
Security and Composition of Multi-party Cryptographic Protocols

�

Ran Canetti

y

September 9, 1999

Abstract

We present general de�nitions of security for multi-party cryptographic protocols, with focus

on the task of evaluating a probabilistic function of the parties' inputs. We show that, with

respect to these de�nitions, security is preserved under a natural composition operation.

The de�nitions follow the general paradigmof known de�nitions; yet some substantial modi�-

cations and simpli�cations are introduced. The composition operation is the natural `subroutine

substitution' operation, formalized by Micali and Rogaway.

We consider several standard settings for multi-party protocols, including the cases of eaves-

dropping, Byzantine, non-adaptive and adaptive adversaries, as well as the information-theoretic

and the computational models. In particular, in the computational model we provide the �rst

de�nition of security of protocols that is shown to be preserved under composition.

Keywords: multi-party cryptographic protocols, security of protocols, secure function evalua-

tion, composition of protocols.

�

To appear at Journal of Cryptology.

y

IBM T.J. Watson Research Center. Email: canetti@watson.ibm.com.

1

Contents

1 Introduction 3

1.1 Previous de�nitional e�orts . 4

1.2 The de�nitional approach taken here . 4

1.3 Modular composition . 6

1.4 Other related work . 7

2 De�ning secure protocols: The general paradigm 8

2.1 Secure function evaluation . 8

2.2 Beyond secure function evaluation . 11

3 Preliminaries 11

4 Non-adaptive adversaries 13

4.1 De�nition of security: The non-adaptive case . 13

4.2 Discussion . 16

4.3 Modular composition: The non-adaptive case . 19

4.4 Proof of Theorem 5 . 22

4.4.1 Proof outline . 22

4.4.2 A detailed proof . 23

4.4.3 Extensions . 28

5 Adaptive adversaries 29

5.1 De�nition of security: The adaptive case . 29

5.2 Discussion . 34

5.3 Modular composition: The adaptive case . 37

5.4 Proof of Theorem 10 . 39

5.4.1 Additional di�culties . 39

5.4.2 A detailed proof . 40

6 The computational setting 46

6.1 De�nition of security: The computational case . 46

6.2 Discussion . 47

6.3 Modular composition: The computational case . 48

A Other de�nitions 54

2

1 Introduction

Designing secure protocols is one of the central tasks of cryptography. Here security is generally

understood as guaranteeing, in the presence of adversarial behavior of some parts of the system,

a set of correctness properties of the output values of the parties together with a set of secrecy

requirements regarding the local data of the parties.

A general study of secure protocols started with the pioneering works of Yao and Goldreich,

Micali, and Wigderson [y86, gmw87]. On top of introducing this fundamental notion, these works

suggest a general methodology for solving \any cryptographic protocol problem" in a secure way.

They were followed by a large body of work that describe general constructions for solving proto-

col problems in various settings (most notably, [bgw88, ccd88, rb89, gl90, oy91]), as well as

protocols for more speci�c tasks (e.g., [df89, gjkr96, r98]).

In contrast to the great advances in constructing secure protocols, our understanding of the

notion of security of protocols progresses more slowly. The �rst works in this �eld (and in particular

[y82, y86, gmw87]) contain only an intuitive exposition of this notion. Several general de�nitions

of security of protocols were subsequently formulated, most notably by Goldwasser and Levin

[gl90], Micali and Rogaway [mr91], and Beaver [b91], where the work of Micali and Rogaway is

considerably more comprehensive than others. More recently, a de�nition based on [gl90, mr91,

b91] was presented in [c95]. (The de�nition of [c95] is closest in its approach to [b91].) While the

general approach of these de�nitions is roughly the same, the de�nitions di�er from each other in

several substantial ways. See more details below.

Indeed, while the notion of secure protocols seems intuitively obvious, capturing the security

requirements of a \cryptographic protocol problem" in a way that is both precise and workable is

not an easy task. In particular, a large number of constructions of secure protocols that appear

in the literature, including most of the constructions mentioned above, have never been rigorously

proven secure. (An exception is the detailed exposition and analysis of [gmw87] that was recently

made available in [g98].)

This paper aims at improving our understanding of the nature of secure computation and

our ability to prove cryptographic security of protocols. As a �rst step, we present de�nitions of

security for protocols, with emphasis on simplicity and minimality. (Here minimality means that

the de�nition is aimed at making minimal requirements from secure protocols, while not losing in

rigor and in relevance to our intuitive notion of security.) We build on the formalization of [c95]

that seems convenient and exible. In particular, the approach underlying that formalization has

been used in a number of quite varied settings, e.g. [bcg93, cfgn96, cg96, hm97, bck98, chh98,

ckor98].

Next, we consider composition of protocols. An important (almost obligatory) property of a

de�nition of secure protocols is a guarantee that a protocol obtained by \properly" composing

together secure protocols is secure. This is needed both for designing cryptographic protocols in a

modular way, and for proving their security in a clear and understandable manner. In particular,

such a property would greatly simplify the proofs of security of known constructions.

We show that our de�nition of security provides this guarantee, in several standard settings

and with respect to a natural composition operation suggested in [mr91]. (Previously only the

de�nition of [mr91] was known to preserve security under this composition operation, in some of

these settings.) We hope that the results and techniques presented here will contribute to the writing

of easy to follow proofs of security of known protocols, such as [gmw87, bgw88, cfgn96, bck98].

As in [gl90, mr91, b91, c95], this work concentrates on the very general task of evaluating a

probabilistic function of the parties' inputs. (This task is often known as secure function evaluation.)

3

In addition, the de�nitional approach presented here can be readily applied to capturing the security

requirements of a variety of other tasks.

1.1 Previous de�nitional e�orts

A common paradigm underlying all e�orts to de�ne secure protocols is to guarantee that running a

secure protocol is \just as good" as carrying out an idealized computational process where security

is guaranteed. In the context of secure function evaluation this ideal process consists of having

all parties hand their inputs to a trusted party, who locally evaluates the function and hands the

appropriate portion of the function value to each party. The de�nitional e�orts di�er in the method

by which this basic paradigm is eshed out. Let us sketch the approaches of [gl90, mr91, b91].

We elaborate on these de�nitions in Appendix A.

The de�nition of Goldwasser and Levin [gl90] does not make explicit comparison with the

ideal process. Yet, this de�nition can be viewed as making a comparison with the ideal process

as follows. They start with de�ning legal behavior of an adversary; this behavior captures the

adversary's limited capabilities in the ideal process. Next they de�ne a notion of robustness of

protocols that essentially means that any adversary can be `emulated' by a legal one. A protocol

securely evaluates some function if it is robust and in addition it correctly evaluates the function

whenever the adversary is limited to legal behavior.

The comparison with the ideal process serves as strong motivation behind the formulation of

the Micali and Rogaway de�nition [mr91]. Yet also here it is not explicitly used in the actual

de�nition, which contains some additional technicalities. These technicalities make the de�nition

of [mr91] more restrictive. Micali and Rogaway also de�ne a general and natural composition

operation of protocols and state that their de�nition is preserved under this composition operation.

The composition operation discussed in this work is essentially taken from there. It was previously

believed that the extra restrictiveness of their de�nition is necessary for proving that composition

preserves security. Here we show that this is not the case. (They consider only protocols that

evaluate deterministic functions, in the secure channels setting. The secure channels setting is

de�ned in the sequel.) Micali and Rogaway's manuscript is quite comprehensive and contains

many enlightening observations, discussions, and examples regarding secure multi-party protocols.

We have bene�ted a lot from reading this work, as well as from attending [m96].

Beaver makes the comparison of a protocol with the ideal process more explicit [b91]. That

is, �rst a general notion of comparing security of protocols is formulated. Next, a protocol for

evaluating a given function is considered secure if it is at least as secure as the ideal process for

evaluating that function. This approach is very similar to the one taken here, with some technical

di�erences that are explained in the sequel. In addition, it is stated that security according to this

de�nition is preserved under `sequential composition'. That is, if secure protocols are invoked one

after the other, the inputs for each are the local outputs from the previous one, then the resulting

protocol securely evaluates the composed function, as long as all intermediate results are part of

the output. As seen below, this composition operation is a special case of the one considered here.

1.2 The de�nitional approach taken here

We �rst formalize the `ideal process' mentioned above. This process is aimed at capturing the

desired functionality of the task at hand, and in particular rules out any unwanted behavior.

For the task of secure function evaluation, the ideal process is formulated as follows. There is no

communication among the parties; instead, all parties hand their inputs to an incorruptible \trusted

party", who locally computes the desired outputs and hands them back to the parties. Thus in

4

the ideal process the adversary, controlling a set of corrupted parties, is very limited: Essentially,

it only learns and perhaps modi�es the inputs and outputs of the corrupted parties.

Next, we say that a protocol securely performs the task at hand if executing the protocol (in

a given model of distributed computation) amounts to `emulating' the ideal process for that task.

Emulating the ideal process is interpreted as follows. First we formalize the \output of running a

protocol with a given adversary", in the given distributed model, as well as the \output of running

the ideal process with a given adversary". This formalization is a key ingredient of the de�nition.

Now, running the protocol emulates the ideal process if for any adversary attacking the protocol

in the given distributed model, there exists an `ideal process adversary' that manages to induce

essentially the same output distribution in the ideal process. This way, we are assured that the

only adversarial e�ects that can occur when running the protocol in the given distributed model

are those that are explicitly allowed in the ideal process.

In a way, this approach is a generalization of the `simulation approach' used in [g93] (rephras-

ing [gm84]) to de�ne security of encryption functions and in [gmr89] to de�ne Zero-Knowledge

protocols. Yet, the formulation here is more complex, as it applies to the more complex domain of

many parties.

This approach can, of-course, be applied to a large variety of `adversary models'. We concentrate

on several salient models, characterized via the following parameters. Throughout, the network is

assumed to be synchronous, and the communication channels are ideally authenticated. Next, we

make the following distinctions.

A �rst distinction is between passive and active adversaries. Passive adversaries (often called

`eavesdropping' adversaries) only gather information and do not modify the behavior of the parties.

Such adversaries often model attacks that take place only after the execution of the protocol has

completed. Active adversaries (often called `Byzantine') cause the corrupted parties to execute

some arbitrary, malicious code.

Another distinction is between non-adaptive and adaptive adversaries. A non-adaptive (or

`static') adversary controls an arbitrary but �xed set of corrupted parties. An adaptive (or `dy-

namic') adversary chooses the identities of the parties to be corrupted during the computation,

based on the information gathered so far. Non-adaptive adversaries allow for simpler formalization

and protocols. Yet, considering adaptive adversaries forces protocols to address security concerns

that are important in many real-world situations and not addressed in the non-adaptive formaliza-

tion. (See more discussion at the preamble to Section 5.)

Yet another distinction is between the computational setting where the adversary learns all the

communication among the parties and is restricted to probabilistic polynomial time, and the secure

channels setting where channels are absolutely secure and the adversary has unlimited computa-

tional power. Obtaining protocols that are secure in the secure channels setting is often regarded

as a `stepping stone' on the way to obtaining secure protocols in the (more realistic) computational

setting.

Other variations of these settings may of course be interesting. For instance, many works assume

an authenticated broadcast channel, where it is guaranteed that any message that is received by one

party is received by all parties. Also, the setting where the adversary is probabilistic polynomial

time and learns only messages sent to corrupted parties is often convenient for designing protocols

(e.g., [f87, ch94, gjkr96, g98, r98]). The de�nitions can be easily adapted to these settings.

In all the above models, we concentrate on the case of honest majority, where strictly less than

half of the parties are corrupted at any time. When half or more of the parties are corrupted the

de�nition has to be weakened somewhat. (Essentially, now an active adversary cannot be prevented

from interrupting the computation at any time. Yet, the general de�nitional approach will remain

5

largely unchanged.) See [y86, gmw87, bg89, gl90, g98] for de�nitions and protocols for the case

of dishonest majority.

Di�erences from previous de�nitions. While being inspired by Micali and Rogaway [mr91],

and following the approach of [b91, c95] quite closely, the formalization here di�ers in several

aspects. Let us highlight two points of di�erence from [b91, c95]. One is the (no longer necessary)

requirement that the `ideal process adversary' operates via one-pass, black-box simulation of the

`real-life' adversary. That is, the `ideal process adversary' was restricted to have only oracle access

to the `real-life' adversary. More importantly, it was required that the simulated adversary is run

only once and is not `rewound'. This requirement is quite restrictive; in particular, in the case

of computationally bounded adversaries it essentially prohibits the use of Zero-Knowledge proofs

within secure protocols. Removing this requirement seems essential for good treatment of the

computational model. (The de�nition of [mr91] uses a similar notion of simulation as [b91, c95].

In fact, it is a bit more restrictive.)

Another modi�cation, relevant to the case of adaptive adversaries, is the treatment of the \in-

formation ow" between a single protocol execution and the external environment. Good modeling

of this \information ow" is essential for successful treatment of secure protocol composition. In

the de�nition here this is modeled by introducing an additional algorithmic entity, representing

the external environment, to the model. This seems to better represent the e�ect of the external

environment on a single execution; in particular it allows us to deal with composition of protocols

even for the case of computationally bounded adversaries. See more details in Sections 2.1 and 5.

1.3 Modular composition

When designing a protocol for some task, we want to be able to break the task into several partial

(presumably simpler) sub-tasks, design secure protocols for these sub-tasks, and then use the al-

ready designed protocols as subroutines in the solution for the given task. In other words, we want

to support the following design methodology for secure protocols:

(1) Design a `high-level' protocol for the given task assuming that other, simpler sub-tasks can be

carried out securely.

(2) Design protocols that securely carry out these simpler sub-tasks.

(3) Construct a full-edged protocol for the given task by plugging the simpler protocols as sub-

routines in the `high-level' protocol.

We call this technique of combining protocols modular composition. (Modular composition was �rst

formalized in this context by Micali and Rogaway [mr91]. There it is called reducibility of proto-

cols). We want the security of protocols to be preserved under modular composition. That is, the

security of the full-edged protocol should follow from the security of the high-level design and the

security of the subroutine protocols for their speci�ed sub-tasks. In other words, we would like to

have:

General Goal: Suppose that protocols �

1

:::�

m

securely evaluate functions f

1

:::f

m

respectively, and

that a protocol � securely evaluates a function g while using subroutine calls for ideal evaluation of

f

1

:::f

m

. Then the protocol �

�

1

:::�

m

, derived from protocol � by replacing every subroutine call for

ideal evaluation of f

i

with an invocation of protocol �

i

, securely evaluates g.

Several other composition operations on protocols are considered in the literature. For instance,

`sequential composition' usually means simply running several (secure) protocols one after the

other, and `parallel composition' means running them in parallel at the same time. We note that

6

these composition operations can be regarded as special cases of modular composition with the

appropriate \high level" protocol. Consequently we consider modular composition as the main

general tool for modular protocol design.

We achieve this goal with respect to the de�nitions in this paper, in the non-concurrent case

where only a single subroutine invocation is in execution at any given time. We consider the

settings described above (i.e., non-adaptive, adaptive, passive, active adversaries in the secure

channels and computational settings). In particular, in the computational setting this is the �rst

time a composition theorem is stated with respect to any de�nition. (In fact, we demonstrate a

slightly more general result: Any protocol � that uses ideal evaluation calls to f

1

:::f

m

maintains its

\functionality" when the ideal evaluation calls are replaced by invocations of �

1

:::�

m

, respectively.)

1.4 Other related work

Goldreich [g98] presents a detailed exposition and proof of the general construction of [gmw87],

for both the two-party and the multi-party cases. He treats the computational setting, but only

with non-adaptive adversaries. The de�nitions used there are essentially the same as the ones here

for the non-adaptive case. Also, that work does not present general purpose composition theorems,

but rather composes the constructed protocols in an ad-hoc manner.

A notion of security for the case of deterministic functions, non-adaptive, passive adversaries

in the secure channels setting is studied by Chor and Kushilevitz [ck89, k89]. (This notion of

security is somewhat weaker than the one here, as argued in Remark 1, Section 4.2.) Reducibility

of protocols w.r.t. the notion of security of [ck89, k89] is discussed in [kkmo97]. The notion of

reducibility of [kkmo97] is di�erent than the one here in that there no communication is allowed

in the high-level protocol except for invocations of the speci�ed subroutines.

Finally, our proofs of the composition theorem in the various settings follow and adopt the

general structure of the sequential composition theorems for Zero-Knowledge as proven by Goldreich

and Oren [go94], adapting their techniques to our setting.

Organization. In Section 2 we motivate and informally present the general approach taken by

our de�nitions. Section 3 reviews some basic notions used to formalize the de�nitions. Section 4

concentrates on the case of non-adaptive adversaries in the secure channels setting. This includes a

de�nition of security, statement of the composition theorem, and a full proof.

Section 5 generalizes the treatment of Section 4 to the case of adaptive adversaries (still in the

secure channels setting). An attempt is made to keep this section as self-contained as possible, at

the expense of some repetition.

Section 6 deals with adaptive adversaries in the computational setting. Since the treatment is

very similar to that of Section 5, this section is not self-contained, and should be read in conjunction

with Section 5. The case of non-adaptive adversaries in the computational setting can be inferred

quite easily.

Throughout Section 4-6, we develop the cases of passive and active adversaries `side by side'

(with emphasis on the more involved case of active adversaries). Although constructions for the two

cases are quite di�erent in nature, the corresponding de�nitions are similar and are best considered

together.

In Appendix A we briey discuss the de�nitional e�orts of [mr91, gl90, b91, c95, cfgn96].

We remark that the text contains a number of long footnotes. These are used to discuss issues

that are not vital to the main thrust of the paper and would make the main text less uent. In

particular, the footnotes can be skipped at �rst reading.

7

2 De�ning secure protocols: The general paradigm

This section motivates and sketches the general de�nitional approach pursued in this work. The

approach is common to the various adversary models (passive, active, non-adaptive, adaptive ad-

versaries, in the secure-channels and computational settings). Also, while this paper concentrates

on the task of secure function evaluation, the approach carries to other tasks as well. Section 2.1

presents the approach for the task of secure function evaluation. This case captures much of the

essence of the problem. Other tasks are briey mentioned in Section 2.2.

2.1 Secure function evaluation

Secure function evaluation is a general task where the parties are given inputs and should produce

outputs according to a given speci�cation, cast as a function of their inputs. (This function can be

probabilistic; that is, for each input it speci�es a distribution on the corresponding outputs.) We

focus on the case where only a minority of the parties are corrupted. Still, the general approach

presented here can be used to capture the security requirements for the case of dishonest majority

(and in particular the two-party case).

First attempts. Two basic requirements come to mind when trying to capture the notion of

secure function evaluation. The �rst is correctness: the \good" parties (i.e., the parties that are

not corrupted by the adversary), should output \a correct" value of the function evaluated at the

inputs of all parties. This requirement is somewhat complicated by the fact that the function may

be probabilistic (thus the output should obey some prede�ned distribution), and more importantly

by the fact that if the adversary is active then the corrupted parties cannot, in general, be prevented

from arbitrarily changing their inputs to the computation.

The second requirement is secrecy, meaning that the adversary should not learn (from inter-

acting with the parties) anything other than the (original) inputs of the corrupted parties, and the

\correct" function values that the corrupted parties are to obtain. This requirement seems to call

for a de�nition based on some notion of \simulation" of the adversary's view (as in the case of

probabilistic encryption or zero-knowledge [gm84, g93, gmr89]), but it is not clear at this point

in what setting the \simulator" should operate and what should be required of it.

A naive approach towards de�ning security may proceed by separately requiring correctness

and secrecy. Yet, as observed in [mr91], this decomposition is problematic since the two require-

ments are \intertwined": On the one hand, the secrecy requirement depends on our de�nition of

a \correct" function value. On the other hand, the correctness requirement must make sure that

the input values that the corrupted parties \contribute" to the computation be chosen without

knowledge of the inputs of the uncorrupted parties.

Let us sketch a simple example that demonstrates this issue. Assume that two parties wish

to compute the exclusive-or of their one-bit inputs, and use the following protocol: First party A

sends its input to party B; then B announces the result. Intuitively, this protocol is insecure since a

corrupted B can inuence the output of A by choosing the value it contributes to the computation

based on A's input. Yet, this protocol maintains secrecy (which holds vacuously for this problem

since each party can infer the input of the other party from its own input and the function value),

and is certainly \correct" in the sense that the output �ts the input that B \contributes" to the

computation.

This example highlights the problems associated with active adversaries. Other, more subtle

examples for de�nitions that allow an active adversary to \illegally" inuence the outputs of the

8

uncorrupted parties are described in [mr91]. Additional problems arise when from dealing with

probabilistic functions. Interestingly, these problems arise even when the adversary is passive.

Remark 2 in Section 4.2 contains an example that highlights these problems.

One may be tempted to try to augment the \correctness" and \secrecy" requirements so as to

handle the problems exposed above. However, following this approach may be di�cult and error-

prone (if at all possible). Consequently, our de�nition follows a di�erent approach, that blends

together \correctness" and \secrecy" into a single security requirement. We �rst envision an \ideal

process" for secure multi-party function evaluation. This process captures all that we want from a

secure computation (and in particular, the above requirements). Then we say that a computation

is secure if it \emulates" the ideal process, in some well-de�ned manner.

Our approach. The de�nition proceeds in three steps. First we formalize the `real-life' com-

putation, in a straightforward way. Here the parties interact according to their protocol, in some

speci�c model of distributed computation (e.g., either synchronous or asynchronous), and in the

presence of a real-life adversary that controls a set of corrupted parties and behaves according to

some adversarial model (e.g., either passive or active, non-adaptive or adaptive, etc.). At the end

of the computation the uncorrupted parties output whatever is speci�ed in their protocol. The

corrupted parties output a special symbol specifying that they are corrupted. The adversary, con-

trolling the corrupted parties, outputs some arbitrary value; This value may include output any

information gathered by the adversary during the computation.

1

Next the following ideal process for multi-party function evaluation is formulated, in order to

capture our requirements from a secure function evaluation. (The speci�cs of the ideal process

correspond to the type of adversary in consideration, e.g. passive or active.) First an ideal-process

adversary gets to control a set of corrupted parties (which is either �xed beforehand or chosen

adaptively), and learns the inputs of the corrupted parties. If active adversaries are modeled, then

the ideal-process adversary can also modify these inputs based on the information gathered so far.

Next, all parties hand their (possibly modi�ed) inputs to an incorruptible trusted party. The trusted

party evaluates the given function at the given inputs and hands each party its designated output.

The evaluated function can be probabilistic, in which case the trusted party tosses the necessary

coins and uses the outcome to determine the function value. Finally, the uncorrupted parties output

whatever they receive from the trusted party, the corrupted parties output some special symbol,

and the adversary outputs some arbitrary value. (Also here, the adversary's output may contain

any information gathered by the adversary in the ideal process. However, here this information

is very limited: it consists only of the adversary's random input, the identities of the corrupted

parties, their inputs, and the values they received from the trusted party.)

We say that a protocol � for evaluating a function is secure if it emulates the ideal evaluation

process of the function, in the sense that any e�ect on the real-life computation achieved by a

real-life adversary (from some class of real-life adversaries) can be also achieved in the ideal process

by some ideal-process adversary (from the corresponding class of ideal-process adversaries). This

requirement is formulated as follows. We �rst de�ne, in both the ideal and real-life models, the

global output of a computation on a given input. This is a random variable that consists of the

concatenation of the outputs of all the parties and the adversary. Next we require that for any

real-life adversary A (from some class) attacking a secure protocol � there exists an ideal-process

adversary S (from the corresponding class) such that, on any input, the global output of the real-

life computation in the presence of A is distributed similarly to the global output of the ideal

1

In an equivalent and somewhat more natural formalization the corrupted parties output whatever is instructed

by the adversary and the adversary has no output. The formalization here will be more convenient in the sequel.

9

process computation in the presence of S. (By de�ning similarity to be either \equal distribution"

or \statistical closeness" or \computational indistinguishability" we obtain di�erent notions of

security.)

Requiring that the outputs of the corrupted parties be distributed similarly in the ideal process

and in the real-life computation forces the ideal-process adversary to generate an output that \looks

like" the output of the real-life adversary, in spite of the fact that it only sees the information

available in the ideal process. This guarantees secrecy, in the sense that the information gathered

by the real-life adversary is computable even in the ideal process. Requiring that the output of the

uncorrupted parties be similarly distributed in the ideal process and in the real-life computation

guarantees correctness, in the sense that the real-life adversary cannot inuence the outputs of the

corrupted parties more than is possible in the ideal process. Furthermore, combining the outputs

of the corrupted and the uncorrupted parties into a single random variable guarantees that the

\intertwined" secrecy and correctness requirement, discussed above, is satis�ed. (See also Remark

2, Section 4.2.)

We remark that the above notion of a protocol in some adversary model emulating an ideal

process can be naturally extended to having the protocol emulate another protocol in some other

adversary model. This extended notion of emulation is quite useful. In particular, it plays a key

role in our presentation of the composition theorems.

Enabling secure composition. The de�nitional approach sketched above is aimed at capturing

the security requirements from a protocol, in a simpli�ed setting where a single protocol execution

is considered in vitro. In order to guarantee security in a setting where several protocol executions

may co-exist, and in particular in order to be closed under composition of protocols, a de�nition of

security must guarantee the following property: Even adversaries that have already gathered some

information on the current execution (say, via other protocol executions) will be unable to gather

additional information on the current execution, or otherwise gain some unwanted advantage.

In the case of non-adaptive adversaries this property is guaranteed by letting the adversary

have some arbitrary auxiliary input at the onset of the interaction. The auxiliary input represents

the information gathered by the adversary during other protocol executions occurring before the

current execution. The notion of emulation, sketched above, is extended to hold for any auxiliary

input. See more details in Section 4. (Auxiliary inputs were �rst introduced in [go94], in the

context of sequential composition of Zero-Knowledge proofs. Further discussion appears there, as

well as in [g95].)

In the case of adaptive adversaries the \information ow" between a single protocol execution

and other executions cannot be fully captured by a piece of information given at the onset of the

execution. In a nutshell, the problem is that whenever a party gets corrupted by the adversary,

either during the protocol execution or after the execution is completed, the adversary sees internal

data of this party both from that execution and from other protocol executions run by the party.

We model this information ow by introducing an additional algorithmic entity, representing the

external environment, both to the real-life and to the ideal models. This entity interacts with

the adversary and the parties at several points throughout the execution. At these points, the

environment provides the adversary with additional information, and receives information from the

adversary. The notion of emulation is adapted as follows: A protocol � emulates the ideal process

for evaluating f (namely, � securely evaluates f) if for any real-life adversary A (from some class

of real-life adversaries), and for any environment Z, there exist an ideal-model adversary S (from

the corresponding class of ideal-process adversaries) such that the e�ect of A with environment

Z on parties running � can be emulated by S in the ideal model for evaluating f with the same

10

environment Z. See more details in Section 5.

2.2 Beyond secure function evaluation

Although secure function evaluation is a very general task, it does not capture all the interesting

functionalities of cryptographic protocols. Let us elaborate a bit. First, some cryptographic tasks

are reactive, in the sense that they have several phases, where the output of one phase may be

part of the input of the next phase, and where the security of the task imposes requirements

on the outputs of all phases taken together. (Examples include commitment, secret-sharing, and

more complex tasks such as encryption or signature schemes where the same key is used for the

processing of many messages.) In addition, the requirement that a secure protocol evaluates a pre-

de�ned function of the inputs may be too restrictive: Many cryptographic tasks can be securely

carried out by protocols that do not evaluate any pre-de�ned function of the inputs. (Such protocols

would still guarantee that some input-output relation is satis�ed.)

Nonetheless, the de�nitional approach described in Section 2.1 can be adapted to capture the

security requirements of other tasks. In fact, some de�nitions used in the literature to capture the

security requirements of other tasks can be regarded as examples of such an adaptation. Examples

include the tasks of distributed proactive signature schemes [chh98], key-exchange and authentica-

tion [bck98], and distributed public-key encryption [cg99]. This sub-section sketches the general

paradigm that underlies these de�nitions and can possibly be used to capture the security require-

ments of other cryptographic tasks. The idea is to proceed in three steps, as follows:

1. Formulate an ideal model for executing the task at hand. Typically, this ideal model in-

volves a trusted party whose functionality captures the security requirements from the task.

This functionality will typically involve repeated interaction with the parties. An important

ingredient in this step is de�ning the global output of an execution in the ideal model.

2. Formalize the global output of an execution of a protocol in the \real-life" model under

consideration.

3. Say that a protocol � securely performs the task at hand if it \emulates" an execution in

the ideal model, in the usual way: For any real-life adversary A there should exist an ideal-

model adversary S such that the global output of running � with A in the real-life model

is distributed similarly to the global output of running S in the ideal model. In the case of

adaptive adversaries the notion of emulation is extended to include the environment machine,

as sketched above.

3 Preliminaries

In this section we review some basic notions that underlie our formalization of the de�nitions. A

distribution ensemble X = fX(k; a)g

k2N;a2D

is an in�nite sequence of probability distributions,

where a distribution X(k; a) is associated with each values of k 2 N and a 2 D for some domain

D. (Typically, D = f0; 1g

�

.)

The distribution ensembles we consider in the sequel are outputs of computations (either in

an ideal or in a `real-life' model), where the parameter a corresponds to various types of inputs,

and the parameter k is taken to be the security parameter. All complexity characteristics of our

constructs are measured in terms of the security parameter. In particular, we will be interested in

the behavior of our constructs when the security parameter tends to in�nity.

11

De�nition 1 (Equal distribution) We say that two distribution ensembles X and Y are equally

distributed (and write X

d

= Y) if for all k and all a we have that distributions X(k; a) and Y (k; a)

are identical.

Slightly abusing notations, we will also use X(k; a)

d

= Y (k; a) to denote that distributions X(k; a)

and Y (k; a) are identical.

Say that a function � :N! [0; 1] is negligible if for all c > 0 and for all large enough k 2N we

have �(k) < k

�c

.

De�nition 2 (Statistical indistinguishability) Let � : N! [0; 1]. Two distribution ensembles

X and Y have statistical distance � if for all su�ciently large k and all a we have that

SD(X(k; a); Y (k; a)) < �(k)

where SD denotes statistical distance, or total variation distance (that is,

SD(Z

1

; Z

2

) =

1

2

P

a

jProb(Z

1

= a)� Prob(Z

2

= a)j).

If � is a negligible function then we say that X and Y are statistically indistinguishable (and write

X

s

� Y)

De�nition 3 (Computational indistinguishability [gm84, y82a]) Let � : N ! [0; 1]. We

say that two distribution ensembles X and Y have computational distance at most � if for every

algorithm D that is probabilistic polynomial-time in its �rst input, for all su�ciently large k, all a,

and all auxiliary information w 2 f0; 1g

�

we have:

jProb(D(1

k

; a; w; x) = 1)� Prob(D(1

k

; a; w; y) = 1)j < �(k)

Where x is chosen from distribution X(k; a), y is chosen from distribution Y (k; a), and the proba-

bilities are taken over the choices of x, y, and the random choices of D.

If ensembles X and Y have computational distance at most k

�c

for all c > 0 then we say that

X and Y are computationally indistinguishable and write X

c

� Y .

Note that De�nition 3 gives the distinguisher D access to an arbitrary auxiliary information

string w (thus making the de�nition a non-uniform complexity one). It is stressed that w is �xed

before the random choices of X and Y are made.

Multiparty functions. The functions to be evaluated by the parties are formalized as follows.

An n-party function (for some n 2 N) is a probabilistic function f : N � (f0; 1g

�

)

n

� f0; 1g

�

!

(f0; 1g

�

)

n

, where the �rst input is the security parameter and the last input is taken to be the

random input. We will be interested in functions that are computable in time that is polynomial

in the security parameter. In particular, the lengths of the inputs and outputs are assumed to

be bounded by a polynomial in the security parameter. See [g98] for a more complete discussion

of conventions regarding such functions. (Extending the treatment to more complex multiparty

function requires some small technical modi�cations.)

Intuitively, n-party functions are interpreted as follows. Let e

R

 Dmean that element e is drawn

uniformly at random from domain D, and let f(k; ~x; r

f

)

i

denote the ith component of f(k; ~x; r

f

).

Each party P

i

(out of P

1

; :::; P

n

) has input x

i

2 f0; 1g

�

, and wishes to evaluate f(k; ~x; r

f

)

i

where

r

f

R

 f0; 1g

t

and t is a value determined by the security parameter. For concreteness we concentrate

on inputs and random inputs in f0; 1g

�

. Other domains (either �nite or in�nite) can be encoded

in f0; 1g

�

in standard ways.

12

4 Non-adaptive adversaries

As discussed in the preamble of Section 5, non-adaptive security (i.e., security against non-adaptive

adversaries) is considerably weaker than adaptive security. Still, we �rst present the non-adaptive

case in full. This is done for two reasons. First, the de�nition and (especially) the proof of the

composition theorem are considerably simpler in the non-adaptive case. Thus, it is a good `warm-

up' for the adaptive case. Second, some important protocols in the literature (e.g., [gmw87, f87])

are known to be secure only against non-adaptive adversaries (see [g98]). Thus, treatment of this

case is of independent interest.

Throughout this section we restrict ourselves to the secure channels setting, where the adversary

may be computationally unbounded and learns only messages sent to corrupted parties. In Section

6 we show how the treatment is adapted to settings where no secure channels exist, and security is

provided only against probabilistic polynomial time adversaries.

Section 4.1 contains the de�nition of secure protocols. Further discussion on the de�nition is

presented in Section 4.2. Section 4.3 presents the composition theorem, to be proven in Section

4.4.

4.1 De�nition of security: The non-adaptive case

We de�ne secure protocols in the non-adaptive case. The de�nitions for passive and active adver-

saries are developed side by side, noting the di�erences throughout the presentation.

Following the outline presented in Section 2, we �rst formalize the real-life model; next we

describe the ideal process; �nally the notion of emulation of the ideal process by a computation in

the real-life model is presented.

The real-life model. An n-party protocol � is a collection of n interactive, probabilistic algo-

rithms. Formally, each algorithm is an Interactive Turing machine, as de�ned in [gmr89]. We use

the term party P

i

to refer to the ith algorithm. (Figuratively, party P

i

is a computer that executes

the ith algorithm.) Each party P

i

starts with input x

i

2 f0; 1g

�

, random input r

i

2 f0; 1g

�

, and

the security parameter k. Informally, we envision each two parties as connected via a private com-

munication channel. A more complete description of the communication among parties is presented

below.

2

A (non-adaptive) real-life adversary, A, is another interactive (computationally unbounded) Tur-

ing machine describing the behavior of the corrupted parties. Adversary A starts o� with input

that contains the identities of the corrupted parties and their inputs. In addition, A receives ad-

ditional, auxiliary input and a value k for the security parameter. We let z denote the input of

A. (The auxiliary input is a standard tool that allows us to prove the composition theorem. See

Section 2.1 for discussion.) In addition, A has random input.

3

Say that an adversary is t-limited if it controls at most t parties. (Formally, a t-limited adversary

halts whenever its input contains the identities of more than t corrupted parties.)

4

2

We view n, the number of parties, as independent from the security parameter, k. This allows discussing cases

where n is small with respect to the security parameter (e.g., a constant), as well as cases where n tends to in�nity

and has some some �xed relation with k. Furthermore, note that the parties do not necessarily know n in advance.

3

We remark that the adversary, being computationally unbounded, need not be probabilistic. In fact, our formal-

ization of the security requirement will be a non-uniform complexity one. In such a setting deterministic adversaries

are as powerful as probabilistic adversaries with comparable complexity. Yet, we �nd it conceptually appealing to

formulate the de�nition in terms of probabilistic adversaries.

4

This paper concentrates on t-limited adversaries, where t is some threshold value. That is, it is assumed that the

13

In the sequel we often use a slightly less formal language for describing the participating entities

and the computation. A formal description (in terms of interactive Turing machines) can be easily

extracted from the one here.

The computation proceeds in rounds, where each round proceeds as follows. (The description

below captures a fully connected, ideally authenticated, synchronous network with rushing. The

term rushing refers to allowing the corrupted parties to learn the messages sent by the uncorrupted

parties in each round, before sending their own messages for this round.) First the uncorrupted

parties generate their messages of this round, as described in the protocol. (That is, these messages

appear on the outgoing communication tapes of the uncorrupted parties.) The messages addressed

to the corrupted parties become known to the adversary (i.e., they appear on the adversary's

incoming communication tape). Next the adversary generates the messages to be sent by the

corrupted parties in this round. If the adversary is passive then these messages are determined

by the protocol. An active adversary determines the messages sent by the corrupted parties in

an arbitrary way. Finally each uncorrupted party receives all the messages addressed to it in this

round (i.e., the messages addressed to P

i

appear on P

i

's incoming communication tape.)

5

At the end of the computation all parties locally generate their outputs. The uncorrupted

parties output whatever is speci�ed in the protocol. The corrupted parties output a special sym-

bol, ?, specifying that they are corrupted. (Figuratively, these parties did not participate in the

computation at all.) In addition, the adversary outputs some arbitrary function of its view of the

computation. The adversary view consists of its auxiliary input and random input, followed by the

corrupted parties' inputs, random inputs, and all the messages sent and received by the corrupted

parties during the computation. Without loss of generality, we can imagine that the adversary's

output consists of its entire view.Figure 1 summarizes the real-life computational process.

We use the following notation. Let advr

�;A

(k; ~x; z; ~r) denote the output of real-life adversary A

with auxiliary input z and when interacting with parties running protocol � on input ~x = x

1

: : : x

n

and random input ~r = r

0

: : : r

n

and with security parameter k, as described above (r

0

for A, x

i

and

r

i

for party P

i

). Let exec

�;A

(k; ~x; z; ~r)

i

denote the output of party P

i

from this execution. Recall

that if P

i

is uncorrupted then this is the output speci�ed by the protocol; if P

i

is corrupted then

exec

�;A

(k; ~x; z; ~r)

i

=?. Let

exec

�;A

(k; ~x; z; ~r) = advr

�;A

(k; ~x; z; ~r); exec

�;A

(k; ~x; z; ~r)

1

; : : : ; exec

�;A

(k; ~x; z; ~r)

n

:

Let exec

�;A

(k; ~x; z) denote the probability distribution of exec

�;A

(k; ~x; z; ~r) where ~r is uniformly

chosen. Let exec

�;A

denote the distribution ensemble fexec

�;A

(k; ~x; z)g

k2N;h~x;zi2f0;1g

�
. (Here

h~x; zi denotes some natural encoding of ~x; z as a single string.)

The ideal process. The ideal process is parameterized by the function to be evaluated. This is

an n-party function f : N� (f0; 1g

�

)

n

� f0; 1g

�

! (f0; 1g

�

)

n

, as de�ned in Section 3. Each party

P

i

has input x

i

2 f0; 1g

�

and the security parameter k; no random input is needed. Recall that the

parties wish to evaluate f(k; ~x; r

f

)

1

; :::; f(k; ~x; r

f

)

n

, where r

f

R

 f0; 1g

s

and s is a value determined

by the security parameter, and P

i

learns f(k; ~x; r

f

)

i

. A (non-adaptive) ideal-process-adversary S is an

adversary can corrupt any subset of up to t parties. This type of corruption structures was chosen for simplicity of

exposition. The same de�nitional methodology holds with respect to other, more general corruption structures (e.g.,

[hm97, cdm98]), both in the non-adaptive and the adaptive cases.

5

Di�erent models, representing di�erent real-life communication settings and network topologies, are of-course

possible. In particular, if one is concerned only with feasibility results and is not concerned with e�ciency then it

may be simpler to let the parties talk in a `round robin', where in each communication round only a single party

sends messages. For sake of generality we do not restrict ourselves to this simpler model.

14

Execution of an n-party protocol by parties P

1

:::P

n

with adversary A

1. (a) Each party P

i

starts with the security parameter k, input x

i

and random input r

i

.

(b) The adversary A starts with k, random input r

0

, input z that includes a set C � [n] of

corrupted parties and their inputs fx

i

ji 2 Cg, and additional auxiliary input.

2. Initialize the round number to l 0.

3. As long as there exists an uncorrupted party that did not halt, repeat:

(a) Each uncorrupted party P

i

, i =2 C, generates fm

i;j;l

jj 2 [n]g, where each m

i;j;l

2 f0; 1g

�

is a (possibly empty) message intended for party P

j

at this round.

(b) The adversary A learns fm

i;j;l

ji 2 [n]; j 2 Cg, and generates fm

i;j;l

ji 2 C; j =2 Cg.

(c) Each uncorrupted party P

i

, i =2 C, receives the messages fm

j;i;l

jj 2 [n]g.

(d) l l + 1

4. Each uncorrupted party P

i

, i =2 C, as well as A, generate an output. The output of the

corrupted parties is set to ?.

Figure 1: A summary of the non-adaptive real-life computation.

interactive (computationally unbounded) Turing machine describing the behavior of the corrupted

parties. Adversary S starts o� with input that includes the identities and inputs of the corrupted

parties, random input, auxiliary input, and the security parameter k.

6

In addition, there is an

(incorruptible) trusted party, T , that knows k. The ideal process proceeds as follows.

Input substitution: The ideal-process-adversary S sees the inputs of the corrupted parties. If

S is active then it may also alter these inputs based on the information known to it so far.

Let

~

b be the jCj-vector of the altered inputs of the corrupted parties, and let ~y be the n-

vector constructed from the input ~x by substituting the entries of the corrupted parties by

the corresponding entries in

~

b. If S is passive then no substitution is made and ~y = ~x.

Computation: Each party P

i

hands its (possibly modi�ed) input value, y

i

, to the trusted party

T . Next, T chooses r

f

R

 R

f

, and hands each P

i

the value f(k; ~y; r

f

)

i

.

7

Output: Each uncorrupted party P

i

outputs f(k; ~y; r

f

)

i

, and the corrupted parties output ?. In

addition, the adversary outputs some arbitrary function of the information gathered during

the computation in the ideal process. This information consists of the adversary's random

input, the corrupted parties' inputs and the resulting function values ff(k; ~y; r

f

)

i

: P

i

is

corruptedg.

Let advr

f;S

(k; ~x; z; ~r), where ~r = (r

f

; r), denote the output of ideal process adversary S on

security parameter k, random input r, and auxiliary input z, when interacting with parties having

6

In contrast with the real-life adversary, it is essential that the ideal-process adversary be probabilistic. This holds

even in our non-uniform complexity setting. Also, there is no need to explicitly limit the number of corrupted parties

in the ideal process. The de�nition will guarantee that the identities of the corrupted parties in the ideal process are

identical to the identities of the corrupted parties in the real life model.

7

This formalization means that r

f

, the `internal random choices of f ', remains unknown to the parties except for

the information provided by the value of f .

15

input ~x = x

1

: : : x

n

, and with a trusted party for evaluating f with random input r

f

. Let the

(n+ 1)-vector

ideal

f;S

(k; ~x; z; ~r) = advr

f;S

(k; ~x; z; ~r); ideal

f;S

(k; ~x; z; ~r)

1

: : : ideal

f;S

(k; ~x; z; ~r)

n

denote the outputs of the parties on inputs ~x, adversary S, and random inputs ~r as described above

(P

i

outputs ideal

f;S

(k; ~x; z; ~r)

i

). Let ideal

f;S

(k; ~x; z) denote the distribution of ideal

f;S

(k; ~x; z; ~r)

when ~r is uniformly distributed. Let ideal

f;S

denote the distribution ensemble

fideal

f;S

(k; ~x; z)g

k2N;h~x;zi2f0;1g

�.

Comparing computations in the two models. Finally we require that protocol � emulates

the ideal process for evaluating f , in the following sense. For any (t-limited) real-life adversary A

there should exist an ideal-process adversary S, such that ideal

f;S

d

= exec

�;A

. Spelled out, this

requirement means that for any value of the security parameter k, for any input vector ~x and any

auxiliary input z, the global outputs ideal

f;S

(k; ~x; z) and exec

�;A

(k; ~x; z) should be identically

distributed.

8

We require that the complexity of the ideal-process adversary S be comparable to (i.e., polyno-

mial in) the computational complexity of the real-life adversary A. Introducing complexity issues

in this seemingly \information theoretic" model may appear awkward and out of place at a �rst

glance. However, a second inspection will verify that this requirement is very desirable. See Remark

1 in Section 4.2.

9

De�nition 4 (non-adaptive security in the secure channels setting) Let f be an n-party

function and let � be a protocol for n parties. We say that � non-adaptively, t-securely evaluates f

if for any (non-adaptive) t-limited real-life adversary A there exists a (non-adaptive) ideal-process

adversary S whose running time is polynomial in the running time of A, and such that

ideal

f;S

d

= exec

�;A

: (1)

If A and S are passive adversaries then we say that � non-adaptively, t-privately evaluates g.

Relaxed variants of De�nition 4 are obtained by requiring that the two sides of (1) be only

statistically indistinguishable, or even only computationally indistinguishable. (The last relaxation

is aimed at the case where the adversary is assumed to be probabilistic polynomial time.) Fur-

thermore, if De�nition 4 is satis�ed with the exception that the two sides of (1) have statistical

(resp., computational) distance at most � then we say that protocol � achieves statistical (resp.,

computational) distance �.

4.2 Discussion

This section contains further discussion on De�nition 4.

8

In the case where the inputs are taken from a �nite domain and equal distribution is required, a simpler for-

malization that does not introduce ensembles is su�cient. (Basically, the simpler formalization �xes the security

parameter to an arbitrary value.) We use the current formalization in order to accommodate in�nite input domains,

indistinguishability of ensembles, and computationally bounded adversaries.

9

Here we implicitly assume that the complexity of the protocol � run by the uncorrupted parties is bounded by

a polynomial in the complexity of the adversary. If this is not the case then S is allowed to be polynomial in the

complexity of �.

16

Remark 1: On the complexity of the ideal-process adversary. We motivate our require-

ment that the running time of the ideal-process adversary be polynomial in that of the real-life

adversary, even in this seemingly \information theoretic" setting. The ideal-process adversary is

an imaginary concept whose purpose is to formalize the following requirement: \Whatever gain the

adversary obtains from interacting with parties running �, could have also been obtained in an ideal

setting where a trusted party is used". Arguably, this requirement also means that interacting with

� should not allow the adversary to obtain some gain \for free", where obtaining the same gain in

the ideal process requires considerable computational resources. This aspect of the security require-

ment is captured by appropriately limiting the computational power of the ideal process adversary.

As seen below, failing to do so results in a considerably weaker notion of security. (We remark that

this weaker notion may still be of some interest for studying purely information-theoretic aspects

of secure computation.)

Let us illustrate this distinction via an example. Let f(x; y) = g(x� y) where g is a one-way

permutation and � denotes bitwise exclusive-or. Assume that parties A and B have inputs x and

y respectively, and consider the following protocol for evaluating f : Party A announces x, party

B announces y, and both parties evaluate f(x; y). Our intuition is that this protocol is insecure

against adversaries that may corrupt one party (say, B): It \gives away for free" both x and y,

whereas computing x given only y and f(x; y) may take the adversary a large amount of time.

Indeed, if the real-life and ideal-process adversaries are limited to probabilistic polynomial time

(and one-way permutations exist), then this protocol is not secure against adversaries that corrupt

one party. However, if S is allowed unlimited computational power regardless of A's complexity,

this protocol is considered secure since S can invert g.

Another distinction between the two notions has to do with constructing protocols in the com-

putational setting. A convenient design paradigm for secure protocols in this setting proceeds as

follows: First design a secure protocol � in the secure channels setting. Then, construct a protocol

�

0

from � by encrypting each message. Indeed, it can be readily seen that if � is secure in the

secure channels setting according to the de�nition here (and an appropriate encryption scheme is

used) then �

0

is secure in the computational setting.

10

However, if the above, weaker notion of

security is used then this transformation does not necessarily work.

Finally, we remark that other de�nitions of secure protocols do not make this distinction.

(Examples include the [b91] de�nition, as well as the de�nition of private protocols in [ck89, k89,

kkmo97].) Nonetheless, the protocols described in these works seem to be secure even according

to the de�nition here. (In fact, we are not aware of protocols in the literature that were proven

secure according to the above weaker de�nition, but are insecure according to the de�nition here.)

Remark 2: Combining correctness and secrecy. The requirement, made in De�nition 4, that

the global outputs of the two computations be equally distributed imposes several requirements on

the ideal-process adversary. In particular, it implies:

(a) Secrecy. The output of the real-life adversary is distributed equally to the output of the ideal-

process adversary.

(b) Correctness. The outputs of the uncorrupted parties are equally distributed in the two models.

Can the de�nition be weakened to require only that the global output of the ideal-process satis�es

(a) and (b)?

It was argued in Section 2 that separately requiring secrecy and correctness does not restrict

10

For instance, semantically secure encryption (as in [gm84]) is su�cient in the non-adaptive model, provided that

a di�erent pair of public and private keys are used for each pair of parties. We omit further details.

17

the \inuence" of the adversary on the outputs of the uncorrupted parties, thereby resulting in

unsatisfactory de�nitions. Yet, the weakened de�nition proposed here does combine correctness and

secrecy to some extent (since the same ideal-process adversary has to satisfy both requirements).

Indeed, the example protocol given in Section 2 (and also the examples in [mr91]) are insecure

even under this weakened de�nition.

Nonetheless, we argue that the two entire (n + 1)-vectors describing the global outputs of the

two computations must be identically distributed, and it does not su�ce to separately require (a)

and (b) (i.e., that the two relevant projections of the global outputs are identically distributed).

This point is demonstrated via an example: Consider two parties A and B that wish to evaluate the

following 2-party function. Both parties have empty input; A should output a random bit, and B

should have empty output. Of-course, A can simply output a random bit without any interaction;

yet, consider the protocol where A also sends B the value of its output. B is instructed to ignore A's

message and output nothing. This protocol is clearly insecure; yet it satis�es the above weakened

de�nition.

11

Put in other words, the above example highlights an additional weakness of separating the

correctness and secrecy requirements, on top of the weakness discussed in Section 2. While the

discussion in Section 2 concentrates on problems related to active adversaries, the example here

highlights problems related to probabilistic functions. In particular, the insecure protocol suggested

here satis�es the weakened de�nition even if the adversary is passive. This means that, when dealing

with probabilistic functions, secrecy and correctness cannot be separately required even for passive

adversaries.

Remark 3: On one pass black-box simulation. In [mr91, b91, c95] the notion of emulation

is more restrictive in two respects. First, it is required that the ideal-process adversary be restricted

to having only black-box access to the real-life adversary. More substantially, the adversary can

be run only once and is never `rewinded'. We call this type of simulation one pass black-box.

The second restriction is quite limiting. In particular, in the computational setting it prohibits

usage of zero-knowledge protocols within secure protocols. (This is so since demonstrating the

zero-knowledge property via black-box simulation requires rewinding the adversary.)

It was speculated in [c95, cfgn96] (and, implicitly, also in [mr91, b91]) that restricting the

ideal-process adversary to one pass black-box simulation is needed in order to prove a general

composition theorem. In this work we show that the modular composition theorem holds in the

non-concurrent case even if the ideal-process adversary is not restricted to black-box simulation.

Recall that in the context of zero-knowledge existence of a black-box simulator implies existence

of a simulator even for adversaries that have arbitrary auxiliary input [go94]. Using the same

technique, it can be seen that a similar result holds with respect to De�nition 4.

Remark 4: On universal adversaries. The introduction of the auxiliary input (and the quan-

ti�cation over all auxiliary inputs) makes the quanti�cation over all real-life adversaries unnecessary:

It su�ces to consider a single real-life adversary, namely the `universal adversary' U . Adversary

U will receive in its auxiliary input a description of an arbitrary adversary machine A and will

run A. (Note that the complexity of U running A is only slightly more than the complexity of

11

We sketch a proof. The case where A is corrupted is straightforward. If B is corrupted then, for each real-life

adversary B (that controls B), construct the following ideal process adversary S: Run a copy of B, giving it a random

bit b

0

for the output of A, and output whatever B outputs. The bit b

0

will be di�erent (with probability one half)

from the output of A in this execution, thus Equation (1) will not be satis�ed. Yet, as long as the outputs of parties

A and B are considered separately the simulation is valid.

18

A.) Consequently, in order to show security of a protocol it su�ces to show a single ideal-process

adversary: the one that satis�es De�nition 4 with respect to U .

Another consequence of this observation follows. One may wish to strengthen De�nition 4 to

require that there exists an e�cient transformation from real-life adversaries to the corresponding

ideal-process adversaries. The above argument shows that such strengthening is unnecessary.

Remark 5: On \initially-adaptive" adversaries. Consider the following variant of De�nition

4. Instead of having the set of corrupted parties given to the adversary as part of its input, let the

adversary (both in the real-life and ideal models) choose the identities of the corrupted parties, one

by one in an adaptive way, but under the restriction that all corruptions must be made before any

communication takes place among the parties. Call this model initially-adaptive.

We observe that security in the initially-adaptive model is equivalent to security in the non-

adaptive model (as in De�nition 4). Intuitively, this follows from the fact that, until the point where

the �rst message is sent, the real-life and ideal models are identical. Therefore, any advantage (over

non-adaptive adversaries), gained in the real-life model by the ability to adaptively corrupt parties

before the interaction starts, can also be gained in the initially-adaptive ideal model.

A sketch of proof follows. Clearly initially-adaptive security implies non-adaptive security.

(The argument is similar to that of Remark 1, Section 5.2.) Assume that a protocol � is secure

according to De�nition 4, and let A be an initially-adaptive real-live adversary. We construct an

initially-adaptive ideal model adversary S that emulates A.

Let A

0

be the adversary in the (standard) non-adaptive real-life model that gets in its auxiliary

input an internal state of A at the point where A is done corrupting parties, and runs A from

that state on. Let S

0

be the ideal-model adversary, guaranteed by De�nition 4, that emulates

A

0

. Construct the ideal-model adversary S as follows. First S follows, in the ideal model, the

corruption instructions of A. Let � be the state of A once it is is ready to start interacting with

the parties. Next, S runs S

0

with state � given as auxiliary input. It can be seen that S is a valid

initially-adaptive ideal-model adversary, and that S emulates A.

Remark 6: On related inputs. De�nition 4 requires the protocol to \behave properly" on any

set of inputs to the parties. However, in many real-world situations the participants expect to have

inputs that are correlated in some way (say, the parties have some common input, or inputs that

are taken from a certain distribution), and no requirements are made from the protocol in the case

that the inputs are not of the expected form. The de�nition can be relaxed to accommodate such

weakened security properties by placing appropriate restrictions on the domain of the inputs of the

parties. (Alternatively, the evaluated function could be re-de�ned to return some error value in

cases where the inputs are not in the appropriate domain.)

4.3 Modular composition: The non-adaptive case

Recall that we want to break a given task (i.e., a protocol problem) into several partial sub-tasks,

design protocols for these partial sub-tasks, and then use these protocols as subroutines in a solution

for the given task. For this purpose, we want to formalize and prove the informal goal stated in the

Introduction. We do this for the non-concurrent case, where at most one subroutine call is made

at any communication round. This section concentrates on non-adaptive adversaries in the secure

channels setting.

Formalization and derivation of the composition theorem is done in two steps. First, we state

a more general theorem, that holds for any protocol � (not only protocols that securely evaluate

19

functions): replacing ideal evaluation calls made by �, with sub-protocols that securely evalu-

ate the corresponding functions, results in a protocol that has essentially the same input-output

functionality as �. The composition theorem from the Introduction follows as an easy corollary.

The hybrid model. We start by specifying the model for evaluating an n-party function g

with the assistance of a trusted party for evaluating n-party functions f

1

; :::; f

m

, and de�ne secure

protocols in that model. The model, called the hybrid model with ideal access to f

1

; :::; f

m

(or in short

the (f

1

; :::; f

m

)-hybrid model), is obtained as follows. We start with the real-life model of Section

4.1. This model is augmented with an incorruptible trusted party T for evaluating f

1

; :::; f

m

. The

trusted party is invoked at special rounds, determined by the protocol. (For simplicity of exposition

we assume that the number of ideal evaluation calls, the rounds in which the ideal calls take place,

and the functions to be evaluated depend only on the security parameter. In addition we assume

that m, the number of di�erent ideally evaluated functions, is �xed.

12

) In each such round a

function f (out of f

1

; :::; f

m

) is speci�ed. The computation at each special round mimics the ideal

process. That is, all parties hand their f -inputs to T (party P

i

hands x

f

i

). As in the ideal process,

an active adversary decides on the input values that the corrupted parties hand the trusted party.

If the adversary is passive then even corrupted parties hand T values according to the protocol.

Next the parties are handed back their respective outputs: P

i

gets f(k; x

f

1

::x

f

n

; r

f

)

i

, where r

f

is the

random input to f . Fresh randomness is used in each ideal evaluation call.

Let exec

f

1

;:::;f

m

�;A

(k; ~x; z) denote the random variable describing the output of the computation

in the (f

1

; :::; f

m

)-hybrid model with protocol �, adversary A, security parameter k, inputs ~x and

auxiliary input z for the adversary, analogously to the de�nition of exec

�;A

(k; ~x; z) in Section 4.1.

(We stress that here � is a hybrid of a real-life protocol with ideal evaluation calls to T .) Let

exec

f

1

;:::;f

m

�;A

denote the distribution ensemble fexec

f

1

;:::;f

m

�;A

(k; ~x; z)g

k2N;h~x;zi2f0;1g

�.

Replacing an ideal evaluation call with a subroutine call. Next we describe the `mechanics'

of replacing an ideal-evaluation call of protocol � at round l with an invocation of an n-party

protocol �. This is done in a straightforward way. That is, the description of � for round l is

modi�ed as follows. (Other rounds remain una�ected.)

1. At the onset of round l each party P

i

saves its internal state (relevant to protocol �) on a

special tape. Let �

i

denote this state.

2. The call to the trusted party T is replaced with an invocation of P

i

's code for protocol �.

Party P

i

's input and random input for � are determined as follows. The input x

�

i

is set to

the value that P

i

was to hand the trusted party T at round l, according to protocol �. The

random input r

�

i

is uniformly chosen in the appropriate domain.

3. Once P

i

completes the execution of protocol � with local output v

�

i

, it resumes the execution

of protocol � for round l, starting from state �

i

, with the exception that the value to be

received from T is set to v

�

i

.

12

We remark that these restrictions can be \circumvented" in a number of ways. For instance we can imagine

that at each other round the parties make an ideal evaluation call to a \universal function", U , de�ned as follows.

Each party P

i

hands the trusted party a description of an n-party function f and an input x

i

. If a majority of the

parties agree on f then P

i

is handed f(~x)

i

; otherwise a null value is returned. This convention allows us to apply the

composition theorems to protocols where the parties decide in an adaptive way (say, using some agreement protocol)

on the number of ideal evaluation calls and on the function to be evaluated at di�erent calls.

20

Let �

�

1

:::�

m

denote protocol � (originally designed for the (f

1

:::f

m

)-hybrid model) where each ideal

evaluation call to f

i

is replaced by a subroutine call to protocol �

i

.

It is stressed that no uncorrupted party resumes execution of protocol � before the current

execution of protocol �

i

is completed. Furthermore, we assume that all the uncorrupted parties

terminate each execution of �

i

at the same round. Otherwise, some parties may resume executing

the calling protocol while others still execute the subroutine protocol, and the non-concurrency

condition is violated.

13

Theorem 5, stated below, takes a somewhat di�erent approach to the composition operation

than the informal theorem made in the Introduction. It does not require any security properties

from protocol �. Instead, it essentially states that the \input-output functionality" of any protocol

� in the hybrid model is successfully \emulated" by �

�

1

;:::;�

m

in the real-life model. On top of

being somewhat more straightforward, this more general statement is relevant even in cases where

� performs a task other than secure function evaluation.

Theorem 5 (non-adaptive modular composition: General statement) Let t < n, let m 2

N, and let f

1

; :::; f

m

be n-party functions. Let � be an n-party protocol in the (f

1

; :::; f

m

)-hybrid

model where no more than one ideal evaluation call is made at each round, let �

1

; :::; �

m

be n-party

protocols where �

i

non-adaptively t-securely (resp., t-privately) evaluates f

i

, and let �

�

1

;:::;�

m

be the

composed protocol described above. Then, for any non-adaptive t-limited active (resp., passive) real-

life adversary A there exists a non-adaptive active (resp., passive) adversary A

�

in the (f

1

; :::; f

m

)-

hybrid model, whose running time is polynomial in the running time of A, and such that

exec

f

1

;:::;f

m

�;A

�

d

= exec

�

�

1

;:::;�

m

;A

: (2)

For completeness, we also rigorously state the informal goal stated in the Introduction. For

that, we �rst de�ne protocols for securely evaluating a function g in the (f

1

; :::; f

m

)-hybrid model.

This is done via the usual comparison to the ideal process for g:

De�nition 6 Let f

1

; :::; f

m

; g be n-party functions and let � be a protocol for n parties in the

(f

1

; :::; f

m

)-hybrid model. We say that � non-adaptively t-securely evaluates g in the (f

1

; :::; f

m

)-

hybrid model if for any non-adaptive t-limited adversary A (in the (f

1

; :::; f

m

)-hybrid model) there

exists a non-adaptive ideal-process adversary S whose running time is polynomial in the running

time of A, and such that

ideal

g;S

d

= exec

f

1

;:::;f

m

�;A

: (3)

If A and S are passive adversaries then we say that � non-adaptively t-privately evaluates g in the

(f

1

; :::; f

m

)-hybrid model.

Corollary 7 (non-adaptive modular composition: Secure function evaluation) Let t <

n, let m 2 N, and let f

1

; :::; f

m

; g be n-party functions. Let � be an n-party protocol that non-

adaptively t-securely (resp., t-privately) evaluates g in the (f

1

; :::; f

m

)-hybrid model where no more

13

Consider, for instance, the following example. Parties A, B, C wish to evaluate the following function, g: C

should output the input of B; B should output the input of A; A should have empty output. Assume a hybrid model

with ideal access to a function f where C outputs the input of B. A protocol � for evaluating g in this hybrid model

instructs parties A, B and C to �rst ideally evaluate f . Next party A is instructed to send B its input. It is easy

to see that � securely evaluates g in the f -hybrid model. Let � be a protocol that securely evaluates f . Protocol �

takes several rounds to complete, but party A completes � after the �rst round.

Now, assume that A sends its input to B as soon as it is done with the execution of � (and, in particular, before

B and C have completed the execution of �). In this case, a corrupted B may be able to inuence the output of C

in ways that depend on A's input. This would make protocol �

�

insecure, although both � and � are secure.

21

than one ideal evaluation call is made at each round, and let �

1

; :::; �

m

be n-party protocols such

that �

i

non-adaptively t-securely (resp., t-privately) evaluates f

i

. Then the protocol �

�

1

;:::;�

m

non-

adaptively t-securely (resp., t-privately) evaluates g.

Proof: Let A be a (non-adaptive) t-limited real-life adversary that interacts with parties running

�

�

1

;:::;�

m

. Theorem 5 guarantees that there exists an adversary A

�

in the (f

1

; :::; f

m

)-hybrid model

such that exec

f

1

;:::;f

m

�;A

�

d

= exec

�

�

1

;:::;�

m

;A

. The security of � in the (f

1

; :::; f

m

)-hybrid model guaran-

tees that there exists an ideal model adversary (a \simulator") S such that ideal

g;S

d

= exec

f

1

;:::;f

m

�;A

�

.

The corollary follows by combining the two equalities. 2

4.4 Proof of Theorem 5

We prove the theorem only for the case of active adversaries (i.e., t-security). The case of passive

adversaries (i.e., t-privacy) can be obtained by appropriately degenerating the current proof.

In addition, we �rst treat only the case where m = 1 and the trusted party T is called only once.

The case of multiple functions and multiple (but non-concurrent) calls to T is a straightforward

extension, and is treated at the end of the proof.

Section 4.4.1 contains an outline of the proof. The body of the proof is in Section 4.4.2. Section

4.4.3 contains some extensions of the proof (and of the theorem).

4.4.1 Proof outline

Let f be an n-party function, let � be an n-party protocol in the f -hybrid model, let � be a protocol

that t-securely evaluates f , let �

�

be the composed protocol. Let A be a (non-adaptive) real-life

adversary that interacts with parties running �

�

. We wish to construct an adversary A

�

in the

f -hybrid model that `simulates' the behavior of A. That is, A

�

should satisfy

exec

�

�

;A

d

= exec

f

�;A

�

: (4)

Our plan for carrying out this proof proceeds as follows.

1. We construct out of A a real-life adversary, denoted A

�

, that operates against protocol �

as a stand-alone protocol. The security of � guarantees that A

�

has a simulator (ie, an

ideal-process adversary), S

�

, such that exec

�;A

�

d

= ideal

f;S

�

.

2. Out of A and S

�

we construct an adversary, A

�

, that operates against protocol � as a stand-

alone protocol in the f -hybrid model. We then show that A

�

satis�es (4).

Let us sketch the above steps. In a way, A

�

represents the \segment" of A that interacts with

protocol �. That is, A

�

starts with a set C of corrupted parties, the inputs of the parties in C, and

an auxiliary input. It expects its auxiliary input to describe an internal state of A, controlling the

parties in C, and after interacting with parties running protocol �

�

up to the round, l

�

, where �

is invoked. (If the auxiliary input is improper then A

�

halts.) Next, A

�

interacts with its network

by simulating a run of A from the given state, and following A's instructions. At the end of its

interaction with parties running �, adversary A

�

outputs the current state of the simulated A.

Adversary A

�

represents the \segment" of A that interacts with protocol �, where the inter-

action with of A with � is replaced with an interaction with S

�

. That is, A

�

starts by invoking a

copy of A and following A's instructions, up to round l

�

. At this point, A expects to interact with

parties running �, whereas A

�

interacts with parties that invoke a trusted party for ideal evaluation

22

of f . To continue the execution of A, adversary A

�

runs S

�

. For this purpose, S

�

is given auxiliary

input that describes the current state of A at round l

�

. The information from S

�

's trusted party is

emulated by A

�

, using A

�

's own trusted party for f . Recall that the output of S

�

is a (simulated)

internal state of A at the completion of protocol �. Once protocol � completes its execution and

the parties return to running �, adversary A

�

returns to running A (starting from the state in S

�

's

output) and follows the instructions of A. When A terminates, A

�

outputs whatever A outputs.

Let us address one detail regarding the construction (among the many details that were left out

in this sketch). When adversary A

�

runs S

�

, the latter expects to see the inputs of the corrupted

parties to protocol �; however A

�

does not know these values. In fact, these values may not even

be de�ned in the execution of A with �

�

. The answer to this apparent di�culty is simple: it does

not matter which values A

�

hands S

�

as the inputs of the corrupted parties. The simulation is

valid even if these inputs are set to some arbitrary values (say, the value 0). Intuitively, the reason

is that we construct A

�

in such a way that it does not `look at' these input values at all. Thus

the output of A

�

(and consequently also the output of S

�

) is independent of these arbitrary input

values.

4.4.2 A detailed proof

Let A be an adversary (interacting with parties running �

�

). First we present the constructions of

adversaries A

�

and A

�

. Next we analyze A

�

, showing (4).

Some inevitable terminology. An execution of a protocol (either in the real-life or in the f -

hybrid model) is the process of running the protocol with a given adversary on given inputs, random

inputs, and auxiliary input for the adversary. (In the f -hybrid model an execution is determined

also by the random choices of the trusted party for f .) The internal state (or, con�guration) of an

uncorrupted party at some round of an execution consists of the contents of all tapes of this party,

the head position and the control state, taken at the end of this round. In particular, the internal

state includes all the messages sent to this party at this round. We assume that the internal state

includes the entire random input of the party for the computation, including the yet-unused parts.

The internal state of the adversary is de�ned similarly. The global state of the system at some

round of an execution is the concatenation of the internal states of the parties and the adversary

at this round.

Let is

�;A

(l; k; ~x; z; ~r)

0

denote the internal state at round l of adversary A with auxiliary input

z and when interacting with parties running protocol � on input ~x = x

1

: : : x

n

, random input

~r = r

0

: : : r

n

and with security parameter k, as described above (r

0

for A, x

i

and r

i

for party P

i

).

Let is

�;A

(l; k; ~x; z; ~r)

i

denote the internal state of party P

i

at round l of this execution. (If P

i

is

corrupted then is

�;A

(l; k; ~x; z; ~r)

i

=?.) Let

gs

�;A

(l; k; ~x; z; ~r) = is

�;A

(l; k; ~x; z; ~r)

0

; is

�;A

(l; k; ~x; z; ~r)

1

; : : : ; is

�;A

(l; k; ~x; z; ~r)

n

:

Let gs

�;A

(l; k; ~x; z) denote the probability distribution of gs

�;A

(l; k; ~x; z; ~r) where ~r is uniformly

chosen.

Note that the global state of the system at some round of an execution uniquely determines the

continuation of the execution from this round until the completion of the protocol. In particular,

the global output of the system is uniquely determined given the global state (at any round).

We assume an encoding convention of internal states into strings. A string z 2 f0; 1g

�

is said to

be an internal state of party P at round l if z encodes some internal state of P at round l. (Without

23

loss of generality we can assume that any string z encodes some internal state.) In the sequel we

often do not distinguish between internal states and their encodings.

\Running adversary A from internal state z" means simulating a run of A starting at the internal

state described in z. Recall that z contains all the information needed for the simulation; in

particular, it contains all the necessary randomness.

Construction of A

�

. The construction follows the outline described above. More speci�cally,

adversary A

�

proceeds as described in Figure 2, given adversary A.

Adversary A

�

Adversary A

�

, interacting with parties P

1

; :::; P

n

running protocol �, starts with a value k for the

security parameter, a set C of corrupted parties, inputs and random inputs for the parties in C, and

auxiliary input z

�

. Next, do:

1. Ignore the input values of the corrupted parties.

2. Let l

�

be the round where protocol �

�

starts running protocol �. (I.e., this is the round where

� calls the trusted party). Verify that the auxiliary input, z

�

, is a valid internal state of A,

controlling the parties in C, at round l

�

�1. If z

�

is not valid, then halt with no output. Else:

(a) Run A from internal state z

�

. Let P

0

1

:::P

0

n

denote the (imaginary) set of parties with

which A interacts.

(b) Whenever some uncorrupted party P

i

(running �) sends a message m to a corrupted

party P

j

, A

�

lets the simulated A see message m sent from party P

0

i

(running �

�

) to

party P

0

j

.

(c) Whenever A instructs some corrupted party P

0

j

to send a message m to an uncorrupted

party P

0

i

, adversary A

�

instructs party P

j

to send message m to party P

i

.

3. Once A halts, A

�

outputs the current internal state of A and halts.

Figure 2: Description of Adversary A

�

in the non-adaptive model

It now follows from the security of protocol � that there exists an ideal-process adversary S

�

such that ideal

f;S

�

d

= exec

�;A

�

. Note that A

�

is deterministic, since all of the randomness used

by A is provided in the auxiliary input z

�

. Yet, the simulator S

�

is (inherently) probabilistic, since

it should generate a distribution ensemble that is equal to exec

�;A

�

. In particular, it should mimic

the randomness used by the uncorrupted parties running �.

We observe that the special structure ofA

�

implies that S

�

has an additional property, described

as follows. Recall that A

�

ignores the inputs of the corrupted parties, in the sense that its actions

and output do not not depend on these input values. In particular, the copy of A run by A

�

is

not a�ected by these values. Therefore, the distribution of the output of A

�

, as well as the global

output of the system after running � with A

�

, remains unchanged if we set the input values of the

corrupted parties to 0. Consequently, the distribution of the global output of the ideal process for

evaluating f with S

�

has the same property. We formalize this discussion as follows. Given an

input vector ~x

�

, let ~x

�

j

0

denote the vector obtained by replacing all the inputs of the corrupted

parties with 0. Then, we have:

24

Claim 8 For any value of the security parameter k, any input vector ~x

�

and auxiliary input z

�

we

have

ideal

f;S

�

(k; ~x

�

; z

�

)

d

= ideal

f;S

�

(k; ~x

�

j

0

; z

�

)

Proof: We have argued above that exec

�;A

�

(k; ~x

�

; z

�

)

d

= exec

�;A

�

(k; ~x

�

j

0

; z

�

): However,

ideal

f;S

�

(k; ~x

�

; z

�

)

d

= exec

�;A

�

(k; ~x

�

; z

�

), and ideal

f;S

�

(k; ~x

�

j

0

; z

�

)

d

= exec

�;A

�

(k; ~x

�

j

0

; z

�

). The

claim follows. 2

Construction of A

�

. Adversary A

�

follows the outline described in Section 4.4.1. More specif-

ically, it proceeds as described in Figure 3.

Adversary A

�

Adversary A

�

, interacting with parties P

1

; :::; P

n

running protocol � and given access to a trusted

party T for evaluating f , starts with a value k for the security parameter, a set C of corrupted

parties, inputs ~x

C

and random inputs ~r

C

for the parties in C, and auxiliary input z. Next, do:

1. Invoke A on C;~x

C

; ~r

C

; z and follow the instructions of A up to round l

�

� 1. (Recall that so

far � and �

�

are identical.) In addition, keep another piece of the random input `on the side'.

This piece, denoted r

�

, is used below.

2. At the onset of round l

�

, A expects to start interacting with parties running protocol � (as

subroutine), whereas parties P

1

; :::; P

n

call a trusted party for ideal evaluation of function f .

In order to continue the run of A, invoke simulator S

�

as follows.

(a) S

�

is given the set C of corrupted parties. The inputs of these parties are set to 0, and

their random input are set to r

�

. (Recall that the inputs of the corrupted parties do

not a�ect the distribution of the global output of evaluating f with S

�

.) The auxiliary

input z

�

for S

�

is set to the current internal state of A.

(b) When S

�

hands its trusted party the inputs of the corrupted parties and asks for the

evaluated values of f , invoke the trusted party, T , with the same input values for the

corrupted parties, and hand the value provided by the trusted party back to S

�

.

3. Recall that the output of S

�

is an internal state of A at the end of the execution of �. Once

this output, denoted v, is generated, run A from internal state v, and return to following A's

instructions until the completion of protocol �.

4. Once protocol � is completed, output whatever A outputs and halt.

Figure 3: Description of adversary A

�

in the non-adaptive model.

Analysis of A

�

. It is evident that the running time of A

�

is linear in the running time of A,

plus the running time of S

�

, plus the running time of �

�

. Fix an input vector ~x and auxiliary input

z for the parties and adversary, as well as some value of the security parameter k. (In particular,

the set C of corrupted parties is now �xed.) Steps I-III below demonstrate that:

exec

�

�

;A

(k; ~x; z)

d

= exec

f

�;A

�

(k; ~x; z); (5)

which establishes the theorem for the case of a single ideal evaluation call. (In Equation (5) and

for the rest of the proof the symbol

d

= is used to denote equality of distributions, not ensembles.)

25

Let us set some additional notation. Recall that l

�

is the round where protocol � makes the

ideal evaluation call, and protocol �

�

invokes �. Given vectors ~r

�

= r

�

0

; :::; r

�

n

and ~r

�

= r

�

0

; :::; r

�

n

(where ~r

�

is interpreted as random input for the execution of �

�

except for the execution of �,

and ~r

�

is interpreted as random input for the execution of �), let ~r

�;�

= r

�;�

0

; :::; r

�;�

n

denote the

combination of ~r

�

and ~r

�

to a full random-input vector for the execution of �

�

. (That is, party P

i

uses r

�

i

for the execution of � and r

�

i

for the execution of �, and the adversary uses r

�

0

during the

execution of � and r

�

0

at other rounds.) Similarly, given r

�

= r

�

0

; :::; r

�

n

and ~r

f

, where ~r

�

is as above

and ~r

f

is interpreted as a random vector for round l

�

in the f -hybrid model (that is, ~r

f

= r

f

0

; r

f

1

where r

f

0

is the random input for the adversary for this round and r

f

1

is the random input for the

trusted party for f), let ~r

�;f

denote the combination of ~r

�

and ~r

f

to a full random-input vector for

the execution of � in the f -hybrid model.

Step I. Until round l

�

� 1, protocols � and �

�

\behave the same". That is, �x some value ~r

�

as

the random input for the system. We have:

gs

�

�

;A

(l

�

� 1; k; ~x; z; ~r

�

) = gs

�;A

�

(l

�

� 1; k; ~x; z; ~r

�

): (6)

Step II. We show that the global state in the hybrid model at the end of round l

�

is distributed

identically to the global state in the real-life model at the round where protocol � returns. This is

done in three sub-steps, as follows. (Recall that a value ~r

�

was �xed in Step I.)

1. We �rst assert that the parameters set in the hybrid model for the ideal evaluation of f

are identical to the parameters set in the real-life model for the invocation of �. that is,

let ~x

�

= x

�

1

; :::; x

�

n

, where x

�

i

is determined as follows. If P

i

is uncorrupted then x

�

1

is the

input value of P

i

for protocol �, as determined in gs

�

�

;A

(l

�

� 1; k; ~x; z; ~r

�

). If P

i

is corrupted

then x

�

i

= 0. Let Let z

�

denote the internal state of A at round l

�

� 1 in this execution.

Similarly, let x

f

i

denote the value that party P

i

hands the trusted party for f , as determined

in gs

�;A

�

(l

�

� 1; k; ~x; z; ~r

�

), let ~x

f

= x

f

1

; :::; x

f

n

, and let z

f

denote the internal state of A

(within A

�

's code) at round l

�

� 1 of this execution. Then, it follows from Equation (6) that

~x

�

= ~x

f

j

0

and z

�

= z

f

.

2. Next we assert that the global output of the execution of �, that is implicit in the run of �

�

with adversary A, is distributed identically to the global output of the ideal evaluation of f

that is implicit in round l

�

of a run of � in the hybrid model. That is, from the security of �,

from Step II.1 and from Claim 8, we have that:

exec

�;A

�

(k; ~x

�

; z

�

)

d

= ideal

f;S

�

(k; ~x

�

; z

�

) = ideal

f;S

�

(k; ~x

f

j

0

; z

f

)

d

= ideal

f;S

�

(k; ~x

f

; z

f

): (7)

3. Finally we show that the global state in the hybrid model at the at the end of round l

�

is

distributed identically to the global state in the real-life model when protocol � returns. That

is, let l

�

denote the round where the call to protocol � returns (within protocol �

�

). Then, it

follows from the de�nition of �

�

and the constructions of A

�

and A

�

that:

(a) Let ~r

�

be some random-input vector for protocol �. Then, gs

�

�

;A

(l

�

; k; ~x; z; ~r

�;�

) is

obtained from gs

�

�

;A

(l

�

� 1; k; ~x; z; ~r

�

) and exec

�;A

�

(k; ~x

�

; z

�

; ~r

�

) via a (simple, deter-

ministic) process, denoted C. (Essentially, process C combines and updates the internal

states of the adversary and the parties. More precisely, this process �rst modi�es each

internal state is

�

�

;A

(l

�

� 1; k; ~x; z; ~r

�

)

i

by adding exec

�;A

�

(k; ~x

�

; z

�

; ~r

�

)

i

in the appro-

priate place. Next it outputs the internal state of A as it appears in A

�

's output in

26

exec

�;A

�

(k; ~x

�

; z

�

; ~r

�

), and appends to it the modi�ed internal states of the uncorrupted

parties.)

(b) Given some random input vector ~r

f

for the ideal process for evaluating f , the global state

gs

�;A

�

(l

�

; k; ~x; z; ~r

�;f

) is obtained from gs

�;A

�

(l

�

�1; k; ~x; z; ~r

�

) and ideal

f;S

�

(k; ~x

f

; z

f

; ~r

f

)

via the same process, C, as in the real-life model.

It follows that for any value of ~r

�

, and for vectors ~r

�

and ~r

f

that are uniformly chosen in

their respective domains, we have gs

�

�

;A

(l

�

; k; ~x; z; ~r

�;�

)

d

= gs

�;A

�

(l

�

; k; ~x; z; ~r

�;f

). Now, let

~r

�

be randomly chosen in its domain. It follows that:

gs

�

�

;A

(l

�

; k; ~x; z)

d

= gs

�;A

�

(l

�

; k; ~x; z): (8)

Step III. We assert Equation (5). From the resumption of protocol � until its conclusion, adver-

sary A

�

returns to following the instructions of A. Consequently, the distributions exec

�

�

;A

(k; ~x; z)

and exec

f

�;A

�

(k; ~x; z) are obtained by applying the same process to the corresponding sides of (8).

This completes the proof for the case of a single ideal evaluation call.

On multiple ideal evaluation calls. The case of multiple ideal evaluation calls is a straight-

forward generalization of the case of a single call. We sketch the main points of di�erence:

1. An adversary A

�

i

is constructed for each protocol �

i

. All the A

�

i

's are identical to adversary

A

�

described above, with the exception that protocol � is replaced by �

i

. (If �

i

= �

j

for some

i; j then A

�

i

= A

�

j

.)

2. Construct an adversary

~

A

�

that is identical to A

�

described above, with the exception that

at each round where � instructs the parties to ideally evaluate f

i

, adversary

~

A

�

runs a copy

of S

�

i

in the same way as A

�

runs S

�

. The auxiliary input of S

�

i

is set to the current internal

state of the simulated A within A

�

. (Note that there may be several invocations of the same

simulator S

�

i

, where each invocation corresponds to a di�erent ideal evaluation call to f

i

.

These invocations will have di�erent auxiliary inputs. Also, a separate piece of

~

A

�

's random

input is used for each invocation of some S

�

i

.)

3. As in the case of a single ideal evaluation call, it is evident that the running time of

~

A

�

is

linear in the running time of A, plus the sum of the running times of all the invocations

of S

�

1

; :::; S

�

m

, plus the running time of �

�

1

;:::;�

m

. Showing that exec

�

�

1

;:::;�

m

;A

(k; ~x; z)

d

=

exec

f

1

;:::;f

m

�;

~

A

�

(k; ~x; z) is done in several steps, as follows. Let l

(j)

denote the round in which

protocol � makes the jth ideal evaluation call in the hybrid model. The argument of Step I

above demonstrates that the global states at round l

(j)

�1 are identical in the two executions.

Now, for each j � 1 proceed in two steps:

(a) Apply the argument of Step II to establish that the global state in the hybrid model at

the end of round l

(j)

is distributed identically to the global state in the real-life model

at the round where the jth subroutine call (to some �

i

) returns.

(b) Apply the argument of Step III to establish that the global state in the hybrid model

at round l

(j+1)

� 1 is distributed identically to the global state in the real-life model

at the round where the (j + 1)th subroutine call is made. If the execution is com-

pleted without making the (j + 1)th subroutine call then we have established that

exec

�

�

1

;:::;�

m

;A

(k; ~x; z)

d

= exec

f

1

;:::;f

m

�;

~

A

�

(k; ~x; z), as required.

27

4.4.3 Extensions

On the propagation of statistical distance. Somewhat relaxed versions of De�nitions 4 and

6 allows the two sides of (1) and of (3) to be statistically indistinguishable, rather than equally

distributed. We note that the composition theorem holds in this case as well. That is:

1. Theorem 5 holds with the exception that the two sides of (2) are statistically indistinguishable.

More speci�cally, in the case of a single ideal evaluation call, if protocol � achieves statistical

distance �

1

then the statistical distance between the two sides of (2) is at most �

1

. (The

construction and analysis of A

�

remain unchanged, with the exception that the two leftmost

distributions in (7) have statistical distance �

1

.)

In the case of multiple ideal evaluation calls the total statistical distance between the two sides

of (2) is at most the sum of the statistical distances achieved by all the individual protocol

invocations made by the composed protocol. That is, if protocol �

i

achieves statistical distance

�

i

, and is invoked v

i

times, then the total statistical distance between the two sides of (2) is

at most

P

m

i=1

v

i

� �

i

.

2. Corollary 7 holds with the exception that the two sides of (1) are statistically indistinguishable.

More speci�cally, in the case of a single ideal evaluation call, if protocol � achieves statistical

distance �

1

and protocol � achieves statistical distance �

2

then protocol �

�

achieves statistical

distance �

1

+ �

2

.

In the case of multiple ideal evaluation calls the statistical distance achieved by �

�

1

;:::;�

m

is at

most the sum of the statistical distances achieved by all the individual protocol invocations,

plus the statistical distances achieved by � in the (f

1

; :::; f

m

)-hybrid model. That is, assume

that protocol � achieves statistical distance � in the hybrid model, and that protocol �

i

achieves statistical distance �

i

, and is invoked v

i

times. Then protocol �

�

1

;:::;�

m

achieves

statistical distance at most � +

P

m

i=1

v

i

� �

i

.

On computational indistinguishability. The composition theorem holds also for the case

where the two sides of (1), and also of (2), are only computationally indistinguishable. We defer

the treatment of this case to Section 6.

On black-box simulation. A straightforward extension of the proof of Corollary 7 shows the

following additional result. Assume that the security of protocol � in the hybrid model is proven

via black-box simulation (see Remark 3, Section 4.2). Then the security of protocol �

�

can also

be proven via black-box simulation. Furthermore, if the simulator associated with � does not

rewind the adversary, then the simulator associated with �

�

does not rewind as well. Note that no

additional requirements are made from protocol �. In particular, the security of protocol � need

not be proven via black-box simulation.

Remark: The reader may notice that the fact that the communication links are ideally secure

does not play a central role in the proof of Theorem 5. Indeed, the same proof technique (with

trivial modi�cations) is valid in a setting where the adversary sees all the communication among

the parties. See more details in Section 6.

28

5 Adaptive adversaries

This section de�nes secure protocols, presents and proves the composition theorem for the case of

adaptive adversaries. Both the de�nition of adaptive security of protocols and the proof of the

composition theorem in this case are considerably more complex than for the non-adaptive case.

Furthermore, proving adaptive security of protocols is typically harder. We thus start with some

motivation for this more complex model.

While adaptive security looks like a natural extension of non-adaptive security, a second look

reveals some important di�erences between the two models and the security concerns they capture.

Informally, the non-adaptive model captures scenarios where the parties do not trust each other, but

believe that parties that are `good' remain so throughout. There, the adversary is an imaginary

concept that represents a collection of `bad parties'. In contrast, the adaptive model captures

scenarios where parties may become corrupted during the course of the computation | either on

their own accord, or, more realistically, via an external \break-in". Here the adversary models an

actual entity that takes active part in the computation. Indeed, external attackers who have the

ability to adaptively \break-into" parties impose a viable security threat on existing systems and

networks.

Non-adaptive security is implied by adaptive security (see Remark 1, Section 5.2). However,

the converse does not hold. In particular, while the non-adaptive model captures many security

concerns regarding cryptographic protocols, it fails to capture some important concerns that are

addressed in the adaptive model. One such concern is the need to deal with the fact that an

adversary may use the communication to decide which parties are worth corrupting. (See Remark 2

there.) Another such concern relates to the fact that the adversary may gain considerable advantage

from seeing the internal data of parties upon corruption (or a \break-in"), after some computational

steps have taken place. This means that data kept by the uncorrupted parties should never be

regarded as safe, and the threat of this data being exposed should play an important part in the

security analysis of a protocol. See Remark 3, Section 5.2.

14

This section attempts to be as self-contained as possible, at the price of some repetition. Still,

in cases where the text is very similar to the non-adaptive case with immediate modi�cations we

only note the changes from the corresponding parts of Section 4.

Throughout this section we restrict the presentation to the secure channels setting. The compu-

tational setting is dealt with in the Section 6. Section 5.1 contains the de�nition of secure protocols.

All the remarks made in Section 4.2 and in footnotes throughout Section 4 are relevant here as

well, but are not repeated. In addition, Section 5.2 holds remarks speci�c to the adaptive case.

Section 5.3 presents the composition theorem, to be proven in Section 5.4.

5.1 De�nition of security: The adaptive case

As in the non-adaptive case, we develop the de�nitions for the cases of active and passive adversaries

side by side, noting the di�erences throughout the presentation. We �rst describe the real-life model;

next we describe the ideal process; �nally the de�nition is presented, using essentially the same

notion of emulation as in the non-adaptive case.

One obvious di�erence from the de�nition of non-adaptive security is that here the adversary

14

Limiting the advantage gained by the adversary from exposing the secret data of parties is sometimes called

forward secrecy in the literature. In the context of key exchange, for instance, forward secrecy refers to preventing

an adversary from learning, upon corrupting a party, keys that are no longer in use [dow92]. Indeed, the adaptive

setting provides a framework for analyzing forward secrecy of protocols.

29

chooses the identities of the corrupted parties in an adaptive way; upon corruption, it sees the

internal data of the corrupted party. (See more discussion on this point in the sequel.)

An additional, more `technical' di�erence is the way in which the interaction between the outside

environment and a single protocol execution is captured. In the non-adaptive case this interaction is

captured by the parties' inputs and outputs, plus an auxiliary input z given to the adversary before

the computation starts. There, this representation su�ced for proving the composition theorem.

In the adaptive case there is an additional way in which the external environment interacts with a

given protocol execution: whenever the adversary corrupts a party it sees the party's entire internal

state, including the state for all the protocol executions which involve this party. This fact has two

manifestations. Consider a protocol execution E that is part of a larger protocol, involving other

protocol executions. First, when a party is corrupted during execution E the adversary sees the

party's internal state also from other protocol executions, both completed and uncompleted ones.

(Here information ows into execution E from the outside environment.) Second, when a party is

corrupted in another protocol execution, the adversary sees the party's internal state relevant to

execution E . (Here information ows from execution E to the outside environment.) A particularly

problematic case is that of corruptions that occur after execution E is completed.

To model this information ow, we introduce an additional entity, representing the external

environment, to both the real-life model and the ideal process. This entity, called the environment

and denoted Z , is an interactive Turing machine that interacts with the adversary and the parties

in a way described below. The notion of emulation is extended to include the environment.

The real-life model. Multiparty protocols are de�ned as in the non-adaptive case. That is, an

n-party protocol � is a collection of n interactive, probabilistic algorithms, where the ith algorithm

is run by the ith party, P

i

. (Formally, each algorithm is an Interactive Turing machine, as de�ned

in [gmr89].) Each P

i

has input x

i

2 f0; 1g

�

, random input r

i

2 f0; 1g

�

, and the security parameter

k. Informally, we envision each two parties as connected via a private communication channel. A

more complete description of the communication among parties is presented below.

An adaptive real-life adversary A is a computationally unbounded interactive Turing machine

that starts o� with some random input. The environment is another computationally unbounded

interactive Turing machine, denoted Z , that starts o� with input z and random input. At certain

points during the computation the environment interacts with the parties and the adversary. These

points and the type of interaction are speci�ed below. An adversary is t-limited if it never corrupts

more than t parties.

At the onset of the computation A receives some initial information from Z . (This information

corresponds to the auxiliary information seen by A in the non-adaptive case.) Next, the compu-

tation proceeds according to some given computational model. For concreteness, we specify the

following (synchronous, with rushing) model of computation. The computation proceeds in rounds;

each round proceeds in mini-rounds, as follows. Each mini-round starts by allowing A to corrupt

parties one by one in an adaptive way, as long as at most t parties are corrupted altogether. (The

behavior of the system upon corruption of a party is described below.) Next A chooses an uncor-

rupted party, P

i

, that was not yet activated in this round and activates it. Upon activation, P

i

receives the messages sent to it in the previous round, generates its messages for this round, and

the next mini-round begins. A learns the messages sent by P

i

to already corrupted parties. Once

all the uncorrupted parties were activated, A generates the messages to be sent by the corrupted

parties that were not yet activated in this round, and the next round begins.

Once a party is corrupted the party's input, random input, and the entire history of the messages

sent and received by the party become known to A. (The amount of information seen by the

30

adversary upon corrupting a party is an important parameter of the de�nition. See discussion in

Remark 4, Section 5.2.) In addition, Z learns the identity of the corrupted party, and hands some

additional auxiliary information to A. (Intuitively, this information represents the party's internal

data from other protocols run by the newly corrupted party.

15

) From this point on A learns all the

messages received by the party. If A is passive then the corrupted parties continue running protocol

�. If A is active (Byzantine) then once a party becomes corrupted it follows the instructions of A,

regardless of protocol �.

At the end of the computation (say, at some pre-determined round) all parties locally generate

their outputs. The uncorrupted parties output whatever is speci�ed in the protocol. The corrupted

parties output ?. In addition, adversary A outputs some arbitrary function of its internal state.

(Without loss of generality, we can imagine that the adversary's output consists of all the infor-

mation seen in the execution. This includes the random input, the information received from the

environment, the corrupted parties' internal data, and all the messages sent and received by the

corrupted parties during the computation.)

Next, a \post-execution corruption process" begins. (This process models the information on

the current execution, gathered by the environment by corrupting parties after the execution is

completed.) First, Z learns the outputs of all the parties and of the adversary. Next Z and A

interact in rounds, where in each round Z �rst generates a `corrupt P

i

' request (for some P

i

),

and hands this request to A. Upon receipt of this request, A hands Z some arbitrary information.

(Intuitively, this information is interpreted as P

i

's internal data.) It is stressed that at most t

parties are corrupted throughout, even if Z requests to corrupt more parties; in this case A ignores

the requests of Z . The interaction continues until Z halts, with some output. Without loss of

generality, this output can be Z 's entire view of its interaction with A and the parties. Finally, the

global output is de�ned to be the output of Z (which, as said above, may include the outputs of

all parties as well as of the adversary). See further discussion on the role of the environment Z in

Remark 5, Section 5.2. The computational process in the real-life model is summarized in Figure

4.

We use the following notation. Let the global output exec

�;A;Z

(k; ~x; z; ~r) denote Z 's output on

input z, random input r

Z

and security parameter k, and after interacting with adversary A and

parties running protocol � on inputs ~x = x

1

: : :x

n

, random input ~r = r

Z

; r

0

: : : r

n

, and security

parameter k as described above (r

0

for A; x

i

and r

i

for party P

i

). Let exec

�;A;Z

(k; ~x; z) denote the

random variable describing exec

�;A;Z

(k; ~x; z; ~r) where ~r is uniformly chosen. Let exec

�;A;Z

de-

note the distribution ensemble exec

�;A;Z

(k; ~x; z)g

k2N;h~x;zi2f0;1g

�. (The formalization of the global

output exec

�;A;Z

is di�erent than in the non-adaptive case, in that here the global output contains

only the output of the environment. We remark that the more complex formalization, where the

global output contains the concatenation of the outputs of all parties and adversary, would yield

an equivalent de�nition; this is so since the environment Z sees the outputs of all the parties and

the adversary. We choose the current formalization for its simplicity.)

The ideal process. The ideal process is parameterized by the function to be evaluated. This

is an n-party function f : N � (f0; 1g

�

)

n

� f0; 1g

�

! (f0; 1g

�

)

n

, as de�ned in Section 3. Each

party P

i

has input x

i

2 f0; 1g

�

; no random input is needed. Recall that the parties wish to

evaluate f(k; ~x; r

f

)

1

; :::; f(k; ~x; r

f

)

n

, where r

f

R

 f0; 1g

s

and s is a value determined by the security

15

For sake of simplicity, we do not restrict the way in which Z computes the data provided to the adversary

upon corruption of a party. However, we note that a somewhat weaker de�nition where this data is �xed before

the computation starts (but remains unknown to the adversary until the party is corrupted) is su�cient, both for

capturing security and for the proof of the composition theorems.

31

Execution of an n-party protocol by parties P

1

:::P

n

with adversary A and environment Z

1. (a) Each party P

i

starts with the security parameter k, input x

i

and random input r

i

.

(b) The adversary A starts with k and random input r

0

. The environment Z starts with

input z and random input r

Z

.

2. Initialize the round number to l 0. A receives an initial message from Z.

3. As long as there exists an uncorrupted party that did not halt, do:

(a) As long as there exists an uncorrupted party that was not activated in this round, do:

i. As long as A decides to corrupt more parties, do:

A. A chooses a party P

i

to corrupt. Z learns the identity of P

i

.

B. A receives P

i

's input, random input, and all the messages that P

i

received in

this interaction. In addition, A receives a message from Z.

ii. A activates an uncorrupted party P

i

. If l > 1 then P

i

receives the messages

fm

j;i;l�1

jj 2 [n]g sent to it in the previous round. Next, P

i

generates fm

i;j;l

jj 2

[n]g, where each m

i;j;l

2 f0; 1g

�

is a (possibly empty) message intended for party

P

j

at this round. The adversary A learns fm

i;j;l

jP

j

is corruptedg.

(b) A generates the messages fm

i;j;l

jP

i

is corrupted and j 2 [n]g.

(c) l l + 1

4. Each uncorrupted party P

i

, as well as A, generates an output. Z learns all outputs.

5. As long as Z did not halt, do:

(a) Z sends A a message, interpreted as \corrupt P

i

" for some uncorrupted party P

i

.

(b) A may corrupt more parties, as in Step 3(a)i above.

(c) A sends Z a message, interpreted as P

i

's internal data.

6. Z halts with some output.

Figure 4: A summary of the adaptive real-life computation.

parameter, and P

i

learns f(k; ~x; r

f

)

i

. The model also involves an adaptive ideal-process-adversary S,

which is an interactive Turing machine that has random input r

0

and security parameter k, and an

environment Z which is a computationally unbounded interactive Turing machine that starts with

input z, random input r

Z

and the security parameter.

16

In addition, there is an (incorruptible)

trusted party, T . The ideal process proceeds as follows.

First corruption stage: First, as in the real-life model, S receives auxiliary information from Z .

Next, S proceeds in iterations, where in each iteration S may decide to corrupt some party,

based on S's random input and the information gathered so far. Once a party is corrupted

its input becomes known to S. In addition, Z learns the identity of the corrupted party and

hands some extra auxiliary information to S. Let B denote the set of corrupted parties at

16

There is no need to explicitly restrict the number of parties corrupted by S. The de�nition of security (in

particular, the fact that the identities of the corrupted parties appear in the global output) will guarantee that an

ideal-model adversary S (emulating some real-life adversary A) corrupts no more parties than A does. In fact, it will

be guaranteed that the distribution ensembles describing the parties corrupted by A and by S are identical.

32

the end of this stage.

Computation stage: Once S completes the previous stage, the parties hand the following values

to the trusted party T . The uncorrupted parties hand their inputs to the computation. The

corrupted parties hand values chosen by S, based on the information gathered so far. (If S

is passive then even the corrupted parties hand their inputs to T .)

Let

~

b be the jBj-vector of the inputs contributed by the corrupted parties, and let ~y = y

1

; :::; y

n

be the n-vector constructed from the input vector ~x by substituting the entries of the corrupted

parties by the corresponding entries in

~

b. Then, T receives y

i

from P

i

. (If S is passive then

~y = ~x). Next, T chooses r

f

R

 R

f

, and hands each P

i

the value f(k; ~y; r

f

)

i

.

Second corruption stage: Upon learning the corrupted parties' outputs of the computation, S

proceeds in another sequence of iterations, where in each iteration S may decide to corrupt

some additional party, based on the information gathered so far. Upon corruption, Z learns

the identity of the corrupted party, S sees the corrupted party's input and output, plus some

additional information from Z as before.

Output: Each uncorrupted party P

i

outputs f(k; ~y; r

f

)

i

, and the corrupted parties output ?. In

addition, the adversary outputs some arbitrary function of the information gathered during

the computation in the ideal process. All outputs become known to Z .

Post-execution corruption: Once the outputs are generated, S engages in an interaction with

Z , similar to the interaction of A with Z in the real-life model. That is, Z and S proceed

in rounds where in each round Z generates some `corrupt P

i

' request, and S generates

some arbitrary answer based on its view of the computation so far. For this purpose, S may

corrupt more parties as described in the second corruption stage. The interaction continues

until Z halts with an arbitrary output.

Let ideal

f;S;Z

(k; ~x; z; ~r), where ~r = r

Z

; r

0

; r

f

, denote the output of environment Z on in-

put z, random input r

Z

and security parameter k, after interacting as described above with

an ideal-process adversary S and with parties having input ~x = x

1

: : : x

n

and with a trusted

party for evaluating f with random input r

f

. Let ideal

f;S;Z

(k; ~x; z) denote the distribution of

ideal

f;S;Z

(k; ~x; z; ~r) when ~r is uniformly distributed. Let ideal

f;S;Z

denote the distribution en-

semble fideal

f;S;Z

(k; ~x; z)g

k2N;h~x;zi2f0;1g

�.

Comparing computations in the two models. As in the non-adaptive case, we require that

protocol � emulates the ideal process for evaluating f . Yet here the notion of emulation is slightly

di�erent. We require that for any real-life adversary A and any environment Z there should exist

an ideal-process adversary S, such that ideal

f;S;Z

d

= exec

�;A;Z

. Note that the environment is

the same in the real-life model and the ideal process. This may be interpreted as saying that

\for any environment and real-life adversary A, there should exist an ideal-process adversary that

successfully simulates A in the presence of this speci�c environment." Furthermore, we require S

to be polynomial in the complexity of A, regardless of the complexity of Z (see Remark 1, Section

4.2).

De�nition 9 (adaptive security in the secure channels setting) Let f be an n-party func-

tion and let � be a protocol for n parties. We say that � adaptively, t-securely evaluates f if for

33

any adaptive t-limited real-life adversary A, and any environment Z, there exists an adaptive ideal-

process adversary S whose running time is polynomial in the running time of A, such that

ideal

f;S;Z

d

= exec

�;A;Z

: (9)

If A and S are passive adversaries then we say that � adaptively t-privately evaluates g.

Spelled out, Equation (9) means that for any value of the security parameter k, for any input vector

~x and any auxiliary input z, the global outputs ideal

f;S;Z

(k; ~x; z) and exec

�;A;Z

(k; ~x; z) should

be identically distributed.

5.2 Discussion

Remark 1: Adaptive security implies non-adaptive security. Intuitively, non-adaptive

security appears as a restricted version of adaptive security. We a�rm this intuition by observing

that De�nition 9 (adaptive security) implies De�nition 4 (non-adaptive security).

Let us sketch a proof: Let � be a protocol that adaptively t-securely evaluates some function,

and let A be a non-adaptive t-limited adversary. We construct a non-adaptive ideal-model adversary

S that emulates A.

Let A

0

be the following adaptive t-limited real-life adversary. A

0

receives from its environment

a value z that is interpreted as a set C of parties to corrupt, and a value �. Next, A

0

corrupts the

parties in C and runs A on the set C of corrupted parties, and with auxiliary input �. Let Z be the

environment that, on input z, provides the adversary (at the beginning of the interaction) with the

value z and remains inactive from this point on. Let S

0

be the (adaptive) ideal-model adversary

that emulates A

0

in the presence of Z . Note that S

0

must eventually corrupt exactly the parties in

the set provided by Z .

The non-adaptive ideal-model adversary S proceeds as follows. Given a set C of corrupted

parties together with their inputs, plus auxiliary input �, ideal-model adversary S will proceed by

running S

0

; in addition, S plays the environment for S

0

and provides it with a value z that consists

of the set C of parties to be corrupted plus the value �. Whenever S

0

corrupts a party in C, S

provides S

0

with the input of that party. Finally, S outputs whatever S

0

outputs. It is evident that

S emulates A.

Remark 2: Additional concerns captured by adaptive security (I). We highlight one

aspect of the additional security o�ered by the adaptive-adversary model, namely the need to

account for the fact that the adversary may learn from the communication which parties are worth

corrupting more than others. This is demonstrated via an example, taken from [cfgn96]. Consider

the following secret sharing protocol, run in the presence of an adversary that may corrupt t = O(n)

out of the n parties: A dealer D chooses at random a small set S of, say, m =

p

t parties. (In

fact, any value !(logn) < m < t will do.) Next, D shares its secret among the parties in S using

an m-out-of-m sharing scheme. In addition D publicizes the set S. (For concreteness, assume

that the protocol evaluates the null function.) Intuitively, this scheme lacks in security since S is

public and jSj < t. Indeed, an adaptive adversary can easily �nd D's secret, without corrupting

D, by corrupting the parties in S. However, any non-adaptive adversary that does not corrupt

D learns D's secret only if S happens to be identical to the pre-de�ned set of corrupted parties.

This happens only with probability that is exponentially small (in m). Consequently, this protocol

is secure in the presence of non-adaptive adversaries, if a small error probability is allowed. (In

particular, if n is polynomial in k then De�nition 4 is satis�ed with the exception that the two

sides of (1) are statistically indistinguishable.)

34

Remark 3: Additional concerns captured by adaptive security (II). Another security

concern that is addressed in the adaptive model, and remains unaddressed in the non-adaptive

model, is the need to limit the information gathered by the adversary when it corrupts (or breaks

into) parties and sees their internal data. This means that even the internal memory contents of

\honest" parties cannot be regarded as \safe" and could compromise the security.

The de�nition of adaptive security addresses this concern by requiring, essentially, that the

internal state seen by the adversary upon corrupting a party is generatable (by the ideal-process

adversary) given only the input of this party and the adversary's view so far. Let us demonstrate

how this requirement a�ects the de�nition, via a the following example. Consider a protocol where

each party is instructed to publicize a commitment to its input, and then halt with null output. For

concreteness, assume that each party has binary input and the commitment is realized via a claw-

free permutation pair f

0

; f

1

that is known in advance. That is, each party chooses a random element

r in the common domain of f

0

; f

1

and broadcasts f

b

(r), where b is the party's input. It is easy to

see that in the non-adaptive model this protocol securely evaluates the null function. However, we

do not know how to prove adaptive security of this protocol. In fact, if n, the number of parties, is

polynomial in the security parameter and claw-free permutations exist then this protocol does not

t-securely evaluate the null function in the adaptive model, for t > !(logn). (A proof appears in a

slightly di�erent form in [co99].)

The above discussion may bring the reader to wonder whether it is justi�able to assert that

the above protocol is insecure. Indeed, at �rst glance this protocol appears to be \harmless",

in the sense that it has no apparent security weakness. This appearance may be strengthened

by the fact that the commitment is perfectly secure, i.e. the messages sent by the parties are

statistically independent from the inputs. Nonetheless, we argue that this appearance is false, and

the above protocol has a serious security aw. Indeed, the protocol provides the adversary with a

(computationally binding) commitment to the inputs of the parties; this commitment may be useful

in conjunction with additional information that may become available to the adversary (say, via

other protocol executions). Such a commitment could not have been obtained without interacting

with the parties.

Remark 4: Erasing local data. A natural method for limiting the information seen by the

adversary upon corrupting a party is to include special erasure instructions in the protocol, thereby

enabling the parties to remove sensitive data from their local state when this data is no longer

necessary.

Indeed, timely erasures of sensitive data can greatly simplify the design and analysis of protocols.

(The case of encryption is an instructive example [bh92, cfgn96].) However, basing the security of

a protocol on such erasures is often problematic. One reason is that in real-world systems erasures

do not always work: System backups are often hard to prevent (they are even made without a

protocol's knowledge), and retrieving data that was stored on magnetic media and later erased is

often feasible. An even more severe reason to not trust erasure instructions is that they cannot be

veri�ed by an outside observer. Thus, in settings where the parties are mutually distrustful it is

inadvisable to base the security of one party on the \good will" and competence of other parties

to e�ectively erase data as instructed. Consequently, a protocol that o�ers security without using

data erasures is in general preferable to one that bases its security on data erasures.

Let us highlight an important scenario where putting trust in internal erasures is more reason-

able. This is the case of threshold cryptography (see, e.g., [df89]) where the parties are typically

special-purpose servers controlled by a single administrative authority, and use erasures to maintain

the overall security of the system in the face of break-ins by outsiders. In particular, in the case

35

of proactive security [oy91, cghn97] trust in erasures is unavoidable since there the attacker may

break into all parties at one time or another.

The distinction between trusting or dis-trusting data erasures is manifested in the de�nition

via the amount of information seen by the real-life adversary upon corrupting a party. Trusting

erasure instructions to be ful�lled and successful is modeled by letting the adversary see only the

current internal state of the party. Dis-trusting the success of such instructions is modeled by

allowing the adversary to see the entire past internal states of the party. (This amounts to allowing

the adversary to see the party's input, random input, and all the messages ever received by the

party.) In this work we concentrate on the case where erasures are not trusted. Nonetheless, the

composition theorem holds in both cases.

Finally, we remark that there exist additional, potentially harmful ways for parties to deviate

from the speci�ed protocol in a manner that is undetectable by an outside observer. For instance,

a party can use its random input in a di�erent way than speci�ed in the protocol. Proving security

of protocols in a model where all parties, even uncorrupted ones, may carry out such deviations

is much harder (in fact, it is impossible in some settings). Consequently we do not consider such

models; They are mentioned in [cfgn96] and studied in more depth in [co99]. (The motivation

there is to deal with situations where all parties may deviate from the protocol, as long as the

deviation remains undetected by other parties.)

Remark 5: On the modeling of the environment. Recall that the environment machine is

a generalization of the notion of auxiliary input. Indeed, the environment can be used to provide

the adversary with auxiliary input at the onset of the interaction. In addition, it can disclose

more information to the adversary in an adaptive way throughout the computation. Furthermore,

the environment obtains information from the adversary, again in an adaptive way, even after the

execution of the protocol is completed.

Informally, in the adaptive model the auxiliary information can be thought of as consisting

of two components: a \non-uniform" component, represented by the input z of the environment

machine; and an \algorithmic" component, represented by the environment machine itself, that

adaptively decides on the way in which information is \released" to the adversary and obtained

from it throughout the computation.

Let us address two additional points regarding the modeling of the environment:

On the need in the environment as a separate entity. A natural question is whether

it is possible to simplify the de�nition of adaptive security by merging the adversary A and the

environment Z into a single adversarial entity. We argue that the separation is essential. In

particular, the roles played by the two entities in the de�nition are quite di�erent. Let us stress two

main technical di�erences. Firstly, the environment remains the same in the real-life computation

and in the ideal process, whereas the adversary may be modi�ed. Secondly, the environment sees

much more information than the adversaries A and S. In particular, the input of Z may contain

the inputs of all parties at the onset of the computation. (Indeed, the proof of the composition

theorem below uses an environment machine that sees all this information.) Furthermore, Z sees

the outputs of all parties from the computation.

Nonetheless, one can do without the environment machine in some simpli�ed cases. More

speci�cally, the de�nition of security can be simpli�ed as follows, in the case where local data

erasures by parties are allowed. (This is the case discussed in Remark 4, where the adversary

sees only the current internal state of a newly corrupted party). First adopt the convention that,

whenever a party completes executing a protocol, it erases all the internal data relevant to this

protocol execution, except for the local output. Next, the de�nition is simpli�ed in two steps:

36

First, note that the post-execution corruption phase is no longer necessary. This is so, since

corrupting a party after the execution of the protocol is completed reveals only the party's local

output. However, the environment anyhow learns the local outputs of all parties as soon as these are

generated. Consequently, the post-execution corruption phase does not provide the environment

with any new information.

Second, notice that now the role of the environment is restricted to providing the adversary

with initial auxiliary input and with an additional auxiliary input whenever a party is corrupted.

But these auxiliary inputs represent information that was �xed before the current protocol began.

(These are the internal states of the corrupted parties from other protocol executions.) Thus, the

environment machine can be replaced by a set z

1

; :::; z

n

of auxiliary inputs, where the adversary

obtains z

i

upon the corruption of party P

i

.

On the order of quantifiers. An alternative formulation to De�nition 9 requires that a single

ideal-process adversary S will satisfy (9) with respect to any environment Z . We note that this

seemingly stronger formulation is in fact implied by (and thus equivalent to) De�nition 9.

17

We

choose the current formulation because it appears a bit more natural. It also makes the proof of

the composition theorem somewhat clearer.

5.3 Modular composition: The adaptive case

We formalize the composition theorem for the non-concurrent case, with adaptive adversaries, in the

secure channels setting. As in the non-adaptive case, we �rst de�ne the hybrid model and describe

how an ideal evaluation call is replaced by a subroutine protocol. Next we state the composition

theorem in its more general form. The theorem from the Introduction follows as an easy corollary.

The hybrid model. The (adaptive) hybrid model with ideal access to f

1

; :::; f

m

(or in short

the (f

1

; :::; f

m

)-hybrid model), is de�ned analogously to the non-adaptive case. We start with the

real-life model of Section 5.1. This model is augmented with an incorruptible trusted party T for

evaluating f

1

; :::; f

m

. The trusted party is invoked at special rounds, determined by the protocol

run by the uncorrupted parties. In each such round a function f (out of f

1

; :::; f

m

) is speci�ed. The

computation at each special round mimics the ideal process. That is, �rst the adversary adaptively

corrupts parties, and learns the internal data of corrupted parties. In addition, for each corrupted

party the adversary receives information from the environment Z . Next the parties hand their

f -inputs to T . The values handed by the uncorrupted parties are determined by the protocol. The

values handed by the corrupted parties are determined by the adversary. (If the adversary is passive

then even corrupted parties hand T values according to the protocol.) Once T receives the values

from the parties (value x

f

i

from party P

i

), it hands the respective outputs back to the parties (P

i

receives f(k; x

f

1

::x

f

n

; r

f

)

i

). Finally the adversary can again adaptively corrupt parties as before.

18

Let exec

f

1

;:::;f

m

�;A;Z

(k; ~x; z) denote the random variable describing the global output of the com-

putation (i.e., the output of the environment Z) in the (f

1

; :::; f

m

)-hybrid model with protocol �,

adversaryA, security parameter k, inputs ~x for the parties and z for Z , analogously to the de�nition

17

The argument is similar to that of Remark 4 in Section 4.2: Assume that a protocol is secure according to

De�nition 9 and let A be a real-life adversary. Let Z

U

be the \universal environment" that takes as input a

description of an environment Z and a value z and runs Z on input z. De�nition 9 guarantees that there exists an

ideal-model adversary S

U

that emulates A in the presence of Z

U

. It follows that S

U

emulates A in the presence of

any environment. That is, S

U

satis�es the above stronger formulation.

18

As in the non-adaptive case, we assume that the rounds in which ideal evaluations take place, as well as the

functions to be evaluated, are �xed and known beforehand. This restriction can be circumvented as there.

37

of exec

�;A;Z

(k; ~x; z) in Section 5.1. (We stress that here � is not a real-life protocol and uses ideal

calls to T .) Let exec

f

1

;:::;f

m

�;A;Z

denote the distribution ensemble fexec

f

1

;:::;f

m

�;A;Z

(k; ~x; z)g

k2N;h~x;zi2f0;1g

�.

Replacing an ideal evaluation call with a subroutine call. The `mechanics' of replacing

an ideal-evaluation call of protocol � with a call to a subroutine real-life protocol, �, are identical

to the non-adaptive case (Section 4.3). Recall that �

�

1

:::�

m

denotes protocol � where each ideal

evaluation of f

i

is replaced by a call to �

i

.

Theorem 10 (Adaptive modular composition: General statement) Let t < n, letm 2 N,

and let f

1

; :::; f

m

be n-party functions. Let � be an n-party protocol in the (f

1

; :::; f

m

)-hybrid model

where no more than one ideal evaluation call is made at each round, and let �

1

; :::; �

m

be n-party

protocols where �

i

adaptively t-securely (resp., t-privately) evaluates f

i

. Then, for any adaptive t-

limited active (resp., passive) real-life adversary A and for any environment machine Z there exists

an adaptive active (resp., passive) adversary S in the (f

1

; :::; f

m

)-hybrid model whose running time

is polynomial in the running time of A, and such that

exec

f

1

;:::;f

m

�;S;Z

d

= exec

�

�

1

;:::;�

m

;A;Z

: (10)

As in the non-adaptive case, Theorem 10 does not assume any security properties from protocol

�. Instead, it essentially states that the \input-output functionality" of any protocol � in the hybrid

model is successfully \emulated" by �

�

1

;:::;�

m

in the real-life model. Before rigorously stating the

informal composition theorem from the Introduction in the adaptive setting, we de�ne protocols

for securely evaluating a function g in the (f

1

; :::; f

m

)-hybrid model:

De�nition 11 Let f

1

; :::; f

m

; g be n-party functions and let � be a protocol for n parties in the

(f

1

; :::; f

m

)-hybrid model. We say that � adaptively t-securely evaluates g in the (f

1

; :::; f

m

)-hybrid

model if for any adaptive t-limited adversary A (in the (f

1

; :::; f

m

)-hybrid model) and any envi-

ronment machine Z there exists an adaptive ideal-process adversary S, whose running time is

polynomial in the running time of A, and such that:

ideal

g;S;Z

d

= exec

f

1

;:::;f

m

�;A;Z

: (11)

If A and S are passive adversaries then we say that � adaptively t-privately evaluates g in the

(f

1

; :::; f

m

)-hybrid model.

Corollary 12 (adaptive modular composition: Secure function evaluation) Let t < n,

let m 2 N, and let f

1

; :::; f

m

be n-party functions. Let � be an n-party protocol that adaptively

t-securely (resp., t-privately) evaluates g in the (f

1

; :::; f

m

)-hybrid model, and assume that no more

than one ideal evaluation call is made at each round. Let �

1

; :::; �

m

be n-party protocols that adap-

tively t-securely (resp., t-privately) evaluate f

1

; :::; f

m

, respectively. Then the protocol �

�

1

;:::;�

m

adaptively t-securely (resp., t-privately) evaluates g.

Proof: Let A be an adaptive t-limited real-life adversary that interacts with parties running

�

�

1

;:::;�

m

, and let Z be an environment machine. Theorem 10 guarantees that there exists an

adversary A

�

in the (f

1

; :::; f

m

)-hybrid model such that exec

f

1

;:::;f

m

�;A

�

;Z

d

= exec

�

�

1

;:::;�

m

;A;Z

. The

security of � in the (f

1

; :::; f

m

)-hybrid model guarantees that there exists an ideal model adversary

(a \simulator") S such that exec

�

�

1

;:::;�

m

;A;Z

d

= ideal

g;S;Z

, satisfying De�nition 9. 2

38

5.4 Proof of Theorem 10

As in the non-adaptive case, we only prove the theorem for the case of active adversaries (i.e.,

t-security). In addition, we only treat the case where the trusted party T is called only once. The

extension to the case of multiple functions and multiple calls to T is the same as in the non-adaptive

case. Section 5.4.1 contains an outline of the changes from the non-adaptive case. The body of the

proof is in Section 5.4.2. All the extensions from Section 4.4.3 are relevant here as well.

5.4.1 Additional di�culties

The proof outline is similar to that of the non-adaptive case. We sketch the additional di�culties

arising from the adaptiveness of the adversaries and simulators. Full details appear in Section

5.4.2. Recall that � is a protocol in the f -hybrid model, � is a protocol for evaluating f , and �

�

is the composed protocol. A is a given adversary that interacts with �

�

. In addition, we now

have an environment Z that interacts with A. A

�

is a constructed adversary that interacts with

�, following the relevant instructions of A. Adversary A

�

follows the instructions of A relevant to

the interaction with protocol �; the interaction of A with � is simulated using S

�

, the simulator for

A

�

.

1. Recall that A

�

operates by running a copy of adversary A. In the adaptive case A

�

has

to accommodate corruption requests made by A throughout the execution of �

�

. For this

purpose, A

�

is given access to an arbitrary environment machine and proceeds as follows.

Corruption requests that occur before � is invoked are answered using the initial data received

from the environment machine. Whenever the simulated A requests to corrupt party P during

the execution of �, adversary A

�

corrupts P in its real-life interaction and hands P 's internal

data toA. P 's internal data from the (suspended) execution of protocol � is obtained from the

environment. Once � is completed and A

�

generates its output, a post-execution corruption

phase starts where A

�

receives corruption requests from its environment, corrupts the relevant

parties, and provides the environment with the internal data of the corrupted parties.

2. In the adaptive case specifying an environment is necessary for obtaining a simulator S

�

for

A

�

. For this purpose, an environment machine, denoted Z

�

, is constructed as follows. (Note

that Z

�

is in general di�erent than the given environment Z .) The input of Z

�

will describe a

global state of an execution of �

�

with A and Z at round l

(�)

�1. Z

�

will orchestrate a run of

�

�

from the given global state, with the following exception: Z

�

will ignore the random inputs

of the uncorrupted parties for the execution protocol �. Instead, Z

�

will provide A

�

with the

necessary information for interacting with parties running �, and will extract the necessary

information from the resulting interaction. More speci�cally, Z

�

�rst provides A

�

with the

internal state of A when � is invoked; next, for each party corrupted during the execution of

�, Z

�

provides A

�

with the internal state of that party from the suspended execution of �;

�nally, it extracts from A

�

the internal state from the execution of � of the parties that are

corrupted by A after � is completed.

3. Recall that A

�

operates by simulating copies of A and S

�

. Here this is done as follows. Let

P

0

1

; :::; P

0

n

denote the set of (simulated) parties with which S

�

interacts, and let P

00

1

; :::; P

00

n

denote the set of (simulated) parties with which A interacts.

(a) When adversary A

�

runs the simulator S

�

, it has to accommodate S

�

's corruption re-

quests made in the ideal process. This is done as follows: whenever S

�

requests to

39

corrupt a party P

0

i

in the ideal model, adversary A

�

corrupts P

i

in its hybrid model,

and learns the value v that P

i

is about to hand its trusted party. Next, A

�

\plays the

environment for A

�

" and hands v back to S

�

as the input of P

0

i

. If P

0

i

is corrupted after

the ideal call to the trusted party is made, then the output of P

0

i

value is also given to

S

�

.

(b) Adversary A

�

has to accommodate A's corruption requests made after the (simulated)

execution of � is completed. This is done as follows: Whenever A requests to corrupt a

party P

00

i

, adversary A

�

corrupts P

i

in its hybrid model, and obtains the internal data of

P

i

from protocol �. In addition, A

�

plays the role of the environment for S

�

, and asks

S

�

to corrupt P

0

i

. Then, A

�

combines the internal data of P

i

from protocol � and S

�

's

answer, obtains simulated internal data for P

00

i

, and hands this value to the simulated

A.

An important point in the analysis is that the way in which A

�

`plays the role of the envi-

ronment for S

�

' is identical to an interaction between S

�

and Z

�

.

5.4.2 A detailed proof

Let A be an adversary and let Z be an environment (interacting with parties running �

�

). First

we present the constructions of A

�

, Z

�

, and A

�

. Next we show that exec

�

�

;A;Z

d

= exec

f

�;A

�

;Z

Terminology. We use the same notions of executions, internal states, and running an adversary

from an internal state as in the non-adaptive case (Section 4.4.2). Yet here these notions refer

of-course to the adaptive model. In addition, the notion of global state is modi�ed as follows.

(Recall that in the non-adaptive case the global state was the concatenation of the local states of

the uncorrupted parties and the adversary.)

1. The global state is augmented to include all the information that the uncorrupted parties have

ever seen in the past. That is, let the internal history of party P

i

at round l be the concatenation

of all the internal states from the beginning of the execution through round l. The global

state at round l is now the concatenation of the internal histories of the uncorrupted parties,

together with the internal state of the adversary.

This convention is needed to maintain the property that the global state of an execution

at any round uniquely determines the continuation of the execution until its completion.

(Recall that upon corrupting a party the adversary gets access to all the information that the

party knew in the past; See Remark 4 in Section 5.2 for more discussion on this de�nitional

decision.)

2. The global state is augmented to include also the local state of the environment.

3. The global state is extended to rounds after the execution of the protocol has been completed,

until the the environment halts.

Let gs

�

�

;A;Z

(l; k; ~x; z; ~r) denote the global state at round l of an execution of protocol �

�

in the

real-life model with adversary A, environment Z , security parameter k, inputs ~x for the parties

and z to the environment, and random inputs ~r. Let gs

f

�;A

�

;Z

(l; k; ~x; z; ~r) be similarly de�ned with

respect to protocol � and adversary A

�

in the f -hybrid model.

40

Adversary A

�

Let Z

�

denote the environment, let P

1

; :::; P

n

denote the parties running protocol �, and let k be a

value for the security parameter. (Note that A

�

uses the code of A.)

1. Let l

�

be the round where protocol �

�

starts running protocol �. (This is the round where �

calls T). First receive a value �

�

0

from the environment, and verify that �

�

0

is a valid internal

state of A at round l

�

� 1. If �

�

0

is not valid then halt with empty output.

2. Corrupt the parties that are corrupted in �

�

0

, and ignore their inputs and the corresponding

values received from the environment. (Call these parties the a-priori corrupted parties.)

3. Continue the above run of A from round l

�

on, follow A's instructions, and hand the gathered

information to A. More precisely, let P

0

1

; :::; P

0

n

denote the simulated parties with which A

interacts. Then:

(a) Whenever a message is sent from an uncorrupted party P

i

to a corrupted party, hand

this message to A as coming from P

0

i

.

(b) Whenever A instructs some corrupted party P

0

i

to send a message to an uncorrupted

party P

0

j

, instruct P

i

to send the same message to P

j

.

(c) When A corrupts a new party, P

0

i

, during the execution of protocol �, proceed as follows.

First corrupt P

i

in its real-life model and obtain P

i

's internal history for protocol �. In

addition, A needs to be provided with the internal history of P

0

i

from the execution of

protocol �, and with the information that A receives from its own environment at this

point. This information is assumed to be provided by the environment, Z

�

, upon the

corruption of P

i

. That is, treat the value �

�

i

received from Z

�

upon the corruption of

P

i

as a concatenation of two values �

�

i

= ha; bi. The value a is treated as the internal

history of P

0

i

at round l

�

�1; it is combined with the internal history of P

i

(pertaining to

protocol �) and handed to A as the internal data of P

0

i

(pertaining to protocol �

�

). The

value b is handed to A as the value received from A's environment upon the corruption

of P

0

i

.

4. Once protocol � is completed, output the current internal state of the simulated A. Next,

interact with the environment Z

�

, as follows: When the environment asks for corruption

of P

i

, if less than t parties are corrupted, corrupt P

i

and hand P

i

's internal history to the

environment. If t parties are already corrupted then ignore the corruption request.

Figure 5: Description of Adversary A

�

in the adaptive model.

Construction of A

�

. Given adversary A, adversary A

�

proceeds as in the above outline. A more

complete description appears in Figure 5.

Construction of Z

�

. The environment Z

�

proceeds as described in the above outline. A detailed

description appears in Figure 6.

It follows from the security of protocol � that there exists an ideal-process adversary S

�

such

that ideal

f;S

�

;Z

�

d

= exec

�;A

�

;Z

�

.

The special structure of A

�

implies that S

�

has an additional property, described as follows.

19

19

This property and the related discussion are very similar to the non-adaptive case. Nonetheless, we repeat the

presentation in full, with the appropriate modi�cations to the adaptive case. A reader that is familiar with the

41

The environment Z

�

Environment Z

�

proceeds as follows, given a value k for the security parameter and input �, and

interacting with parties P

1

; :::; P

n

running protocol � and with an adversary A

�

. (Note that Z

�

uses

the code of Z and of A.)

1. The input � is assumed to describe a global state at round l

�

� 1 of an execution of �

�

with

adversary A and environment Z. Let �

�

0

denote the internal state of A, let �

Z

denote the

internal state of Z, and let �

�

i

denote the internal history of the ith party, as described in �.

If the input � is not in the right format then halt with no output.

2. (This instruction is carried out throughout the execution of �.) Provide A

�

with the value �

�

0

.

Furthermore, whenever A

�

corrupts party P

i

, provide A

�

with �

�

i

.

3. (This instruction is carried out at the completion of the execution of �.) Let u

i

denote the

output of party P

i

, and let u

0

denote the output of A

�

. Recall that Z

�

obtains these values

when they are generated.

Upon obtaining u

0

:::u

n

, run a simulated interaction between adversary A, environment Z,

and (simulated) parties P

0

1

; :::; P

0

n

running �

�

, starting from the round l

�

in which protocol �

resumes. Adversary A is run from the internal state described in u

0

. Environment Z is run

from state �

Z

. Party P

0

i

is run from a state �

0

i

that is obtained from �

i

and the output u

i

of

�. (Note that �

i

and u

i

may not be su�cient for obtaining a complete internal state of P

0

i

at

round l

�

, since the internal data of P

0

i

from the execution of � is not given. However, as long as

P

0

i

remains uncorrupted the internal data from � is not needed for the simulated interaction.

Figuratively, the internal data from � is zeroed out.) When the simulated A corrupts party

P

0

i

, proceed as follows:

(a) Issue a `corrupt P

i

' request to A

�

. The response, denoted d

i

, is interpreted as the

internal history of P

i

from the execution of �.

(b) Obtain, by continuing the simulation of Z, the value that Z hands A upon the corruption

of P

0

i

, and hand this value to A.

(c) Combine d

i

with the current (and incomplete) internal history of P

0

i

, obtain P

i

's complete

internal history for �

�

, and hand this data to A.

4. Halt when Z does, with an output value w that is structured as follows. First, w holds the

input �, followed by u

0

; :::; u

n

, the local outputs of all the uncorrupted parties and the adver-

sary at the completion of protocol �. Next, w holds the internal data of all the uncorrupted

parties, obtained in Step 3a.

Figure 6: Description of the environment Z

�

.

Note that A

�

completely ignores the internal history of the a-priori corrupted parties. (These are

the parties that are already corrupted when protocol � is invoked.) Therefore, the distribution of

the output of A

�

, as well as the global output of the system after running � with A

�

, remains

unchanged if we set the input value of the a-priori corrupted parties to 0, and their internal history

to null. Consequently, the distribution of the global output of the ideal process for evaluating f

with S

�

has the same property. We formalize this discussion as follows. Let ~x

�

j

0

denote the vector

obtained from ~x

�

by replacing all the entries that correspond to the a-priori corrupted parties with

non-adaptive case can safely skip to the construction of adversary A

�

.

42

0. Then, we have:

Claim 13 For any input vector ~x

�

for the parties and input z

�

for Z

�

we have:

ideal

f;S

�

;Z

�

(k; ~x

�

; z

�

)

d

= ideal

f;S

�

;Z

�

(k; ~x

�

j

0

; z

�

)

Proof: We have argued above that exec

�;A

�

;Z

�

(k; ~x

�

; z

�

)

d

= exec

�;A

�

;Z

�

(k; ~x

�

j

0

; z

�

): However,

ideal

f;S

�

;Z

�

(k; ~x

�

; z

�

)

d

= exec

�;A

�

;Z

�

(k; ~x

�

; z

�

), and ideal

f;S

�

;Z

�

(k; ~x

�

j

0

; z

�

)

d

=

exec

�;A

�

;Z

�

(k; ~x

�

j

0

; z

�

). The claim follows. 2

Construction of A

�

. Adversary A

�

proceeds as described in the above outline. A detailed

description appears in Figure 7.

Analysis of A

�

. It is evident that the running time of A

�

is linear in the running time of A,

plus the running time of S

�

, plus the running time of �

�

. Fix an input vector ~x, an environment Z

with input z, and some value of the security parameter. We show that

exec

�

�

;A;Z

(k; ~x; z)

d

= exec

f

�;A

�

;Z

(k; ~x; z) (12)

where the symbol

d

= is denotes equality of distributions, not ensembles. This is shown in three

steps, as follows. (The steps are analogous to the non-adaptive case.)

Let us �rst set some notation. (This notation is analogous to the non-adaptive case, see Section

4.4.2). Recall that l

�

is the round where protocol � makes the ideal evaluation call, and protocol

�

�

invokes �. Given vectors ~r

�

= r

�

Z

; r

�

0

; :::; r

�

n

and ~r

�

= r

�

Z

; r

�

0

; :::; r

�

n

(where ~r

�

is interpreted as

random input for the execution of �

�

except for the execution of �, and ~r

�

is interpreted as random

input for the execution of �), let ~r

�;�

= r

�;�

0

; :::; r

�;�

n

denote the combination of ~r

�

and ~r

�

to a full

random-input vector for the execution of �

�

. (That is, party P

i

uses r

�

i

for the execution of � and

r

�

i

for the execution of �, the adversary uses r

�

0

during the execution of � and r

�

0

at other rounds,

and the environment uses r

�

Z

during the execution of � and r

�

Z

at other rounds.) Similarly, given

r

�

= r

�

Z

; r

�

0

; :::; r

�

n

and ~r

f

, where ~r

�

is as above and ~r

f

is interpreted as a random vector for round l

�

in the f -hybrid model (that is, ~r

f

= r

f

Z

; r

f

0

; r

f

1

where r

f

Z

; r

f

0

is the random inputs for the adversary

and the environment for this round and r

f

1

is the random input for the trusted party for f), let

~r

�;f

denote the combination of ~r

�

and ~r

f

to a full random-input vector for the execution of � in

the f -hybrid model.

Step I. Until round l

�

� 1 protocols � and �

�

behave the same. That is, �x some value ~r

�

for

the random-input of the system. We have:

gs

�

�

;A;Z

(l

�

� 1; k; ~x; z; ~r

�

) = gs

�;A

�

;Z

(l

�

� 1; k; ~x; z; ~r

�

):

Step II. We show that the global state in the hybrid model at the end of round l

�

is distributed

identically to the global state in the real-life model at the round where protocol � returns. This is

done in three sub-steps:

1. We �rst show that the parameters set in the hybrid model for the ideal evaluation of f are

identical to the parameters set in the real-life model for the invocation of �. Let C be the set

of a-priori corrupted parties, determined by ~r

�

. (That is, C is the set of corrupted parties at

43

Adversary A

�

Adversary A

�

, given value k for the security parameter, and interacting with an environmentmachine

Z, with parties P

1

; :::; P

n

running protocol �, and with a trusted party T for evaluating f , proceeds

as follows. (Note that A

�

uses the code of Z and of A.)

1. As in the non-adaptive case, invoke A on its own input, auxiliary input and random input,

and follow the instructions of A up to round l

�

� 1. (Recall that so far, both in � and in �

�

the parties run �.) In addition, keep another piece of the random input `on the side'. This

piece, denoted r

�

, is used below.

2. At the onset of round l

�

, A expects to start interacting with parties running protocol � (as

subroutine), whereas parties P

1

; :::; P

n

call a trusted party for ideal evaluation of function

f . Thus, in order to continue the run of A, invoke simulator S

�

as follows. Let P

0

1

; :::; P

0

n

denote the set of simulated parties with which S

�

interacts, and let P

00

1

; :::; P

00

n

denote the set

of simulated parties with which A interacts.

(a) The random input of S

�

is set to r

�

. The initial value that S

�

expects to receive from

its environment is set to the current internal state of A.

(b) When S

�

asks to corrupt (in its ideal process) a party P

0

i

such that P

i

is already cor-

rupted, S

�

is given input values 0 for P

0

i

. (Recall that these are the a-priori corrupted

parties, thus their inputs and the data from the environment do not a�ect the distribu-

tion of the output of S

�

.)

(c) When S

�

asks to corrupt a party P

0

i

that is not yet corrupted, corrupt P

i

in the f-hybrid

model; let x

f

i

be the value that P

i

is about to hand T , the trusted party for f . Then

inform S

�

that the input of P

0

i

is x

f

i

. In addition, set �

�

i

to contain the internal history

of P

i

, and hand �

�

i

to A

�

as the information from the environment.

(d) When S

�

hands the inputs of the corrupted parties to its trusted party, and asks for

the values of f , invoke the trusted party, T , for f with the same input values for the

corrupted parties, and hand the value provided by the trusted party back to S

�

.

(e) If S

�

corrupts P

0

i

after Step 2d then S

�

is given also the value that P

i

received from the

trusted party.

3. Let v denote the output of S

�

, before it starts the post-execution corruption phase. Recall

that v is an internal state of A at the round, l

�

, where the execution of � resumes. Continue

the current run of A from internal state v until the completion of protocol �, and follow A's

instructions. When A corrupts a party P

00

i

at this stage, proceeds as follow.

(a) Corrupt P

i

in its f-hybrid model and obtain the internal history of P pertaining to

protocol �.

(b) Play the role of the environment for S

�

, and request corruption of P

0

i

. Then obtain

the (simulated) internal history of P

0

i

pertaining to protocol �. (In the process S

�

may

corrupt P

0

i

in its ideal process. In this case hand S

�

the input for P

0

i

and the value from

the environment as described in Step 2c.)

(c) Combine the data from the previous two steps to obtain the internal history of P

00

i

pertaining to protocol �

�

, add the value received from A

�

's environment, and hand all

this data to A.

4. Once protocol � terminates, output whatever A outputs, and continue to simulate A as in

Step 3 throughout the post-execution corruption phase.

Figure 7: Description of adversary A

�

in the adaptive model.

44

the onset of round l

�

.) The set C is identical in the two executions. Let z

�

, an input value

for environment Z

�

, consist of the global state z

�

= gs

�

�

;A;Z

(l

�

� 1; k; ~x; z; ~r

�

).

Let x

�

i

denote the input value of uncorrupted party P

i

for protocol �, as determined in

gs

�

�

;A;Z

(l

�

� 1; k; ~x; z; ~r

�

). If P

i

is corrupted then x

�

i

= 0. Let ~x

�

= x

�

1

; :::; x

�

n

. Similarly, let

x

f

i

denote the value that party P

i

hands the trusted party for f , as determined in gs

�;A

�

;Z

(l

�

�

1; k; ~x; z; ~r

�

), and let ~x

f

= x

f

1

; :::; x

f

n

. It follows that ~x

�

= ~x

f

j

0

.

2. Next we assert that the global output of the execution of �, that is implicit in the run of �

�

with adversary A, is distributed identically to the global output of the ideal evaluation of f

that is implicit in round l

�

of the run of � in the hybrid model. That is, from the validity of

S

�

, from Step II.1, and from Claim 13 we have:

exec

�;A

�

;Z

�

(k; ~x

�

; z

�

)

d

= ideal

f;S

�

;Z

�

(k; ~x

�

; z

�

) = ideal

f;S

�

;Z

�

(k; ~x

f

j

0

; z

�

)

d

= ideal

f;S

�

;Z

�

(k; ~x

f

; z

�

) (13)

(Note that Equation (13) applies also to the interaction between the environment Z

�

and the

respective adversaries, after � is completed. This fact plays a central role in Step III.)

3. We show that the global state in the hybrid model at the at the end of round l

�

is distributed

identically to the global state in the real-life model when protocol � returns. That is, Let l

�

denote the round where the call to protocol � returns (within protocol �

�

). Then, it follows

from the de�nition of �

�

and the constructions of A

�

, Z

�

, and A

�

that:

(a) Let ~r

�

be a random-input vector for protocol �. Let

^

gs

�

�

;A;Z

(l; k; ~x; z; ~r

�;�

) be the vector

gs

�

�

;A;Z

(l; k; ~x; z; ~r

�;�

) after removing, for each uncorrupted party, all the internal states

pertaining to protocol � except for the output from �. Then,

^

gs

�

�

;A;Z

(l

�

; k; ~x; z; ~r

�;�

)

can be obtained from gs

�

�

;A;Z

(l

�

� 1; k; ~x; z; ~r

�

) and exec

�;A

�

;Z

�

(k; ~x

�

; z

�

; ~r

�

) via a de-

terministic, simple process, denoted C. (Process C essentially updates the internal his-

tories of the parties and the internal state of the adversary. More precisely, recall that

w

def

= exec

�;A

�

;Z

�

(k; ~x

�

; z

�

; ~r

�

) is the output of Z

�

from that execution. Process C �rst

modi�es the internal history of each uncorrupted party P

i

by adding the appropriate

portion of w to gs

�

�

;A;Z

(l

�

� 1; k; ~x; z; ~r

�

) in the appropriate place. Next C outputs the

internal state of A as it appears in A

�

's output in w, together with the modi�ed internal

histories of the uncorrupted parties.)

(b) Let ~r

f

be a random input vector for the ideal evaluation process of f . Then, gs

�;A

�

;Z

(l

�

; k; ~x; z; ~r

�;f

)

is obtained from gs

�;A

�

;Z

(l

�

� 1; k; ~x; z; ~r

�

) and ideal

f;S

�

;Z

�

(k; ~x

f

; z

f

; ~r

f

) via the same

process, C, as in the real-life execution.

It follows that for any value of ~r

�

, and for vectors ~r

�

and ~r

f

that are uniformly chosen in

their respective domains, we have

^

gs

�

�

;A;Z

(l; k; ~x; z; ~r

�;�

)

d

= gs

�;A

�

;Z

(l

�

; k; ~x; z; ~r

�;f

):

Step III. We assert Equation (12). We have:

1. For each round l > l

�

the vector

^

gs

�

�

;A;Z

(l; k; ~x; z; ~r

�;�

) can be obtained from

^

gs

�

�

;A;Z

(l �

1; k; ~x; z; ~r

�

) and w

def

= exec

�;A

�

;Z

�

(k; ~x

�

; z

�

; ~r

�

) via the following process, C

0

: Continue the

execution for one round from the global state described in

^

gs

�

�

;A;Z

(l � 1; k; ~x; z; ~r

�

). If no

new corruption occurs in this round then

^

gs

�

�

;A;Z

(l; k; ~x; z; ~r

�;�

) is obtained. In case that A

45

corrupts a new party, P

i

, take the internal history of P

i

pertaining to protocol � from w. (It

is guaranteed that P

i

is corrupted in w.)

A's interaction with the environment Z at the completion of the execution of �

�

is deter-

mined by

^

gs

�

�

;A;Z

(l

�

; k; ~x; z; ~r

�

) and w via a similar process. In particular, the global output

exec

�

�

;A;Z

(k; ~x; z; ~r

�;�

) is uniquely determined.

2. For each round l > l

�

vector gs

�;A

�

;Z

(l; k; ~x; z; ~r

�;f

) is determined from gs

�;A

�

;Z

�

(l�1; k; ~x; z; ~r

�;f

)

and ideal

f;S

�

;Z

�

(k; ~x

�

; z

�

; ~r

�

) via the same process, C

0

, as in the the real-life execution. The

interaction with environment Z at the completion of the execution of � is also determined in

the same way as there. In particular, the global output exec

f

�;A

�

;Z

(k; ~x; z; ~r

�;f

) is determined

in the same way as there.

It follows that for any value of ~r

�

, and for vectors ~r

�

and ~r

f

that are uniformly chosen in their

respective domains, we have

exec

�

�

;A;Z

(k; ~x; z; ~r

�;�

)

d

= exec

f

�;A

�

;Z

(k; ~x; z; ~r

�;f

):

Equation (12) follows by letting ~r

�

be randomly chosen in its domain.

This completes the proof for the case of a single ideal evaluation call. The case of multiple ideal

evaluation calls is treated in the same way as in the non-adaptive case. We omit further details.

6 The computational setting

This section de�nes secure protocols and proves the composition theorem in the computational

setting, where the adversary sees all the communication among the parties and is restricted to

probabilistic polynomial time. We concentrate on the case of adaptive adversaries. The simpler

case of non-adaptive adversaries can be easily inferred.

The treatment is quite similar to that of the secure channels setting (Section 5). Therefore, this

section is not self-contained; we assume familiarity with Section 5 and only highlight the di�erences.

Section 6.1 contains de�nitions of secure protocols. All the remarks from Sections 4.2 and 5.2 are

relevant here. Additional remarks speci�c to the computational setting appear in Section 6.2.

Section 6.3 presents and proves the composition theorem.

6.1 De�nition of security: The computational case

We de�ne adaptively secure multi-party computation in the computational setting. Executing a

protocol � in the real-life scenario, as well as the notation exec

�;A;Z

, are the same as in the

adaptive secure channels setting, with the following exceptions:

1. The real-life adversary, A, and the environment Z are probabilistic polynomial time (ppt).

Note that this is a weakening of the security o�ered by this model, relative to that of Section 5.

(The running time of the adversary, as well as that of all other entities involved, is measured

as a function of the security parameter, k. To accommodate the convention that the running

time is measured against the length of the input we envision that the string 1

k

is given as an

additional input.)

2. A sees all the communication between the uncorrupted parties. Consequently, when a party

gets corrupted the new data learned by the adversary is only the party's input and random

46

input. Note that this is a strengthening of the security o�ered by this model, relative to that

of Section 5.

20

The ideal process is the same as in the secure channels setting. (Since the real-life adversary is

always ppt, so is the ideal-process adversary.) The notation ideal

f;S;Z

remains unchanged.

We de�ne emulation of the ideal process by a real-life computation in the same way, with the

exception that here we only require that the global outputs are computationally indistinguishable

(as de�ned in Section 3):

De�nition 14 (adaptive security in the computational setting) Let f be an n-party func-

tion, and let � be a protocol for n parties. We say that � adaptively t-securely evaluates f in the

computational setting, if for any ppt t-limited real-life adversary A and any ppt environment Z

there exists a ppt ideal-process adversary S, such that

ideal

f;S;Z

c

� exec

�;A;Z

(14)

If A and S are passive then � adaptively t-privately evaluates f in the computational setting.

6.2 Discussion

Remark 1: On the complexity of Z. We stress that De�nition 14 quanti�es only over all

environments Z that are ppt. This is so since in the computational setting we assume that all

involved entities (including the environment, represented by Z) are ppt. Indeed, a de�nition that

allows Z more computational power will be hard to satisfy, since an over-powerful Z may be able

to break cryptographic primitives used by the parties, and thus distinguish between the real-life

computation and the ideal process. (Recall that our model allows Z access to the communication

among the parties, via A's view.)

Remark 2: On \absolute" vs. \computational" correctness. De�nition 14 only requires

the two sides of (14) to be computationally indistinguishable. (That is, it is required that for any

ppt distinguishing algorithm D, and for any values of k; ~x; z, algorithm D distinguishes between

(k; ~x; z; ideal

f;S;Z

(k; ~x; z)) and (k; ~x; z; exec

�;A;Z

(k; ~x; z)) only with probability that is negligible in

the security parameter k.) In particular, this means that the ensemble describing the outputs of the

uncorrupted parties in the real-life model is only required to be computationally indistinguishable

from the ensemble describing these outputs in the ideal process.

Let us �rst discuss the consequences of this requirement in the case of passive adversaries.

The case of active adversaries is somewhat more involved and is addressed below. In the case of

passive adversaries De�nition 14 imposes di�erent requirements depending on whether the evaluated

function is deterministic or probabilistic. When f is deterministic the output of each uncorrupted

party in a protocol that securely evaluates f will be the (uniquely determined) value of f on

the corresponding set of inputs. In this case, we say that the de�nition guarantees \absolute

correctness". When f is probabilistic, a protocol that securely evaluates f only guarantees that the

distribution of the outputs of the uncorrupted parties is computationally indistinguishable from the

speci�ed distribution. It is not guaranteed that the distribution of the outputs of the uncorrupted

20

We assume that the links are ideally authenticated, namely the adversary cannot alter the communication. This

assumption is used in many works on cryptographic protocols, and makes the analysis of protocols much easier.

Removing this assumption can be done in a \modular" way that concentrates on the task of message authentication.

See, for instance, [bck98].

47

parties will be equal to the speci�ed distribution. In this case, we say that the de�nition guarantees

\computational correctness".

Let us demonstrate this point via an example. Assume that the function to be evaluated

is f

1

(x

1

; :::; x

n

) = g(�

n

i=1

x

i

) where g is some pseudorandom number generator, and � denotes

bitwise exclusive or. In this case, only protocols where the uncorrupted parties output the value of

g(�

n

i=1

x

i

) on any input sequence x

1

; :::; x

n

will be considered secure. In contrast, assume that the

evaluated function is f

2

() = r, where r is a random value of the same length as g(�) above. (That

is, f

2

is a probabilistic function and r is chosen using the \intrinsic randomness" of f

2

.) In this

case, any protocol in which the parties output a pseudorandom value of the appropriate length is

secure.

In the case of active adversaries the distinction between the cases where the de�nition guar-

antees \absolute correctness" and the cases where the de�nition guarantees only \computational

correctness" is more drastic. The reason is that here the corrupted parties (both in the real-life

and in the ideal model) may contribute to the computation values chosen irrespectively of the given

input values; in particular the contributed values can be chosen randomly according to some dis-

tribution. Consequently, the de�nition guarantees \absolute correctness" only for functions where

the output value is uniquely determined by the inputs of the uncorrupted parties alone.

Let us demonstrate this point via another example. Consider the function f

1

described above.

This function is deterministic; however, the value x (and, consequently, the output of the parties)

is not well-de�ned given the inputs of the uncorrupted parties. In particular, when the corrupted

parties contribute randomly chosen values, the function value is in e�ect g(r) where r is random

and independent from the inputs of the parties. Therefore it is possible to construct protocols

that securely evaluate f

1

according to De�nition 14, but where the parties output a random value,

independently of the inputs of the parties.

In contrast, consider the function f

3

(x

1

; :::; x

n

) = g(x

1

) if x

1

= x

2

= ::: = x

n

, and f

3

(x

1

; :::; x

n

) =?

otherwise. Here the output of the parties is uniquely de�ned (up to an error value) given the inputs

of the uncorrupted parties. Consequently, in a protocol that securely evaluates f

3

the uncorrupted

parties output the (uniquely de�ned) output value on each input.

The above discussion brings us to the more general issue of how to formally cast an \intuitive

task" as a function to be evaluated. We have seen that seemingly similar formalizations result in

very di�erent security requirements on protocols. Thus, care must be taken to formalize a given

task in a way that correctly captures the desired security requirements.

6.3 Modular composition: The computational case

We state and prove the composition theorem and its corollary for the case of adaptive adversaries

in the computational setting.

The computational hybrid model. The (computational, adaptive) (f

1

; :::; f

m

)-hybrid model

is de�ned identically to the secure channels, adaptive case (Section 5.3), with the exception that we

start from the computational real-life model, rather than from the secure-channels real-life model.

The notation exec

f

1

;:::;f

m

�;A;Z

remains unchanged (here it applies to the computational setting). The

`mechanics' of replacing an ideal-evaluation call of protocol � with a call to a subroutine real-life

protocol, �, are also identical to the case of secure channels.

Theorem 15 (Adaptive computational modular composition: General statement) Let

t < n, and let f

1

; :::; f

m

be n-party functions. Let � be an n-party protocol in the computational

48

(f

1

; :::; f

m

)-hybrid model where no more than one ideal evaluation call is made at each round, and

let �

1

; :::; �

m

be n-party protocols where �

i

adaptively t-securely (resp., t-privately) evaluates f

i

in

the computational setting. Then, for any ppt adaptive t-limited active (resp., passive) real-life

adversary A and for ppt any environment machine Z there exists a ppt adaptive active (resp.,

passive) adversary S in the (f

1

; :::; f

m

)-hybrid model such that

exec

f

1

;:::;f

m

�;S;Z

c

� exec

�

�

1

;:::;�

m

;A;Z

: (15)

Protocols for securely evaluating a function g in the computational (f

1

; :::; f

m

)-hybrid model

are de�ned in the usual way:

De�nition 16 Let f

1

; :::; f

m

; g be n-party functions and let � be a protocol for n parties in the

computational (f

1

; :::; f

m

)-hybrid model. We say that � adaptively t-securely evaluates g in the com-

putational (f

1

; :::; f

m

)-hybrid model if for any ppt adaptive t-limited adversary A (in the (f

1

; :::; f

m

)-

hybrid model) and every ppt environment Z, there exists a ppt adaptive ideal-process adversary S

such that

ideal

g;S;Z

c

� exec

f

1

;:::;f

m

�;A;Z

: (16)

If A and S are passive adversaries then we say that � adaptively t-privately evaluates g in the

computational (f

1

; :::; f

m

)-hybrid model.

Corollary 17 (Adaptive computational modular composition: Secure function evaluation)

Let t < n, and let f

1

; :::; f

m

; g be n-party functions. Let � be an n-party protocol that adaptively

t-securely (resp., t-privately) evaluates g in the computational (f

1

; :::; f

m

)-hybrid model, and as-

sume that no more than one ideal evaluation call is made at each round. Let �

1

; :::; �

m

be n-party

protocols that adaptively t-securely (resp., t-privately) evaluate f

1

; :::; f

m

, respectively, in the com-

putational setting. Then protocol �

�

1

;:::;�

m

adaptively t-securely (resp., t-privately) evaluates g in

the computational setting.

The proof of Corollary 17 is identical to that of Corollary 12.

Proof of Theorem 15: Again, we only prove the theorem for the case of active adversaries. The

simpler case of passive adversaries can be easily inferred. As in the case of adaptive security with

secure channels, we �rst restrict the presentation to active adversaries and to protocols where the

trusted party is called only once. The case of multiple ideal evaluation calls is treated at the end

of the proof.

The constructions of A

�

, Z

�

, and A

�

are identical to those of Section 5.4 (the adaptive, secure

channels case), with the obvious exception that the simulated adversary A is always being given

also the messages sent among the uncorrupted parties. The complexities of A

�

, Z

�

are linear in

the complexity of A, and the complexity of A

�

is linear in the complexities of A and S

�

. We show:

exec

�

�

;A;Z

c

� exec

f

�;A

�

;Z

: (17)

Essentially, the only di�erence from the proof in secure channels case is in Step II.2, namely that

exec

�;A

�

;Z

�

and ideal

f;S

�

;Z

�

are only guaranteed to be computationally indistinguishable; but this

su�ces to show (17).

More precisely, given a distinguisher D between exec

�

�

;A;Z

and exec

f

�;A

�

;Z

, construct a distin-

guisher D

0

between exec

�;A

�

;Z

�

and ideal

f;S

�

;Z

�

. On input k and a value w (which is the output

of Z

�

), distinguisher D

0

orchestrates an execution of �

�

with adversary A and corruptor Z , on the

inputs and random inputs appearing in w, and using the data in w for the parties' outputs from

49

�. Once the global output w

0

from this execution is generated, D

0

runs D on (k; w

0

) and outputs

whatever D outputs.

Using the same arguments as in the secure channels case, it is seen that if w has the distribution

of exec

�;A

�

;Z

�

(k; ~x; z) for some ~x; z then w

0

has the distribution of exec

�

�

;A;Z

(k; ~x; z). Similarly,

if w has the distribution of ideal

f;S

�

;Z

�

(k; ~x; z) then w

0

has the distribution of exec

f

�;A

�

;Z

(k; ~x; z).

Consequently, if D distinguishes between exec

�

�

;A;Z

(k; ~x; z) and exec

f

�;A

�

;Z

(k; ~x; z) with probabil-

ity that is not negligible, then D distinguishes between exec

�;A

�

;Z

�

(k; ~x; z) and ideal

f;S

�

;Z

�

(k; ~x; z)

with probability that is not negligible.

On multiple ideal evaluation calls. As in the secure channels model, the case of multiple ideal

evaluation calls is a straightforward generalization of the case of a single call. The construction of

the generalized adversary is the same as in the secure channels model; however, the analysis uses

a \hybrids argument". We sketch the main points of di�erence from the single call, computational

case. (These points are analogous to the ones discussed in the non-adaptive, secure channels case,

see Section 4.4.2.)

1. An adversary A

�

i

is constructed for each protocol �

i

. All the A

�

i

's are identical to adversary

A

�

described above, with the exception that protocol � is replaced by �

i

. If �

i

= �

j

for some

i; j then A

�

i

= A

�

j

.

2. Similarly, an environment machine Z

�

i

is constructed for each protocol �

i

. All the Z

�

i

's are

identical to Z

�

described above, with the exception that protocol � is replaced by �

i

. (If

�

i

= �

j

for some i; j then Z

�

i

= Z

�

j

.)

3. Construct an adversary

~

A

�

that is identical to A

�

described above, with the exception that

at each round where � instructs the parties to ideally evaluate f

i

, adversary

~

A

�

runs a copy

of S

�

i

in the same way that A

�

runs S

�

. The initial value given to S

�

i

is set to the current

internal state of the simulated A within A

�

. (Recall that there may be many invocations of

the same simulator S

�

i

, where each invocation corresponds to a di�erent ideal evaluation call

to f

i

. These invocations will have di�erent initial values.)

4. As in the case of a single ideal evaluation call, it is evident that the running time of

~

A

�

is

linear in the running time of A, plus the sum of the running times of all the invocations of

S

�

1

; :::;S

�

m

, plus the running time of �

�

1

;:::;�

m

. We sketch a proof that exec

�

�

1

;:::;�

m

;A;Z

c

�

exec

f

1

;:::;f

m

�;

~

A

�

;Z

. Let c denote the total number of ideal evaluation calls made by � in the

f

1

; :::; f

m

-hybrid model. First de�ne c + 1 hybrid protocols �

0

; :::; �

c

, all in the f

1

; :::; f

m

-

hybrid model, where �

j

follows � until the end of the jth ideal evaluation call, and follows

�

�

1

;:::;�

m

for the rest of the interaction. Similarly, de�ne c+1 adversaries A

0

; :::;A

c

, where A

j

is the adversary that follows the instructions of A

�

until the end of the jth ideal evaluation

call, and follows the instructions of A for the rest of the interaction. Let H

j

denote the

ensemble exec

f

1

;:::;f

m

�

j

;

~

A

j

;Z

.

It can be seen that H

0

= exec

�

�

1

;:::;�

m

;A;Z

and H

c

= exec

f

1

;:::;f

m

�;

~

A

�

;Z

. Furthermore, using a

similar argument to the one used for the single call case, it can be seen that if there exists a

distinguisher between H

j

and H

j+1

for some j > 0 then there exists a distinguisher between

exec

�

i

;A

�

i

;Z

�

i

and ideal

f

i

;S

�

;Z

�

i

, where f

i

is the function evaluated in the jth call. (The

distinguishing probability is reduced by a factor of c.)

2

50

Non-adaptive security in the computational setting. A de�nition of non-adaptive secu-

rity in the computational setting can be easily derived from De�nitions 4 and 14. Furthermore,

composition theorems similar to the ones here hold in that case as well.

We remark, however, that in the computational non-adaptive case the distinguisher D

0

described

above does not work. This is so since there, in contrast to the adaptive case, the global output of

the execution of protocol � does not include su�cient information for orchestrating an execution of

�

�

with A. Consequently, D

0

will receive this information, namely the inputs and random inputs

of the parties for protocol �, in its auxiliary input (see De�nition 3).

21

See more details on the

non-adaptive computational case in [g98].

Acknowledgments

Coming up with the de�nitions presented here would not have been even remotely possible without

the devoted help of Oded Goldreich over a period of several years. Oded has contributed immensely

to their shaping, as well as to the modular composition theorems.

Let me also thank the many people I interacted with for very helpful discussions and inputs

concerning the de�nitions and the modular composition theorems. Among these are Rosario Gen-

naro, Sha� Goldwasser, Shai Halevi, Hugo Krawczyk, Eyal Kushilevitz, Silvio Micali, Moni Naor,

Ra� Ostrovsky, Charlie Racko� and Phil Rogaway.

Finally let me thank the anonymous referees for their careful and thorough reading of the

manuscript and for their very helpful remarks and suggestions.

References

[b91] D. Beaver, \Secure Multi-party Protocols and Zero-Knowledge Proof Systems Tolerating a

Faulty Minority", J. Cryptology, Springer-Verlag, (1991) 4: 75-122.

[b91a] D. Beaver, \Foundations of Secure Interactive Computing", CRYPTO '91, Lecture Notes

in Computer Science (LNCS) 576, Springer-Verlag, 1991.

[bg89] D. Beaver and S. Goldwasser, \Multi-party computation with faulty majority", 30th Symp.

on Foundations of Computer Science (FOCS), IEEE, 1989, pp. 468-473.

[bh92] D. Beaver and S. Haber. Cryptographic protocols provably secure against dynamic adver-

saries. In Advances in Cryptology | Eurocrypt '92, LNCS No. 658, Springer-Verlag, 1992,

pages 307{323.

[bck98] M. Bellare, R. Canetti and H. Krawczyk, \A modular approach to the design and analysis

of authentication and key-exchange protocols", 30th Symposium on Theory of Computing

(STOC), ACM, 1998.

[bcg93] M. Ben-Or, R. Canetti and O. Goldreich, \Asynchronous Secure Computations", 25th

Symposium on Theory of Computing (STOC), ACM, 1993, pp. 52-61.

21

Indeed, in the case of adaptive adversaries a weaker version of De�nition 3 that does not provide the distinguisher

with auxiliary input would be su�cient for the composition theorem to hold. We formulate the stronger notion in

order to be compatible with the non-adaptive computational case.

51

[bgw88] M. Ben-Or, S. Goldwasser and A. Wigderson, \Completeness Theorems for Non-

Cryptographic Fault-Tolerant Distributed Computation", 20th Symposium on Theory of

Computing (STOC), ACM, 1988, pp. 1-10.

[c95] R. Canetti, \Studies in Secure Multi-party Computation and Applications", Ph.D. Thesis,

Weizmann Institute, Israel, 1995.

[cfgn96] R. Canetti, U. Feige, O. Goldreich and M. Naor, \Adaptively Secure Computation", 28th

Symposium on Theory of Computing (STOC), ACM, 1996. Fuller version in MIT-LCS-TR

#682, 1996.

[ch94] R. Canetti and A. Herzberg. Maintaining security in the presence of transient faults. In

Proceedings of CRYPTO'94, LNCS 839, Springer-Verlag, 1994.

[cg96] R. Canetti and R. Gennaro, Incoercible multi-party computation, 37th Symp. on Founda-

tions of Computer Science (FOCS), IEEE, 1996.

[cghn97] R. Canetti, R. Gennaro, A. Herzberg, D. Naor, \Proactive security: Long-term Protec-

tion against break-ins", CryptoBytes, Vol. 3, No. 1, 1997.

[cg99] R. Canetti and S. Goldwasser, \A threshold cryptosystem secure against adaptive chosen

ciphertext attacks", In Proceedings of Eurocrypt 99, Springer-Verlag, 1999. Fuller version

available on-line at http://philby.ucsd.edu.

[chh98] R. Canetti, S. Halevi and A. Herzberg, \How to Maintain Authenticated Communica-

tion", this issue. Preliminary version at 16th Symp. on Principles of Distributed Computing

(PODC), ACM, 1997, pp. 15-25.

[ckor98] R. Canetti, E. Kushilevitz, R. Ostrovsky and A. Rosen, \Randomness vs. Fault-

Tolerance", this issue. Preliminary version at 16th Symp. on Principles of Distributed Com-

puting (PODC), ACM, 1997, pp. 35-45.

[co99] R. Canetti and R. Ostrovsky. Secure Computation with Honest-Looking Parties: What if

nobody is truly honest? 31st Symposium on Theory of Computing (STOC), ACM, 1999.

[ccd88] D. Chaum, C. Crepeau, and I. Damgard. Multi-party Unconditionally Secure Protocols.

In Proc. 20th Annual Symp. on the Theory of Computing (STOC), pages 11{19, ACM, 1988.

[ck89] B. Chor and E. Kushilevitz, \a Zero-One law for boolean privacy", SIAM J. Disc. Math.

4 (1991) 36-47. Preliminary version in Symposium on Theory of Computing (STOC) 21,

ACM, (1989) 62-72.

[cdm98] R. Cramer, I. Damgard and U. Maurer ,\Span programs and general secure multi-party

computation", manuscript, 1998.

[df89] Y. Desmedt and Y. Frankel, \Threshold cryptosystems", In G. Brassard, editor, Advances

in Cryptology | Crypto '89, LNCS No. 435, Springer-Verlag, 1989, pp. 307{315.

[dow92] W. Di�e, P. van Oorschot and M. Wiener, \Authentication and authenticated key ex-

changes", Designs, Codes and Cryptography, 2, 1992, pp. 107{125.

[ddn91] D. Dolev, C. Dwork and M. Naor, Non-malleable cryptography, SIAM. J. Computing, to

appear. Preliminary version in 23rd Symposium on Theory of Computing (STOC), ACM,

1991.

52

[f87] P. Feldman, \A practical scheme for non-interactive Veri�able Secret Sharing", 28th Symp.

on Foundations of Computer Science (FOCS), IEEE, 1987, pp. 427-437.

[ghy88] Z. Galil, S. Haber and M. Yung, Cryptographic computation: Secure faut-tolerant proto-

cols and the public-key model, CRYPTO '87, LNCS 293, Springer-Verlag, 1988, pp. 135-155.

[gjkr96] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin, \Robust threshold DSS signatures",

Eurocrypt '96, LNCS 1070, Springer-Verlag, 1996, pp. 354{371.

[g93] O. Goldreich, \A Uniform Complexity Treatment of Encryption and Zero-Knowledge", Jour-

nal of Cryptology, Vol. 6, No. 1, Springer-Verlag, 1993, pp. 21{53.

[g95] O. Goldreich, \Foundations of Cryptography (Fragments of a book)", Weizmann Inst. of

Science, 1995. (Avaliable at http://philby.ucsd.edu)

[g98] O. Goldreich. \Secure Multi-Party Computation", 1998. (Avaliable at

http://philby.ucsd.edu)

[gk88] O. Goldreich and H. Krawczyk, On the Composition of Zero-Knowledge Proof Systems,

SIAM. J. Computing, Vol. 25, No. 1, 1996.

[gmw91] O. Goldreich, S. Micali and A. Wigderson, \Proofs that yield nothing but their validity

or All Languages in NP Have Zero-Knowledge Proof Systems", Journal of the ACM, Vol

38, No. 1, ACM, 1991, pp. 691{729. Preliminary version in 27th Symp. on Foundations of

Computer Science (FOCS), IEEE, 1986, pp. 174-187.

[gmw87] O. Goldreich, S. Micali and A. Wigderson, \How to Play any Mental Game", 19th Sym-

posium on Theory of Computing (STOC), ACM, 1987, pp. 218-229.

[go94] O. Goldreich and Y. Oren, \De�nitions and properties of Zero-Knowledge proof systems",

Journal of Cryptology, Vol. 7, No. 1, Springer-Verlag, 1994, pp. 1{32. Preliminary version

by Y. Oren in 28th Symp. on Foundations of Computer Science (FOCS), IEEE, 1987.

[gl90] S. Goldwasser, and L. Levin, \Fair Computation of General Functions in Presence of Im-

moral Majority", CRYPTO '90, LNCS 537, Springer-Verlag, 1990.

[gm84] S. Goldwasser and S. Micali, \Probabilistic encryption", JCSS, Vol. 28, No 2, April 1984,

pp. 270-299.

[gmr89] S. Goldwasser, S. Micali and C. Racko�, \The Knowledge Complexity of Interactive Proof

Systems", SIAM Journal on Comput., Vol. 18, No. 1, 1989, pp. 186-208.

[hm97] M. Hirt and U. Maurer, \Complete characterization of adversaries tolerable in secure multi-

party computation", this issue. Preliminary version at 16th Symp. on Principles of Dis-

tributed Computing (PODC), ACM, 1997, pp. 25{34.

[k89] E. Kushilevitz, \Privacy and communication complexity", SIAM Jour. disc. Math. Vol. 5.

No. 2 (1992), 273-284. Preliminary version in 29th Symp. on Foundations of Computer

Science (FOCS), IEEE, 1989.

[kkmo97] J. Kilian, E. Kushilevitz, S. Micali, R. Ostrovsky, \Reducibility and Completeness in

Private Computations", SIAM. J. Computing, to appear. Preliminary versions in 23rd Sym-

posium on Theory of Computing (STOC), ACM, 1991 by Kilian and in 35th Symp. on Foun-

dations of Computer Science (FOCS), IEEE, 1994, by Kushilevitz, Micali and Ostrovsky.

53

[mr91] S. Micali and P. Rogaway, \Secure Computation", unpublished manuscript, 1992. Prelim-

inary version in CRYPTO '91, LNCS 576, Springer-Verlag, 1991.

[m96] S. Micali, advanced class on cryptographic protocols, given at MIT, Spring 1996.

[oy91] R. Ostrovsky and M. Yung. \How to withstand mobile virus attacks". In Proceedings of

the 10

th

Annual ACM Symposium on Principles of Distributed Computing (PODC), ACM,

1991, pp. 51{59.

[r98] T. Rabin, \A Simpli�ed Approach to Threshold and Proactive RSA" CRYPTO '98, LNCS

, Springer-Verlag, 1998.

[rb89] T. Rabin and M. Ben-Or, \Veri�able Secret Sharing and Multi-party Protocols with Honest

Majority", 21st Symposium on Theory of Computing (STOC), ACM, 1989, pp. 73-85.

[y82] A. Yao, \Protocols for Secure Computation", In Proc. 23rd Annual Symp. on Foundations

of Computer Science (FOCS), pages 160{164. IEEE, 1982.

[y82a] A. Yao, `theory and applications of trapdoor functions', In Proc. 23rd Annual Symp. on

Foundations of Computer Science (FOCS), pages 80{91. IEEE, 1982.

[y86] A. Yao, \How to generate and exchange secrets", In Proc. 27th Annual Symp. on Founda-

tions of Computer Science (FOCS), pages 162{167. IEEE, 1986.

A Other de�nitions

We briey review some de�nitions of secure multi-party computation. More speci�cally, we review

the de�nitions of Micali and Rogaway [mr91], Goldwasser and Levin [gl90], Beaver [b91a, b91],

and Canetti, Feige, Goldreich and Naor [c95, cfgn96]. These de�nitions vary in their level of

restrictiveness. In addition, the works vary in the level of detail and rigor in which the de�nitions

are presented. The most comprehensively and rigorously presented set of de�nitions appears in

[mr91].

The de�nition of Micali and Rogaway. Micali and Rogaway envision an ideal process, similar

to the one here, for secure function evaluation. However, the ideal process remains as a motivating

intuition and is not explicitly used in the actual de�nition, sketched below. (This de�nition deals

only with the secure channels setting, and only with protocols that evaluate deterministic functions.)

First the input that each party contributes to the computation, as well as its output, should be

determined exclusively from the communication of that party with the other parties. The functions

that determine the input and output, called input awareness and output awareness functions, should

be computable in polynomial time. (The adversary cannot evaluate these functions since in the

secure channels setting it does not have access to the entire communication of an uncorrupted party

with the other parties.)

Correctness is guaranteed by requiring that, in any execution of the protocol, the outputs of the

uncorrupted parties (determined by applying the output awareness function to the communication)

should equal the value of the evaluated function applied to the contributed inputs (determined by

applying the input awareness function to the communication). Security is guaranteed by requiring

that there exists a `black-box simulator' that generates, in probabilistic polynomial time, a simu-

lated conversation between the (real-life) adversary and the uncorrupted parties. The simulator is

54

restricted to one pass simulation (i.e., it cannot rewind the adversary), and receives external infor-

mation regarding the inputs of the corrupted parties and their outputs. This external information is

related to the values of the input and output awareness functions applied to the simulated conversa-

tion. Furthermore, it is received in a timely fashion: the simulator receives the designated outputs

of the corrupted parties (i.e., the appropriate function values) only at a certain pre-speci�ed round

(this is the round where the inputs become determined by the input-awareness function applied to

the comunication); in addition, only when a party is corrupted by the adversary can the simulator

receive the input value of that party.

This de�nition of security seems to imply ours (in the settings where it applies). In fact, it seems

considerably more restrictive. Let us highlight three aspects of this extra restrictiveness. First, the

requirement that the input and output awareness functions be computable from the communication

alone implies that protocols where parts of the computation are done locally without interaction

(e.g., the trivial protocol where no communication takes place and each party computes its output

locally) are considered insecure. Second, limiting the simulator to one pass black-box simulation

excludes a proof technique that seems essential for proving security of a wide range of protocols (e.g.,

zero-knowledge proofs [gmr89, gmw91]). Third, requiring that the simulator receives the outputs

of the corrupted parties only after the inputs are determined by the communication excludes an

additional set of protocols.

22

The de�nition of Goldwasser and Levin. Goldwasser and Levin take a di�erent approach.

First they formalize the `inevitable advantages' of the adversary in the ideal process (we briey

sketch these `inevitable advantages' below). Next they say that a protocol is robust if for any

adversary there exists an `equivalent' adversary that is limited to these `inevitable privileges', and

that has the same e�ect on the computation. Their notion of robustness of protocols has the

advantage that it is independent of the speci�c function to be evaluated (except for some technical

subtleties ignored here).

The `inevitable privileges' of the adversary, extracted from the ideal process, can be sketched as

follows. First, the adversary may choose to corrupt parties (either adaptively or non-adaptively).

Next, if the adversary is active then the inputs of the corrupted parties may be modi�ed. (However,

this is done without knowledge of the inputs of the uncorrupted parties). Next, the adversary may

learn the speci�ed outputs of the corrupted parties. This may inevitably reveal some information

on the inputs of the uncorrupted parties. Furthermore, if the adversary is adaptive then it can

corrupt parties, after the computation is completed, based on the output of the computation.

23

The di�erence between the [gl90] approach and ours may be viewed as follows. Instead of

directly comparing (as we do) executions of the protocol in real-life to an ideal process where a

speci�c function is evaluated, they �rst compare real-life executions of the protocol to executions of

the same protocol in an idealized model where the adversary is limited as described above. So far

one does not need to specify what functionality the protocol is ful�lling. In a second step (which

is implicit in [gl90]), one claims that executing the protocol in the idealized model is equivalent

to an ideal evaluation process of a speci�c function.

22

For instance, let the \bit transmission" function be such that the output of party R (the receiver) equals the

input of party S (the sender). Consider the protocol where S simply sends its input to R over the private channel.

This protocol is rejected by the de�nition of [mr91] since the simulator is required to provide a corrupted receiver

with the value of the transmitted bit before this value becomes known. (This protocol securely evaluates the bit

transmission function according to the de�nition here.)

23

If a majority of the parties are corrupted then, in addition to the privileges described above, the adversary

cannot be prevented from \quitting early", i.e. disrupting the computation at any time. However, this is done

without knowing the output with more certainty than the uncorrupted parties.

55

The de�nition of Beaver. Beaver's de�nition [b91, b91a] takes a similar approach to the one

here. We sketch this approach using the terminology of [b91]. First a general notion of comparing

security of protocols is formulated, as follows. Consider two protocols � and � for evaluating the

same function. Protocol � is at least as secure as protocol � if there exists an interface that turns

any adversary A attacking � into an adversary A

0

attacking �, such that for any inputs the global

output of the two computations are identically distributed. The global output is de�ned similarly

to here. The interaction between the interface and A is apparently black-box, and rewinding

the adversary is not allowed. (The de�nition does not fully specify the details of the interaction

between the interface and A.) A protocol for evaluating a function is secure if it is at least as

secure as the trivial protocol for evaluating the function in an ideal model similar to the one

here. To allow for secure sequential composition, the de�nition allows the adversary to receive

additional auxiliary information upon corrupting a party. In addition it requires the protocol to

be post-protocol corruptible. That is, the adversary should be able to respond to \any sequence of

post-execution corruption requests" with the internal data of the relevant parties.

Disallowing rewinding is a considerable limitation, especially in the computational setting. (See

Remark 3 in Section 4.2). An additional weakness of this de�nition is that, unlike here, A

0

is not

required to be as e�cient as A. (See Remark 1 in Section 4.2). Compared with our notion of

an environment machine, the requirement of post-protocol corruptibility has two main drawbacks.

First, it does not take into account the fact that the post-execution corruption requests can be

adaptive and depend on the execution of the protocol itself and on the data learned from previous

corruptions (rather than being �xed in advance). Second, this formalization does not generalize to

the computational setting, where the corruption requests must be generated by a ppt machine (see

Remark 1 in Section 6.2).

The de�nition of Canetti et. al. The de�nitions of [c95, cfgn96] di�ers from the one here

in the following aspects. First, as in [b91], these de�nitions require the ideal-process adversary

to operate via black-box simulation with no rewinds. Next, they do not incorporate auxiliary

input in the de�nition, and do not include an environment machine. Finally, these de�nitions

have additional structure whose purpose is to formalize the amount of internal deviation from the

protocol allowed to uncorrupted parties. That is, �rst they de�ne what it means for a protocol �

0

to

be a semi-honest protocol for a known protocol �. (Essentially, �

0

allows even uncorrupted parties

to internally deviate from �, as long as this deviation is undetectable by the other parties.) Next

they say that � is secure only if any semi-honest protocol for � is secure.

56

