
[HSS93] J. H�astad, A.W. Schrift and A. Shamir: The Discrete Logarithm Modulo a

Composite Hides O(n) bits. J. of Computer and Systems Sciences 47 (1993),

pp. 376-404.

[H63] W. Hoe�ding: Probability in Equalities for Sums of Bounded Random Vari-

ables. J. Amer. Stat. Ass. 58 (1963), pp. 13-30.

[K97] D.E. Knuth: Seminumerical Algorithms, 3rd edition, Addison-Wesley, Read-

ing, MA (1997).

[LW88] D.L. Long and A. Wigderson: The Discrete Logarithm Hides O(logn) bits.

Siam J. Computing 7 (1988), pp. 363-372.

[Ne94] V.I. Nechaev: Complexity of a Determinate Algorithm for the Discrete Log-

arithm. Mathematical Notes 55 (1994), pp. 165-172.

[MR95] R. Motwani and P. Raghavan: Randomized Algorithms. Cambridge Univer-

sity Press Cambridge UK, 1995.

[N94] NIST: "Digital Signature Standard (DSS), Federal Information Processing

Standard" PuB 186, 1994 May 19.

[P85] R. Peralta: Simultaneous Security of Bits in the Discrete Log. Proceedings

Eurocrypt'85, Springer LNCS 219 (1986), pp. 62-72.

[R79] M.O. Rabin: Digital Signatures and Public Key Functions as Intractable as

Factorization. TM-212, Laboratory of Computer Science, MIT, 1979.

[RSA78] R.L. Rivest, A. Shamir and L. Adleman: A Method for Obtaining Digital

Signatures and Public Key Cryptosystems. Comm. ACM, 21 (1978), pp. 120-

126.

[S91] C.P. Schnorr: E�cient Signature Generation for Smart Cards. Journal of

Cryptology 4 (1991), pp. 161-174.

[Sh97] V. Shoup: Lower Bounds for Discrete Logarithms and Related Problems.

Proc. Eurocrypt'97, LNCS 1233 (1997), Springer Berlin, pp. 256-266.

[VV84] U.V. Vazirani and V.V. Vazirani: E�cient and Secure Pseudo-Random Num-

ber Generation. In Proc. 25th Symp. on Foundations of Computing Science

(1984) IEEE, pp. 458-463.

[Y82] A.C. Yao: Theory and Application of Trapdoor Functions. Proc. of IEEE

Symp. on Foundations of Computer Science (1982), pp. 80-91.

13

2

�j

-fraction of exp

�

. (The complexity decreases from counting Turing steps to counting

generic steps. We get the intersection of two sets of group elements at zero generic costs as

equality tests are for free.)

Corollary 12. The minimal length t of generic networks that invert a 2

�j

-fraction of exp

�

is �(

p

q2

�j

).

Theorem 13. Every generic network A of length t with input y = exp

�

(x) 2 G distin-

guishes L

j

(x) and random z 2

R

[0; 2

j

) at most with advantage

� := j Pr

y

[A(L

j

(x); exp

�

(x)) = 1]� Pr

y;z

[A(z; exp

�

(x)) = 1] j � O(n j

p

t (2

j

=q)

1

4

).

Proof. The given generic network A of length t and advantage � yields by Yao's argument

[K97, section 3.5, Lemma P1] for some j

0

< j a generic prediction algorithm O

j

0

of length

t which, for given L

j

0

(x) and exp

�

(x), predicts ls

j

0

+1

(x) with advantage " � �=j. By

Proposition 2 L

j

0

(x) is equivalent to the �rst j

0

shift bits of x. Theorem 5 yields a generic

algorithm for the inversion of the 2

�j

-fraction of exp

�

corresponding to the known L

j

(x)

which uses oracle O

j

0

as subroutine with t generic steps. Each iteration of the inversion

algorithm of Theorem 5 performs an additional generic step to transform exp

�

(x) into

exp

�

(x

new

). Each oracle call O

j

0

�

L

j

0

(x+ x

i

); exp

�

(x+ x

i

)

�

requires one further generic

step to compute E

N

(x+x

i

). So we get a generic inversion algorithm of length O(n

2

�

�2

j

2

t).

By Corollary 12 we must have O(n

2

�

�2

j

2

t) =
(

p

q 2

�j

) hence � = O(n j

p

t (2

j

=q)

1

4

). �

Conclusions. Given random exp

�

(x); L

j

(x) is generically indistinguishable from random

z 2

R

[0; 2

j

) provided that j < (1� �) lg q for �xed � > 0. This is because such j satis�es

2

j

=q < q

�

, and thus the advantage of Theorem 13 becomes negligible for t � poly(n).

Hence, all except an arbitrarily small �-fraction of the bits of x are simultaneously secure

against generic attacks. Note that � can converge to 0 as q increases, it is su�cient that �

is large enough so that lim

q!1

� lg q

lg lg q

= 1. This result is nearly optimal since no fraction

of 1 � O(

lg lg q

lg q

) bits of x can be simultaneously secure, because the remaining bits can be

guessed in polynomial time 2

O(lg lg q)

= (lg q)

O(1)

.

Corollary 14. For groups G of prime order q, almost all bits of the discrete log of random

y 2

R

G are simultaneously secure against generic attacks.

References

[BM84] M. Blum and S. Micali: How to Generate Cryptographically Strong Sequences

of Pseudo-random Bits. Siam J. Comp. 13, (1984), pp. 850-864.

[GL89] O. Goldreich and L.A. Levin: Hard Core Bit for any One Way Function.

Proc. of ACM Symp. on Theory of Computing (1989) pp. 25-32.

[HN98] J. H�astad and M. N�aslund: The Security of Individual RSA Bits. Proc. of

IEEE Symp. on Foundations of Computer Science (1998).

12

� the auxiliary inputs.

The output of the network is an arbitrary bit string or integer that is determined by { and

depends arbitrarily on { the set of all collisions CO

t

and the auxiliary inputs.

Generic steps mex

a

are counted at unit costs, the other operations, arbitrary functions

of the auxiliary inputs and equality tests for group elements, are for free. The length t of

a generic algorithm is the number of input group elements plus the number of the generic

steps mex

a

.

All probabilities refer to the random input (but not to the random encodings of the

group elements as in [Sh97]). Generic networks do not need internal coin
ips as we can �x

an optimal coin
ip due to non-uniformity. There are no oracles for the group operations

as in [Sh97]. Instead, only a generic step accesses the group elements for group operations

and equality tests. The next theorem extends Nechaev's lower bound to fractions of the

exponentiation function and to generic networks.

Theorem 11. Every generic network A of length t which inverts exp

�

for a 2

�j

-fraction

of exp

�

succeeds for at most a (

�

t

2

�

+ 1)2

j

=q-fraction of the arguments.

Proof. Let F

1

denote the input y = exp

�

(x) and F

2

; F

3

; :::; F

t

the results of the group

operations of A. The �-th step of A, its group operation mex

a

with exponents a

1

; :::; a

��1

,

only depends on the set CO

��1

= f(i; j) j F

i

= F

j

; i < j � ��1g of previous collisions (and

the auxiliary inputs). A's output x

out

2 Z

q

depends only on CO

t

. The probability calcu-

lation below shows that, except with probability

�

t

2

�

2

j

=q, CO

t

is constant, i.e. independent

of the input y. If x

out

does not depend on y then it is correct with probability at most 2

j

=q

as y ranges uniformly over a set of size q2

�j

. Hence A's probability of success is at most

(

�

t

2

�

+ 1)2

j

=q.

Probability calculation. We assume w.l.o.g. that there are no collisions F

i

= F

j

; i 6= j,

that do not depend on the input yas such collisions are useless and are easy to eliminate

from A. By the assumption we have CO

�

= ; or else CO

�

depends on y. Next we show that

Pr

y

[F

i

= F

�

; CO

��1

= ;] � 2

j

=q for i = 1; : : : ; � � 1:

If F

i

= F

�

then by the assumption the group element F

i

F

�1

�

depends on the input y. As

F

i

F

�1

�

results from a multivariate exponentiation depending on y it permutes G when y

ranges over G. (A multivariate exponentiation acts as a permutation on G if all except

one input are �xed. Here we use that G has prime order q.) It is assumed that y ranges

randomly over a subset of G of cardinality q 2

�j

, e.g. over f exp

�

(x) jwith x = 0 mod 2

j

g.

Hence Pr

y

[F

i

F

�1

�

= 1

G

j CO

��1

= ;] � 2

j

=q: We �nally get

Pr

y

[CO

t

6= ;] �

P

t

�=1

P

��1

i=1

Pr

y

[F

i

= F

�

; CO

��1

= ;] �

�

t

2

�

2

j

=q: �

Conclusions. By Theorem 11 a generic algorithm for log

�

that succeeds for a 2

�j

-fraction

of exp

�

must have length t �

p

q2

�j+1

� 2. This lower bound is tight up to a factor 2.

By the Shanks baby step giant step method we can compute discrete logarithms of 2

�j

-

fractions of exp

�

using O(lg(q 2

�j

)

p

q 2

�j

) Turing steps. This algorithm is, essentially,

generic. It yields a generic algorithm of length 2 b

p

q 2

�j

c for the discrete logarithm of a

11

5 Generic networks, one-wayness of fractions of exp

�

The important question is whether the exponentiation function and its fractions are one-

way. No complexity lower bound is known for the discrete logarithm for Turing machines

or Boolean networks. But for generic algorithms Nechaev [Ne94] and Shoup [Sh97] have

shown an exponential lower bound. The signi�cance of this lower bound is that important

classes of discrete log algorithms are generic. The known algorithms for the discrete loga-

rithm in general groups, speci�cally elliptic curves, are all generic. The number �eld sieve

and the quadratic sieve are non-generic but they only apply to particular groups. For this

section let G be a group of prime order q.

We establish a complexity lower bound for generic networks computing the discrete

logarithm of a 2

�j

-fraction of the exponentiation function. Every generic network that

computes log

�

for a 2

�j

-fraction of exp

�

has to perform at least

p

q 2

�j+1

� O(1) group

operations. We conclude that almost all bits of the discrete logarithm are simultaneously

secure against generic attacks.

Generic algorithms/networks. The idea of a generic algorithms for the computation of

discrete logarithms of cyclic groups goes back to Nechaev [Ne94]. A full model of generic

algorithms has been presented by Shoup [Sh97]. We extend these models. Generic net-

works perform a straight-line computation with unbounded fan-in and fan-out, whereas the

Nechaev merely uses trees. The non-uniform model is more powerful, similarly as Boolean

networks are more powerful than Turing machines. Our generic steps are general multi-

variate exponentiations, while [Ne94], [Sh97] merely use multiplication/division in groups.

Unlike [Sh97] we distinguish between the generic group operations and the non-generic steps

without using a random encoding for the group elements. Our probabilities do not depend

on such a random encoding.

De�nition of generic networks. A generic network has two types of inputs, group

inputs and auxiliary inputs. Possible group inputs are public parameters as the generator

�, the unit element 1

G

2 G and particular group elements. The actual inputs are random

group elements, e.g. random y = exp

�

(x) 2 G. Possible auxiliary inputs are the bit length

q of the group order, the group order jGj, the prime factor decomposition of the group order

and so on. Via the auxiliary inputs we get algorithms/networks that are generic for classes

of groups that are de�ned by additional knowledge on G, the order of G and so on. This

largely extends the [Sh97] model, where the group G is �xed.

The computation consists of generic steps that perform arbitrary multivariate exponen-

tiations mex

a

: G

d

! G, (g

1

; :::; g

d

) 7! g

a

1

1

� ::: � g

a

d

d

with given a = (a

1

; :::; a

d

) 2 Z

d

and arbitrary, unbounded d 2 N.

The �-th generic step of the network either computes an input group element or it

performs a group operation mex

a

, a = (a

1

; :::; a

��1

), using the previously computed group

elements F

1

; :::; F

��1

. The result of the �-th step is F

�

:= F

a

1

1

� ::: � F

a

��1

��1

. The exponents

a

1

; :::; a

��1

2 Z are determined by { and depend arbitrarily on

� the round number �

� the set CO

��1

=

def

f(i; j) j F

i

= F

j

; 1 � i < j � � � 1g of previous collisions

10

means that ls

s+1

(x) is secure provided that exp

�

is one-way. By Lemma 7 the problem to

decide principality of a square root of y is equivalent to predicting ls

s+1

(log

�

y), so we get

the [BM84] result.

We next extend the BM-result proving simultaneous security of the �rst j ms-bits of x.

Clearly there is a proof similar to that of Theorem 5, the di�erence is that in the iteration

we multiply x by 2 instead of using division by 2.

Lemma 8. The bit strings ls

s+1

(2

j

x); :::; ls

s+j

(2

j

x) and ms

1

(x); :::;ms

j

(x) are equivalent

by polynomial time transformations when given exp

�

(x).

Proof. The equation [2x]

2

s

q

= 2[x]

2

s

q

�ms

1

(x)2

s

q yields by induction on j

[2

j

x]

2

s

q

= 2

j

[x]

2

s

q

� (

P

j

i=1

ms

i

(x)2

j�i

) 2

s

q, and thus

L

s+j

(2

j

x) = 2

j

L

s

(x)� (

P

j

i=1

ms

i

(x)2

j�i

) 2

s

q mod 2

s+j

. (5)

We get exp

�

(2

j

x); L

s

(x) and L

s

(2

j

x) in poly-time from exp

�

(x). Given L

s

(x) and L

s

(2

j

x),

P

j

i=1

ls

s+i

(2

j

x)2

s+i

and (

P

j

i=1

ms

i

(x)2

j�i

) 2

s

q mod 2

s+j

are equivalent by Equation 5. Here

we use that q is odd, so we can invert q modulo 2

s+j

. �

Theorem 9. The bits ms

1

(x); :::;ms

j

(x) are simultaneously secure when given exp

�

(x) i�

the 2

�j

-fractions of exp

�

0

are one-way.

Proof. Suppose that the bit string ms

1

(x); :::;ms

j

(x) is poly-time distinguishable from

random z 2

R

f0; 1g

j

when given exp

�

(x) 2

R

G. We show how to distinguish via Lemma 8

the bit string ls

s+1

(2

j

x); :::; ls

s+j

(2

j

x) from random z.

Given exp

�

(2

j

x)ls

s+1

(2

j

x); :::; ls

s+j

(2

j

x) we get a random 2

j

-root exp

�

(x), and via Equa-

tion 5 we get the corresponding bit string ms

1

(x); :::;ms

j

(x) in poly-time. Thus using the

distinguishing algorithm for the ms-bits we can also distinguish the ls-bits from random

z. Therefore by Theorem 6 the 2

�j

-fractions of exp

�

0

cannot be one-way. This proves one

direction of the claim, the converse is obvious. �

Equal security of the ms- and the ls-bits. In particular Lemma 8 shows that the

security results of [P85] and those of [LW88] are equivalent. This equivalence of [P85] and

[LW88] is not apparent from these papers.

Security of individual ls-bits. The [HN98]-method of proving security of individual bits

ls

j

(x) when given y = exp

�

(x) cannot be directly applied to even order groups G because

there is no poly-time algorithm for computing square roots. However Equation 4 shows

that the bits ls

s+j

(log

�

(y)) and ls

j

(log

�

0

(y

0

)) coincide. Also y

0

:= y= exp

�

(L

s

(x)) is random

in G

0

if y is random in G. By [HN98] the individual bits ls

j

(log

�

0
(y

0

)) are secure when

given y

0

2

R

G

0

. We conclude that the bits ls

s+j

(log

�

(y)) are individually secure when given

y

0

2

R

G

0

. Now y and y

0

only di�er by �

L

s

(x)

which is clearly independent of ls

s+j

(log

�

(y)).

As exp

�

and exp

�

0
are equally one-way this proves

Theorem 10. The individual bits ls

s+j

(x);ms

j

(x) for j � 1 are secure when given exp

�

(x)

i� exp

�

is one-way.

9

4 Simultaneous security of discrete log bits, even group order

Let G be a cyclic group of order 2

s

q with an odd integer q and an s � 1. Let � be a

generator of G. It is well known that the �rst s ls-bits of x can easily be obtained from

exp

�

(x). We show that the next j bits ls

s+1

(x); :::; ls

s+j

(x) are secure when given exp

�

(x) i�

the 2

�j

-fractions of exp

�

0

with �

0

:= �

2

s

are one-way. Note that �

0

generates the subgroup

G

0

� G of 2

s

-powers of G. The claim for G follows from that for G

0

proven in Theorem 5.

Moreover the bit strings ls

s+1

(x); :::; ls

s+j

(x) and ms

1

(x); :::;ms

j

(x) are equally secure when

given exp

�

(x).

Computing the �rst s of the ls-bits of x. Given the group order, the generator � and

�

x

= exp

�

(x) we easily get the �rst s ls-bits of x, i.e. we get L

s

(x) = [x]

2

s

= x mod 2

s

. We

have ls

1

(x) = 0 i� �

x

is a square in G, i.e. i� �

x 2

s�1

q

= 1

G

. Continuing recursively we see

for i � s that ls

i

(x) = 0 i� (�

x�L

i�1

(x)

)

2

s�i

q

= 1

G

.

Reduction to odd group order. Let G

0

� G be the subgroup of all 2

s

-powers of G.

This subgroup has odd order q and generator �

0

:= �

2

s

. Given y = exp

�

(x) 2 G we get

L

s

(x) and y

0

:= y= exp

�

(L

s

(x)) 2 G

0

in poly-time. We have

blog

�

(y)=2

s

c = log

�

0

(y

0

); ls

s+i

(log

�

(y) = ls

i

(log

�

0

(y

0

)) for all i � 1. (4)

By Theorem 5 this reduction yields:

Theorem 6. The bits ls

s+1

(x); :::; ls

s+j

(x) are simultaneously secure when given exp

�

(x)

i� the 2

�j

-fractions of exp

�

0
are one-way.

Square roots and principal square roots. Let exp

�

(x) 2 G be a square, i.e., ls

1

(x) = 0.

As G has even order 2

s

q there are two square roots � exp

�

([x]

2

s

q

=2). Here we let 1 2 G

denote the neutral element and let �1 2 G be the square root of 1 other than 1. It is well

known that given a generator � square roots can be computed in polynomial time.

We call exp

�

([x]

2

s

q

=2) the principal square root of exp

�

(x). By de�nition the discrete

log of the principal square root of y = exp

�

(x) is half the discrete log of y. The two

square roots of y di�er by the factor �1 = �

2

s�1

q

, if �y

0

are the two square roots of y then

j log

�

(y

0

)� log

�

(�y

0

) j = 2

s�1

q. As q is odd log

�

(�y

0

) di�er in the ls

s

-bit. The equality of

that bit with ls

s

(log

�

(y)) characterizes the principal square root y

0

of y, we have :

Lemma 7. 1. Let y 2 G be a square with square roots �y

0

then y

0

is the principal square

root of y i� ls

s

(log

�

y

0

) = ls

s+1

(log

�

y).

2. Let y

0

be a random square root of a random y 2

R

G. Deciding with advantage " whether

y

0

is principal for the given y is equivalent to predicting ls

s+1

(log

�

y) with advantage ".

The complexity of deciding the principal square root. Theorem 6 and Lemma 7

characterize the complexity of deciding whether a random square root of a random square

in G is a principal. Deciding principality with a non-negligible advantage is as hard as

inverting exp

�

in prob. poly-time, a result which is due to Blum, Micali [BM84]. By

Theorem 6 with j = 1 the bit ls

s+1

(x) is secure for given exp

�

(x) or else the 2

�s�1

-fractions

of exp

�

can be inverted in probabilistic poly-time. As we easily get L

s

(x) from exp

�

(x) this

8

determine ls

j

0

+1

(x) by majority decision over the m guesses. Consider the error probability

of that decision.

As the x

i

for i = 1; :::; m are independent so are the guesses for ls

j

0

+1

(x). Using Cher-

no�'s bound for the deviation of mutually independent identically distributed random vari-

ables the error probability of the majority decision of ls

j

0

+1

(x) is at most exp(�2m(

"

2

)

2

) =

exp(�n) <

1

2n

for n � 2. Here we use a particular form of the Cherno� bound which is

due to Hoeffding [H63], see exercise 4.7 of [MR95]. Let X

i

be the 0,1-error variable of

the i-th prediction of ls

j

0

+1

(x) based on Equations 2,3. The X

i

are independent with mean

value � �

1

2

�

1

2

". Then we have

Hoe�dings bound. Pr[

1

m

P

m

i=1

X

i

� �+

1

2

"] � exp(�2m(

1

2

")

2

).

Finding �. In order to �nd � = \[x]

q

+ [x

i

]

q

� q" we guess initially the 1 + lg "

�1

�rst ms-bits of x. We try all 2"

�1

possible bit strings running the inversion procedure 2"

�1

times. The ms-bits of x determine an interval I � [0; 1) of length

"

2

that contains x. The

interval I and x

i

determine � except that q � [x

i

]

q

2 I . As x

i

is random the except case

has probability

"

2

. Thus we get � with error probability

"

2

.

Iteration. Once we have found ls

j

0

+1

(x) we replace the unknown [x]

q

= x by x

new

:=

1

2

([x]

q

� lsb(x)). For this we replace the corresponding exp

�

(x) = �

x

by (�

x�lsb(x)

)

z

with

z := 2

�1

mod q { note that we know lsb(x) = ls

1

(x) from L

j

0

(x). We iterate the procedure

to �nd ls

j

0

(x); :::; ls

1

(x). For each iteration we get L

j

0

(x

new

) from L

j

0

(x

old

) and ls

j

0

+1

(x

old

),

and we update the �rst 1 + lg "

�1

ms-bits of x

new

=

1

2

([x]

q

� lsb(x)); this is easy as we

are given lsb(x) = ls

1

(x). Each iteration decreases the bit length of x. We are done after n

iterations.

Time bounds. The time for the computation of x is O(nmT + "

�1

) = O(n

2

"

�2

T) =

O(n

2

j

2

�

�2

T), where T is the time of oracle O

j

0
. (Guessing the 1+ lg "

�1

�rst ms-bits of x

requires O("

�1

) steps. As the calls of oracle O

j

0

do not depend on these ms-bits the O("

�1

)

workload only adds to the overall workload.) The probability of success of the computation

is at least

1

2

as each iteration fails with probability at most

1

2n

. �

Security of individual ls-bits. Are individual bits ls

j

(x) secure when given exp

�

(x) ? By

Proposition 4 ls

j

(x) is at least as secure as an arbitrary sequence of j consecutive shift bits.

By Theorem 5 ls

j

(x) is secure if the 2

�j

-fractions of exp

�

are one-way. This one-wayness is

problematic for large j.

H

�

astad, N

�

aslund [HN98] give a direct method to prove security for individual bits

ls

j

(x). They present the method for the RSA-function E

N

(x) but the method works as well

for the exponentiation function exp

�

. The HN-method requires that we can in poly-time

transform exp

�

(x) into its square root

p

exp

�

(x), and into powers exp

�

(ax) for arbitrary

integers a. If the group order q is odd these transformations are in fact poly-time. This is

because

p

exp

�

(x) = exp

�

(x)

1

2

modq

and 2 is invertible modulo q. Therefore [HN98] implies

that all individual bits ls

j

(x) are secure

1

when given exp

�

(x) i� exp

�

is one-way.

1

We disregard \trivial" advantage in distinguishing a bit due to bias.

7

Proof. The shift bits lsb(2

k�i

x) i = 0; : : : ; j � 1 coincide with the �rst j shift bits

lsb(2

�i

x

0

) i = 0; : : : ; j � 1 of x

0

:= 2

k

x mod q. We easily get exp

�

(x

0

) := exp

�

(x)

z

with

z = 2

k

mod q from exp

�

(x).

The case that lsb(2

�i

x) for i = 0; : : : ; j � 1 are given is by Proposition 2 equivalent to

the case that the �rst j ls-bits of x are given.

In order to transform a random x with given L

j

(x) into a random x

0

with x

0

= 0 mod 2

j

replace the unknown x by x

0

= x� L

j

(x), and replace exp

�

(x) = �

x

by �

x�L

j

(x)

.

We transform an unknown x with x = 0 mod 2

j

into x

0

with x

0

< q2

j

in that we replace

exp

�

(x) by exp

�

(x)

z

with z = 2

�j

mod q. �

Theorem 5. Arbitrary segments of j consecutive shift bits of random x are simultaneously

secure when given exp

�

(x) i� the 2

�j

-fractions of exp

�

are one-way.

Proof. Due to Proposition 4 the particular location of the j consecutive shift bits of x

does not matter. Moreover we can choose a particular 2

�j

-fraction of exp

�

.

If the 2

�j

-fraction of exp

�

is not one-way then j consecutive shift bits of x cannot

be simultaneously secure for given random exp

�

(x). This is because we can distinguish j

consecutive shift bits of x from truly random bits by inverting the corresponding 2

�j

-fraction

of exp

�

i.e., we reconstruct x from exp

�

(x).

Now suppose that for given random exp

�

(x) the �rst j ls-bits of x are not simultaneously

secure, i.e. we can distinguish in probabilistic polynomial time and with non-negligible

advantage � the initial segment L

j

(x) of x from a truly random z 2

R

[0; 2

j

). (The advantage

� is non-negligible in the bit length n of q, � � 1=poly(n). By Proposition 2 the �rst shift

bits and to the �rst ls-bits of x are equivalent.) By Yao's argument, see [K97, section 3.5,

Lemma P1], there exists an integer j

0

with 0 � j

0

< j and a probabilistic polynomial time

oracle O

j

0
which predicts ls

j

0

+1

(x) when given L

j

0
(x); exp

�

(x) :

Pr

x;w

[O

j

0

(L

j

0

(x); exp

�

(x)) = ls

j

0

+1

(x)] �

1

2

+ ",

where the advantage " is at least �=j and the probability is taken over x 2

R

Z

q

and O

j

0

's

random coin
ips.

How to invert exp

�

when given L

j

0

(x). We invert the 2

�j

0

-fraction of exp

�

corresponding

to the given L

j

0

(x) in probabilistic ploynomial time. A main task is to determine ls

j

0

+1

(x).

Determining ls

j

0

+1

(x). Pick random x

i

2

R

Z

q

for i = 1; : : : ; m := 2n"

�2

. For every i

the equation

O

j

0

�

L

j

0

(x+ x

i

); exp

�

(x+ x

i

)

�

= ls

j

0

+1

(x+ x

i

) (2)

holds with probability at least

1

2

+ ". Here we easily get exp

�

(x+ x

i

) = exp

�

(x) exp

�

(x

i

).

Moreover we have L

j

0

(x+ x

i

) = L

j

0

(x) + L

j

0

(x

i

)� �L

j

0

(q), where � is 1 if [x]

q

+ [x

i

]

q

� q

and � = 0 otherwise. We show below how to get � with error probability at most

"

2

. Given

� and ls

j

0

+1

(x+ x

i

) we get ls

j

0

+1

(x) from the equations

L

j

0

+1

(x+ x

i

) = L

j

0

(x+ x

i

) + 2

j

0

ls

j

0

+1

(x+ x

i

)

= L

j

0

(x) + L

j

0

(x

i

) + 2

j

0

(ls

j

0

+1

(x) + ls

j

0

+1

(x

i

))� �q mod 2

j

0

+1

. (3)

As we get ls

j

0

+1

(x + x

i

) with advantage " and � has error probability

"

2

we get ls

j

0

+1

(x)

with advantage

"

2

. We guess ls

j

0

+1

(x) for each of the m = 2n"

�2

independent x

i

and we

6

Proof. Let y = exp

�

(x) 2

R

G. The i-th shift bit lsb(2

�i

x) of x coincides with the j-

th shift bit lsb(2

�j

x

0

) of x

0

= 2

j�i

x. We can attack lsb(2

�i

x) as the j-th shift bit of x

0

when given exp

�

(x

0

). We get y

0

= exp

�

(x

0

) as y

0

:= y

z

with z := 2

j�i

mod q: The

transformation y 7! y

0

permutes G in polynomial time. It is not assumed in the theorem

that the discrete logarithm problem for G is hard. �

Writing discrete Log's with all bits equally secure. If we encode the discrete log-

arithm x into the bit sequence lsb(2

�i

x) for i = 1; :::; n then the individual bits of the

encoding are equally secure when given exp

�

(x). From the encoding we easily get x via

Equation 1.

3 Simultaneous security of discrete log bits, odd group order

Let G be a cyclic group with odd order q and generator �. We introduce the notion of 2

�j

-

fraction of the exponentiation function exp

�

. Our key Theorem 5 shows that j consecutive

shift bits of the discrete logarithm x 2 Z

q

are simultaneously secure when given exp

�

(x)

i� the 2

�j

-fractions of exp

�

are one-way. All 2

�j

-fractions of exp

�

are equally one-way

by poly-time transformations. Moreover the �rst j ls-bits and the �rst j ms-bits of x are

equally secure when given exp

�

.

We call the bits lsb(2

�i

x) for i = k + 1; :::; k+ j simultaneously secure if the bit string

(lsb(2

k+1

x); :::; lsb(2

j+k+1

x)) is poly-time indistinguishable from random z 2

R

f0; 1g

j

when

given exp

�

(x) 2

R

G. Formally, for every pptm D the di�erence

jPr[D(exp

�

(x); (lsb(2

k+1

x); :::; lsb(2

j+k+1

x))) = 1]� Pr[D(exp

�

(x); z) = 1] j

must be negligible where the probability is over random x, z and D's coin
ips.

2

�j

-fractions of the exponentiation function. We call a part of exp

�

{ where j

consecutive shift bits of x are restricted to some constant 0,1-vector { a 2

�j

-fraction of

exp

�

. A 2

�j

-fraction of exp

�

{ de�ned by a 0,1-vector (c

1

; :::; c

j

) and a integer k 2 Z { is

the restriction of exp

�

to arguments x satisfying lsb(2

k+i

x) = c

i

for i = 1; :::; j.

Clearly, if exp

�

is one-way and j = O(lgn) then some 2

�j

-fraction of exp

�

must be

one-way. However, if 2

j

is not polynomially bounded it is conceivable that no 2

�j

-fraction

is one-way.

We next normalize in various ways the problem whether a 2

�j

-fraction of exp

�

is one-

way. The various 2

�j

-fractions of exp

�

are all equally one-way by polynomial time trans-

formations: Either all 2

�j

-fractions of exp

�

are one-way or none of them. In particular the

one-wayness of a random 2

�j

-fraction of exp

�

{ where j consecutive shift bits of x are set

to a random vector (c

1

; :::; c

j

) 2

R

f0; 1g

j

{ and that of the particular 2

�j

-fraction { where

j consecutive shift bits of x are set to zero { are equivalent by polynomial time transforma-

tions. Propositions 2 and 4 will be used throughout the reminder of the paper.

Proposition 4. The following problems are polynomial time equivalent :

� given exp

�

(x) and arbitrary j consecutive shift bits of random x, �nd x.

� given exp

�

(x) for random x with x = 0 mod 2

j

, �nd x.

� given exp

�

(x) for random x with x < q2

�j

, �nd x.

5

De�nition. We call lsb(2

�i

x) := ls

1

([2

�i

x]

q

) for arbitrary integers i the i-th shift bit

of x. Note that [2

�i

x]

q

is the integer in [0; q) that represents 2

�i

x mod q where we divide

modulo q by 2

i

.

We have lsb(2

i

x) = ms

i

(x) for i = 1; 2; ::: because

1

q

[x]

q

> q=2 i� `(2x) = 1.

Lemma 1 shows that the bits lsb(2

�i

x) for i = 0; :::; j� 1 are equivalent to the �rst j ls-bits

of x. Thus the shift bits of x generalize at the same time both the ls-bits and the ms-bits

of arbitrary shifts of x 2 Z

q

.

Lemma 1. [2

�j

x]

q

= 2

�j

([x]

q

+

P

j�1

i=0

lsb(2

�i

x) 2

i

q) for j = 1; 2; ::::

Proof by induction on j. For j = 1 we have [

1

2

x]

q

=

1

2

([x]

q

+ lsb(x)q), which

describes binary division for Z

q

, see �gure 1. This holds because we have [

1

2

x]

q

=

1

2

[x]

q

for even [x]

q

and [

1

2

x] =

1

2

([x]

q

+ q) for odd [x]

q

. The claim for j > 1 follows by induction

applying the case j = 1 with x replaced by 2

�j+1

x. �

0

q

0

q

s

s s

[x]

q

lsb(x) = 1lsb(x) = 0

[

1

2

x]

q

[

1

2

x]

q

�

?
^

1

2

q

�gure 1: binary division

By multiplying the equation of Lemma 1 with 2

j

and taking it modulo 2

j

we get

[x]

q

= �

P

j�1

i=0

lsb(2

�i

x)2

i

q mod 2

j

. (1)

Thus the bits lsb(2

�i

x) for i = 0; : : : ; j � 1 are equivalent to the �rst j ls-bits of x. In par-

ticular L

j

(x) and lsb(2

�i

x) for i = 0; : : : ; j� 1 are equivalent by poly-time transformations.

Replacing in Lemma 1 x by 2

j

x we get

0 �

1

q

[x]

q

�

P

j

i=1

lsb(2

i

x)2

�i

< 2

�j

;

P

j

i=1

lsb(2

i

x)2

�i

= b

2

j

q

[x]

q

c,

which again shows that lsb(2

i

x) = ms

i

(x): We resume these equivalences:

Proposition 2. The following entities are computationally equivalent for given q :

� L

j

(x) = x mod 2

j

,

� ls

i

(x) for i = 1; :::; j, the �rst j ls-bits of x,

� lsb(2

�i

x) = ms

j�i

(2

�j

x) for i = 0; : : : ; j � 1 the �rst j ms-bits of 2

�j

x.

Corollary 3. Let G have odd order q. Given exp

�

(x) every two shift bits lsb(2

�i

x) and

lsb(2

�j

x) of random x 2 Z

q

are equally secure by poly-time transformations.

4

the given y = exp

�

(x) 2 G in poly-time into some y

0

2 G

0

such that the (s + i)-th bit of

log

�

(y) coincides with the i-th bit of log

�

0
(y

0

).

In Section 5 we prove one-wayness of 2

�j

-fractions of exp

�

in the model of generic al-

gorithms, i.e., for algorithms that do not depend on the encoding of the group. Models of

generic algorithms have been introduced by Nechaev [Ne94] and Shoup [Sh97], we fur-

ther extend these modelsby enlarging the class of group operations. The Nechaev, Shoup

generic lower bounds for the discrete logarithm extend to small fractions of exp

�

. For groups

of prime order q we determine the generic complexity of inverting fractions of exp

�

. As a

consequence almost all discrete log bits are simultaneously secure against generic attacks.

Generic one-wayness of fractions of exp

�

is the best result we can hope for, as the known

complexity lower bounds for the discrete logarithm are bound to the generic model. We

have the same evidence for the hardness of the discrete logarithm problem and for the si-

multaneous security of almost all discrete log bits. In the non-generic setting these problems

are completely open. For generic algorithms these problems are equivalent by Theorems 11

and 13.

2 Preliminaries

Notation. We use for computation the model of probabilistic poly-time Turing machines

(pptm for short) running in time poly(n) where n is the length of the input. We let lg denote

the logarithm with base 2. If S is a set and D a distribution on S then by x 2

D

S we mean

an x chosen at random according to the distribution D. If D is the uniform distribution we

write x 2

R

S.

A probability Pr

D

refering to a distribution D on S is called negligible if Pr

D

< n

�c

S

for

all constants c > 0 and for all su�ciently large n

S

. Here the set S is variable refering to a

family of sets. A one-way function is a poly-time computable function f such that for every

pptm M the probability that f(M(f(x))) = x is negligible. The probability is taken over

the random x and M 's random coin
ips.

Let D;D

0

be distributions on the same space S. We call D;D

0

poly-time indistinguishable

if for all pptm D jPr

s2

D

S

[D(s) = 1]� Pr

s

0

2

D

0

S

[D(s

0

) = 1]j is negligible.

Let G be a cyclic group with generator � and order 2

s

q with an odd integer q and

s � 0, 0 < 2

s

q < 2

n

. If y = exp

�

(x) = �

x

then x = log

�

(y) is the discrete logarithm of

y. Discrete log's range over the ring Z

2

s

q

= Z

=2

s

qZ

of integers modulo 2

s

q. We represent

elements x 2 Z

2

s

q

by their least non-negative residue [x]

2

s

q

in the interval [0; 2

s

q). We use

[x]

2

s

q

for arithmetic expressions over Z while the arithmetic for x 2 Z

2

s

q

is always modulo

2

s

q. Except for Section 4 we let the group order be odd, jGj = q. In Section 4 we reduce

the general problem to the case of odd group order.

Least-signi�cant, most-signi�cant and shift bits. The binary representation x =

[x]

q

=

P

n

i=1

ls

i

(x)2

i�1

uses ls

i

(x) := b[x]

q

=2

i�1

c, also called the i-th least-signi�cant bit of

x. Let L

j

(x) denote the integer

P

j

i=1

ls

i

(x)2

i�1

of the �rst j ls-bits of x. The bits ms

i

(x)

of the binary representation

1

q

[x]

q

=

P

1

i=1

ms

i

(x)2

�i

2 [0; 1) are also called the most

signi�cant bits of x [LW88]. Identifying true = 1, false = 0 we have ms

1

(x) = "x > q=2"

and ms

i

(x) = "[2

i�1

x]

q

> q=2" = "[2

i

x]

2q

> q" for i = 1; 2; :::.

3

Keywords. Hard bit, secure bit, discrete logarithm, exponentiation, fractions of exponenti-

ation, simultaneous security of bits, one-way function, generic network, generic one-wayness.

1 Introduction

An interesting problem for a one-way function f(x) is to locate the hard/secure bits in the

n-bit argument x which cannot be predicted from the function value f(x) in polynomial

time with success probability

1

2

+ 1=poly(n). Blum and Micali [BM84] introduced the

notion of hard bits, respectively hard-core predicates. Goldreich and Levin [GL89] have

shown that every one-way function f has logarithmically many one-bit predicates that are

simultaneously secure for given f(x).

Speci�cally, the exponentiation function exp

�

(x) = �

x

of a �nite cyclic group G with

generator � is a well known candidate one-way function that gives rise to various crypto-

graphic applications. Let P be a prime such that (P�1)=2

s

is an odd integer and let G = Z

�

P

be the multiplicative group of integers modulo P . Peralta [P85] shows that the O(dlg lg Pe)

least-signi�cant bits of bx=2

s

c are simultaneously secure when given exp

�

(x) 2 Z

�

P

provided

that exp

�

is one-way. Long and Wigderson [LW88] show that the O(dlg lg Pe) most-

signi�cant bits of the rational number

x

q

2 [0; 1) are secure when given exp

�

(x) 2 Z

�

P

.

Hastad, Schift, Shamir [HSS93] prove that n=2 bits of an n bit discrete log are simul-

taneously secure for G = Z

�

N

with a random Blum modulus N provided that factoring

Blum integers is hard. A Blum integer is a product of two primes that are both congruent

3 mod 4. Proving simultaneous security of more than logarithmically many discrete log bits

is still an open problem for general groups.

In this paper we study the discrete logarithm for arbitrary cyclic groups G with an

encoding so that multiplication is computable in polynomial time, polynomial time refers to

the bit length n of the order of G. We generalize the least-signi�cant bits of x mod q and the

most-signi�cant bits of

x

q

and we study the security of consecutive shift bits lsb(2

�i

x mod q)

for i = k + 1; :::; k + j when given exp

�

(x). We reduce the general problem to the case

that the group G has odd order q. When we restrict exp

�

to arguments x such that some

sequence of j consecutive shift bits of x is constant in f0; 1g

j

(i.e., does not depend on x)

we call it a 2

�j

-fraction of exp

�

.

For groups of odd order q we prove in Section 3 that all 2

�j

-fractions of exp

�

are equally

one-way by polynomial time transformations: Either they are all one-way or none of them.

We prove in Theorem 5 that arbitrary j consecutive shift bits of x are simultaneously secure

when given exp

�

(x) i� the 2

�j

-fractions of exp

�

are one-way. In particular this applies to

the j least-signi�cant bits of x as well as to the j most-signi�cant bits of

x

q

. We note that

if exp

�

is one-way then all individual bits of x are secure when given exp

�

(x). This follows

from the proof method of H

�

astad, N

�

aslund [HN98].

In Section 4 we consider groups G of even order 2

s

q. We show that given exp

�

(x) the j

least-signi�cant bits of bx=2

s

c as well as the j most-signi�cant bits of

x

q

are simultaneously

secure i� the 2

�j

-fractions of exp

�

0
are one-way for �

0

:= �

2

s

. Note that exp

�

0
is associated

with the subgroup G

0

� G of 2

s

-powers which has generator �

0

and order q. We transform

2

Security of Almost ALL Discrete Log Bits

C.P. Schnorr

Fachbereich Mathematik/Informatik

Universit�at Frankfurt, Germany

and

Bell Laboratories

Murray Hill, New Jersey

schnorr@cs.uni-frankfurt.de

June 8, 1998

Abstract

Let G be a �nite cyclic group with generator � and with an encoding so that multipli-

cation is computable in polynomial time. We study the security of bits of the discrete

log x when given exp

�

(x), assuming that the exponentiation function exp

�

(x) = �

x

is

one-way. We reduce he general problem to the case that G has odd order q. If G has odd

order q the security of the least-signi�cant bits of x and of the most signi�cant bits of

the rational number

x

q

2 [0; 1) follows from the work of Peralta [P85] and Long and

Wigderson [LW88]. We generalize these bits and study the security of consecutive

shift bits lsb(2

�i

x mod q) for i = k+1; :::; k+ j. When we restrict exp

�

to arguments x

such that some sequence of j consecutive shift bits of x is constant (i.e., not depending

on x) we call it a 2

�j

-fraction of exp

�

.

For groups of odd group order q we show that every two 2

�j

-fractions of exp

�

are

equally one-way by a polynomial time transformation: Either they are all one-way or

none of them. Our key theorem shows that arbitrary j consecutive shift bits of x are

simultaneously secure when given exp

�

(x) i� the 2

�j

-fractions of exp

�

are one-way. In

particular this applies to the j least-signi�cant bits of x and to the j most-signi�cant

bits of

x

q

2 [0; 1). For one-way exp

�

the individual bits of x are secure when given

exp

�

(x) by the method of H

�

astad, N

�

aslund [HN98]. For groups of even order 2

s

q

we show that the j least-signi�cant bits of bx=2

s

c, as well as the j most-signi�cant bits

of

x

q

2 [0; 1), are simultaneously secure i� the 2

�j

-fractions of exp

�

0

are one-way for

�

0

:= �

2

s

.

We use and extend the models of generic algorithms of Nechaev (1994) and Shoup

(1997). We determine the generic complexity of inverting fractions of exp

�

for the

case that � has prime order q. As a consequence, arbitrary segments of (1 � ") lg q

consecutive shift bits of random x are for constant " > 0 simultaneously secure against

generic attacks. Every generic algorithm using t generic steps (group operations) for

distinguishing bit strings of j consecutive shift bits of x from random bit strings has at

most advantage O((lg q) j

p

t (2

j

=q)

1

4

).

1

