some initial state that includes the protocol's

input, random input, and the party's identity. Once invoked, the protocol waits for an activation.

An activation can be caused by two types of events: the arrival of a message from the network, or

an external request. (External requests model information coming from other processes run by the

party). Upon activation, the protocol processes the incoming data together with its current internal

state, generating a new internal state, as well as generating outgoing messages to the network and

external requests to other protocols (or processes) run by the party. In addition, an output value

is generated. We regard the output as cumulative. That is, initially the output is empty; in each

activation the current output is appended to the previous one. Once the activation is completed,

the protocol waits for the next activation. Formally, a protocol � is captured by a (probabilistic)

function:

�(current state; incoming message; external request) =

(new state; outgoing messages; outgoing requests; output)

The authenticated-links model (am). There are n parties, P

1

:::P

n

, each running a copy of

a message-driven protocol �. The computation consists of a sequence of activations of � within

di�erent parties. The activations are controlled and scheduled by an adversary A.

1

That is,

initially and upon the completion of each activation A decides which party to activate next; A also

decides which incoming message or external request the activated party is to receive. The outgoing

messages, outgoing external requests and the output generated by the protocol become known to

A. The new internal state remains unknown to A.

1

All the adversaries in this paper are probabilistic polynomial time.
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In the authenticated-links model, A is restricted to delivering messages faithfully. That is,

we assume that each outgoing message carries the identities of the sender P

i

and of the intended

recipient P

j

. When a message is sent by a party (ie, when the message appears in the list of

outgoing messages in an activation of � within the party), the message is added to a set M of

undelivered messages. Whenever A activates a party P

j

on some incoming message m it must be

that m is in the set M and that P

j

is the intended recipient in m. Furthermore, m is now deleted

from M .

2

We stress that A is not required to maintain the order of the messages, nor is it bound

by any fairness requirement on the activation of parties, nor is it required to deliver all messages.

There are also no limitations on the external requests that A issues.

In addition to activating parties, the adversary A can corrupt parties at wish. Upon corruption

A learns the entire current state of the corrupted party P

i

.

3

In addition, from this point on A can

add to the setM any (fake) messages, as long as P

i

is speci�ed as the sender of these messages. The

corrupted party appends a special symbol to its output, specifying that it is corrupted. From this

point on the corrupted party is no longer activated (as its actions can be taken by the adversary

itself), thus its output does not grow.

4

We refer to an adversary as described here as an am-

adversary.

The global output of running a protocol is the concatenation of the cumulative outputs of all

the parties, together with the output of the adversary. The output of the adversary is a function,

speci�c to each adversary, of the adversary view. The adversary view is all the information seen

(and derived) by the adversary throughout the computation, together with its random input. Recall

that the output of the parties includes registration of important events that occurred during the

execution (such as corruption of parties). This provision ensures that these events are considered

in the security requirement (De�nition 1 below).

We use the following notation. Let adv

�;A

(~x;~r) denote the output of adversary A when in-

teracting with parties running protocol � on input ~x = x

1

: : : x

n

and random input ~r = r

0

: : : r

n

as described above (r

0

for A; x

i

and r

i

for party P

i

, i > 0). Let auth

�;A

(~x;~r)

i

denote the cu-

mulative output of party P

i

after running protocol � on input ~x and random input ~r, and with

an am-adversary A. Let auth

�;A

(~x;~r) = adv

�;A

(~x;~r);auth

�;A

(~x;~r)

1

: : :auth

�;A

(~x;~r)

n

:. Let

auth

�;A

(~x) denote the random variable describing auth

�;A

(~x;~r) when ~r is uniformly chosen.

The unauthenticated-links model (um). Basically, the unauthenticated-links model of com-

putation is similar to the authenticated-links one, with the exception that here the adversary U ,

referred to as a um-adversary, is not limited to deliver messages that are in M . Instead, it can

activate parties with arbitrary incoming messages (even with fake messages that were never sent).

In addition, here we augment the protocol � with an initialization function I that models an

initial phase of out-of-band and authenticated information exchange between the parties. (This

function models the necessary bootstrapping of the cryptographic authentication functions, e.g. by

letting the parties choose private and public keys for some asymmetric cryptosystem and trustfully

exchange the public keys.) Function I takes only a random input r, and outputs a vector I(r) =

I(r)

0

::::I(r)

n

. The component I(r)

0

is the public information and becomes known to all parties

2

Here we assume that no message appears twice. Alternatively, one can add message-ID's to messages to make

them unique.

3

By limiting the adversary to learn only the current state of the corrupted party we allow protocols that erase

data. An alternative, more conservative formalization (which we do not adopt) allows the adversary to learn all the

past internal states of the party, thus making erasures pointless. This more conservative formalization captures the

reluctance of parties to base their security on the good will of other parties to locally erase data. See [CFGN] for a

discussion. In this work, the distinction between the two formalizations will become apparent in Section 5.

4

We do not limit the number of parties that the adversary can corrupt. This reects our goal of providing

authenticity against adversaries that corrupt any number of parties.
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and to the adversary. For i > 0, I(r)

i

becomes known only to P

i

.

5

We de�ne unauth

�;U

(~x;~r) and unauth

�;U

(~x) analogously to auth

�;A

(~x;~r) and auth

�;A

(~x),

where here the computation is carried out in the unauthenticated-links model. The initialization

function I is part of the description of protocol �.

Emulation of protocols. We de�ne what it means for a protocol �

0

in the unauthenticated-

links model to emulate a protocol � in the authenticated-links model. We want to capture the idea

that `running �

0

in an unauthenticated network has the same e�ect as running � in an authenticated

network'. This is done following a general approach used for de�ning secure multi-party protocols

[MR, Bea, Ca1]. That is:

De�nition 1 Let � and �

0

be message-driven protocols for n parties. We say that �

0

emulates � in

unauthenticated networks if for any um-adversary U there exists an am-adversary A such that for

all input vectors ~x,

auth

�;A

(~x)

c

� unauth

�

0

;U

(~x) (1)

where

c

� denotes `computationally indistinguishable'.

6

Requirement (1) incorporates many conditions. In particular, the combined distributions of the

outputs of the parties, the adversary's output, and the identities of corrupted parties, should be

indistinguishable on the two sides of (1). In general, this condition captures the required notion of

\security equivalence" between the protocols in the sense that any consequences of the actions of

the strong um-adversary against executions of the protocol �

0

can be imitated or achieved by the

weaker am-adversary against the runs of protocol � without requiring the corruption of more (or

di�erent) parties.

An authenticator is a `compiler' that takes for input protocols designed for authenticated net-

works, and turns them into `equivalent' protocols for unauthenticated networks:

De�nition 2 A compiler C is an algorithm that takes for input descriptions of protocols and outputs

descriptions of protocols. An authenticator is a compiler C where for any protocol �, the protocol

C(�) emulates � in unauthenticated networks.

In particular, authenticators translate secure (in some well de�ned sense) protocols in the authenticated-

links model into secure protocols in the unauthenticated-links model. In the following sections we

show constructions of authenticators and their applications (e.g., we show how to transform the

basic Di�e-Hellman protocol that runs securely in the authenticated-links model into a secure key

exchange protocol in the unauthenticated-links model).

5

The initialization function I models a `perfectly secure' initial exchange where the private information of all

parties is chosen according to the protocol, and all parties learn the authentic public information pertaining to all

other parties. Alternatively, the initial information exchange among the parties can be modeled via an explicit in-

band communication phase where the adversary is restricted to be authenticated (ie to deliver only messages in M)

and perhaps also synchronous. This alternative approach has the advantage that it captures possible weaknesses of

methods for initial key exchange (eg, of protocols for certi�cation authorities). In particular, this approach allows

the adversary to corrupt parties during the initial phase. In this work we `abstract out' the initial exchange phase

and stick to the initialization function formalization.

Also note that The initialization function I allows for other types of initial exchanges, other than exchanging public

keys of an asymmetric cryptosystem. For instance, I can contain shared secret keys between each pair of parties.

Consequently, this same model can be used to analyze also shared-key based authentication protocols. In this work

we concentrate on initialization functions where the parties do not share secret data.

6

Two distribution ensembles are computationally indistinguishable if no polytime adversary can distinguish them

with more than negligible probability. Here the asymptotics is over a security parameter that is implicit in the

description.
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2.2 Incorporating sessions

De�nitions 1 and 2 treat each party as a monolythic entity: either a party is totally corrupted or

it is totally secure. However, communication protocols often have additional structure that allows

a party to have, at the same time, several \independent conversations" with other parties. (Two

parties may even have several parallel \conversations" running between them.) These conversations,

often called sessions, may be very di�erent from each other, and in particular may have di�erent

security requirements. It is thus convenient to let each session have its own cryptographic protection

mechanisms, and to ensure that sessions are \cryptographically independent" from each other as

much as possible. That is, we want to make sure that compromising the security of one session will

have as little e�ect as possible on the security of other session run by the same party.

To accomodate the session structure, we re�ne de�nitions 1 and 2 as follows. First we re�ne

our formalization of message-driven protocols. One or more subroutines (or sub-protocols) can be

de�ned within the code of a protocol. The syntax of each sub-protocol is similar to the syntax of a

(message-driven) protocol described in Section 2.1. During a run of the protocol several invocations

of these sub-protocols may occur. A protocol may classify some of these invocations as sessions.

7

Typically, the local state of a session is mostly independent of local state of other sessions. (Yet,

often sessions do share some limited amount of state, e.g. the public and private keys of the party.)

Each session is identi�ed by a unique session ID. Notice that a message sent from a sender to an

intended recipient is part of the sender's session and the recipient's session. We assume that such a

message carries, in addition to the identities of the sender and receiver, also the ID corresponding

to the sender's session and the ID corresponding to the recipient's session.

Upon activation of the protocol with an incoming message m, a special code called a session

manager is executed. Typically, the session manager activates the session speci�ed in m with

incoming message m. (Alternatively, the session manager can decide to activate several sessions, to

invoke a new session, or to discard the incoming message without invoking any session.) In addition,

if an activated session generates outgoing requests t

1

:::t

k

that are addressed to other sessions �

1

:::�

k

within the party, then sessions �

1

:::�

k

are activated, one by one, each �

i

with incoming request t

i

.

Finally, the session manager outputs all the outgoing messages from all the activated sessions.

Although all sessions are run by the same party, we would like to think of the di�erent sessions

as of independent modules to a large extent. In particular, we want to allow the adversary to

compromise the security of only some of the sessions within some party. In this case we want the

uncompromised sessions to proceed uninterrupted. In order to capture these additional require-

ments, the de�nitions of the authenticated-links and unauthenticated-links models are enriched as

follows. Recall that a protocol may specify distinct sessions (at run-time). A well-de�ned part of

the local state is associated with each session. In both models we allow the adversary an addi-

tional type of corruption, called a session corruption. In a session corruption the adversary learns

only the internal state associated with a particular session. In addition, a special value is added

to the party's output specifying that the particular session (identi�ed by its session ID) has been

corrupted. Once the adversary corrupts a session, it can add any (fake) messages to the set M

of undelivered messages, as long as the speci�ed origin of these messages is the corrupted session.

The rest of De�nitions 1 and 2 remains unchanged.

We maintain the convention that all corruption requests made by the adversary are registered

in the parties' outputs, thus they become part of the global output of the computation. This

7

Although the previous paragraph follows the common interpretation of a session as an object that involves two

(conversing) parties, here we de�ne a session as a syntactic object that is local to a party. This greatly simpli�es the

presentation. In fact, a conversation between two parties is now a pair of sessions | one session within each of the

involved parties.
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convention ensures that if protocol �

0

emulates � then �

0

must preserve the partitioning of protocol

� into sub-protocols, and have similar session structure and session numbers.

2.3 mt-authenticators

We present the following general technique for designing authenticators. First design a `lower

layer' protocol � that takes external requests for sending messages and sends these messages in

an authenticated way. Next, given some protocol � (designed to work in the authenticated-links

model), the authenticator will output a protocol �

0

that is identical to protocol � with the exception

that messages are delivered through �. That is, instead of sending messages to the network,

� is activated for delivery of these messages, and instead of receiving incoming messages from

the network, the messages are taken from �'s output. We prove that this technique yields valid

authenticators.

More precisely, consider the following simple protocol, called the message transmission (mt) pro-

tocol, and designed for authenticated networks. The protocol takes empty input. Upon activation

within P

i

on external request (P

j

;m), party P

i

sends the message (P

i

; P

j

;m) to party P

j

, and

outputs `P

i

sent m to P

j

'. Upon receipt of a message (P

i

; P

j

;m), P

j

outputs `P

j

received m

from P

i

'.

Let � be a protocol that emulates mt in unauthenticated networks. (We call such protocols

mt-authenticators.) Then, de�ne a compiler C

�

as follows. Given a protocol �, the generated

protocol �

0

= C

�

(�), running within party P

i

, �rst invokes �. Next, for each message that � sends,

�

0

activates � with external request for sending that message to the speci�ed recipient. Whenever

�

0

is activated with some incoming message, it activates � with this incoming message. When �

outputs `P

i

received m from P

j

', protocol � is activated with incoming message m from P

j

.

We call authenticators that follow this design layered authenticators. This name is justi�ed by the

following theorem.

Theorem 3 Let � be an mt-authenticator (i.e. � emulates mt in unauthenticated networks), and

let C

�

be a compiler constructed based on � as described above. Then C

�

is an authenticator.

Proof: Let � be a protocol. We show that �

0

= C

�

(�) emulates � in unauthenticated networks.

That is, let U

�

0

be a um-adversary that works against �

0

. We construct an am-adversary A

�

such

that for all inputs ~x = x

1

:::x

n

,

auth

�;A

�

(~x)

s

= unauth

�

0

;U

�

0

(~x) (2)

where

s

= stands for `having negligible statistical distance'.

8

Adversary A

�

runs U

�

0

on the following simulated interaction with a set of n parties P

0

1

:::P

0

n

running �

0

on input ~x. (Intuitively, this is the \obvious" simulation, where A

�

orchestrates an inter-

action between U

�

0

and �, and at the same time uses the parties P

1

:::P

n

in the authenticated-links

model to play the upper-layer protocol for �.) First A

�

invokes �. Next, A

�

proceeds according to

the following rules:

1. Whenever U

�

0

activates P

0

i

with an external request, A

�

activates (in its authenticated-links

model) P

i

with the same request. For each outgoing message that P

i

generates in this activation,

say for P

j

, A

�

activates protocol � with external request for sending that message from P

0

i

to P

0

j

.

Next A

�

hands U

�

0

all the outgoing messages generated in the current imitated activation of P

0

i

,

together with any outgoing requests and outputs that P

i

may have generated.

8

Interestingly, here we only assume that � emulates mt with computational indistinguishability (see equation (1)),

but end up with statistical closeness for C

�

(see equation (2)). This is an extra feature of using layered authenticators.

11



2. Whenever U

�

0

activates P

0

i

with an incoming message m, A

�

�rst activates � with this incoming

message. Any outgoing messages and external requests generated by P

0

i

as the result of this acti-

vation by � are handed by A

�

to U

�

0

.

3. If in any activation of � party P

0

i

outputs `P

0

i

received m from P

0

j

', then A

�

activates, in the

authenticated-links model, party P

i

with incoming message m from party P

j

. For each outgoing

message that P

i

generates as a result of this activation, A

�

imitates an invocation within P

0

i

of �

for sending that message to the intended recipient. Next A

�

hands U

�

0

all the outgoing messages

generated in the current imitated activation of P

0

i

under �, together with any outgoing requests

and outputs that P

i

may have generated.

4. Whenever U

�

0

corrupts party P

0

i

, A

�

corrupts P

i

in the authenticated-links model. A

�

then

hands U

�

0

the internal data of P

i

together with the information regarding all copies of mt

0

within

P

0

i

(i.e. all activations of P

0

i

by �. If U

�

0

corrupts a session within some party P

0

i

then A

�

corrupts

the same session within P

i

and hands the corresponding information back to U

�

0

.

5. A

�

outputs whatever U

�

0

outputs.

We �rst need to show that the above description of the behavior of A

�

is a legitimate behavior

of an am-adversary. The above steps are easy to verify as legal moves for A

�

, except for step 3.

In the later case, it could be possible that the triple (P

j

; P

i

;m) is not currently in the set M of

undelivered messages in the authenticated-links model, and P

j

(and the originating session within

P

j

) is uncorrupted. It is easy to see that if this is not the case, namely, if we assume that step 3

can always be carried out, then the above construction satis�es (2). (In fact, under this condition

the two sides of (2) are identically distributed.)

9

This holds since the simulated run of U

�

0

, together

with the activations of the parties in the authenticated-links model is an exact imitation of a run

of U

�

0

in an unauthenticated network with parties running �

0

.

Thus, it remains to show that the probability that A

�

cannot carry out step 3 is negligible.

Assume that protocol � within an uncorrupted party P

0

i

outputs `P

0

i

received m from P

0

j

'. We

show that, except with negligible probability, the following events occur in the authenticated-links

model: (I). The triple (P

i

; P

j

;m) was added to M . (II). This triple was not yet deleted from M .

To see (I), notice �rst that if, in the simulated run of U

�

0

, party P

0

i

outputs `P

0

i

received m

from P

0

j

', then P

0

j

has invoked � for sending m to P

0

i

.

10

It now follows from the construction that

P

j

has sent m to P

i

in the authenticated-links model. Thus the triple (P

i

; P

j

;m) was added to M .

To see (II), notice that, in the simulated run of U

�

0

, P

0

i

has not previously output `P

0

i

received

m from P

0

j

'. (Otherwise it would be the case that P

0

i

outputs `P

0

i

received m from P

0

j

' twice,

and again one can construct from U

�

0

a um-adversary U

�

that contradicts the assumption that �

emulates mt.) It now follows from the construction that P

j

was not previously activated, in the

authenticated-links model, with incoming message m from P

j

. Thus the triple (P

i

; P

j

;m) was not

deleted from M . 2

9

A bit more precisely, let B be the event that step 3 cannot be carried out. Then, each execution where event B

does not occur has the same probability in the simulated and real interactions.

10

Otherwise we construct from U

�

0

a um-adversary U

�

that contradicts the assumption that � emulates mt. U

�

will simply run U

�

0

(and complete U

�

0

's missing information by running a simulated copy of � on input ~x). Now,

in the global output of the parties running � with U

�

the event that some party accepts a message that was never

sent occurs with non-negligible probability. Yet, in an authenticated network, with any adversary, this event never

occurs. We omit further details from this sketch.
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Figure 1: Signature based mt-authenticator

3 Two simple mt-authenticators

We present two simple mt-authenticators. These mt-authenticators adopt the following approach.

Assume that the parties have set up keys of an asymmetric cryptosystem. (That is, each party

has its private key as well as the public keys of all parties.) Now, authenticate each message

independently from all other messages. That is, the mt-authenticator invokes an independent copy

of some simple protocol for each message of the original protocol. One may think of such mt-

authenticator as ones that consider each sending of a message as a session, and authenticate each

session separately.

Applying Theorem 3, the two mt-authenticators can be made into full-edged authenticators.

In particular, they play a central role in our constructions of key-exchange protocols in Section 5.

3.1 A signature-based mt-authenticator

We construct an mt-authenticator, �

sig

, based on public key signatures. The initialization function

I �rst invokes, once for each party, the key generation algorithm of a signature scheme secure

against chosen message attack with security parameter k. Let sign and ver denote the signing

and veri�cation algorithms. Let s

i

and v

i

denote the signing and veri�cation keys associated with

party P

i

. The public information is all public keys: I

0

= v

1

:::v

n

. P

i

's private information is I

i

= s

i

.

Next, when activated, within party P

i

and with external request to send message m to party P

j

,

protocol �

sig

invokes a two-party protocol

^

�

sig

that proceeds as follows. (Since

^

�

sig

involves only

two parties, we use A and B instead of P

i

and P

j

. Also, in the following description we alternate

between instructions for the sender A and for the recipient B.) First, A sends `message:m' to

B. (A also outputs `A sent message m to B'.) Upon receipt of `message:m' from A, party

B chooses a random value N

B

2

R

f0; 1g

k

, and sends `challenge:m;N

B

' to A. Upon receipt

of `challenge:m;N

B

' from B, party A sends `signature:m; sign

s

A

(m;N

B

; B)' to B. Upon

receipt of `signature:m; sign

s

A

(m;N

B

; B)', party B accepts m (ie, it outputs `B received m

from A') if the signature is successfully veri�ed. Pictorially, the exchange for a single message can

be described as in Figure 1.

Proposition 4 Assume that the signature scheme in use is secure against chosen message attacks.

Then protocol �

sig

emulates protocol mt in unauthenticated networks.

Proof: Let U be a um-adversary that interacts with �

sig

. We construct an am-adversary A such

that auth

mt;A

()

s

= unauth

�

sig

;U

(). (Since protocol mt ignores its input, we consider only the

empty input.) Adversary A proceeds similarly to adversary A

�

in the proof of Theorem 3. That

is, A runs U on a simulated interaction with a set of parties running �

sig

. First A chooses and

distributes keys for the imitated parties, according to function I. Next, when U activates some

13



imitated party A

0

for sending a message m to imitated party B

0

, adversary A activates party A

in the authenticated network to send m to B. In addition, A continues the interaction between

U and the imitated parties running �

sig

. When some imitated party B

0

outputs `B

0

received m̂

from A

0

', adversary A activates party B in the authenticated-links model with incoming message

m̂ from A. When U corrupts a party, A corrupts the same party in the authenticated network and

hands the corresponding information (from the simulated run) to U . Finally, A outputs whatever

U outputs.

Let B denote the event that imitated party B

0

outputs `B

0

received m from A

0

' where A

0

is uncorrupted and the message (m;A;B) is not currently in the set M of undelivered messages.

In other words, B is the event where B

0

outputs `B

0

received m from A

0

', and either A wasn't

activated for sending m to B, or B has already had the same output before. In this event we say

that U broke party A

0

. As in the proof of Theorem 3, it is straightforward to see that if A

�

could

continue with the simulation even when event B occurs, then the simulation run by A is perfect

and auth

mt;A

()

d

= unauth

�

sig

;U

(). (Here

d

= denotes `equally distributed'.)

It remains to show that event B occurs only with negligible probability. Assume that event

B occurs with probability �. We construct a forger F that breaks the signature scheme with

probability �=n. Given a veri�cation key v

�

and access to a signing oracle, forger F runs U on the

following simulated interaction with a set of parties running �

sig

. First F chooses and distributes

keys for the imitated parties according to function I, with the exception that the public veri�cation

key associated with some party P

�

, chosen at random, is replaced with the input key v

�

. Next, F

continues the simulated interaction. If during the simulation P

�

is required to sign a value l then F

asks its signing oracle for a signature of l. If party P

�

is corrupted then the simulation is aborted

and F fails. If some party Q outputs `Q received m from P

�

', and P

�

was not activated to

sent m to Q (or if Q has already output this value before), then F announces success and outputs

the signature in the last incoming message that Q received.

First note that U 's view of the interaction withF , conditioned on the event that F does not abort

the simulation, is identically distributed to U 's view of a real interaction with an unauthenticated

network. (This is so since P

�

is randomly chosen.) Let B

�

be the event where B occurs in the

simulated run of U within F , and that the party broken by U is P

�

. Since P

�

is chosen at random,

and since event B

�

and an abortion never occur at the same run, we have that event B

�

occurs

with probability at least �=n.

Assume that event B

�

occurs. In this case, the signature that Q received in its last incoming

message is a valid signature (w.r.t. veri�cation key v

�

) of a value (m;N

Q

; Q). Moreover, P

�

never

generated this signature. (In case that P

�

was not activated to send m to Q, it is clear that P

�

never signed this message. In the case that Q outputs the same value twice, recall that all messages

are di�erent, thus P

�

sent m only once. However, with probability (1�2

�k

) the challenge N

Q

that

appears in the above signature is di�erent than the challenge that P

�

signed.) Thus, F never asked

its oracle for this signature. Consequently, F has successfully broken the signature scheme. 2

Remarks. 1. Protocol �

sig

can be modi�ed to replace the challenge N

B

in the second ow with a

counter that makes sure that no value appears twice. The proof remains unchanged. Yet, now �

sig

has to `maintain common state' among the di�erent `sessions' (i.e, among the activations pertaining

to di�erent �-messages). Maintaining state across sessions is problematic and inadvisable in actual

systems.

2. Another possible modi�cation of �

sig

is to avoid the second ow altogether, and collapse the

�rst and third ows to a single ow where A signs (m;B). To avoid replay of messages by the

adversary, each party will maintain a database of all the messages received in the past and will

accept only new messages. Yet, this protocol too requires the party to maintain (a lot of) state

14
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Figure 2: Encryption based mt-authenticator

across sessions, to the point of impracticality.

3. One does not need to send the message m in each of the ows of the protocol. A can send it

in the �rst ow only or even in the last ow only (in the latter case the �rst ow can just carry a

notice that there is a message \waiting for delivery"). The ow from B to A does not need to carry

the message but needs some unique \identi�er" (similar to a session-ID) that bounds the particular

value of the challenge N

B

to the message being transmitted.

4. All the three elements signed by A in the third ow are necessary. Omitting any one of these

elements makes our proof fail and actual attacks against the security of the scheme are possible.

This includes the less obvious case in which B's identity is omitted. An attack in this case was

described by Di�e et al [DOW].

3.2 An encryption-based mt-authenticator

We construct a mt-authenticator, �

enc

, based on public key encryption. In addition, �

enc

uses

a message authentication (MAC) scheme. This protocol is based on the authentication technique

underlying the key exchange mechanisms in [Kra]. (It is also reminiscent of the [DDN] message

authentication protocol.) Protocol �

sig

proceeds as follows. The initialization function I �rst

invokes, once for each party, the key generation algorithm of a public key encryption scheme

semantically secure against chosen ciphertext attack in the sense of [RS], with security parameter

k.

11

Let enc and dec denote the encrypting and decrypting algorithms, and let mac denote the

MAC scheme in use. Let e

i

and d

i

denote the signing and veri�cation keys associated with party

P

i

. The public information is all the public keys: I

0

= e

1

:::e

n

. P

i

's private information is I

i

= d

i

.

Next, when activated within party A, and with external request to send message m to party

B, protocol �

enc

invokes a two-party protocol

^

�

enc

that proceeds as follows. First, A sends

`message:m' to B. (A also outputs `A sent message m to B'.) Upon receipt of `message:m'

from A, party B chooses a random value N

B

2

R

f0; 1g

k

, and sends `challenge:m;enc

e

A

(N

B

)'

to A. Upon receipt of `challenge:m;enc

e

A

(N

B

)' from B, party A obtains N

B

by decrypting

the value in the last �eld in the incoming message, and sends `mac:m;mac

N

B

(m;B)' to B. Upon

receipt of `mac:m; v', party B proceeds as follows. If v = mac

N

B

(m;B) then B accepts m (ie,

it outputs `B received m from A'). Otherwise, B rejects this message and terminates this in-

vocation of

^

�

enc

. (Terminating the session in case of a bad MAC is not essential for the security;

however, considerably simpli�es the analysis.) Pictorially, the exchange for a single message can

be described as in Figure 2.

11

The adversary is given a ciphertext and is allowed to ask for decryption of any value other than the value given.

It must eventually decide whether the given ciphertext is an encryption of a given value. Here we use a weak version

of [RS] security (see remark after the proof of Proposition 5). The �rst encryption scheme secure in this sense appears

in [DDN].
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Proposition 5 Assume that the encryption scheme in use is secure against chosen ciphertext

attacks in the sense of [RS], and that the MAC scheme in use is secure. Then protocol �

enc

emulates protocol mt in unauthenticated networks.

Proof: Up till the de�nition of event B, the proof is identical to the proof of Proposition 4. We

pick up the proof from this point, showing that event B occurs only with negligible probability.

We proceed in two steps. First we use U to construct a forger F that breaks the MAC scheme,

given an encryption of the secret key in use, and oracle access to a decryption box. Next we use F

to construct a distinguisher D that breaks the semantic security of the encryption scheme against

chosen ciphertext attacks.

Assume that event B occurs with probability �, and let l be the total number of messages

that U delivers in its run. (That is, U performs at most l activations of parties with incoming

message `message:...'.) Then Forger F succeeds with probability �=l, making at most l MAC

queries. Distinguisher D breaks the semantic security of the encryption scheme with probability at

least

�

l

� �

mac

, where �

mac

is an upper bound on the probability to forge the MAC scheme with l

queries. That is, if �

enc

is an upper bound on the breaking probability of the encryption scheme

then � � l(�

mac

+ �

enc

).

More precisely, de�ne an encryption-aided MAC forger, F , as follows. Let e

�

; d

�

be a pair of

encryption and decryption keys of the encryption scheme in use with security parameter k (ie,

G(1

k

) = (e

�

; d

�

), where G is the key generation algorithm). Forger F takes for input the encryption

key e

�

and an encryption f = enc

e

�

(N

�

) where N

�

2

R

f0; 1g

k

. In addition, F has access to two

oracles: One is a decryption oracle D that decrypts messages (di�erent than f) according to the

decryption key d

�

. (That is, D(f) =?. If

^

f 6= f then D(

^

f) = dec

d

�

(

^

f).) The other oracle is a

MAC oracle C with secret key N

�

. That is, C(m) = mac

N

�

(m). The goal of F is to output a pair

m̂;mac

N

�

(m̂) where C wasn't queried on m̂.

Construction of F . Given U , we construct an encryption-aided MAC forger. Forger F runs

U on the following simulated interaction with a set of parties running �

enc

. First F chooses and

distributes keys for the imitated parties according to function I, with the exception that the public

encryption key associated with some party P

�

, chosen at random, is replaced with the input key

e

�

. Next, F continues the simulated interaction. Let m

�

be a message chosen at random out of

all messages m such that some party P was activated with `message:m' from P

�

.

12

If during the

simulation party P

�

is corrupted then the simulation is aborted and F fails. If party P

�

is required

to decrypt a value enc

e

�

(N) that is sent in response to receipt of a message di�erent than m

�

then

F asks its decryption oracle for the decryption and proceeds with the simulation. When some party

P is activated by U with incoming message m

�

then F has P respond with `challenge:m

�

; f'

where f is F 's input. (That is, P 's encrypted challenge is N

�

.) Next, if P

�

is activated with

incoming message `challenge:m; f' from some party Q and m 6= m

�

or Q 6= P , then F asks its

MAC oracle for mac

N

�

(m;Q), and proceeds with the simulation. If m = m

�

and Q = P then the

simulation is aborted and F fails. Finally, if U activates P with incoming message `mac:m

�

; c'

from party P

�

, then F outputs m

�

P; c and halts, hoping that c = mac

N

�

(m

�

P ).

Analysis of F . First note that U 's view of the interaction with F (conditioned on the event that

F does not abort the simulation) is distributed identically to U 's view of a real interaction with an

12

If the total number l

�

of message that P

�

sends and U delivers is known in advance then F simply choose at

random i 2

R

f1::l

�

g and lets m

�

be the ith message that P

�

sends and U delivers. Otherwise, F chooses m

�

via the

following process. Whenever some party P was activated with `message:m' from P

�

, forger F decides to choose

m

�

= m with an appropriate probability, making sure that by the end of the run all the candidate messages have

equal probability to be chosen. We omit further details.
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unauthenticated network. (This is so since P

�

and m

�

are uniformly distributed in their domains.)

Let B

�

be the event where B occurs in the simulated run of U within F , that the party broken

by U is P

�

, and that the message with which P

�

is broken is m

�

. Since P

�

and m

�

are chosen at

random, and since event B

�

and an abortion never occur at the same run, we have that event B

�

occurs with probability �=l.

Assume that event B

�

occurs. In this case, the MAC that P received in its last incoming

message is a valid MAC (w.r.t. veri�cation key N

�

) of the value (m

�

; P ). Moreover, P

�

never

generated this MAC. (In case that P

�

was never activated to send m

�

to P , it is clear that P

�

never generated this MAC. Otherwise, we have that P outputs the same value twice. In this case,

recall that all messages are di�erent, thus P

�

sent m

�

only once. However, with probability 1�2

�k

the key N

�

used in the above MAC is di�erent than the key used in the MAC generated by P

�

.)

Thus, F never asked its MAC oracle for this MAC. Consequently, F has successfully broken the

MAC scheme.

The distinguisher D. Next we construct a distinguisherD that, given an encryption-aided MAC

forger F , breaks the semantic security of the encryption scheme against chosen ciphertext attacks.

That is, D takes for input a public key e of an asymmetric encryption scheme, an encryption

f = enc

e

(N) where N 2

R

f0; 1g

k

, and a value N

1

. In addition, D has access to a decryption oracle

D that decrypts messages (di�erent than f) according to the decryption key d

�

that corresponds to

e

�

. (That is, D(f) =?. If

^

f 6= f then D(

^

f) = dec

d

�

(

^

f).) The goal of D is to distinguish between

the case where N

1

2

R

f0; 1g

k

independently of N , and the case where N = N

1

.

Distinguisher D runs forger F on input e; f . It relays F 's decryption queries to D (ie, to D's

decryption oracle). It answers F 's MAC queries according to key N

1

. That is, MAC query m is

answered with mac

N

1

(m). Finally, if F outputs a successful forgery then D outputs `N

1

= N '.

Otherwise D outputs `N

1

is independent from N '.

Analysis of D is straightforward. Let �

f

denote the probability of successful forgery by F , and

let l be the number of MAC queries made by F . Let �

mac

be an upper bound on the probability of

breaking the MAC scheme with up to l queries. Then, if N = N

1

then D outputs `N

1

= N ' with

probability �

f

. If N

1

is independent from N then D outputs `N

1

= N ' with probability at most

�

mac

, otherwise F can be used to break the security of the MAC algorithm in use. 2

Remarks. 1. Proposition 5 needs only a considerably weaker property than full-edged security

against chosen ciphertext attacks of the encryption scheme. That is, forger F (in the proof of

Proposition 5), as well as distinguisher D, do not need a full-edged decryption oracle. Instead,

they only need to know, given enc

e

�

(N

�

) and a value v, the appropriate MAC (ie, mac

N

�

(v)).

2. An alternative mt-authenticator, based on encryption schemes that are non-malleable against

chosen ciphertext attacks, is described in [DDN]. Their construction does not use MAC schemes;

instead it uses the `full power' of the decryption oracle.

4 Key exchange protocols: De�nitions and usage

In Section 3 we presented authenticators that treated each message separately. Such authenticators

are not suited for authentication of a large number of messages exchanged between two parties since

they involve a costly public-key operation (ie, encryption, decryption, signature or veri�cation) per

message. When transmitting many messages between two parties the following approach is usually

taken: �rst have the parties engage in a key exchange protocol, where they obtain a common

key known only to the two parties. Next, authenticate each message between the parties using a

standard symmetric key message authentication (MAC) algorithm under the exchanged key. MAC
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performance is usually several orders of magnitude faster than the public key related operations.

(In addition, some extra measure is needed in order to avoid replay of messages. This can be done

through a shared state between the parties.)

Typically, several invocations of a key exchange protocol may occur between each two parties

during the lifetime of the system. It is natural to consider each invocation of the key exchange

protocol (together with the invocation of the code pertaining to the incoming and outgoing messages

that are authenticated with the obtained key) as a separate session. In this and the following section

we concentrate on this meaning of the term session. As usual, we would like to consider each session

as an independent entity, as much as possible (see Section 2.2).

Below we de�ne key-exchange protocols (Section 4.1), and show that the above approach to

constructing authenticators is indeed secure (Section 4.2).

4.1 Key-exchange protocols: a de�nition

We present a de�nition of a secure key exchange (KE) protocol. We use the following standard

paradigm for de�ning secure protocols: First we specify an ideal KE process. This ideal process

captures our intuitive notion of `the best we can expect' from a KE protocol. Next we say that

a KE protocol (either in the authenticated or in the unauthenticated-links model) is secure if it

emulates to the ideal KE process, as formalized in De�nition 1.

Using this de�nitional approach we obtain, `in one blow', de�nitions for secure KE protocols

both in the authenticated and the unauthenticated-links models. It may seem that KE protocols

in the authenticated-links model are of theoretical interest only. Yet, it will follow as an immediate

corollary that if � is a secure KE protocol in the authenticated-links model, and C is an authenti-

cator, then C(�) is a secure KE protocol in the unauthenticated-links model. This points to a very

attractive design principle for secure KE protocols. See Section 5 for further details.

Although each exchange of a key involves only two parties, we model a KE protocol as an

on-going multi-party process that involves all parties in the system. This captures the realistic

(and often subtle) threats against a key exchange protocol where an attacker can use a corrupted

party in order to attack an exchange between two other uncorrupted parties. In addition, we

allow pairs of parties to have multiple keys exchanged between them. Each exchange of a key

induces a separate session within each participating party.

13

We want the di�erent sessions to be as

independent of each other as possible. In particular, the compromise of a key exchanged and used

in one session should not lead to the compromise of keys exchanged in other sessions. These and

other characteristics (such as the ability of an attacker to destroy messages sent from one party to

another) are captured in the ideal KE process, described below.

The ideal KE process. There are n parties P

1

:::P

n

, and an ideal KE adversary S. We also

imagine participation of a trusted party T . The computation consists of a series of activations of

parties, made by S. There are four types of activations:

I. Invoke P

i

to establish a new key with P

j

. The e�ect is that the value `P

i

established

key (�; s) with P

j

' is added to P

i

's output, where � is a key chosen according to some prede�ned

distribution.

14

The value s is a session ID that consists of a tuple (P

i

; P

j

; c; i), where c is the numeral

of the session among all sessions established by P

i

with P

j

, and i is a symbol specifying that P

i

is

13

Typically, all the sessions are invocations of a single `exchange subroutine'. (This subroutine is invoked whenever

a party is prompted to exchange a key with another party.) Yet, we do not exclude protocols that invoke di�erent

subroutines for di�erent sessions.

14

The distribution of the established key is a parameter of the system. For instance, it may be that � 2

R

f0; 1g

k

where k is a security parameter.
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an initiator in this exchange. The adversary learns only the value s, and does not learn the value

�. (We envision that the value � is handed to P

i

by the trusted party.) In addition, the value s is

added to a global set I of incomplete sessions.

If an uncorrupted party establishes a key with a corrupted party (see item IV below), then we

let the adversary choose the value of the key. This provision reects the fact that we do not have

security requirements from keys exchanges with corrupted parties. In addition it will be important

for proving validity of known KE protocols (see Section 5).

II. Invoke P

j

to establish key of session s with P

i

. This activation is allowed only if the

value s is currently in the set I and s = (P

i

; P

j

; c; i) for some P

i

and c. The e�ect is that the value

`P

j

established key (�; ŝ) with P

i

' is added to P

j

's output, where � is the same value that

appears in the corresponding output of P

i

, and ŝ = (P

i

; P

j

; c;r). Here the symbol r speci�es that

P

j

is a responder in this exchange.

15

(Also here, we envision that the value � is handed to P

j

by

the trusted party.) In addition, the value s is deleted from the set I of incomplete sessions.

III. Corrupt session s. This activation is of course valid only if s is a session ID that was in I at

some point (or is currently in I). The e�ect is that the adversary learns the key � that corresponds

to s. In addition, the value `Session s is corrupted' is appended to the output of the initiator.

If s is no longer in I then the value `Session ŝ is corrupted' is appended also to the output of

the responder. We stress that s is not deleted from I (in case that s is currently in I).

IV. Corrupt party P

i

. The e�ect is that all the keys known to P

i

become known to the adversary.

In addition a value `P

i

is corrupted' is appended to P

i

's output.

We allow the adversary to keep activating corrupted parties (in order to allow corrupted parties

to exchange keys with uncorrupted ones.) Yet, we stick to the convention that the output of a

corrupted party does not grow (ie, the last value in a corrupted party's output is the corruption

notice).

As in Section 2.1, the global output of the ideal KE process is the concatenation of the cumulative

outputs of all the parties, together with the output of the adversary. (The output of the adversary

is a function of the information seen by the adversary throughout the computation, together with

its random input.)

We use the following notation. Let adv

S

(r

S

; r

T

) denote the output of ideal KE adversary S of

a run on random input r

S

and when the keys are chosen (by the trusted party T ) using random

input r

T

. Let ideal

S

(r

S

; r

T

)

i

denote the cumulative output of party P

i

after an interaction with

ideal KE adversary S and random inputs r

S

; r

T

. Let ideal

S

(r

S

; r

T

) =

adv

S

(r

S

; r

T

); ideal

S

(r

S

; r

T

)

1

: : : ideal

S

(r

S

; r

T

)

n

:

Let ideal

S

() denote the random variable describing ideal

S

(r

S

; r

T

) when r

S

; r

T

are uniformly

chosen.

Let auth

�;A

() and unauth

�;U

() be de�ned as in Section 2. As there, we use the convention that

whenever a party is corrupted, or a session within a party is corrupted, or a request to exchange a

key is issued, an appropriate note is appended to the party's output.

16

15

We adopt the convention that in the ideal model the session IDs of the initiating and responding parties are

identical, except for the i=r �eld. In particular, the initiator of the exchange always appears �rst.

16

This recording of \important events" is crucial for our notion of emulation. In particular, it forces a secure KE

protocol to actually exchange keys if the adversary delivers all messages faithfully; it also makes sure that a secure

KE protocol maintains a session structure similar to the ideal KE process (ie, each exchanged key is associated with

a separate session).
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De�nition 6 Let � be a message-driven protocol for n parties. We say that � is a secure KE

protocol in unauthenticated networks if for any um-adversary U there exists an ideal KE adversary

S such that

unauth

�;U

()

c

� ideal

S

():

We say that � is a secure KE protocol in authenticated networks if for any am-adversary A there

exists an ideal KE adversary S such that

auth

�;A

()

c

� ideal

S

():

Remark. The ideal KE process does not take any input. This allows De�nition 6 to consider only

the empty input.

4.2 From key-exchange protocols to authenticators

We show an mt-authenticator that exchanges a single key (ie, maintains a single session) for the

entire communication between each pair of parties. This can be generalized straightforwardly to

the case of multiple keys (ie, multiple sessions) between each pair of parties.

Let ke be a key exchange protocol in the unauthenticated-links model. Then the mt-authenticator

�

ke

proceeds as follows. First each party A invokes a copy of ke with each other party. Next, when

invoked to send a message m to party B, party A increments a local counter (associated with party

B), and sends m; i;MAC

K

AB

(m; i) to party B, where i is the current reading of the counter and

K

AB

is the obtained key for authenticating messages from A to B.

17

Upon activation with incoming

message (m; j; v), from B, verify that v = MAC

K

BA

(m; j) and that no message with counter j or

higher was received from B. If both veri�cations succeed then output `A received m from B'.

Theorem 7 Assume that ke is a key exchange protocol in the unauthenticated-links model, and

that mac is a secure MAC scheme. Then protocol �

ke

described above is a secure mt-authenticator.

Proof (sketch): Let U be a um-adversary that interacts with �

ke

. We construct an am-adversary

A such that

auth

mt;A

()

s

= unauth

�

ke

;U

() :

(Since protocol mt ignores its input, we consider only the empty input.) Adversary A proceeds

similarly to adversary A

�

in the proof of Theorem 4. As there, let B denote the event that some

simulated party B

0

outputs `B

0

received m from A

0

', and either A

0

wasn't activated for sending

m to B

0

, or B

0

has already had the same output before. As there, it is straightforward to see that if

A

�

could continue with the simulation even when event B occurs, then the simulation run by A is

perfect and auth

mt;A

()

d

= unauth

�

ke

;U

(). It remains to show that event B occurs with negligible

probability.

Assume event B occurs often. Then construct a forger F that forges the MAC scheme. Given

a MAC-oracle, F performs a simulation of U , where F simply runs the programs for all parties,

with the following exception. F chooses an (ordered) pair of parties, A;B at random. First F

runs a simulated execution of ke between A;B similarly to all other pairs of parties. Next, in all

17

An immediate optimization is to let party A invoke the key-exchange protocol with party B only when it needs

to send the �rst message to B.

Also, one can use the above protocol to have one key for the communication from A to B and a second key for the

communication from B to A. Alternatively, one can have the same key for the communications in both ways. Both

variants are secure.
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the subsequent communication from A to B, F replaces the MACs that A sends B with MACs

computed according to F 's oracle. If at some point U delivers a MACed message (m; j) from A to

B and A did not send this message then F outputs the message (m; j) and its MAC as forgery.

Analysis of F . Informally, we want to say that: (i). If protocol ke is replaced by an ideal KE

process then forger F succeeds. (This is so since in the ideal process the key established between

A;B is unknown to F . Thus F 's view of the simulated interaction is distributed identically to its

view of the idealized interaction.) (ii). Running ke is \equivalent" to running the ideal KE process.

Therefore, F succeeds here too. Formalizing this informal argument, we proceed as follows.

(I). Given adversary U , construct an adversary U

ke

that works against protocol ke. U

ke

will

choose public and private keys for a set of simulated (tagged) parties P

0

1

:::P

0

n

, and will run a full

simulated interaction between U and P

0

1

:::P

0

n

, with the following exception. U

ke

will choose two

parties A

0

; B

0

at random; whenever U activates A

0

or B

0

then U

ke

activates A;B in its actual

environment, and reports the party's actions back to U . If U asks A to send some MACed message

then U

ke

MACs this message according to random key that U

ke

chooses independently. If U wants

to fully corrupt A or B then U

ke

fails. (We do not care about such failures since they do not

occur when event B

�

does. B

�

is the event that B occurs w.r.t the pair A;B. Finally U

ke

outputs

whatever U does.

(II). Since ke is a secure KE protocol then there exists a simulator S that successfully imitates

U

ke

in the ideal KE model.

(III). Use S to construct another adversary, U

�

, that works against �

ke

. U

�

is identical to U

except that when U activates A or B then U

�

ignores U and instead follows the instructions of S.

(If event B

�

is to occur, then the only instruction that S will generate is to give A;B a shared

secret key.) We do not care what U

�

outputs, since we only want to simulate the interaction until

the point where event B

�

occurs, in case it does occur.

(IV). Assume that F runs U

�

instead of running U . Then F succeeds whenever B

�

occurs.

This is so since now the view of U

�

when running within F is is identically distributed to its view

of a real run of U

�

.

(V).We now claim that if F does not succeed when running U , then it is possible to distinguish

between the output of protocol ke run with U

ke

and the output of the ideal KE process with S (in

contradiction to the assumption that the two runs are computationally indistinguishable). This is

done as follows. Given an input string (that describes the output of an execution), distinguisher

D runs F with a simulated MAC oracle (to which D chose the secret key), and with the exception

that F now interacts with an adversary

^

U de�ned as follows:

^

U runs U except that the invocation

of ke between A;B is performed according to the input string. If F outputs a successful forgery

then D decides that the input string comes from S. Otherwise the input string comes from U

ke

.

Analyzing D, we show that if D's input comes from S then

^

U behaves like U

�

, and if D's input

comes from U

ke

then

^

U behaves like U . 2

Remark. Theorem 7 is stated for the case where only a single session (ie, a single KE invocation)

exists between each two parties. It can be straightforwardly generalized to the case where multiple

sessions co-exist between two parties. (New sessions are invoked by external requests from other

(higher-layer) protocols) The di�erence in the proof is that instead of choosing two parties A;B,

one will choose a speci�c session between A;B.
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5 Key exchange protocols: Constructions

In this section we present some constructions of KE protocols. Here we �nally put our new machin-

ery in use. In fact, we use our machinery with the following `twist'. In Section 4 we considered KE

protocols as a tool for obtaining authenticators. Here we use authenticators (and, in particular, the

authenticators constructed in Section 3) to construct KE protocols. That is, we �rst perform the

much easier task of designing a KE protocol ke in the authenticated-links model. Next, we use any

authenticator C to obtain a full-edged authenticator C(ke) in the unauthenticated-links model.

An important observation is that using this method with the layered authenticators of Section

3 we are able to obtain KE protocols that underlie important practical key distribution protocols.

This exposes a design principle that implicitly underlies those KE protocols, namely, the \separa-

bility" of the authentication mechanisms from the underlying basic key exchange mechanism.

18

Substantiating this design principle, we note the following easy (but central) corollary:

Corollary 8 Let ke be a secure KE protocol in authenticated networks, and let C be an authenti-

cator. Then C(ke) is a secure KE protocol in unauthenticated networks. 2

We consider two well-known KE protocols in the authenticated-links model: the Di�e-Hellman

protocol [DH], denoted dh, and an encryption-based protocol, denoted eb.

Encryption-based KE. First the parties choose private and public keys of any semantically

secure encryption scheme with security parameter k. (We stress that here, in the authenticated-

links model, simple semantic security against passive eavesdroppers is su�cient.) Let e

P

; v

P

denote

party P 's encryption and decryption keys. Next, upon activation for exchanging a key with party B,

party A invokes the following two-party protocol

^

eb. A chooses a key � 2

R

f0; 1g

k

sends enc

e

B

(�)

to B, and lets � be the established key. It is crucial that A immediately erase the random coins

used to encrypt �.

19

Upon receipt of enc

e

B

(�), party B lets � be the established key.

20

Proposition 9 Protocol eb is a secure KE protocol in authenticated networks.

Proof: Let A be an am-adversary that interacts with eb. We construct an ideal KE adversary

S such that auth

eb;A

()

c

� ideal

S

(). Adversary S chooses private and public keys for a set of

simulated parties P

0

1

:::P

0

n

and runs a simulated interaction between A and P

0

1

:::P

0

n

. Whenever a

simulated party A

0

sends an encrypted key to simulated party B

0

, adversary S invokes party A, in

the ideal model, to establish a new key with party B. Whenever simulated party B

0

accepts an

encrypted key from A

0

, S invokes B to establish a key of the corresponding session with A. Since

A is an am-adversary we are guaranteed that S's operations are always legal. When A corrupts

either a session or a party, S performs the same corruption in the ideal model and reports the

newly learned information back to A, together with the relevant information from the simulated

execution. Finally, S outputs whatever A outputs.

18

We stress that not all proposed key exchange protocols in the literature follow this modular approach (see

[MVV]). However, our work demonstrates a clear advantage of \separable" protocols where the design and analysis

of the protocol are made possible, and greatly simpli�ed, by this property.

19

If the parties do not trust each other to properly erase their random inputs then standard semantically secure

encryption does not su�ce. In some cases non-committing (ie, adaptively secure) encryption will su�ce [CFGN]. See

details there.

20

Typically in practice, the exchange is bi-directional. That is, both A and B send encrypted values to each other,

and the established key is some function (say, the bitwise exclusive or) of the two values. This is done so that parties

do not have to trust each other to properly choose their keys. For simplicity we concentrate here on the single-sided

protocol.
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Demonstrating that auth

eb;A

()

c

� ideal

S

() is done via a reduction to the semantic security of

the encryption scheme, by de�ning the appropriate l+1 hybrid distributions where l is the number

of keys exchanged. We omit further details. 2

Diffie-Hellman KE. It is assumed that a large safe prime p and an element g of multiplicative

order (p�1)=2 mod p are known to all parties. (p is safe if (p�1)=2 is a prime). Upon activation for

exchanging a key with party B, party A invokes the following two-party protocol

^

dh. (Confusingly,

this protocol is often called \unauthenticated DH".) A chooses an element x 2

R

ZZ

�

p

and sends

g

x

(mod p) to B. Upon receipt of g

x

from A, party B chooses y 2

R

ZZ

�

p

, sends g

y

(mod p) to A and

lets the established key be (g

x

)

y

(mod p). Upon receipt of g

y

from B, party A lets the established

key be (g

y

)

x

(mod p). It is crucial that both A and B erase the secret exponents x; y once the keys

are established, otherwise the protocol is not known to be secure against adversaries that choose

the corrupted parties in an adaptive way.

Proposition 10 Protocol dh is a secure KE protocol in authenticated networks.

Proof: Let A be an am-adversary that interacts with dh. Construction of the ideal KE adversary

S is identical to the proof of Proposition 9, with the exception that here the simulated parties

run protocol dh. Demonstrating that auth

dh;A

()

c

� ideal

S

() is done via a reduction to the

DH Indistinguishability assumption, in the same way as in the proof of Proposition 9. (The DH

Indistinguishability assumption states that g

x

; g

y

; g

xy

c

� g

x

; g

y

; g

z

, where x; y; z 2

R

ZZ

�

p

and p; g are

known. For discussion and more details on this assumption see, for instance, [Ca2, NR].) 2

Let C

sig

and C

enc

be the layered authenticators based on mt-authenticators �

sig

and �

enc

,

respectively (see Section 3). Then, it follows from Corollary 8 that both C

sig

(dh) and C

enc

(dh) are

secure KE protocols in unauthenticated networks. Protocol C

sig

(dh) is very similar to a signature-

based KE protocol used in an ISO standard [ISO, MVV]. C

enc

(dh) is very similar to the SKEME

KE protocol [Kra].

Remarks. 1. Naive application of C

sig

and C

enc

to protocoldh results in a 6-move protocol. Yet it

is straightforward to see that the 6 moves can be `collapsed' to 3 moves by `piggybacking' messages

of one protocol on the other. This is done as follows. Let � be either one of �

sig

or �

enc

, let �

i

be

the invocation of � that authenticates the initiator's message, and let �

r

be the invocation of � that

authenticates the responder's message. Then, in the �rst message of the combined protocol the

initiator sends the �rst message of �

i

together with the second message of �

r

. (The �rst message

of �

r

is not sent. It is implicit in the next step.) In the second step of the combined protocol the

responder sends the second message of �

i

together with the third message of �

r

. In the third step

of the combined protocol the initiator sends the third message of �

i

.

2. In a full version of this work we will extend the analysis of the DH exchange to deal with

issues like perfect-forward-secrecy and anonymity.
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