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Abstract

In his well-known Information Dispersal Algorithm paper, Rabin showed a way to distribute

information in n pieces among n servers in such a way that recovery of the information is possible

in the presence of up to t inactive servers. An enhanced mechanism to enable construction in

the presence of malicious faults, which can intentionally modify their pieces of the information,

was later presented by Krawczyk. Yet, these methods assume that the malicious faults occur

only at reconstruction time.

In this paper we address the more general problem of secure storage and retrieval of infor-

mation (SSRI), and guarantee that also the process of storing the information is correct even

when some of the servers fail. Our protocols achieve this while maintaining the (asymptotical)

space optimality of the above methods.

We also consider SSRI with the added requirement of con�dentiality, by which no party ex-

cept for the rightful owner of the information is able to learn anything about it. This is achieved

through novel applications of cryptographic techniques, such as the distributed generation of

receipts, distributed key management via threshold cryptography, and \blinding."

An interesting byproduct of our scheme is the construction of a secret sharing scheme with

shorter shares size in the amortized sense. An immediate practical application of our work is a

system for the secure deposit of sensitive data. We also extend SSRI to a \proactive" setting,

where an adversary may corrupt all the servers during the lifetime of the system, but only a

fraction during any given time interval.
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1 Introduction

The notion of information dispersal was introduced by Rabin [32] in his well-known Information

Dispersal Algorithm (IDA). The basic approach taken in IDA is to distribute the information being

stored, F , into n pieces among n active servers, in such a way that the retrieval of F is possible

even in the presence of up to t failed (inactive) servers. The salient point was to achieve this goal

while incurring a small overhead in needed memory. And indeed Rabin's result is space optimal.

Retrieval of F is possible from n� t pieces, where each piece is of length

jF j

n�t

. (For completeness,

we include a short overview and example of IDA in Appendix A.)

In addition to its optimal space complexity, the IDA technique has very attractive properties

as it permits any party in the system to retrieve the distributed information (by communicating

with the piece holders); it does not require a central authority; it is symmetric with respect to

all participants; and no secret cryptographic keys are involved. However, this combination of very

desirable properties is achieved at the expense of limiting the kind of faults against which the

algorithm is robust, namely, by assuming that available pieces are always unmodi�ed.

An enhanced mechanism to reconstruct the information when more general faults occur was

presented by Krawczyk [28], who called this problem{and its solution{the Secure Information Dis-

persal problem/algorithm (SIDA). This mechanism is able to tolerate malicious servers that can

intentionally modify their pieces of the information, and is also space optimal (asymptotically). In

a nutshell, SIDA makes use of a cryptographic tool called distributed �ngerprints, which basically

consists of each processor's piece being hashed|the �ngerprints, and then distributing this value

among all servers using the coding function of an error correcting code (e.g., Reed-Solomon [1])

that is able to reconstruct from altered pieces. This way, the correct servers are able to reconstruct

the �ngerprints using the code's decoding function, check whether pieces of the �le were correctly

returned, and �nally reconstruct F from the correct pieces using the IDA algorithm.

Our contributions. A shortcoming of these methods is that they assume that the faults only

occur at reconstruction time, after the dispersal of the pieces has been properly done. In this

paper we address the more general problem of secure storage and retrieval of information

(SSRI), and guarantee that also the process of storing the information is correct even when some

of the servers fail. We consider the scenario in which a user interacts with the storage system by

depositing a �le and receiving a proof (in the form of a receipt) that the deposit was correctly

executed.

For e�ciency reasons our design makes the distributed nature of the system transparent to the

user. This is achieved by having the client interact with a single server, called the gateway (GW).

This design choice avoids the need for lengthy computations and, above all, parallel connections

to several servers from the client. On the other hand, choosing the gateway option adds the extra

technical di�culty of designing the protocol in a way that the gateway is not a single point of

failure. (See Section 2 for further elaboration on the model.)

First we concern ourselves only with the integrity of the information, i.e. we require that

retrieved data be correct. We introduce simple protocols that extend the above methods to enable

storage in the presence of malicious faults, while maintaining the (asymptotical) space optimality

of the above methods. Namely, each piece is of size

jF j

n�t

plus a small quantity which does not

depend on the size of the �le (but on n and a security parameter). Our storage protocol is designed

so that some form of consistency is maintained among the servers without incurring the cost of

(potentially expensive) agreement protocols. Another important technical element of the storage

protocol is the generation of receipts for the deposit of �les through the application of distributed

digital signatures. It is guaranteed by our protocols that a receipt is issued only when the correct
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information has been stored in the correct servers.

We also consider SSRI with the added requirement of con�dentiality of the information being

deposited, i.e., that any collusion of up to t servers (except ones including the rightful owner of

the information) should not be able to learn anything about it. Con�dentiality of information

is easily achieved by encryption. Yet, this in turn poses the problem of key management, that

is, the safe deposit|in the same storage system|of the cryptographic key used to encrypt the

�le that is being deposited. Under this scheme, how would the user be able to retrieve his �le

con�dentially? Remember that in our design he communicates with the system through a single

gateway, which means that if only the standard techniques of secret sharing reconstruction were

used [35, 7], then the gateway would know all the information available to the user. One novel

component of our con�dentiality protocol for the solution of the above problem is its distributed key

management aspect, achieved through the application of a combination of threshold cryptography

(see Section 2.5) and blinding techniques [5].

The contributions of this paper can be summarized as follows:

� We consider the more general problem of information storage and retrieval, guaranteeing that

also the process of storing the information is secure in the presence of (maliciously) failing

servers. Our solutions have an (asymptotically) optimal blow-up factor, and tolerate up to

t < n=2 malicious servers.

� Novel applications of cryptographic techniques, namely, the generation of receipts via dis-

tributed digital signatures, distributed key management via threshold cryptography, and

blinding (together with threshold cryptography) in the context of decryptions rather than

signatures.

� Secret sharing made \shorter:" An interesting by-product of our constructions is a (computa-

tional) secret sharing scheme which achieves shorter size shares, in the amortized sense, than

the one of [29].

� \Proactive" SSRI: SSRI robust against an adversary which may corrupt all servers during

the system's lifetime, but only up to t during each time interval [30, 3].

The remainder of the paper is organized as follows. In the next section we present the model,

necessary de�nitions, and description of the tools that we use in this paper. In Section 3 we describe

the protocols for basic SSRI (i.e., integrity only), while in Section 4 we present SSRI with the added

requirement of con�dentiality of the information. In Section 5 we present the scheme for secret

sharing with shorter shares, while in Section 6 we show how to make SSRI \pro-actively" secure.

2 Model, De�nitions, and System Considerations

In this section we describe our distributed model and give de�nitions for the task of secure storage

and retrieval of information. We also list the cryptographic tools that we need in the sequel.

2.1 The distributed model

We start by describing an abstraction of the distributed system we consider. We consider a com-

munication network with two classes of entities: the users, denoted U

1

; U

2

; � � � ; U

m

, and the servers,

denoted V

1

; � � � ; V

n

. We will sometimes refer to the servers collectively as V . It is among the servers

that the distributed storage of the information takes place.
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We model the communication among the servers by a completely connected graph of authen-

ticated links; for the purpose of this paper we also assume a point-to-point communication link

between each of the users and every server.

1

(Actually, only t + 1 direct connections are needed,

where t is an upper bound on the number of malfunctioning servers, as explained later.) Thus,

links do not guarantee secrecy, but this can be achieved through the use of encryption. In fact,

all the parties are assumed to be computationally bounded, so that the underlying cryptographic

primitives that are used by our protocols (see Section 2.4) can be considered secure, and the security

assertions that we make hold with high probability.

We assume the availability of a global clock, which allows the network computation to proceed

as a series of rounds.

2

It is assumed that at any time during the life of the system, at most t of the n servers can

malfunction, possibly in malicious ways. Further, we assume that the faulty servers can even

collude and act in concert in order to disrupt the computation|e.g., in a plain spoiling manner;

try to prevent the storage or reconstruction of a �le; or learn some information (e.g., a key) which

the user wants to keep private. We also assume that n > 2t. The users, on the other hand, are

assumed to always behave correctly; given the application, the case of malfunctioning users is not

interesting and can be easily detected.

As mentioned in the Introduction, in our protocols the users will interact with a single, not

necessarily the same, distinguished server called the gateway (GW). Nevertheless, our design shall

be uniform in the sense that all servers will be able to perform the same distribution and recovery

functions.

Remark 1 Interacting with a single server enables an adversary to create a simple \denial-of-

service" attack by simply crashing the GW. However, as demonstrated in Section 3, our global

clock (reliable time-out) and n > 2t assumptions guarantee that a user will eventually contact a

working server.

An alternative design choice would be to have the user contact each of the servers directly|call

this the \multiple connections" model. The reasons for our choice of a single connection/single

gateway are two-fold:

Broad applicability: As already pointed out (footnote of Section 2.1), we aim at broad ap-

plicability, meaning that users (e.g., browsers) with not much of an add-on burden should be

able to use the application we are proposing. This justi�es the use of a single connection (e.g.,

http) at a time between the user and a gateway, as well as trying to minimize the number of

functions (e.g., IDA; secret sharing; storage of many signatures) that have to be performed by

the user.

E�ciency considerations: Besides the functionality requirements, we would also like to minimize

the computation and communication overhead on the user (in fact, in turn this also widens

our applicability basis). As shown in Appendix D, both e�orts are more demanding on the

user in the case of multiple communications with the servers. (However, for a meaningful

interpretation of the issues involved in the comparison, the reader should postpone its reading

until after Sections 3 and 4.)

We now turn to the description of a major building block that we use in this paper.

1

What we have in mind is Web implementations of our design. In such environments, authenticated communication

can be realized through, e.g., SSL [27]. Similarly, point-to-point communication can be realized in various ways, and

not necessarily through a direct connection.

2

Again, this is for simplicity of exposition, as the only thing we need is a reliable time-out mechanism, and a

means to guarantee the freshness of authentication. Possible realizations of the latter are via time stamps, or just

nonces. See, e.g., [6].
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2.2 Information Dispersal Algorithm

Rabin [32] proposed an algorithm that breaks a �le F of length L = jF j into n pieces F

i

, 1 � i � n,

each of length jF

i

j = L=m, so that every m pieces su�ce for the reconstructing F . Note that the

sum of the length of the pieces is (n=m) � L. This algorithm, known as the Information Dispersal

Algorithm has many applications to reliable storage and transmission of information. This algorithm

is not only space e�cient but also computationally e�cient.

This algorithm should be contrasted with Shamir's algorithm [35] for secret sharing, which

breaks a string F into n pieces each of the same size as F , so that F can be reconstructed from any

m pieces. However, the main di�erence is that in this secret sharing scheme, any m� 1 pieces give

no information about F . On the other hand, in IDA less than m pieces may give some information

about F .

In a later section (Section 5) we will show how IDA can be used to implement secret sharing

more e�ciently if we relax some of the conditions.

The actual details of the IDA algorithm (tuned to our application) are given in Appendix A.

2.3 De�nitions

We now proceed to give the main de�nitions of our paper.

De�nition 1 An n-server system is a t-resilient Secure Storage and Retrieval of Information sys-

tem (SSRI for short) if up to t < n of the servers can malfunction, and for any user U holding �le

F there exist two protocols Deposit and Retrieval satisfying the following conditions:

Deposit Availability: User U wishing to deposit F will always manage to do so, and will receive

a receipt (proof of deposit).

Deposit Correctness: If a receipt is generated by the servers for F , then each correct server has

a copy of the �le.

Retrieval Availability: User U will always be able to retrieve F .

The above de�nition captures the notion of a storage system in which it is possible to store infor-

mation, and which is able to preserve its integrity, even when a fraction of the servers malfunction;

we will sometimes refer to such a system as \basic SSRI." The next de�nition extends the storage

system to provide con�dentiality as well.

De�nition 2 A SSRI with con�dentiality is a SSRI system which additionally is t-private. Namely,

the following condition also holds:

Con�dentiality: No coalition of at most t parties (not including the rightful owner of the �le) can

learn anything about the contents of the �le F.

Note that the de�nition of Con�dentiality also applies to coalitions which include the gateway. We

now turn to a de�nition that measures the quality of information dispersal methods. The following

paragraph and de�nition are taken from [28].

Reconstruction is possible in information dispersal methods because some redundancy is added

to the n pieces into which the original information is partitioned. The amount of redundancy in an

information dispersal method is typically measured by the following parameter.
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De�nition 3 The blow-up factor (or just blow-up) of an information dispersal scheme is the ratio

between the total size of the information being dispersed and the size of the original information.

(By total size we mean the sum of sizes of all distributed pieces.)

The blow-up of the original method of Rabin [32] is

n

n�t

, while the one of Krawczyk [28] is

n

n�t

+ o(1) (i.e., it requires an additional small quantity which does not depend on the size of the

�le). This is clearly (asymptotically) optimal if only n� t pieces are to be used for reconstruction.

Our methods also maintain this latter bound. We remark that reconstruction of information is also

possible through error correcting codes. However, the inherent blow-up factor deteriorates to

n

n�2t

in this case (see [1, 28]).

We now turn to describe the various cryptographic mechanisms that our protocols will make

use of.

2.4 Cryptographic terminology and tools

The cryptographic primitives used in the protocols are summarized in Figure 1.

� Keys:

VK

U

; SK

U

Public veri�cation and private signing keys of user/party U .

EK

U

;DK

U

Public encryption and private decryption keys of user/party U .

dk

U;V

i

Server V

i

's share of private decryption key of user U .

CERT

U

Public key certi�cate of user U , which includes U;EK

U

and CA's sig-

nature on EK

U

.

VK

V

; SK

V

Public veri�cation and private signing keys of V .

sk

V

i

Server V

i

's share of private key SK

V

.

� Cryptographic primitives:

H(�) A strong collision-resistant one-way hash function. Think of H(�) as

returning \random" values.

E

U

Public key encryption using EK

U

.

S

U

(�) Digital signature with respect to SK

U

. We assume the signature func-

tion hashes the message before signing.

S

V

(�) (Distributed) digital signature with respect to keys sk

V

1

; � � � ; sk

V

n

.

�

V

i

(�) Partial digital signature with respect to sk

V

i

e

K

Symmetric key-based encryption algorithm, taking key K and a plain-

text, and producing the ciphertext.

Figure 1: Keys and cryptographic primitives.

All the users have two pairs of public/secret keys. (For simplicity, we will assume that the

servers also act as the certi�cation authority (CA), so that no third party needs to be involved in

the transactions in order to verify the validity of the public keys.) One key pair (SK

U

;VK

U

) is used
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for authentication (\signing") and veri�cation purposes (resp.);

3

the other key pair (DK

U

;EK

U

)

is used for public-key decryption and encryption (resp.). DK

U

is kept \shared" at the servers, each

server V

i

, 1 � i � n, storing dk

U;V

i

. Explanation of how this done and motivation are given in

Sections 2.5 and 2.7, respectively. Similarly, the servers V share their own key pair (VK

V

;SK

V

);

that is, each server V

i

stores sk

V

i

, its share of private key SK

V

. We make the usual security

assumptions on these cryptographic primitives as summarized below.

We say that the signature scheme S is secure if it is secure against adaptive chosen message

attack as de�ned in [23]. Informally, that means that an attacker who does not know the secret key

SK and is given signatures on messages of its choice, will not be able to produce the signature for

a new message.

We say that the encryption scheme E, is secure if it is semantically secure as de�ned in [22].

Informally, that means that the encryption scheme is randomized and that the value E(m; r) (which

denotes the public key encryption of message m with the help of pseudorandom number r) is

computationally indistinguishable from a truly random string.

The following two subsections describe two major tools that we use in our protocols.

2.5 Threshold cryptography

The security of cryptographic protocols relies mainly on the security of the secret keys used in these

protocols. Security means that these keys should be kept secret from unauthorized parties, but at

the same time should always be available to the legitimate users.

Threshold cryptography is the name given to a body of techniques that help in achieving the

above goals. In a nutshell suppose you have a key K which is used in the computation of some

cryptographic function f on a message m, denote the result with f

K

(m). Examples of this include

f

K

(m) to be a signature of m under key K, or a decryption of m under that key.

In a threshold cryptography scheme the key K is shared among a set of players P

1

; : : : ; P

n

using

a (t; n) secret sharing scheme [35]. Let K

i

be the share given to player P

i

.

4

Recall that by the

de�nition of (t; n) secret sharing, we know that t shares give no information about K, but t + 1

shares allow reconstruction of the key K. The main goal of the threshold cryptography technique

is to compute f

K

without ever reconstructing the key K, but rather using it implicitly when the

function f

K

needs to be computed.

In the following we will use this terminology. Let the n servers V

1

; : : : ; V

n

hold shares sk

1

; : : : ; sk

n

respectively of a secret key DK which is the inverse of a public key EK.

A distributed threshold decryption protocol for V

1

; : : : ; V

n

is a protocol that takes as input a

ciphertext c which has been encrypted with EK (i.e., c = E

EK

(m) for some message m), and

outputs m.

A distributed threshold signature protocol for V

1

; : : : ; V

n

is a protocol that takes as input a

message m and outputs a signature � for m under SK.

The above protocols must be secure, i.e., they must reveal no information about the secret key

DK;SK. A threshold cryptography protocol is called t-robust if it also tolerates t malicious faults.

Using threshold cryptography increases the secrecy of the key since now an attacker has to

break into t+ 1 servers in order to �nd out the value of K. Also, the basic approach increases the

3

This is a natural assumption, as if for example the realization of our design is through a Web application, all

browsers provide authentication in one form or another.

4

There are two kinds of protocols for key generation: with or without a dealer. In a protocol with a dealer, it

is assumed a trusted entity that produces the secret key K (with possibly an associated public-key K

�1

), and then

shares the key among the players. The dealer then \self-destroys." Notice that this assumes some trust in this entity

since it knows the key in its entirety for a period of time. In a protocol without a dealer, the players themselves run

a distributed protocol with some random inputs. This results in player P

i

holding a share K

i

of a secret key K.
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availability of the key in the presence of so-called fail-stop faults (crashes); indeed, there is a need

only for t + 1 servers to be functioning in order to be able to compute the function F

K

, meaning

that one can tolerate up to n� t� 1 crashes.

Threshold cryptography was originated in works by Desmedt [11], Boyd [2], Croft and Harris

[8], and Desmedt and Frankel [12]. A survey of threshold cryptography techniques can be found in

[13]. Protocols for discrete log-based threshold cryptosystems can be found in [2, 4, 12, 24, 31, 20].

Protocols for RSA-based threshold cryptosystems include [9, 10, 15, 19, 33]. In Appendix B we

present an example of threshold cryptography applied to RSA [34].

The fault tolerance of the SSRI protocols we present in this paper (n > 2t) is inherited from

the fault tolerance of the distributed threshold signature/decryption protocols [15, 19, 21, 14, 33],

which is optimal.

2.6 Blinding

The cryptographic technique called blinding [5] can be explained as follows. Suppose that a server

holds a secret key DK which allows it to compute decryptions in the public key encryption scheme

E. Assume also that the matching encryption key EK is known.

We say that the encryption scheme is blindable if the functions E

EK

and E

DK

are homomorphic,

i.e., E(ab) = E(a)E(b).

Blindable encryption schemes allow to solve the following problem. A user wants to obtain the

result of m = E

DK

(c) but without telling the server the value c he wants to be decrypted.

The user generates a random string r, computes the value s = E

EK

(r) using the public key EK

and presents the server with the value cs which is random and thus gives no information about c.

The server returns the value E

DK

(cs) which, by the homomorphic properties of E

DK

, is equal to

E

DK

(c)E

DK

(s) = m � r. Thus, if the user divides the returned result by r he obtains the desired

output.

Example of blindable encryption schemes include RSA [34] and most of the discrete-log based

systems (e.g., ElGamal [17]). Appendix C contains an example of blinding using RSA.

A novelty of our scheme is the way we use blinding. Traditionally this technique was introduced

to obtain signatures on messages that the server would not know [5]. This was in turn used to

produce untraceable electronic cash. We use blinding in the context of decryptions rather than

signatures in order to enhance the security of our distributed key management. The use of blinding

will protect the privacy of the user's information against all servers (in particular the \gateway"

GW|see Section 3), hence eliminating any single point of privacy failure from the system.

2.7 Key management

Our design takes advantage of the distributed environment to safely store some of the cryptographic

keys used by the user. Recall from Section 2.4 that a user has two pairs of keys associated with

him, one for authentication and the other for encryption. Regarding the storage of the private

signing key SK

U

, we have the user keep it (ideally in his smartcard, or, alternatively, managed by

the application, e.g., browser). The reason is that there is no major security drawback in doing

so, as if this key is compromised then the user can easily revoke it and get a new one. All past

signatures generated under this key will still be valid, by the existence of the corresponding public

veri�cation key.

Conversely, the loss of the private decryption key DK

U

would result in the loss of all the data

encrypted under this key. For this reason, it is not advisable to store such a key in a single device,

either held by the user or by the servers. Thus, in our design the private decryption key DK

U

is
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kept shared at the servers, each server V

i

, 1 � i � n, storing dk

U;V

i

. This way, more than t servers

will have to be corrupted in order to recover DK

U

. In order to decrypt a message for the user

the servers will use such shares to run a distributed threshold decryption protocol. Further details

about this procedure are given when we treat SSRI with Con�dentiality in Section 4.

2.8 Comments on protocol presentation and optimization

Before we turn to the presentation of our protocols, we remark that various optimizations can be

carried out. These include reducing the number of \echo" messages; reducing their size (e.g., only

re-transmit the �le when necessary, send its hash instead); sending acknowledgment messages upon

receiving a �le back; arranging �elds so that cryptographic operations do not have to be computed

twice; the use of \nonces," or transaction id's in order to prevent so-called \re-play" attacks; coping

with \denial of service" attacks from incorrect servers, etc. In the presentation we omit such details

for clarity's sake.

3 Integrity Only

The protocols of this section extend the methods of [32, 28] for integrity to achieve SSRI while

maintaining (asymptotically) the space optimality. Namely, each piece of the �le F deposited at

each server is of size

jF j

n�t

plus a small quantity which does not depend on the size of the �le. We

distinguish the following three transactions in basic SSRI:

Deposit: User U contacts the gateway GW, deposits �le F , and gets a receipt.

Dispersal: The actual information dispersal takes place among the servers V

j

.

Retrieval: The user contacts GW to get F back.

We would like the protocols for Deposit and Retrieval to satisfy De�nition 1. The protocol for

Dispersal will ensure our claimed blow-up factor.

3.1 Deposit

The Deposit protocol is initiated by user U . The user contacts one of the servers (GW) and

transmits a request for deposit (this request includes a digital signature on the �le being stored).

The user will conclude that the deposit has been carried out successfully once she receives a receipt

from GW.

Figure 2 shows the (fault-free) ow of the protocol for Deposit.

We now describe the protocol in more detail. In DRequest, the user contacts GW and submits

the �le she wants to deposit, together with her signature on the �le under her private signing key.

In DExecution1 the GW forwards the request from the previous ow to the (remaining) servers. In

DExecution2, every server receiving a valid message from GW (i.e., one whose signature veri�es)

\echoes" this message request to every other server; in the case of an invalid message, the server

discards the request. Servers receiving at least one valid message store F as a valid request

from user U . In DExecution3, each server V

i

receiving the DExecution1 message from GW uses its

share sk

V

i

of the private signing key SK

V

to generate a partial signature on F and U , and sends

this message to GW. Servers not receiving a DExecution1 message from GW do not participate.

In Receipt, the GW uses the partial signatures received from the other servers to compute the

distributed digital signature on F and U , and sends it to the user, who veri�es the signature using

VK

V

. This constitutes the receipt for the user's deposit. The user stores it for future use. Note that

GW must have (at least) (t+1) partial signatures in order to generate the receipt (cf. Section 2.5).
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� Fields:

F User's �le to be deposited at the servers.

� Protocol Flows:

DRequest : U

�

F;S

U

(F )

�������������!

GW

DExecution1 : GW

�

F;S

U

(F )

�������������!

V

j

; 8j

DExecution2 : V

j

; 8j

�

F;S

U

(F )

�������������!

V

i

; 8i

DExecution3 : GW

 �

�

V

j

(U; F )

�������������

V

j

from DExecution1

Receipt : U

 �

S

V

(U; F )

�������������

GW

Figure 2: Sketch of the Deposit Protocol

If the user does not receive a receipt from GW after some pre-speci�ed period of time, she tries a

di�erent server.

We now show the following about the Deposit protocol.

Lemma 1 If the signature scheme S is secure, then protocol Deposit satis�es the Deposit Avail-

ability and Correctness conditions of De�nition 1.

Proof: Deposit Availability. If GW does not respond to the user with a receipt, then user U

will turn to another server in order to deposit the �le. As, by assumption, the number of servers

n > 2t and the design of the servers is uniform, it is guaranteed that the user will eventually

contact a correct GW. (For example, if U chooses the next server at random, then the expected

number of trials will be 2.) Once this happens every correct server V

i

gets the user's message,

veri�es the message authenticity using the user's public veri�cation key, and replies to GW with

a partial signature under share sk

V

i

of private key SK

V

. GW combines the partial signatures and

sends a correct receipt to the user. Because the signature scheme is secure a correct signature can

be generated only by the user, thus the servers will not store �les that were not produced by the

user.

Deposit Correctness. Under the assumption that the signature scheme is secure, if a receipt is

generated for �le F then there were at least t+1 partial signatures generated for this �le under the

server's shares of the private key SK

V

. As by assumption at most t of the servers can be faulty, at

least one of the partial signatures was generated by a correct server. A correct server generates a

partial signature only if it has received a valid deposit request from GW, and in this case it also

echoes the �le to all the other servers (DExecution3 in Figure 2). Hence, every correct server has a

copy of the �le.

2
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� Fields:

F User's �le to be dispersed among servers V

i

; 1 � i � n.

F

i

Portion of �le F dispersed at server V

i

.

H(F

i

) Hash of F

i

.

� Protocol Steps:

Each server V

i

, 1 � i � n, does:

8j, 1 � j � n, compute F

j

= F � T

j

(IDA);

8j, 1 � j � n, compute H(F

j

);

save F

i

and H(F

j

), 1 � j � n.

Figure 3: Dispersal Protocol.

3.2 Dispersal

There is no communication involved in the Dispersal transaction; it basically consists of a local

computation at each server. Dispersal is initiated by the servers right after receiving a deposit

request whose signature is veri�ed, regardless of whether the request was received from GW directly,

or as an echo from another server. Each server computes the pieces of F corresponding to all the

servers using IDA, then computes the corresponding hashes of the pieces, and saves its own piece

of the �le and all the hashes. The sketch for this transaction is shown in Figure 3.

Lemma 2 Protocol Dispersal achieves a

n

n�t

+ o(1) blow-up.

Proof: Each server saves its own IDA portion of the �le jF

i

j, plus all the hashesH(F

j

), 1 � j � n.

Since, for all i; j, jF

i

j = jF

j

j and jH(F

i

)j = jH(F

j

)j = O(1), for all i; j. the space required at each

server is jF

i

j+n jH(F

i

)j, and the total space is n jF

i

j+n

2

jH(F

i

)j. The �rst term follows from the

IDA blow-up bound, and the second from the fact that jH(F

i

)j is independent of the size of F . 2

In contrast, Krawczyk [28] suggests to share the hashes of the pieces themselves using Reed-

Solomon codes. The space required by that method at each server is jF

i

j +

n

n�2t

jH(F

i

)j. Thus,

our approach is slightly less storage-e�cient, but with the advantage of avoiding the complexity of

the coding plus the communication. (Also note that for values of realistic implementations|e.g.,

n = 5 and t = 2|the storage requirements would be identical.)

3.3 Retrieval

Retrieval is the transaction initiated by a user in order to retrieve a �le she has previously

deposited, and for which she has received a receipt. Our protocol for Retrieval satis�es the

Retrieval Availability condition of De�nition 1. The protocol is shown in Figure 4.

We now describe the protocol in detail. In Retrieval Request the user contacts GW (not neces-

sarily the one through which she deposited the �le), and presents a signed request for the retrieval

of the speci�c �le. In RExecution1, GW sends this request to the other servers. Upon receiving the

11



� Fields:

F

j

Portion of �le F stored in server V

j

.

H(F

j

) Hash of F

j

.

� Protocol Flows:

RRequest : U

�������������

S

U

(F )

�������������������������!

GW

RExecution1 : GW

�������������

S

U

(F )

�������������������������!

V

j

; 8j

RExecution2 : GW

 �����������

F

j

; H(F

i

); 1 � i � n

���������������������������

V

j

; 8j

GW computes:

8j; H(F

j

) majority of received H(F

j

);

G : set of good indices; G ;;

8j; if F

j

evaluates to H(F

j

) then G G [ fjg;

F  

P

i2G

F

i

� T

�1

i

(reconstruct with IDA)

Delivery : U

 �������������

F

�������������������������

GW

Figure 4: Retrieval Protocol.

request the servers check the validity of the signature on the request and the ownership of the �le.

If the signature is valid and the user is the rightful owner of the �le, then the server sends its piece

of the �le and the hashes of all the other servers' pieces to GW (RExecution1). As some of the

servers might be faulty, they might send corrupted values to GW. GW establishes which hashes are

the correct ones by computing majority, and discards those pieces whose hash does not evaluate

to the computed one. Finally, the GW reconstructs the �le using the remaining pieces using IDA,

and sends the �le to the user (Delivery). Upon receiving the message supposedly containing �le

F , the user veri�es the authenticity of the �le (by, for example, matching it against the receipt on

the �le which she had kept for control during Deposit). As before, if the user does not get a

response from GW after some pre-speci�ed period of time, or if she receives a �le from the GW

whose signature does not verify, she proceeds to contact another server.

Lemma 3 Protocol Retrieval of Figure 4 satis�es the Retrieval Availability condition of De�ni-

tion 1.

Proof: By the same reasoning as in Lemma 1, we can assume that the user contacts a correct

GW; then all the correct servers get the user's request. As we assume that the user has in fact

12



previously deposited the �le and received a receipt, we are guaranteed that each correct server

has saved its piece of the �le and hashes of all the pieces (this comes from the Deposit Correctness

property). The servers then send their pieces and hashes of all pieces to GW. As some of the servers

might be faulty, they might send corrupted values; however, the fact that n > 2t allows GW to

determine what hashes are correct (i.e., have not being altered) by applying majority. Finally, GW

applies IDA to the correct pieces|those which evaluate to the correct hashes|to reconstruct the

�le. 2

Lemmas 1, 2 and 3 allow us to corroborate our claims of a basic SSRI system with an asymp-

totically optimal blow-up:

Theorem 1 If S is a secure signature scheme, then protocols Deposit, Dispersal, and Retrieval

of Figures 2, 3, and 4, respectively, satisfy De�nition 1. Also, the blow-up of the stored information

is asymptotically optimal.

Basic SSRI provides a stable storage system, but does not give any guarantees about the secrecy

of the information, as IDA does not provide it, and �les ow in the clear between the users and the

servers. The question of how to add con�dentiality is treated in the next section.

4 Integrity plus Con�dentiality

There might be a need in some applications to store �les whose contents must remain private,

i.e., that only the owner of the �le would be able to read it. In this section we show how to

provide con�dentiality on top of the information integrity which basic SSRI provides, as speci�ed

by De�nition 2.

A �rst solution that comes to mind (and which will be the building block of our �nal solution) is

for the user to generate a symmetric key (e.g., a DES key) FK, encrypt the �le F with FK, deposit

the encrypted �le with the servers and to store the key FK in its local memory. This simple solution

satis�es the de�nition but has a major drawback. Now, not only the secrecy of the data relies on

the encryption key FK, but also the availability of the data, as the loss of the key is equivalent to

the loss of all the data encrypted with it. It is clear that simply storing the encryption key in the

user's memory would be a very weak link in any construction, and hence we need to provide this key

with storage security and availability which are comparable to the ones provided for the �le itself.

Thus, the natural solution is to store in some manner the encryption key itself in SSRI. However,

note that simply storing the key in the clear would violate the con�dentiality requirement.

4.1 Distributed key management and blinding

Thus, the question of SSRI with con�dentiality can be reduced to the question of how to secretly

store and retrieve the �le encryption key FK, as the encrypted �le can be treated as a regular �le,

which we already know how to deposit and retrieve. We now present our solution to the problem.

Recall from Section 2.7 that in our design each user U has a public/private key pair for en-

cryption/decryption, EK

U

;DK

U

, where DK

U

is kept shared among the servers using threshold

cryptography, each server V

j

storing dk

U;V

j

. The user stores the symmetric encryption key FK by

�rst computing E

EK

U

(FK), and then using the Deposit protocol of Figure 2 to deposit this value

with the servers.

5

The fact that DK

U

is kept shared at the servers does not allow any coalition

5

In fact, for e�ciency reasons which will be made clear later, a variant of the protocol should be used that keeps

the encrypted key in its entirety at each server; as this is a small quantity, this variant does not pose a blow-up

problem.
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of up to t servers (even those including GW) to decrypt E

EK

U

(FK), and so far the Con�dentiality

requirement is satis�ed.

However, upon a request from the user to retrieve the key and the �le, if the servers used

their shares of DK

U

to send their partial decryptions of E

U

(FK) to GW, GW would then be

able to combine the partial decryptions and extract FK, in direct violation of the con�dentiality

requirement. To circumvent this problem we use \blinding" (see Section 2.6) in a novel way.

In a nutshell, the user will start the retrieval process by �rst generating a random integer r,

which will be used as a blinding factor. He will then compute E

U

(r) sign it and send it to GW, who

will distribute it to the servers. Now, instead of each server V

j

computing the partial decryption of

E

U

(FK) using dk

U;V

j

, they will compute the partial decryption of the product E

U

(FK) �E

U

(r). As

a consequence (assuming that E is blindable), GW will recover the product r � FK, which provides

no knowledge about FK. On the other hand, the user will be able to retrieve FK by factoring out r.

A detailed description of the blinding process is given in the next section. Note that this approach

requires the user to store r securely, though temporarily.

One last issue which needs to be dealt with in this context is the following. Upon receiving the

decrypted blinded key, how does the user know that this is the right value? (Note that this problem

does not arise because of the blinding, but is in fact a general problem.) This will be solved by

adding another round of communication among the servers in which every server V

i

(not just GW)

will reconstruct the blinded key, and then have the server sign this value under sk

V

i

. Thus, the user

will receive the blinded key signed under SK

V

. It remains to be proved that in this case the user

in fact receives the correct blinded key. This will be shown in the next section, where we describe

our full protocol for SSRI with con�dentiality and prove its correctness.

4.2 Deposit and retrieval with con�dentiality

We will call the protocols for SSRI with con�dentiality Conf-Deposit, Conf-Dispersal, and

Conf-Retrieval. Conf-Dispersal will be identical to the protocol of Figure 3. Conf-Deposit is

a slight modi�cation of protocol Deposit in Figure 2. The user generates a symmetric key FK,

computes

�

F

4

= e

FK

(F ), and uses protocol Deposit to store the encrypted �le

�

F at the servers.

Additionally, the user encrypts the key FK using his public encryption key EK

U

(i.e., E

EK

U

(FK))

and also sends this value to GW, who distributes it to all the other servers (with the echo step of

Figure 2). The servers then apply Conf-Dispersal to disperse

�

F but keep the encrypted key as is.

(The reason for this is that as the encrypted key is a relatively small quantity, the IDA dispersal

process will typically not be worth the e�ort.) As in the case of basic SSRI, the user receives a

receipt, S

V

(U;

�

F ;E

EK

U

(FK)), for the successful deposit of the pair (encrypted �le, encrypted key).

Lemma 1 applies to Conf-Deposit straightforwardly.

The Conf-Retrieval protocol is shown in Figure 5. It assumes a blindable encryption scheme

E. At retrieval time, the user U generates a retrieval request by generating a random integer r, the

blinding factor. He then computes b = E

U

(r); he signs b and the identi�er of the �le he is trying to

retrieve (say, the hash of the encrypted �le) using his signing key SK

U

, and sends the whole thing

to the GW (CRequest). He also stores r securely. GW forwards this request to all the servers.

(CExecution1). Each server V

j

checks that the user signing this request has permission to access

the �le and the encrypted key, and if so, generates a partial decryption P

j

of the blinded key using

dk

U;V

j

, its share of the user's key DK

U

. That is each server produces a partial decryption P

j

of the

value b � E

U

(FK) = E

U

(r � FK). The servers then distribute their partial decryptions to all other

servers (CExecution2). Having enough partial decryptions from the other servers, the servers are

able to compute P = FK � r; they also generate a partial signature on this value. In CExecution3,

they send to GW their pieces of the encrypted �le and all the hashes, together with their partial
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� Fields:

r Blinding factor: random number chosen by user U .

b E

U

(r).

�

F Encrypted user �le stored in V .

�

F

j

Portion of the encrypted �le dispersed at server V

j

.

P

j

Partial decryption using dk

U;V

j

of E

U

(FK � r).

P P = FK � r.

� Protocol Flows:

CRequest : U

��������

b;S

U

(b;

�

F )

������������������!

GW

CExecution1 : GW

��������

b;S

U

(b;

�

F )

������������������!

V

j

; 8j

CExecution2 : V

j

; 8j

��������

P

j

������������������!

V

j

; 8j

CExecution3 : GW

 �

�

F

j

; H(

�

F

i

); 1 � i � n; �

V

j

(P )

������������������������

V

j

; 8j

GW computes

�

F as in Figure 4;

also computes S

V

(P ).

Delivery : U

 ��������

�

F ; P;S

V

(P )

������������������

GW

Figure 5: Protocol Conf-Retrieval: Retrieval with con�dentiality.

signatures on the blinded key. As in the original retrieval protocol, GW reconstructs

�

F using IDA,

and sends

�

F and the signed blinded key back to the user (Delivery). The user obtains the �le key

FK by dividing out r, and decrypts the �le. We now argue the correctness of the protocols.

Theorem 2 If S is a secure signature scheme and E is a secure blindable encryption scheme, then

protocols Conf-Deposit, Conf-Dispersal, and Conf-Retrieval satisfy De�nition 2. Also, the

blow-up of the stored information is asymptotically optimal.

Proof: The proof of Deposit Availability and Correctness and of the bound on the space blow-up

is similar to that of Lemma 2.

Con�dentiality. In order to prove that the scheme is t-private, i.e., that no subset of size at most

t has any knowledge of the content of the �le, we need to show that no information about FK is ever

known to the servers. Because E is a semantically secure encryption scheme, any information about

the key FK can be computed only by decrypting it using the key DK

U

. Because we assume that

the threshold decryption protocol used by the servers is t-secure, no subset of t or less servers can

15



thus decrypt the key or any partial information about it. So the only value a coalition of t or less

servers sees is the blinded key P = r � FK. Due to the blinding properties (r is a randomly-chosen

number), the value P is a randomly distributed value which gives no information about FK.

Retrieval Availability. The argument of Lemma 3 also applies here. However, due to the

encryption/decryption process, it must be additionally shown that the user receives the right value

for the decryption key FK. The signed blinded key that the user receives is the correct one, due

to the following. A correct GW forwards the request for decryption of E

U

(FK) to all servers. As

the request is a proper request signed by the user, the correct servers decrypt the value E

U

(FK) � b,

that is, the encrypted key multiplied by the blinding factor. Thus, each correct server computes the

correct blinded key, and generates a partial signature on it. As GW can only generate signatures

with the participation of the correct servers, the signature will be on the valid blinded key. Finally,

the user holds the value r, so he is able to compute FK by dividing r out. 2

5 Secret Sharing Made Shorter

An application of our result which is interesting in its own is an improvement on the size of the

shares for computationally-secure secret sharing protocols [29]. Recall that in a (threshold) secret

sharing protocol a dealer shares a secret s among n servers so that t servers cannot reconstruct it,

but t+ 1 can.

It is a well known fact that for an information theoretically-secure secret sharing protocol (i.e.,

one in which t shares give no information about the secret even when in�nite computing time is

given), the size of the shares must be at least the size of the secret. In [29] Krawczyk shows that

if one relaxes the notion to one of \computationally secure," then it is possible to obtain shares of

size

jsj

t+1

+ ` where ` depends only on a security parameter. His idea goes as follows:

Choose a key K for a symmetric encryption scheme e of length `.

Encrypt the secret to be shared; let � = e

K

(s).

Use IDA [32] to distribute � among the servers so that t+ 1 pieces are enough to reconstruct

�; let �

i

be the piece given to the i

th

server.

Share K with an information theoretically secure scheme as in [35]; let K

i

be the share given

to the i

th

server.

By the IDA bound we know that j�

i

j =

j�j

t+1

. Clearly j�j = jsj and jK

i

j = `, hence the stated bound.

Our SSRI protocol with con�dentiality of Section 4 can be thought as a computationally secure

secret sharing scheme. In it we have the servers sharing a secret key SK

V

for an asymmetric

encryption function E. Let sk

V

i

be the share of SK

V

held by the i

th

server. The user who deposits

a �le can be thought of as a dealer sharing a secret s according to the following steps:

Choose a key K of length ` for a symmetric encryption scheme e.

Encrypt the secret s; let � = e

K

(s). Encrypt the key with the public key EK

V

of the servers;

let � = E

V

(K).

Use IDA [32] to disperse � and � among the servers so that t+1 pieces are enough to reconstruct

�; let �

i

and �

i

be the pieces given to the i

th

server.

Let m be the length of the keys used by E, i.e., m = jSK

V

j. Typically we have m > `. We can

assume that j� j = m, thus each server keeps only a share of size

jsj+m

t+1

for each secret s, plus the

server holds the share sk

V

i

(which is of size m), but that can be used for several sharings.

Now let's compare the asymptotic space requirements when sharing N secrets. In the scheme of

[29] the storage requirement is clearly N(

jsj

t+1

+`). In our scheme the storage needed is N(

jsj+m

t+1

)+m.

So for large N (i.e., when N` > m) our scheme requires less storage.
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6 Proactive SSRI

The protocols described in the previous sections withstand the presence of an adversary that can

read the memory and corrupt the behavior of at most t servers during the whole lifetime of the

system.

If such lifetime is long then the assumption that only t servers can be broken into may become

unreasonable or too optimistic. Proactive Security [30, 3] is an area of research that deals with

secure distributed systems in the presence of an adversary that may corrupt all the servers during

the whole lifetime of the system, although only t at a time (i.e., the assumption is that during a

pre-speci�ed interval of time, say a day, the adversary may break into at most t servers).

Several proactive techniques have been presented in the past. Proactive protocols for secret

sharing were presented in [26], while proactive protocols for threshold cryptography were introduced

in [25, 20, 16].

A basic technique of Proactive Security is to introduce refreshment phases in the system. During

a refreshment phase a server that has been broken into but is not anymore under the control of

the adversary, can be restored to its initial state. In particular, all the data destroyed or modi�ed

by the adversary is restored with the help of the other servers. Also all secret information (e.g.,

cryptographic keys) contained in all the servers is somehow randomized so that the information

leaked to the adversary in the previous time intervals will be useless in the future. Refreshment

phases are invoked periodically regardless of the fact that break-ins have been detected or not.

The \proactivization" of our distributed storage system poses several interesting questions. At

refreshing time we need to restore the memory of potentially compromised servers. This can indeed

be done as by assumption only a minority of the servers might have been broken into during the

previous interval. However, such a restoring operation can be potentially very expensive. Indeed,

in order to restore the pieces of a server we need to recompute all the �les and disperse them again.

This means that at refreshing time the whole memory of the system has to circulate around in order

to restore eventual break-ins. This can potentially be an enormous task and should be performed

only if strictly necessary. For example, if in the previous interval the adversary did not produce any

damage (or corrupted only a small fraction of the memory of the system), the above task would be

too expensive.

What we need is a form of \adaptive" proactiveness in which the system performs the expensive

restoring only when it is really necessary, while routine refreshment phases are cheaper to perform.

We describe our solutions, �rst for the integrity-only case (which is really the most interesting

and novel) and then for the integrity plus con�dentiality (which is just an application of proactive

threshold cryptography).

Integrity Only. Recall from Section 3 that each �le being deposited is �rst dispersed using our

variation of SIDA [28]. This means that each server V

i

, 1 � i � n, will have an IDA piece of F ,

F

i

, plus all the \�ngerprints" of all the pieces H(F

1

); : : : ;H(F

n

). By assumption during any given

time interval only a minority of the servers can be corrupted. At the beginning of the refreshing

phase each server broadcasts to the other servers the �ngerprints. Server V

i

takes a majority vote

among the received �ngerprints to identify the correct ones. It then checks if its own �ngerprints

are correct. If they are corrupted, it replaces them with the correct ones. It then checks its own

IDA piece F

i

against the correct �ngerprint H(F

i

). If the piece has been modi�ed it broadcasts a

message asking the other servers to reconstruct F

i

for it. It then takes majority among the received

responses to identify the correct F

i

.

Notice that if the adversary was not present (or did no damage) in the previous time interval,

then only the �ngerprints of the stored �les must circulate during the refreshment phase. This

17



is clearly a negligible communication cost compared to the whole storage of the system. If the

adversary did some damage, then the communication complexity of the refreshing phase is still

proportional only to the amount of information the adversary corrupted and not to the whole

memory of the system.

Integrity and Con�dentiality. In this case the refreshment phase will consist �rst of all of the

integrity-only refreshment phase, carried out on the encrypted �les. However, in this scenario we

need to worry about an adversary who besides corrupting the �les, might also read the shares of

the users' secret keys kept at a server. Once he reads more than t+ 1 of such shares the adversary

will be able to decrypt the users' �les. But the shares of the secret keys can be proactivized using

the proactive techniques used in threshold cryptography (for discrete log-based schemes see [25];

for RSA-based schemes see [16]). The refreshment phases for proactive threshold cryptography

schemes have a communication complexity proportional to the size of the keys. So once again in

the optimistic case (i.e., when the adversary does not corrupt the memory of the system) the work

done in a refreshment phase is very small compared to the potential amount of memory of the

system.
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A Overview of the Information Dispersal Algorithm

The Information Dispersal Algorithm (IDA) uses a linear transformation to convert m = n�t bytes

of input into n bytes of output. This transformation is given by an m� n matrix T over GF(2

8

).

Moreover, the matrix T has the property that every (n� t) columns of T are linearly independent.

Thus, each input and output byte is viewed as an element of GF(2

8

). The block size is m bytes

and the operation is repeated for every m bytes.

Let the (i; j)th entry of T be represented by T

i;j

. Let P

0

; P

1

; :::P

m�1

be a block of input. Then

the output bytes Q

0

; Q

1

; :::Q

i

; :::Q

n�1

are given by

Q

i

= T

0;i

� P

0

+ T

1;i

� P

1

+ :::T

m�1;i

� P

m�1

;

where the arithmetic is performed in the �eld GF(2

8

).

Given anym output bytes, the input can be recovered because everym columns of T are linearly

independent. In other words, the matrix S formed by taking the columns of T which correspond

to these m output bytes is invertible. Again, the inverse of this matrix is computed over GF(2

8

).

As an example, let m = 3, and n = 5. The following matrix T has the property that every 3

columns of T are linearly independent. Note that we are using polynomials in x for representing

elements of GF(2

8

). The polynomial arithmetic can be done modulo x

8

+ x

6

+ x

5

+ x

4

+ 1, which

is an irreducible polynomial over GF(2).

T =

0

B

B

@

1 0 0 1 1 + x

0 1 0 1 x

0 0 1 1 1

1

C

C

A

If for example, only the �rst, second and �fth byte of a coded text are known, the plaintext (or

original text) can be retrieved by applying the following transformation to the three bytes of coded

text:

0

B

B

@

1 0 1 + x

0 1 x

0 0 1

1

C

C

A

(Note that this matrix is its own inverse.) The reader is referred to [32] for further details.

B Example: Threshold RSA

We give a speci�c example of threshold cryptography assuming that the public key cryptosystem

used is RSA [34] and for a speci�c choice of the public exponent, e.g. 3. In this case, the public

encryption key of user U is

EK

U

= (3; N) ;

where N is the RSA module, and

DK

U

= (d;N) ;

where d is the inverse of 3 modulo �(N). Assume that the user's secret key DK

U

has been shared

among the servers as an n-out-of-n sharing, meaning that all the shares will be required in order to

reconstruct the key (this is without loss generality, as it is easy to generalize to a threshold scheme).

We can assume that server V

j

's share of the key is

dk

U;V

j

= d

j

;
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where

d

1

+ :::+ d

n

= d mod �(N) :

Assume we want to compute a signature � = m

d

mod n for a message m. Then each server can

compute the following

�

j

= m

d

j

mod N

and then we see that

�

1

� �

2

� � � �

n

= m

d

1

� � � �m

d

n

= m

d

1

+:::+d

n

= m

d

= � :

A dual approach clearly works for RSA signatures.

C Example: Blinding with RSA

Once again we present an example of the blinding technique [5] based on RSA. The server owns

the secret key DK = (d;N) and the user knows the public key EK = (e;N). The user wants to

decrypt a ciphertext c = m

e

mod N without telling the server c. The user chooses r at random

and computes s = r

e

mod N . The user then gives cs = (mr)

e

mod N to the server who returns

w = (cs)

d

= mr mod N . Finally, the user computes m =

w

r

mod N .

D On Alternative Designs

In this section we compare the costs|in terms of computation, storage and communication|of

our single connection/gateway design to those of having the user communicate with the servers

independently and in parallel. It turns out that besides providing for broad applicability, the single

connection design is more e�cient both at the user and servers ends.

D.1 Cost at the user

The computation and communication costs for the user in the single connection model is always

lower than having the user communicate directly with all (that is, at least t+ 1 of) the servers, as

the tables below indicate. It may seem at �rst that due to the communication with a single gateway

our design requires expensive cryptographic machinery (such as threshold cryptography) to meet

the security requirements. However, one should note that the use of threshold cryptography can

be removed only at the expense of heavy computations and/or heavy memory requirements at the

user's end. Even when communicating with all the servers the user still needs to receive a receipt

for the transaction. Thus, he can go one of two ways:

Have each server sign an individual receipt for the deposit; this in turn requires the user to

verify and store n signatures.

To save on storage, use threshold cryptography (which means no savings on cryptographic

machinery); but this requires the user to verify n partial signatures, which typically is a more

expensive veri�cation process than veri�cation of a regular signature (for example, in the case

of RSA one can use a small veri�cation exponent for regular signatures, but not for partial

signatures).

With respect to blinding, we note that the removal of the blinding step would result in the user

needing to decrypt n shares of the �le key FK, as opposed to a single blinding operation which is

an encryption with a small exponent.
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Single Connection Multiple Connections

Split at user Split at servers

1 encryption IDA secret sharing

2 signatures (expected); secret sharing 1 encryption

t+ 1 signatures (worst-case) n signatures 1 signature

1 small signature veri�cation; n small signature veri�cations,

1 signature storage if store n signatures

OR

n big signature veri�cations,

if store 1 signature

Table 1: Computation and storage costs of Deposit with Con�dentiality at the user

Single Connection Multiple Connections

Split at user Split at servers

1 signature veri�cation n signature verifcations

(small exponent) (big exponent)

1 encryption 1 decryption

(small exponent; for blinding) (big exponent)

Table 2: Computation costs of Retrieval with Con�dentiality at the user

For the comparison, we consider the case of Deposit with Con�dentiality, where symmetric-key

encryption and decryption are also performed. We divide the multiple connections model into two,

depending on whether the IDA \split" of the �le is done at the user or at the servers. Let us

consider �rst the communication costs. Let B denote the blow-up factor (see De�nition 3) and c be

a constant. Then the communication cost for Deposit in the case of a single connection is jF j+ c.

On the other hand, it is easy to verify that the cost in the multiple connections model would be

BjF j+ nc if the IDA split is performed at the user, or n(jF j+ c) if performed at the servers.

Table 1 shows the number of operations and storage requirements at the user to perform Deposit

with Con�dentiality, while Table 2 shows the costs for Retrieval. In short, both tables show that

the costs of multiple connections are higher than in our single connection model.

D.2 Cost at the servers

We now analyze the computational/communication requirements on the servers. Again, it may

seem at �srt that if the user communicates with each of the servers directly this should reduce

the workload for the servers and the total communication among them. However, if the user

communicates with all the servers and they do not perform the \echo" stage, then it is possible for

an adversary to create a valid receipt for a �le that the servers will not be able to reconstruct later.

In turn, this would result in a liability problem for the storage system.
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More speci�cally, consider the scenario of a fraudulent user colluding with t faulty servers. The

user sends the �le to t+ 1 servers (t faulty and 1 correct), and thus is able to obtain a receipt. In

order for the servers to be able to retrieve the �le later they will have to either:

store the whole �le (which entails a blow-up factor of n); or

echo the �le so that there is a guarantee that if a correct server has it, then all the other good

servers have it as well.

Thus, there are no savings in communication for the servers in the multiple connections model.

Notice that in the single connection model this kind of coalitions is not a problem, as this case can

be easily reduced to the case where the gateway is faulty.

Under slightly di�erent assumptions about the model, which we will now explain, the attack

above is plausible even without the user being malicious. We conceive the communication between

the user and the servers to take place on a public network, such as the Internet, while the com-

munication among the servers to be on a more secure \Intranet." If we assume that the adversary

can drop or block messages on the public network, but not on the Intranet, then the adversary

can have only t + 1 servers receive it: t faulty and 1 correct; these servers will produce a valid

receipt, and then we are back in the situation described above. Once again, this is not a problem

in our model since an adversary that blocks messages on the public network can create at most a

denial-of-service attack, which is e�ectively similar to the one of failing (\crashing") the gateway.

Finally, as pointed out in Section 2.8, the communication among the servers (the echo messages)

can be further reduced by echoing only a message digest (hash) of the �les, and the actual �les

only if necessary.

24


