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Abstract

Alice has made a decision in her mind. While she does not want to reveal it

to Bob at this moment, she would like to convince Bob that she is committed

to this particular decision and that she cannot change it at a later time.

Is there a way for Alice to get Bob's trust? Until recently, researchers had

believed that the above task can be performed with the help of quantum

mechanics. And the security of the quantum scheme lies on the uncertainty

principle. Nevertheless, such optimism was recently shattered by Mayers and

by us, who found that Alice can always change her mind if she has a quantum

computer. Here, we survey this dramatic development and its implications

on the security of other quantum cryptographic schemes.
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I. INTRODUCTION

Cryptography | the art of sending secret messages | has a long and distinguished

history of applications. The security of conventional cryptographic systems is often based

on some computational assumptions such as the hardness of factoring of large composite

numbers [1,2]. Remarkably, in 1994 Shor found an e�cient quantum algorithm for factoring

[3,4]. Consequently, much of the conventional cryptography will fall apart, if a quantum

computer is ever built.

Interestingly, it has been proposed that quantum mechanics also comes to the rescue. In

quantum mechanics, there is a well-known \no-cloning theorem" saying that an unknown

quantum state cannot be cloned [5,6]. Consequently, eavesdropping in the quantum world

will, in general, disturb the quantum state one is listening to. Thus, an eavesdropper can be

discovered readily. Bennett and Brassard had shown in 1984 how quantum cryptography can

be used to secure communications between two users against eavesdropping attack through

the so-called quantum key distribution scheme [7]. This article does not concern quantum

key distribution. Instead, we concentrate on a class of more fancy schemes, which are

probably more useful in peacetime. The basic theme in those applications is the protection

of private information during a public decision.

More concretely, in today's world, sometimes we need to cooperate or negotiate with

other people without trusting them completely. An example is long-distance (e.g. over the

phone) coin ip . Suppose a divorced couple wants to decide who keeps the house by a fair

coin ip. Nevertheless, they no longer trust each other. The problem is, therefore, how this

can be done fairly without having to arrange a meeting or to trust a third party to ip the

coin.

Before addressing the above problem, let us consider a simpler scheme. Suppose Alice

has chosen a number either zero or one. And she wants to give Bob a piece of evidence

that she has made up her mind in such a way that (i) Bob knows nothing about Alice's

choice at this moment; and (ii) Alice can no longer change her mind without being caught

by Bob when she publicly announces her choice at a later time. This kind of task is called

bit commitment [8].

Clearly, bit commitment can be used to achieve coin tossing. Alice commits to a bit

| zero or one. Then Bob guesses which bit Alice has chosen. Finally, Alice opens her

commitment by telling Bob which bit she has chosen. Bob veri�es that Alice has been honest

in executing the scheme. It turns out that bit commitment is a very important primitive in

cryptography [1,9]. As will be discussed in later Sections, the security of conventional bit

commitment usually relies on computational assumptions which can be broken in theory by

exhaustive computer analysis. There had been a widespread belief that quantum schemes can

get rid of computational assumptions, thus solving a long standing problem in cryptography.

The main focus of this review is the surprising result that this widespread belief has

been misplaced. If Alice has a quantum computer, she can make an empty promise to Bob

(i.e., Alice can change her choice at any time before she publicly opens her commitment)

without being caught. This discovery represents a major victory of quantum cryptanalysts

(i.e., code-breakers) over quantum cryptographers (i.e., code-makers). Finally, we remark

that secure data transmission using quantum mechanics through the so-called quantum key

distribution is una�ected by this new discovery.
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II. BIT COMMITMENT | FROM THE ANCIENT TO THE POST-MODERN

WORLD

A. Bit Commitment In The Ancient World

The �rst bit commitment scheme in history probably goes as follows: First, Alice writes

down her choice on a piece of paper, puts it in a box, and locks it up. She gives the box to

Bob, but keeps the key herself. Later on, she proves her commitment to Bob (which is called

opening her commitment) by sending the key to Bob, who can then open the box and verify

the value of her committed bit. Although this method is simple and straight-forward, there

is a serious loophole. The security of this simple bit commitment scheme relies heavily on

the physical security of the box and the lock. This is clearly not very useful in the electronic

age.

B. Bit Commitment In The Modern World

Modern (non-quantum) bit commitment schemes rely on the idea of a one-way function

| a function that is easy to compute, but very hard to reverse. For instance, multiplying

two integers is easy, but there is no known e�cient classical algorithm

1

to date for computing

the factors of a large composite number [2].

In the modern world, a bit commitment scheme may go as follows (see Ref. [8] for

discussions of various bit commitment schemes):

[Classical Bit Commitment Scheme]

1. Alice chooses her bit b = 0 to be committed to Bob.

2. If b = 0, she picks a random even number x and computes y = f(x) where f is a

one-way function. Similarly, if b = 1, she picks a random odd number y and computes

y = f(x). She sends y to Bob. This completes the commit phase.

3. To open her commitment, Alice sends x to Bob.

4. Bob veri�es that y = f(x) and checks whether x is odd or even. This veri�es Alice's

honesty.

The above bit commitment scheme (as well as all other variations) relies on the assump-

tion that f

�1

is hard to compute.

2

Consequently, although Bob has received y = f(x) in

Step 3, he cannot invert the function f e�ciently enough to get x and hence b in time. In

other words, even though Bob has all the information he needs to compute b (and hence

1

That is, an algorithm working on a classical computer.

2

Actually, we are making a stronger assumption|that it is computationally infeasible to determine

whether the pre-image of f is even or odd|than the one-way function hypothesis.
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to know Alice's choice) before she opens her commitment, the hardness to compute f

�1

e�ectively prevents him from doing so.

Nevertheless, no one has proven the existence of a one-way function [10]. Therefore,

the security in this kind of bit commitment scheme is based on computational assumptions,

which can be in principle broken either by exhaustive computer analysis, or by using more

e�cient algorithms.

To make the situation even worse, in 1994 Shor discovered an e�cient quantum me-

chanical algorithm for factoring composite numbers [3,4,11]. His algorithm makes use of the

quantum interference e�ect and massive quantum parallelism in quantum mechanics, which

do not have any classical counterpart. Since it is a technological challenge to actually build

a quantum computer, Shor's result does not threaten classical bit commitment schemes im-

mediately. However, the construction of a quantum computer is not forbidden at all by

the laws of physics. One can envisage one day when quantum computer becomes a reality.

Then, all classical bit commitment schemes will be unsafe.

C. Bit Commitment In The Post-Modern World

Following the pioneering works by Wiesner on \quantum money" and \multiplexing

channel" [12], various quantum bit commitment schemes have been proposed [7,13{15].

There was a common belief just two years ago that quantum bit commitment is absolutely

safe [13,16,17]. That is to say, even if both Alice and Bob have in�nite computational power

and can invoke quantum computers, any dishonest party will still be caught. The con�dence

on the security of quantum bit commitment is perhaps partly based on the following fact: if

you are given a single unknown quantum state, then there is no way for you to tell exactly

what that quantum state is. This is because measurement on an unknown quantum state is

an irreversible process.

A number of quantum bit commitment schemes have been proposed [7,13{15]. Amongst

them, the most well-known one is probably the BCJL scheme [13]. The detailed procedure

of the BCJL scheme is irrelevant for our discussion. Nonetheless, for completeness, it is

listed below.

[BCJL Quantum Bit Commitment Scheme]

1. Let � be the average noise level of a quantum communication channel shared between

Alice and Bob. Bob chooses a Boolean matrix G as the generating matrix of a binary

linear (n; k; d)-code C such that the ratio d=n > 10� and the ratio k=n = 0:52 and

announces it to Alice.

2. Alice chooses a non-zero random n-bit string r and announces it to Bob.

3. Alice chooses a random n-bit codeword c from C such that the scalar product modulo

two (i.e., the parity of the bitwise logical AND) between c and r is equal to the bit to

which she is committed.

4. Alice picks a random n-bit string b. Suppose the ith bit of b, b

i

, equals zero. Then she

sends Bob her ith photon in the 0

�

or 90

�

polarization according to whether c

i

= 0 or
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c

i

= 1. Similarly, if b

i

= 1, she sends Bob her ith photon in the 45

�

or 135

�

polarization

according to whether c

i

= 0 or c

i

= 1.

5. Bob chooses a random n-bit string b

0

. He measures the ith photon that he receives

from Alice in the 0

�

and 90

�

polarization basis if b

0

i

= 0. Otherwise, he measures the

ith photon using the 45

�

and 135

�

polarization basis. In either case, he writes down

the measurement results.

6. To open her commitment, Alice reveals c, b and her committed bit to Bob.

7. Bob veri�es that c is a codeword. Also, if both Alice and Bob use the same basis for

transmission and measurement, then their results c

i

and c

0

i

must agree in the absence

of noise. Therefore, Bob veri�es that the error rate in these cases is less than the

acceptable value of 1:4�. Finally, Bob checks that the parity of the scalar product

modulo two between r and c is indeed Alice's committed bit. Bob accepts Alice's

commitment only if Alice passes all the three tests above.

In spite of its apparent complexity, the essential idea behind the BCJL scheme can be

readily understood. Alice encodes her commitment as some polarization of photons that is

unknown to Bob. Thus, it is impossible for Bob to determine Alice's choice before she opens

her commitment. Indeed, Brassard et al. [13] have already proven the security of the BCJL

scheme against a cheating Bob. The alleged security of this scheme against a cheating Alice

is, however, awed. Mayers [18] and, independently, we ourselves [19] showed that Alice

can cheat successfully if she has a quantum computer. As it turns out, the same cheating

strategy can break not only all the existing schemes, but also all quantum bit commitment

schemes [20{22] that one can possibly construct. So, let us tell you what the most general

form of quantum bit commitment scheme is before proving that it is necessarily insecure.

III. INSECURITY OF QUANTUM BIT COMMITMENT

A. General Form Of A Quantum Bit Commitment Scheme

As will be argued in Subsection III C below, when appropriately formulated, the most

general form of a quantum bit commitment scheme goes as follows [18{23]:

[General Quantum Bit Commitment Scheme]

1. Alice and Bob both initialize the quantum particles at their hands to a prescribed

state.

2. Alice applies a unitary transformation to the quantum particles at her hand according

to the value of her committed bit. Then she sends some of her quantum particles to

Bob.

3. After receiving the quantum particles from Alice, Bob applies a unitary transformation

to the quantum particles at his hand. He then sends some of his quantum particles to

Alice.
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4. Steps 2 and 3 are repeated �nite number of times.

5. To open her commitment, Alice sends all her particles to Bob.

6. After receiving Alice's particles, Bob measures the composite system to verify Alice's

honesty.

B. Unitary Description

Let us formulate the above description in mathematics.

3

Our justi�cations that the

scheme is general will be made in Subsection III C. Let us denote the Hilbert spaces of

Alice's and Bob's quantum machines by H

A

and H

B

, respectively. And the Hilbert space

of the quantum communication channel is denoted by H

C

. A quantum bit commitment

scheme is executed in H = H

A


 H

B


 H

C

. Initially, Alice prepares a state j0i

A

or j1i

A

according to the value that she would like to be committed to Bob. Bob prepares a �xed

state jvi

B

for H

B


H

C

. This is Step 1 of the general scheme. Consequently, the initial state

is ju

b

i = jbi

A


jvi

B

when Alice is committed to b (b = 0; 1). The two parties now take turns

to perform unitary transformations (Steps 2{4). That is, in each step, a party D 2 fA;Bg

applies a unitary transformation on the system H

D


 H

C

. Such a unitary transformation

induces a unitary transformation on the larger space H.

The upshot is that the whole procedure of the commit phase, being a sequence of unitary

transformations on H, can be summarized by a single unitary transformation U applied to

the initial state on H. Such a unitary description will greatly simplify our discussion: At

the end of the commit phase, Alice and Bob share a pure state, either U (j0i

A


 jvi

B

) or

U (j1i

A


 jvi

B

). Also, since Alice and Bob know the procedure of the protocol, they also

know U . So, once Alice opens her commitment by sending all her particles to Bob (Step 5),

Bob can readily verify Alice's claim (Step 6).

Here we assume the most advantageous situation for Bob where during the opening

phase Alice sends all her particles to Bob. We shall show that even then Alice can cheat

successfully.

C. Generality Of The Above Description

Let us explain why the BCJL protocol falls into the above general scheme. Clearly, except

for the selection of the error correcting code in Step 1, the BCJL protocol involves only one

way communications from Alice to Bob. Also, sending photons with di�erent polarization

to Bob in Step 4 of the BCJL scheme is equivalent to �rst applying a unitary transformation

to the initialized photons by Alice before sending them to Bob. Moreover, it does no harm

for Bob to delay his measurement in Step 5 of BCJL until Alice opens her commitment.

At this point, readers may question if the above commitment scheme is the most general

one. In particular, they may raise the following objections:

3

Mayers proved that all quantum bit commitment schemes are insecure in Refs. [20,21]. Here we

will, however, follow our discussion of the same result in Refs. [22].
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Question 1: Communications by classical means between Alice and Bob is not considered.

Answer 1: Since classical communications are a special case of quantum communications,

they can be done on a quantum channel and there is no need to give them any

special consideration.

Question 2: Alice and Bob may measure some of their quantum particles in Steps 2{ 4.

Moreover, the unitary transformations they apply may depend on the results of

their measurements. More importantly, measurements give rise to decoherence.

Wouldn't a bit commitment scheme with some measurements be secure?

Answer 2: Alice and Bob can delay their measurements until the opening of the commit-

ment. For example, given a bit commitment scheme that involves a measure-

ment by Alice and that Alice is supposed to apply a unitary transformation U

i

to the rest of her quantum particles if her measurement result is je

i

i for some i.

She can de�ne another linear operator U which maps je

i

i 
 j	i to je

i

i 
 U

i

j	i

for each i. Clearly, U is a unitary operator. Therefore, Alice may choose to

apply U to her quantum particles and delay her measurement until the opening

phase.

Even bit commitment schemes with measurements are insecure. The key insight

is the following: To show that all bit commitment schemes (classical, quantum

or quantum but with some measurements) are insecure, it su�ces to consider

only a general fully quantum bit commitment scheme where both Alice and Bob

have quantum computers. This is because any other procedure followed by Bob

in a bit commitment scheme can be rephrased as a quantum bit commitment

scheme where Bob does have a quantum computer but just fails to make full

use of it.

Now, we will show that Alice has a winning strategy against Bob even if he

makes full use of his quantum computer. It is then clear that this \sure-win"

strategy by Alice will defeat a Bob who fails to make full use of his quantum

computer. Therefore, the insecurity of a fully quantum bit commitment scheme

automatically implies the insecurity of all bit commitment schemes (purely

quantum, classical or quantum scheme but with measurements).

Notice also that a cheating Alice generally needs a quantum computer to cheat.

Question 3: Alice and Bob may throw dice to decide which unitary transformation to use.

Moreover, they may invoke ancillary quantum particles. More generally, Alice

and Bob are dealing with density matrices, not wavefunctions.

Answer 3: Using the same argument in Answer 2, Alice and Bob can delay the throwing

of the die (i.e., the state of the die is kept in a quantum superposition and

does not collapse) until the opening phase. Any ancilla (including the quantum

die) can be incorporated into Alice and Bob's quantum machines right at the

beginning. This simply leads to an extension of the dimensions of the Hilbert

spaces H

A


H

B

. Moreover, the state in the tensor product of these extended

Hilbert spaces is pure.
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Question 4: Instead of manipulating the quantum particles in turn, Alice and Bob may

manipulate, send out, and receive their quantum particles in parallel. That is

to say, Steps 2 and 3 are space-like events.

Answer 4: In practice, it is impossible to ensure that Alice and Bob receive signals simul-

taneously. This is because, for two distant observers, there is no way for one to

be sure of the physical location of the other. (Recall that one of the two persons

may be cheating.) More importantly, simultaneity has no invariant meaning in

special relativity.

Having convinced ourselves that the above bit commitment scheme is the most general one,

we turn to Alice's cheating strategy. First, we need a technical result.

D. Schmidt Decomposition

4

Let H

A

and H

B

be Hilbert spaces with dimensions p and q, respectively. And let j�i

be any normalized state in H

A


 H

B

. De�ne the density matrix � = j�ih�j, and reduced

density matrices �

A

= Tr

B

� and �

B

= Tr

A

�.

Claim: j�i can be written as

j�i =

r

X

i=1

q

�

i

ja

i

i 
 jb

i

i ; (1)

where ja

i

i and jb

i

i are orthonormal eigenstates of �

A

and �

B

, respectively. In addition,

r � min(p; q) is the total dimension of the non-zero eigenspaces of �

A

. This representation

is called the Schmidt decomposition [25].

Proof: Any j�i can be written in terms of the orthonormal eigenbasis fja

i

ig of �

A

as

j�i =

p

X

i=1

ja

i

i 
 jb

0

i

i ; (2)

where jb

0

i

i's are not necessarily orthogonal. By taking a trace over H

B

, we �nd

Tr

B

j�ih�j = Tr

B

p

X

i=1

p

X

j=1

ja

j

i 
 jb

0

j

iha

i

j 
 hb

0

i

j

=

p

X

i=1

p

X

j=1

q

X

k=1

h

^

b

k

jb

0

j

ija

j

iha

i

jhb

0

i

j

^

b

k

i

=

p

X

i=1

p

X

j=1

q

X

k=1

hb

0

i

j

^

b

k

ih

^

b

k

jb

0

j

ija

j

iha

i

j

=

p

X

i=1

p

X

j=1

hb

0

i

jb

0

j

ija

j

iha

i

j ; (3)

4

The discussion in this Subsection is based on Ref. [25].
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where j

^

b

k

i's form an orthonormal basis in H

B

. Equating this to

�

A

=

r

X

i=1

�

i

ja

i

iha

i

j (4)

gives hb

0

i

jb

0

j

i = �

i

�

ij

. Hence, jb

i

i = �

�

1

2

i

jb

0

i

i is an orthonormal set in H

B

, and the Schmidt

decomposition in Eq. (1) holds.

Similarly, by taking the trace of j�i over H

A

, we arrive at

�

B

=

r

X

i=1

�

i

jb

i

ihb

i

j : (5)

Therefore, jb

i

i is an eigenvector of �

B

corresponding to the eigenvalue �

i

.

Q.E.D.

E. Alice's cheating strategy

Now, we show that the two basic security requirements of quantum bit commitment are

inconsistent: In fact, if Bob cannot learn the value of the committed bit b, then Alice can

almost always cheat successfully by changing the value of b at the beginning of the opening

phase without being caught by Bob.

Consider the combined quantum state of the particles in Alice and Bob's hand just before

the opening phase. We can include H

C

to the quantum machine of whoever controlling the

channel at this point. Therefore, H = H

A


H

B

simply. When the committed bit, b, is zero,

the state of the composite system can be written in Schmidt decomposition (see Eq. (1)) as

j0

�nal

i =

X

i

p

�

i

je

i

i

A


 j�

i

i

B

: (6)

On the other hand, when the committed bit, b, is one, it can be written in Schmidt decom-

position as

j1

�nal

i =

X

i

q

�

i

je

0

i

i

A


 j�

0

i

i

B

: (7)

The quantum state of Bob's particles, without the extra information coming from Al-

ice, can be described by a density matrix obtained by taking a partial trace of the entire

wavefunction over the particles at Alice's hand. If b = 0, Bob's density matrix is

Tr

A

(j0

�nal

ih0

�nal

j) � �

B

0

=

X

i

�

i

j�

i

i

B

h�

i

j

B

: (8)

Similarly, if b = 1, Bob's density matrix is

Tr

A

(j1

�nal

ih1

�nal

j) � �

B

1

=

X

i

�

i

j�

0

i

i

B

h�

0

i

j

B

: (9)

In order that Bob has little chance to know Alice's choice in advance, we require the

reduced matrices Tr

A

(j0

�nal

ih0

�nal

j) � �

B

0

and Tr

A

(j1

�nal

ih1

�nal

j) � �

B

1

to be as \close" as

possible.
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Let us �rst consider the ideal case when �

B

0

= �

B

1

. It then follows

5

from Eqs. (8) and (9)

that

�

i

= �

i

(10)

and

j�

i

i

B

= j�

0

i

i

B

: (11)

for all i. Substituting Eqs. (10) and (11) into Eq. (7), we get

j1

�nal

i =

X

i

p

�

i

je

0

i

i

A


 j�

i

i

B

: (12)

Let us consider the unitary transformation U

A

which maps je

i

i

A

to je

0

i

i

A

. Notice that it

is a local unitary transformation by Alice and as such can be implemented by Alice alone.

Remarkably, it maps j0

�nal

i to j1

�nal

i. In other words, Alice can always cheat by changing

her bit from 0 to 1 just before she opens her commitment. More concretely, the cheating

strategy goes as follows: She always executes the protocol for b = 0 during the commitment

phase. At the beginning of the opening phase, she decides on the value of b that she would

like to open. Suppose she decides b = 0 now, she simply executes the protocol honestly. On

the other hand, if she now chooses b = 1, she applies U

A

to her state. This changes j0

�nal

i to

j1

�nal

i. She can then declare that b = 1 and execute the opening phase for b = 1 accordingly.

There is absolutely no way for Bob to defeat such an attack by Alice.

Having considered the ideal case, let us now, following Mayers [18], consider the non-

ideal case where �

B

0

di�ers from �

B

1

slightly. In quantum mechanics, a good measure of

the \closeness" between two density matrices is �delity [24]. In general, given two reduced

density matrices �

B

0

and �

B

1

of Bob, there are many possible systems A attached to Bob's

system B such that the combined wavefunction of systems A and B are pure states j	

0

i and

j	

1

i, respectively. That is, Tr

A

(j	

i

ih	

i

j) = �

B

i

for i = 0; 1. This kind of pure states j	

i

i

are called puri�cations. The �delity can be de�ned as

F (�

B

0

; �

B

1

) = max (jh	

0

j	

1

ij) ; (13)

where the maximization is taken over all possible puri�cations. Clearly 0 � F � 1. More-

over, F = 1 if and only if there is a puri�cation such that j	

0

i = j	

1

i, which in turn holds if

and only if �

B

0

= �

B

1

. The closer the two reduced density matrices, the higher their �delity.

Therefore, the requirement that Bob has little chance to know Alice's choice in advance

implies that

F (�

B

0

; �

B

1

) = 1� � (14)

for some small � � 0.

5

Here we assume that the eigenstates are non-degenerate. The case of degenerate eigenstates can

be dealt with in a similar manner.
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Here come two simple but crucial remarks. First, for any �xed puri�cation j	

1

i of

�

B

1

, there exists a maximally parallel puri�cation j	

0

i of �

B

0

such that Eq. (13) is satis�ed.

Second, it can be proved that any two puri�cations j	

0

i and j	

0

0

i of the same density matrix

�

B

0

are necessarily related by a local unitary transformation by Alice alone. These two facts

follow trivially from the form of Schmidt decomposition in Eq. (1).

Let us apply these two remarks to non-ideal quantum bit commitment. From the �rst

remark, given a puri�cation j1

�nal

i of �

B

1

in Eq. (7), there exists a puri�cation j0

0

i of �

B

0

such

that

h0

0

j1

�nal

i = 1� � : (15)

From the second remark, there exists a local unitary transformation say U

A

that maps j0

�nal

i

to j0

0

i.

Now it is clear that, using the same cheating strategy as in the ideal case, Alice can almost

always cheat successfully. In more detail, Alice's cheating strategy goes as follows: Alice

chooses b = 0 and executes the commit phase honestly. During the opening phase, Alice

decides the value of b to be opened. If she chooses it to be 0, she acts honestly. However,

if she chooses it to be 1, she claims that b = 1 and applies the local unitary transformation

U

A

to change j0

�nal

i to j0

0

i. From Eq. (15), it is very hard for Bob to distinguish the state

in the dishonest case, j0

0

i, from the state in the honest case, j1

�nal

i. Therefore, Alice can

almost always cheat successfully.

Notice that the cheating strategy makes essential use of entanglement. To succeed in

cheating, Alice must be able to store quantum signals for a long time and to coherently

manipulate quantum particles. That is, Alice generally needs a quantum computer.

At this moment, readers may ask why the no-cloning theorem and uncertainty principle

cannot prevent Alice from cheating. The reason is simple: It is impossible for Bob to verify

every unitary transformation and measurement that Alice has made. Therefore, Alice can

delay making her unitary transformation j0

�nal

i �! j0

0

i till the opening phase.

IV. CONCLUDING REMARKS

A. Secure Computations

Quantum bit commitment is a basic building block for many other quantum crypto-

graphic protocols. After the fall of quantum bit commitment, the security of other quantum

two-party protocols, in particular, the so-called two-party secure computations also came

into question.

In a one-sided two-party secure computation, Alice with a secret x and Bob with a secret

y would like to cooperate to compute a prescribed function f(x; y) such that at the end,

(i) Alice learns nothing (about y and f(x; y)); (ii) Bob learns f(x; y); and (iii) Bob learns

nothing about x except for what logically follows from y and f(x; y).

One-sided two-party secure computations can, for instance, be used to prevent a fake

teller machine from stealing a customer's PIN (Personal Identi�cation Number): To do this,

let x be the customer's (i.e., Alice's) PIN , y be the record of the customer's PIN in the teller

machine (i.e., Bob). Consider the function f(x; y) = �

xy

. Running the one-sided two-party
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computation of f(x; y) will allow the teller machine to verify whether the customer's input

x matches the record y of the teller machine. However, a fake teller machine does not know

which y to use as the input. Using a random y will give it very little information about x.

The insecurity of quantum one-sided two-party secure computations was �nally demon-

strated explicitly by one of us [23], who showed that a cheating Bob can learn f(x; y) for all

values of y. This is a fatal violation of the security requirement. For instance, in the above

password veri�cation scheme such a cheating Bob will, by testing all possible values of y,

learn the customer's input x.

A cheating Bob proceeds as follows: Bob inputs y = y

1

, executes the protocol honestly

and learns f(x; y

1

) by performing a measurement. He then applies a unitary transformation

to change the value of y from y

1

to y

2

and learns f(x; y

2

) by performing a measurement.

After that, he applies a unitary transformation to change the value of y from y

2

to y

3

to

learn f(x; y

2

) and so on.

This cheating strategy works chiey for two reasons. First, the measurement of say

f(x; y

1

) in no way disturbs the state under observation. This is so because the state is an

eigenstate of f(x; y

1

).

6

Second, the essence of the insecurity of quantum bit commitment is

that if a party A knows nothing about the input b of another party B even at the end of the

protocol, then B can cheat by changing b at the very end. Now since in a one-sided two-

party secure computation Alice cannot learn about y, a cheating Bob can change the value

of y. That is, the state of all quantum particles in Alice and Bob's hands when computing

f(x; y) and f(x; y

0

) are related by a unitary transformation involving only particles in Bob's

hand [23], as required in the cheating strategy presented in the last paragraph.

In conclusion, quantum one-sided two-party secure computations are, in principle,

insecure.

7

Even though quantum bit commitment and quantum two-party secure com-

putations are insecure in theory, they may still be secure in practice. This is because a

cheater generally needs a quantum computer to cheat successfully. And it is a technological

feat to build a quantum computer. The implication is that, by working with quantum pro-

tocols, one may replace classical computational assumptions with quantum computational

assumptions.

B. Security Analysis of Composite Quantum Protocols

In the security analysis of quantum protocols, researchers usually only consider the case

when a protocol is executed only once and in isolation. This is, however, contrary to the

6

This is because Bob is supposed to be able to determine f(x; y

1

) unambiguously. Here we are

considering the ideal case. The non-ideal case where the state is only approximately an eigenstate

of f(x; y

1

) does not change the essential argument [23].

7

Another interesting protocol is quantum coin tossing, we have shown in Ref. [22] that ideal

quantum coin tossing (that completely forbids successful cheating) is impossible. It is still open

whether non-ideal coin tossing is achievable. It was also shown in Ref. [23] that quantum two-sided

two-party secure computations are also generally impossible.
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spirit that a cryptographic protocol satis�es conventional security requirements, which are

usually written in terms of probability and thus implicitly demand that protocols follow the

rules of inference in classical probability theory. Therefore, in analyzing quantum protocols

a more re�ned security analysis than what is commonly adopted is needed [23]. In order to

be able to apply classical probability theory to the study of a composite protocol, it is crucial

to study the security of quantum protocols not only when they are used in isolation, but also

when they are used as \black-box" primitives in building up more complicated protocols. It

is only when they pass such a stringent test that they should be certi�ed as secure.

Of course, such security analysis may be di�cult to perform in practice. However, this is

the price that one has to pay in asserting that a quantum scheme achieves a set of security

requirements which are written in terms of classical probability.

8

With this more stringent and, in our opinion, more accurate security analysis, classical

inference is, by de�nition, valid. Since it is a standard result in classical cryptography that

some two-party secure computations can be used to implement bit commitment [9], the

impossibility of quantum bit commitment must immediately imply that quantum two-party

secure computation is generally impossible.

C. Lessons We Learn

We remark that the attacks used by Mayers in Refs. [18,20,21], by Lo and Chau in

Refs. [19,22] and by Lo in Ref. [23] as discussed in this paper, were not new. A weakness

of a restricted class of quantum secure computation schemes (\multiplexing channel" [12])

as well as the Einstein-Podolsky-Rosen-type of attack [7] which underlines the insecurity

of quantum bit commitment and secure computations had already been noted in some

pioneering papers. What had not been fully appreciated until the work of Mayers [18,20,21]

and ours [19,22,23] was the generality of such attacks.

Quantum mechanics is a double-edged sword in cryptology. While it apparently equips

cryptographers with secure schemes of quantum key distribution due to the quantum no-

cloning theorem, it also gives the quantum cryptanalyst the Einstein-Podolsky-Rosen e�ect

which allows him to delay his measurement and defeat quantum bit commitment and se-

cure computations. Now on one hand, we generally believe that quantum key distribution

is secure. On the other hand, quantum bit commitment and one-sided two-party secure

computations have been shown to be impossible. A natural question to ask is: What is

the exact boundary to the power of quantum cryptography? For instance, does quantum

cryptography help multi-party secure computations? The answers to these questions may

give us new insights on quantum information theory.

We must emphasize that the security of quantum key distribution is una�ected by the

attacks described in this paper. Quantum key distribution alone should guarantee that

quantum cryptography remains a fertile subject for future investigations. This is so par-

8

The only alternative that we can think of is to describe the security requirements of quantum

cryptographic protocols in terms of probability amplitude. Such an alternative has not been given

serious consideration so far.
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ticularly because of the dramatic recent progress in experimental quantum cryptography

[26{30].
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