
Comparing Entropies in Statistical Zero-Knowledge

with Applications to the Structure of SZK

Oded Goldreich

�

Salil Vadhan

y

November 2, 1998

Abstract

We consider the following (promise) problem, denoted ED (for Entropy Di�erence): The input

is a pairs of circuits, and yes instances (resp., no instances) are such pairs in which the �rst

(resp., second) circuit generates a distribution with noticeably higher entropy.

On one hand we show that any language having a (honest-veri�er) statistical zero-knowledge

proof is Karp-reducible to ED. On the other hand, we present a public-coin (honest-veri�er)

statistical zero-knowledge proof for ED. Thus, we obtain an alternative proof of Okamoto's result

by whichHVSZK (i.e., Honest-Veri�er Statistical Zero-Knowledge) equals public-coin HVSZK.

The new proof is much simpler than the original one. The above also yields a trivial proof that

HVSZK is closed under complementation (since ED easily reduces to its complement). Among

the new results obtained is an equivalence of a weak notion of statistical zero-knowledge to the

standard one.

Keywords: Complexity and Cryptography, Universal Hashing.

�

Department of Computer Science, Weizmann Institute of Science, Rehovot, Israel. E-mail:

oded@wisdom.weizmann.ac.il. Work done while visiting LCS, MIT. Supported by DARPA grant DABT63-96-

C-0018.

y

Laboratory for Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139. E-mail:

salil@math.mit.edu. Supported by a DOD/NDSEG Graduate Fellowship and in part by DARPA Grant DABT63-

96-C-0018.



1 Introduction

This paper focuses on the class Honest-Veri�er Statistical Zero-Knowledge

1

(HVSZK) [12] | that

is, the class of decision problems possessing statistical zero-knowledge proofs. Recent years have

witness a renewed interest in this class, sparkled to a great extent by Okamoto's work [16]. The

main two results of that work are

Thm. I: Every language in HVSZK has a public-coin Honest-Veri�er Statistical Zero-Knowledge

proof system.

Thm. II: The class HVSZK is closed under complementation.

Subsequent work have relied on the above Thm. I, and provided among other things:

� A promise problem

2

complete for the class HVSZK, and an alternative proof of Thm. II [18].

� A construction of a (general veri�er) Statistical Zero-Knowledge proof system for any language

in HVSZK [11].

Both works rely on the characterization of HVSZK as equal to public-coin HVSZK, provided by

Thm. I. Unfortunately, the proof of Thm. I in [16] is very complicated and was fully understood

by very few researchers.

The primary motivation of this work is to provide a simpler proof of Thm. I. Our basic idea

is to apply some of Okamoto's techniques [16] to the Aiello-Hastad transformation [1] of HVSZK

into AM, rather than applying them (as done in [16]) to the Goldwasser-Sipser transformation [13]

of IP into AM.

To further clarify the proof, we introduce a promise problem, and show that: (1) any problem

in HVSZK reduces to the new promise problem, and (2) the new promise problem has a public-

coin HVSZK proof system. Our proof of the Part (1) relies on the work of Fortnow, Aiello and

Hastad [8, 1]; whereas in proving Part (2) we rely on two protocols due to Okamoto [16]. We stress

that we provide self-contained de�nitions, implementations and analysis of the latter two protocols.

1.1 Public-coin versus general proof systems

Recall that public-coin (a.k.a Arthur-Merlin) proof systems [2, 3] are interactive proof systems [12]

in which the prescribed veri�er's strategy amounts to sending uniformly chosen messages at each

round, and deciding whether to accept by evaluating a polynomial-time predicate of the conver-

sation transcript. That is, in each round, the veri�er tosses a predetermined number of coins and

sends the outcome to the prover, and at the end it decides whether to accept by applying a predicate

to the (full) sequence of messages it has sent and received.

Public-coin proof systems are easier to analyze and manipulate than general interactive proofs,

and thus the result of Goldwasser and Sipser [13] by which the former are as powerful as the

latter found many applications (e.g., [9, 15, 4]). As mentioned above, the same and more so is

true regarding Statistical Zero-Knowledge: That is, Okamoto's result [16] (i.e., Thm. I), by which

public-coin HVSZK equals HVSZK, has played a major role in many subsequent results (e.g., his

Thm. II as well as in [18, 11]). Thus, providing a clear proof of Thm. I is of major importance to

this area.

1

For basic de�nitions, see Appendix A.

2

A promise problem � is a pair of disjoint sets of strings, corresponding to yes and no instances, respectively [7].

1



1.2 A new HVSZK-complete problem: Entropy Di�erence

The new promise problem referred to above is called Entropy Di�erence. Recall that the entropy of

a random variable X , denoted H(X), is de�ned as

H(X)

def

=

X

�

Pr [X = �] � log

2

(1=Pr [X = �]) (1)

The promise problem involves the entropies of distributions which are encoded by circuits which

sample from them. That is, if X is a circuit mapping f0; 1g

m

to f0; 1g

n

, we identify X with the

probability distribution induced on f0; 1g

n

by feeding X the uniform distribution on f0; 1g

m

.

De�nition 1.1 (Entropy Di�erence): The promise problem Entropy Di�erence, denoted ED =

(ED

yes

; ED

no

), consists of

ED

yes

def

= f(X; Y ) : H(X) > H(Y ) + 1g

ED

no

def

= f(X; Y ) : H(Y ) > H(X) + 1g

where X and Y are distributions encoded as circuits which sample from them.

As stated above, our main results are

Theorem 1.2 (HVSZK-hardness): Any promise problem in HVSZK reduces (via a Karp reduc-

tion) to ED.

(Theorem 1.2 combined with a simple constant-round interactive proof for ED implies thatHVSZK �

AM\ coAM. We believe that this provides an a much simpler argument than the one presented

in [8, 1], although it does use all the underlying ideas of these works.)

3

Theorem 1.3 (ED in public-coin HVSZK): ED has a public-coin Honest-Veri�er Statistical Zero-

Knowledge proof system.

Combining Theorems 1.2 and 1.3,

4

we see that any language in HVSZK has a public-coin HVSZK

proof system (i.e., Thm. I). Furthermore, observing that ED easily reduces to its complement, it

follows that HVSZK is closed under complementation (i.e., Thm. II).

Discussion: Some super�cial similarity does exist between the above and what was done in [18].

In the latter work, the authors de�ned a promise problem, called Statistical Di�erence (denoted

SD),

5

and showed that it is complete for the class HVSZK. However, their reduction of HVSZK to

SD used Thm. I to restrict attention to public-coin HVSZK only. Thus, the results in [18] (relying

3

We note that much of the simpli�cation is due to [17].

4

Actually, we also use the fact that the reduction in Theorem 1.2 is not length-decreasing. Alternatively, one

may use the fact that ED is easily padded to increase the length of instance descriptions.

5

Statistical Di�erence, denoted SD = (SD

yes

; SD

no

), consists of

SD

yes

def

= f(X;Y ) : �(X ; Y ) < 1=3g

SD

no

def

= f(X;Y ) : �(X ; Y ) > 2=3g

where X and Y are as in De�nition 1.1, and �(X ; Y ) denote the statistical di�erence between them (i.e., �(X ; Y )

def

=

1

2

�

P

�

jPr [X = �]� Pr [Y = �] j).

2



on Thm. I) cannot be used to establish Thm. I. Interestingly, the HVSZK proof system for SD

presented in [18] is not of the public-coin type (yet it is one-round).

In retrospect, the term Statistical Zero-Knowledge (coined by Goldwasser, Micali and Rack-

o� [12]) sounds prophetic of the key role played by computational problems regarding statisti-

cal measures in the study of this class (which is also known by the name Almost-Perfect Zero-

Knowledge).

1.3 Extensions

Let us stress that by (honest-veri�er) statistical zero-knowledge we mean a simulation, upto neg-

ligible deviation error, by a strict (rather than expected) probabilistic polynomial-time machine.

This makes Theorem 1.3 seemingly stronger, but potentially weakens Theorem 1.2. However, as

we shortly explain, Theorem 1.2 is in fact stronger than stated.

De�nition 1.4 (simulator deviation): Let (P; V ) be a proof system for a promise problem � =

(�

yes

;�

no

), and let M be a probabilistic polynomial-time machine. Suppose that for some function

� : N 7! N and every x 2 �

yes

the statistical di�erence between the veri�er's view, denoted hP; V i(x)

and M(x) is at most �(jxj). Then we say that M simulates (P; V ) with deviation �.

Typically, HVSZK is de�ned as the class of languages having interactive proofs with negligible

6

simulator deviation. A weaker notion is that of weak-HVSZK (cf., analogous to weak-SZK con-

sidered in, e.g., [6]):

De�nition 1.5 (weak-HVSZK): A proof system is said to be weak (honest-veri�er) Statistical

Zero-Knowledge if for every polynomial p there exists a probabilistic polynomial-time machine M

p

which simulates the proof system with simulator deviation 1=p(�).

Speci�cally, the running-time of M

p

may depend on p. Clearly, weak-HVSZK contains languages

having HVSZK proofs under a liberal de�nition allowing expected polynomial-time simulators.

That is, suppose that � has an interactive proof system (P; V ) and an expected polynomial-time

simulator M which simulates (P; V ) with negligible deviation. Then, for any polynomial p, we

can construct a strict polynomial-time simulator M

p

which simulates (P; V ) with deviation 1=p(�)

simply by truncating long runs of M ; that is, runs which take more than p times the expected

number of steps. It follows that � is in weak-HVSZK. All these variants of HVSZK are covered

by the following extension of Theorem 1.2:

Theorem 1.6 (Theorem 1.2, extended): Any promise problem in weak-HVSZK reduces (via a

Karp-reduction) to ED.

In fact, the proof only utilizes simulations with deviation smaller than the reciprocal of the (cube

of the) total number of bits sent in the proof system. On the other hand, Theorem 1.3 can be

strengthened as follows:

Theorem 1.7 (Theorem 1.3, extended): ED has a public-coin proof system which can be simulated

with exponentially vanishing deviation.

Combining Theorems 1.6 and 1.7, we get

6

Recall that a function f :N! N is negligible if for any polynomial p(�), f(n) < 1=p(n) for su�ciently large n.

3



Corollary 1.8 Every language in weak-HVSZK has a public-coin proof system which can be sim-

ulated with exponentially vanishing deviation.

Using the results in [11] we infer that weak-HVSZK equals SZK, where the latter refers to Sta-

tistical Zero-Knowledge against any veri�er. Speci�cally,

Corollary 1.9 Every language in weak-HVSZK has a (public-coin) general statistical zero-knowledge

proof system. Furthermore, the latter can be simulated using a universal probabilistic polynomial-

time simulator which uses any veri�er strategy as a black-box and has only an exponentially van-

ishing deviation.

1.4 Organization

In Section 2, we use the Aiello{Hastad characterization of HVSZK to show that every problem

in HVSZK reduces to ED. In Section 3, we exhibit a public coin statistical zero-knowledge proof

system for ED, assuming the existence of two subprotocols due to Okamoto [16]. In Section 4, we

describe these two subprotocols and prove their correctness.

2 HVSZK reduces to ED

In this section, we describe the Aiello{Hastad characterization of statistical zero-knowledge [1] and

show how it can be used to prove that every promise problem in HVSZK reduces to ED. Following

Petrank and Tardos [17], we present the Aiello{Hastad characterization using a formulation of

entropy, rather than in the formulation of set sizes used in [1]. In order to do this, we need to �rst

discuss relative entropy.

2.1 Entropy and Relative Entropy

Recall the de�nition of the entropy, denoted H(X), of a random variable X :

H(X)

def

=

X

�

Pr [X = �] � log(1=Pr [X = �]) = E

��X

[log(1=Pr [X = �])] (2)

where all logarithms above and in the sequel are to base 2. The binary entropy function, H

2

(p)

def

=

p log(1=p) + (1� p) log(1=(1� p)), equals the entropy of a 0-1 random variable with expectation p.

We will make use of two measures of similarity between probability distributions. The �rst

measure is the well-known statistical di�erence: The statistical di�erence between the random

variables X and Y , denoted �(X ; Y ), is de�ned by

�(X ; Y )

def

=

1

2

�

X

�

jPr [X = �]� Pr [X = �] j = max

S

fPr [X 2 S]� Pr [Y 2 S]g (3)

The second measure is the Kullback{Leibler distance:

De�nition 2.1 Let X and Y be two probability distributions on a �nite set D. The relative entropy

(or Kullback{Leibler distance) between X and Y is de�ned as

KL (X j Y ) = E

��X

�

log

Pr [X = �]

Pr [Y = �]

�

:

4



We let KL

2

(p; q)

def

= p log(p=q) + (1� p) log((1� p)=(1� q)). Note that if X and Y are 0-1 random

variables with expections p and q respectively, then KL (X j Y ) = KL

2

(p; q). It can be shown that

KL (X j Y ) is always nonnegative and KL (X j Y ) = 0 i� X and Y are identically distributed [5,

Thm. 2.6.3]. Hence, KL (X j Y ) can be viewed as some sort of \distance" between X and Y , though

it does not satisfy symmetry or the triangle inequality.

2.2 The Aiello{Hastad Characterization

Intution. Let � be any language (or promise problem) in HVSZK and consider a statistical

zero-knowledge proof system for � and the corresponding simulator. We think of the output of the

simulator as describing the moves of a virtual prover and a virtual veri�er. Following Fortnow [8], the

Aiello{Hastad characterization describes properties of the output of the simulator which distinguish

between yes instances and no instances. One thing we are guaranteed by the statistical zero-

knowledge property is that the simulator outputs accepting conversations with high probability

when the input is a yes instance. Thus, if on some input x, the simulator outputs rejecting or

invalid conversations with high probability, x is easily identi�ed to be a no-instance. The di�culty

comes from the fact that the simulator might output accepting conversations with high probability

even when x is a no-instance, even though this cannot occur when any real prover interacts with

the true veri�er due to the soundness of the proof system. Intuitively, this discrepancy comes from

the fact that the virtual prover has the ability to cheat and \see" future veri�er messages, a power

which the real prover does not have. Thus, Aiello and Hastad consider what happens when one

takes away the power of the virtual prover to cheat. That is, following [8], they consider a real

prover strategy P

S

, called the simulation-based prover, which determines its messages based on

the same distribution as the virtual prover's residual probability space conditioned only on past

messages. Now, the interaction between P

S

and the real veri�er describes exactly what happens

when we take away the power of the simulated prover to cheat. Thus, the relative entropy between

the output of S and the interaction between P

S

and the real veri�er is a measure of the amount

of cheating that virtual prover performs, and this distinguishes between yes instances and no

instances. The �nal crucial observation in the Aiello{Hastad characterization is that this relative

entropy can be rewritten as a simple expression involving entropies of pre�xes of the simulator's

output.

Notation. Let � be any language (or promise problem) in HVSZK and let (P; V ) be a statistical

zero-knowledge proof system for � with simulator S. Without loss of generality, we assume that

on inputs of length n, the veri�er tosses exactly ` = `(n) coins, and the interaction between P

and V consists of 2r = 2r(n) messages, each of length ` = `(n) so that the prover's messages are

those with odd index. Also, we may assume that the last message of the veri�er consists of its

random coins. We are interested in the random variables, hP; V i(x) and S(x), describing the real

interaction and the simulation, respectively. We also consider pre�xes of these random variables,

where hP; V i(x)

i

and S(x)

i

denote the pre�x of length i � ` of the corresponding random variable.

At times, we may drop x from these notations. We say that a 2r �` bit string  is a transcript (w.r.t

V ) if the veri�er messages in  correspond to what it would have sent given the random coins (as

speci�ed in the last bits in ) and previous messages of the prover (included in ). We say that a

transcript  is accepting if the veri�er accepts on it.

The simulation-based prover. In order to formalize the above intuition, a de�nition of the

simulation-based prover, denoted P

S

, needs to be given. Given an execution pre�x  2 f0; 1g

(i�1)`

,

5



prover P

S

responses as follows:

� If S(x) outputs conversations that begin with  with probability 0, then P

S

replies with a

dummy message, say 0

`(jxj)

.

� Otherwise, P

S

replies according with the same conditional probability as the prover in the

output of the simulator. That is, it replies � 2 f0; 1g

`(jxj)

with probability

p

�

= Pr[S(x)

i

= �jS(x)

i�1

= ]

Following our previous notation, we denote conversation transcripts coming from the interaction

between P

S

and V by hP

S

; V i(x), and its pre�xes by hP

S

; V i(x)

i

.

Rewriting KL (S(x) j hP

S

; V i(x)). Following the intuition given above, the quantity that we will

analyze is the relative entropy between S(x) and hP

S

; V i(x). This relative entropy KL (S(x) j hP

S

; V i(x))

can be rewritten as a simple expression referring only to entropies of pre�xes of S(x).

Lemma 2.2 (implicit in [1], explicit in [17]):

KL (S(x) j hP

S

; V i(x)) = `�

r

X

i=1

[H(S(x)

2i

)� H(S(x)

2i�1

)]

Proof: For readability, we will omit x in the notation. For  2 f0; 1g

2r`

and i = 0; :::; 2r, we let



i

denote the i � ` pre�x of . Then, by de�nition,

KL (S j hP

S

; V i) =

X

2f0;1g

2r`

Pr [S = ] � log

Pr [S = ]

Pr [hP

S

; V i = ]

=

X

2f0;1g

2r`

Pr [S = ] � log

Q

2r

i=1

Pr [S

i

= 

i

jS

i�1

= 

i�1

]

Q

2r

i=1

Pr

�

hP

S

; V i

i

= 

i

jhP

S

; V i

i�1

= 

i�1

�

=

X

2f0;1g

2r`

Pr [S = ] � log

Q

r

j=1

Pr [S

2j

= 

2j

jS

2j�1

= 

2j�1

]

Q

r

j=1

Pr

h

hP

S

; V i

2j

= 

2j

jhP

S

; V i

2j�1

= 

2j�1

i

where the last equality is due to the de�nition of P

S

(by which Pr

h

hP

S

; V i

2j�1

= 

2j�1

jhP

S

; V i

2j�2

= 

2j�2

i

equals Pr [S

2j�1

= 

2j�1

jS

2j�2

= 

2j�2

]). A key observation is that the denominator in the above

fraction equals the reciprocal of the number of possible outcomes of the veri�er coins (i.e., 2

�`

),

since even-indexed messages of hP

S

; V i are generated by V exactly as in hP; V i. Multiplying both

the numerator and denominator in the above fraction by

Q

r

j=1

Pr [S

2j�1

= 

2j�1

], we obtain

KL (S j hP

S

; V i) =

X

2f0;1g

2r`

Pr [S = ] � log

Q

r

j=1

Pr [S

2j

= 

2j

]

2

�`

�

Q

r

j=1

Pr [S

2j�1

= 

2j�1

]

=

r

X

j=1

X

2f0;1g

2r`

Pr [S = ] � log Pr [S

2j

= 

2j

]

+` +

r

X

j=1

X

2f0;1g

2r`

Pr [S = ] � log

1

Pr [S

2j�1

= 

2j�1

]

= �

r

X

j=1

H(S

2j

) + `+

r

X

j=1

H(S

2j�1

)

The lemma follows.

6



The behaviour of P

S

on yes instances: Note that even in case of a yes instance, the behaviour

of P

S

need not exactly �t the behavior of either the prescribed prover P or the virtual prover

(discussed above). Yet, in the case of yes instance, prover P

S

behaves \almost" as P and the

virtual prover. More generally,

Lemma 2.3 (implicit in [1, 17]): Let �

def

= �(S(x) ; hP; V i(x)) and suppose that � � 1=2. Then,

KL (S(x) j hP

S

; V i(x)) � 3r

2

� ` � � + 2r �H

2

(�)

Proof: By Lemma 2.2,

KL (S j hP

S

; V i) = `+

2r

X

i=1

(�1)

i+1

�H(S

i

)

� `+

2r

X

i=1

(�1)

i+1

�H(hP; V i

i

) +

2r

X

i=1

jH(S

i

)� H(hP; V i

i

)j

Consider a perfect simulator (i.e., of zero deviation), denoted S, for (P; V ). Note that the simulator-

based-prover with respect to S is P itself. Thus, by Lemma 2.2,

`+

2r

X

i=1

(�1)

i+1

�H(hP; V i

i

) = `+

2r

X

i=1

(�1)

i+1

�H(S

i

)

= KL

�

S j hP; V i

�

= 0

Finally, we use the fact (cf., Appendix B) that for any two random variables, X and Y , ranging

over domain D it holds that

jH(X)�H(Y )j � (log jDj) ��(X ; Y ) + H

2

(�(X ; Y ))

Combining all the above, we get

KL (S j hP

S

; V i) �

2r

X

i=1

jH(S

i

)� H(hP; V i

i

)j

�

2r

X

i=1

[i` ��(S

i

; hP; V i

i

) + H

2

(�(S

i

; hP; V i

i

))]

� (2r

2

+ r) � ` ��(S ; hP; V i) + 2r �H

2

(�(S ; hP; V i))

and the lemma follows.

The behaviour of P

S

on no instances: In contrary to the above, for no instances, if S(x)

outputs accepting transcripts with high probability then S(x) and hP

S

; V i(x) must be very di�erent.

More generally,

Lemma 2.4 (implicit in [1, 17]): Let p denote the probability that S(x) outputs an accepting tran-

script, and q be the maximum, taken over all possible provers P

�

, that hP

�

; V i(x) is accepting.

Suppose that p � q. Then,

KL (S(x) j hP

S

; V i(x)) � KL

2

(p; q)

7



Proof: For any random variables X and Y and any function f it holds that KL (X j Y ) �

KL (f(X) j f(Y )) (cf., Appendix B). Letting f() = 1 if  is accepting and f() = 0 otherwise, we

have

KL (S(x) j hP

S

; V i(x)) � KL

2

(p; q

0

)

where q

0

� q equals the probability that hP

S

; V i(x) accepts. Using the fact that KL

2

(p; q

0

) �

KL

2

(p; q), for any q

0

� q � p (cf., Appendix B), we are done.

2.3 The Reduction

Using the above characterization, we easily Karp-reduce any promise problem � in HVSZK to

ED. Let (P; V ) and S be a proof system and a simulator as formulated in the previous subsection

(namely, the proof system consists of 2r messages of length ` and the veri�er's last message consists

of its random coins). Then, an instance x is reduced to a pair of distributions (X

x

; Y

x

) as follows.

� X

x

is the cross product of the distributions S(x)

2

; S(x)

4

; :::; S(x)

2r

.

� Y

x

is the cross product of the distributions S(x)

1

; S(x)

3

; :::; S(x)

2r�1

and a uniform distribu-

tion on `(jxj)� 2 bits.

Lemma 2.5 (Validity of the reduction): Suppose that S simulates a proof system (P; V ) with

soundness error at most 0:1 for � with simulation deviation smaller than 1=(2r`)

2

. Further suppose

that S always outputs an accepting transcript. Then,

1. If x 2 �

yes

then H(X

x

) > H(Y

x

) + 1.

2. If x 2 �

no

then H(Y

x

) > H(X

x

) + 1.

The extra condition (of always outputing an accepting transcript) can be easily enforced by a minor

modi�cation of the simulator (and possibly the proof systems). See details in the proof of Theo-

rem 1.6 below.

Proof: We may assume that r` > 128, by simply padding messages with extra bits. Suppose

�rst that x 2 �

yes

. Combining Lemmas 2.2 and 2.3, we have

H(Y

x

)�H(X

x

) =

 

`� 2 +

r

X

i=1

H(S(x)

2i�1

)

!

�

 

r

X

i=1

H(S(x)

2i

)

!

= KL (S(x) j hP

S

; V i(x))� 2

� 3r

2

` � �+ 2r �H

2

(�)� 2 < �1

where �

def

= �(S(x) ; hP; V i(x)) � 1=(2r`)

2

, and the last inequality also uses H

2

(�) �

p

�=4 (since

� < 2

�14

) and

p

�=4 < 1=8r. Thus, H(X

x

) > H(Y

x

) + 1 and (X

x

; Y

x

) 2 ED

yes

follows.

Suppose now that x 2 �

no

. Combining Lemmas 2.2 and 2.4, we have

H(Y

x

)� H(X

x

) = KL (S(x) j hP

S

; V i(x))� 2

� KL

2

(1; 0:1)� 2

= log 10 � 2 > 1

(In the �rst inequality, we used KL (S(x) j hP

S

; V i(x)) > KL

2

(1; q), where q is the the maximum,

taken over all possible provers P

�

, that hP

�

; V i(x) is accepting.) Thus, H(Y

x

) > H(X

x

) + 1 and

(X

x

; Y

x

) 2 ED

no

follows.

8



Proof of Theorem 1.6: Assume you are given a proof system with two-sided error 1/3 (i.e., com-

pleteness and sounded errors both bounded by 1/3), and simulator deviation (r

0

`

0

)

�2

� (log r

0

`

0

)

�5

.

where the interaction consists of 2r

0

� 1 messages of length m, and `

0

= max(m; q), where q is the

number of coins used by the veri�er. We now modify the proof system by having the veri�er send

the prover its coins at the end and modify the simulator accordingly. This does not a�ect the com-

pleteness error, soundness error, or simulator deviation. Now there are 2r

0

messages, each of length

at most `

0

. Repeating the proof system for k times (either sequentially or in parallel) and ruling

by majority, we obtain two-sided error of exp(�
(k)). Using k = �(log r

0

`

0

) we obtain a proof

system with total communication 2r` = O(r

0

`

0

log r

0

`

0

), two-sided error (2r`)

�2

=2 and simulation

error (2r`)

�2

=2.

Next, modify the proof system so that 0

2r`

becomes an accepting transcript, and modify the

simulator so that it always outputs an accepting transcript (by possibly substituting the output with

0

2r`

). The resulting proof system has soundness error at most 2

�`

+ (2r`)

�2

=2, and the simulation

error is at most (2r`)

�2

. Assuming, without loss of generality, that 2

�`

+ (2r`)

�2

=2 < 0:1, we are

in position to apply Lemma 2.5, and the theorem follows.

3 A public-coin HVSZK proof system for ED

In this section, we prove Theorem 1.7. That is, we present a public-coin honest-veri�er statistical

zero-knowledge proof system for Entropy Di�erence (ED). In presenting the proof system, we will

assume the existence of two subprotocols due to Okamoto [16], which we will describe in Section 4.

3.1 Overview

We begin with an exposition of the standard protocol for proving lower bounds on set sizes, which

is the starting point for our proof system. We stress that all protocols described in this section (as

well as in the entire paper) are public-coin protocols.

3.1.1 The standard lower bound protocol

Suppose S is some subset of f0; 1g

n

and a prover M (\Merlin") wants to convince a veri�er A

(\Arthur") that jSj � 2

m

. Assuming A has oracle access to a procedure which tests membership

in S, there is a simple public-coin protocol which can be used to accomplish this task. The protocol

was �rst described in [2, 13] and orginates with a lemma of Sipser [19]. For every pair of integers

k and `, let H

k;`

be a family of 2-universal hash functions mapping f0; 1g

k

to f0; 1g

`

.

Lower bound protocol (M;A), on input n and m (and membership oracle for S � f0; 1g

n

)

1. A selects h uniformly from H

n;m

and sends h to M .

2. M selects x uniformly from S \ h

�1

(0) (if this intersection is nonempty) and sends x to A.

7

If the intersection is empty, M sends fail to A.

3. A accepts if both h(x) = 0 and x 2 S and rejects otherwise.

The best analysis of the above protocol was provided in [1].

Lemma 3.1 Completeness: If jSj � 2

k

� 2

m

, then A accepts with probability at least 1� 2

�k

.

7

Here 0 is a canonically �xed element of f0; 1g

m

.

9



Soundness: If jSj � 2

�k

� 2

m

, then no matter what strategy M uses, A accepts with probability at

most 2

�k

.

In fact, this protocol also has a sort of statistical zero-knowledge property. The property holds with

respect to the inputs n and m, provided that jSj � 2

m

and that one is given a uniformly selected

element of S.

Lemma 3.2 (implicit in [16]) Let H be a 2-universal family of hash functions mapping a domain

D to a range R. Let S be a subset of D such that jRj � � � jSj. Then the following two distributions

have statistical di�erence �


(1)

:

(A) Choose h uniformly in H, and x uniformly in h

�1

(0)\ S. Output (h; x).

8

(B) Choose x uniformly in S, and h uniformly in fh

0

2 H : h

0

(x) = 0g. Output (h; x).

Think of D = f0; 1g

n

, R = f0; 1g

m

, and � = 2

m

=jSj. Then, Distribution (A) corresponds to A's

view of the execution of the protocol and Distribution (B) provides a simulation with deviation (at

most) (2

m

=jSj)


(1)

for it.

3.1.2 A simple case of ED

We now sketch how the above lower bound protocol can be used to give a public-coin HVSZK proof

system for a simpli�ed version of ED. We call a distribution X at if all strings in the support of

X have the same probability. That is, X is the uniform distribution on some subset of its domain.

The simplifying assumptions we make are that we are working with a pair of distributions X and

Y (encoded by circuits which sample from them) such that

1. X and Y are both at.

2. jH(X)�H(Y )j > k, where k is the \security parameter."

Now, we want to give a statistical zero-knowledge protocol by which M can convince A to accept

if H(X) > H(Y ) + k and M cannot convince A to accept if H(Y ) < H(X) + k. Since X and Y

are at, they are uniform over subsets S

X

and S

Y

of their domain. By the de�nition of entropy,

jS

X

j = 2

H(X)

and jS

Y

j = 2

H(Y )

. So proving that H(X) � H(Y ) is equivalent to proving that

jS

X

j � jS

Y

j. So, one approach would be to use the above lower bound protocol to prove a lower

bound on jS

X

j, and use an upper bound protocol with similar properties (cf., [8]) to prove an upper

bound on jS

Y

j. Note that this by itself would do for placing the simpli�ed version of ED in AM

(and similar ideas can be applied to the general version ED; see x3.1.3).

The problem with the above is that it requires the prover to reveal H(X) and H(Y ) (or approx-

imations of these quantities). In fact, the zero-knowledge properties asserted above are relative to

the given/asserted lower bound, and do not seem to hold when the bound is not given. Indeed,

there seems to be no e�cient way for the veri�er to approximate the size of S, even when given a

membership oracle to S. To overcome this di�culty, we adopt a technique of Okamoto [16] (which

he calls \complementary usage of messages").

Recall that we are given a circuit (which we also denote Y ) which samples from Y , and let

m denote the length of the input to this circuit. So, for any point y in the support of Y , we let




Y

(y) � f0; 1g

m

denote the set of inputs to the circuit which yield output y. Then, Pr [Y = y] =

2

�m

� j


Y

(y)j. Since Y is at, we have

8

In case h

�1

(0) \ S = ; the output is de�ned to be a special failure symbol.

10



j


Y

(y)j = 2

m

�Pr [Y = y] =

�

2

m

� 2

�H(Y )

if y 2 S

Y

.

0 otherwise.

Thus, proving an upper bound on H(Y ) is equivalent to proving a lower bound on 


Y

(y) for any

y in the support of Y .

The key observation is that for any y 2 S

Y

, jS

X

� 


Y

(y)j = 2

H(X)+m�H(Y )

. So proving that

H(X) � H(Y ) (which was our original goal) is equivalent to proving that jS

X

� 


Y

(y)j � 2

m

.

Now we've reduced the problem to proving a lower bound for a set size which we know (namely

2

m

, which can be computed by just looking at the circuit which computes Y )! This gives rise to

the following \zero-knowledge" protocol.

Proof system (M;A) for simple case of ED, on input (X; Y )

Let m denote the input length of Y , and n denote the output length of X .

1. M selects y distributed according to Y and sends y to A.

2. A selects a hash function h uniformly from H

n+m;m

and sends h to M .

3. M selects (x; r) uniformly from (S

X

� 


Y

(y))\ h

�1

(0) and sends (x; r) to A.

4. A checks that Y (r) = y and that h(x; r) = 0. If either does not hold, A rejects immediately

and the protocol ends.

5. M selects q uniformly from 


X

(x) and sends q to A.

6. A checks that X(q) = x and accepts if this holds and rejects otherwise.

The last two steps in the above protocol are for M to prove that x is in fact in the support of X .

Now it follows immediately from our earlier discussion and the completeness and soundness of the

lower bound protocol that this protocol is also complete and sound.

1. Completeness: If H(X) > H(Y )+k andX and Y are both at, thenA accepts with probability

at least 1� 2

�k

.

2. Soundness: If H(Y ) < H(X) + k and X and Y are both at, then no matter what strategy

M uses, A accepts with probability at most 2

�k

.

The statistical zero-knowledge property of this proof system also follows readily from that of the

lower bound protocol. Consider the following simulator:

Simulator for simpli�ed ED proof system, on input (X; Y )

1. Choose q and r uniformly at random and let x = X(q), y = Y (r).

2. Choose h uniformly from fh 2 H

n+m;m

: h(x; r) = 0g.

3. Output (y; h; (x; r); q).

The deviation of this simulator can be analyzed as follows: The string y is clearly distributed

identically in both the proof system and the simulator. In the simulator, conditioned on y, the

pair (x; r) is selected uniformly from S

X

� 


Y

(y), and then h is selected uniformly among those

that map (x; r) to 0. In the protocol, conditioned on y, the function h is selected uniformly in

H

n+m;m

and then (x; r) is selected uniformly from (S

X

�


Y

(y))\ h

�1

(0). Thus, by Lemma 3.2, it

follows that if H(X)�H(Y ) > k (i.e., jS

X

�


Y

(y)j > 2

m+k

), then the distributions on (y; h; (x; r))

in the simulator and the proof system have statistical di�erence 2

�
(k)

. Finally, conditioned on

(y; h; (x; r)), the string q is selected uniformly from 


X

(x) in both distributions, and so it does not

increase the statistical di�erence.

11



3.1.3 Treating general instances of ED

There are several problems in generalizing the proof system of x3.1.2 to arbitrary instances of

ED. Clearly, the simplifying assumptions we made will not hold in general. The assumption that

jH(X)� H(Y )j > k is easy to achieve. If we let X

0

(resp., Y

0

) consist of k independent copies of

X (resp., Y ), then H(X

0

) = k �H(X) (resp., H(Y

0

) = k � H(Y )). So, the di�erence in entropies is

multiplied by k.

The assumption that X and Y are both at presents more serious di�culties. As we will see,

taking many independent copies of each distribution yields distributions that are \nearly at" (in

a sense to be made precise later), but the protocol still needs further modi�cation to work with

\nearly at" rather than truly at distributions. The �rst problem is that if Y is only nearly at,

then M may select y to be \too heavy" (i.e., y has probability much greater than 2

�H(Y )

), allowing

him too many choices for r and leading to violation of the soundness property. Similarly, although

there are only about 2

H(X)

choices for x that have probability near 2

�H(X)

, if X is only nearly

at, there may be many more choices for x (alas these are \too light" { i.e., have probability much

smaller than 2

�H(X)

). This too gives M too much freedom (this time in choice of x) and may lead

to violation of the soundness property.

In order to solve these problems, we use two subprotocols of Okamoto [16]: The �rst is a

\sample generation" protocol, which is a protocol forM and A to select a sample from a nearly at

distribution Y such that no matter what strategy M uses, the sample will not be too heavy. This

will replace Step 1 in the proof system of x3.1.2, and guarantee that M does not have too much

freedom in its choice of r (in Step 3). The second protocol is a \sample test" protocol, which is a

way for M to prove that a sample x taken from a nearly at distribution X is not too light. This

will replace Steps 5 and 6 in the proof system of x3.1.2, and guarantee that M does not have too

much freedom in its choice of x (in Step 3).

We stress that both of these subprotocols will be public-coin and will possess appropriate

simulability properties to ensure that the resulting protocol for ED is a public-coin HVSZK proof

system. In the rest of this section, we will specify the properties of these subprotocols, and formulate

and analyze the proof system for ED assuming that these subprotocols exist. In Section 4, we present

these subprotocols and prove that they have the asserted properties.

3.2 Flattening distributions

As a preliminary step towards treating the general instances of ED, we formulate the process of

\attening" distributions (i.e., making them \nearly at" by taking many independent copies).

De�nition 3.3 (heavy, light and typical elements): Let X be a distribution, x an element pos-

sibly in its support, and � a positive real number. We say that x is �-heavy (resp., �-light) if

Pr [X = x] � 2

�

� 2

�H(X)

(resp., Pr [X = x] � 2

��

� 2

�H(X)

). Otherwise, we say that x is �-typical.

A natural relaxed de�nition of atness follows. The de�nition links the amount of slackness allowed

in \typical" elements with the probability mass assigned to non-typical elements.

De�nition 3.4 (at distributions): A distribution X is called �-at if for every t > 0 the proba-

bility that an element chosen from X is t ��-typical is at least 1� 2

�t

2

+1

.

By straightforward application of Hoe�ding Inequality (cf., Appendix C), we have

12



Lemma 3.5 (attening lemma): Let X be a distribution, k a positive integer, and 


k

X denote

the distribution composed of k independent copies of X. Suppose that for all x in the support of X

it holds that Pr [X = x] � 2

�m

. Then 


k

X is

p

k �m-at.

The key point is that the entropy of 


k

X grows linearly with k, whereas its deviation from atness

grows signi�cantly more slowy (i.e., linear in

p

k) as a function of k.

3.3 Subprotocol speci�cations

Below (as above), all distributions are given in form of a circuit which generate them. The input

to these protocols will consist of a distribution, denoted X . We will denote by m (resp., n) the

length of the input to (resp., output of) the circuit generating the distribution X . In all protocols

party A is required to run in polynomial-time (in length of the common input), which means in

particular that the total number of bits exchanged in the interaction is so bounded.

De�nition 3.6 (Sample Generation Protocol): A public-coin protocol (M;A) is called a sample

generation protocol if on common input a distribution X and parameters �; t, such that X is �-at

and t � �,

9

the following holds:

1. (\completeness"): If both parties are honest then A's output will be t��-typical with probability

at least 1�m � 2

�
(t

2

)

.

2. (\soundness"): If A is honest then, no matter how M plays, A's output is 2

p

t� ��-heavy

with probability at most m � 2

�
(t

2

)

. (A may abort with no output.

10

)

3. (strong \zero-knowledge"): There exists a polynomial-time simulator S so that for every

(X;�; t) as above, the following two distributions have statistical di�erence at most m�2

�
(t

2

)

:

(A) Execute (M;A) on common input (X;�; t) and output the view of A, appended by A's

output.

(B) Choose x � X and output (S((X;�; t); x); x).

The above zero-knowledge property is referred to as strong since the simulator cannot produce

a view-output pair by �rst generating the view and then computing the corresponding output.

Instead, the simulator is forced (by the explicit inclusion of x in Distribution (B)) to generate a

consistent random view for a given random output (of A). We comment that the trivial protocol in

which A uniformly selects an input r to the circuit X and reveals both r and the output x = X(r)

cannot be used since the simulator is only given x and it may be di�cult to �nd an r yielding x in

general. Still, a Sample Generation protocol is implicit in Okamoto's work [16] (where it is called

a \Pre-test").

Theorem 3.7 (implicit in [16]) There exists a public-coin sample generation protocol. Further-

more, the number of communication rounds in the protocol is linear in q.

A proof of Theorem 3.7 is presented in Section 4.

De�nition 3.8 (Sample Test Protocol): A public-coin protocol (M;A) is called a sample test pro-

tocol if on common input a distribution X, a string x 2 f0; 1g

n

and parameters �; t, such that X

is �-at and t � �,the following holds:

9

The condition t � � is to simplify the error expressions and will always be satis�ed in our applications.

10

It will indeed do so if detecting cheating.

13



1. (\completeness"): If both parties are honest and x is t��-typical then A accepts with probability

at least 1�m � 2

�
(t

2

)

.

2. (\soundness"): If x is 6

p

t� ��-light and A is honest then, no matter how M plays, A accepts

with probability at most m � 2

�
(t

2

)

.

3. (weak \zero-knowledge"): There exists a polynomial-time simulator S so that for every

(X;�; t) as above and for every t ��-typical x, the following two distributions have statistical

di�erence at most m � 2

�
(t

2

)

:

(A) Execute (M;A) on common input (X; x;�; t) and output the view of A, prepended by x.

(B) On input (X; x;�; t) and an auxiliary input r uniformly distributed in 


X

(x), output

(x; S((X;x;�; t); r)).

The above zero-knowledge property is referred to as weak since the simulator gets a random r

giving rise to x (i.e., x = X(r)) as an auxiliary input (whereas A is only given x). We comment

that a simple public-coin testing protocol exists in case one can approximate the size of 


X

(x) and

uniformly sample from it. However, this may not be the case in general. Still, a Sample Testing

protocol is implicit in Okamoto's work [16] (where it is called a \Post-test").

Theorem 3.9 (implicit in [16]) There exists a public-coin sample testing protocol. Furthermore,

the number of communication rounds in the protocol is linear in q.

A proof of Theorem 3.9 is presented in Section 4.

3.4 The protocol for ED

We assume, without loss of generality, that the number of input (resp., output) bits of X equals

the number for Y (e.g., by augmenting one circuit by dummy input or output bits). Let m and n

denote the corresponding quantities. Furthermore, let s denote the total length of the description

of both X and Y . The �rst step in the following protocol is an \ampli�cation step" which yields

distributions which are adequately at. The protocol uses subprotocols for Sample Generation and

Sample Testing as guaranteed by Theorems 3.7 and 3.9, respectively.

Proof system (M;A) for ED, on input (X; Y )

1. Both A and M set V = 


k

X and W = 


k

Y , where k

def

= 2

16

�m

6

� s.

2. The parties utilize a Sample Generation protocol, with inputs (W;

p

k �m;

p

s), obtaining an

output denoted w.

3. Party A uniformly selects h 2 H

kn+km;km

, and sends it to M .

4. M selects (v; r) from the distribution V � 


W

(w)

11

conditioned on h(v; r) = 0, and sends

(v; r) to A.

5. A checks that W (r) = w and that h(v; r) = 0. If either does not hold, A rejects immediately

and the protocol ends.

6. The parties utilize a Sample Test protocol, with inputs (V; v;

p

k �m;

p

s), and A accepts i�

the test was concluded satisfactorily.

11

Here, and in the rest of the paper, we write use the same notation for a set (e.g., 


W

(w)) and the uniform

distribution on that set.

14



We �rst show that the ampli�cation step (i.e., Step 1) is indeed appropriate. That is,

Fact 3.10 Distributions V and W are

p

k �m-at.

Fact 3.10 is immediate by Lemma 3.5 and the setting of the parameters. Given Fact 3.10, we turn

to the essence of the analysis of the protocol. The completeness property of the protocol will follow

from the zero-knowledge one, and so we start by establishing the soundness property.

Lemma 3.11 (soundness): Suppose that H(Y ) > H(X) + 1. Then A accepts with probability at

most exp(�
(s)).

Proof: By the hypothesis we have H(W ) > H(V )+k. By Fact 3.10, both distributions are �-at,

with � =

p

k �m = 2

8

m

4

p

s. Observe that the Sample Generation and Testing subprotocols are

invoked with parameters t =

p

s and � =

p

k �m. Thus, the soundness condition of the Sample

Generation protocol implies that with probability at most km � exp(�
(t

2

)) = exp(�
(s)) the

outcome, w, is 2

p

t� ��-heavy.

Suppose that w is not 2

p

t� ��-heavy. Then we claim that M will be forced to select a v that

is 6

p

t� ��-light with probability at least 1� exp(�
(s)). By Lemma 3.1, it su�ces to show that

the number of pairs (v; r) such that W (r) = w and v is not 6

p

t� ��-light is at most 2

�
(s)

� 2

km

.

Since w is not 2

p

t� ��-heavy, there are at most 2

km�H(W )+2

p

t���

values of r such thatW (r) = w.

In addition, the number of non-6

p

t� ��-light choices for v is at most 2

H(V )+6

p

t���

(as each such

v has probability at least 2

�6

p

t���

� 2

�H(V )

under V ). Thus, the total number of pairs (v; r) such

that W (r) = w and v is not 6

p

t� ��-light is at most

2

km�H(W )+2

p

t���

� 2

H(V )+6

p

t���

= 2

8

p

t���+H(V )�H(W )

� 2

km

:

However, by our hypothesis and our setting of parameters

8

p

t� ��+H(V )� H(W ) < 8

p

t� ��� k

= (8 � 2

12

� 2

16

) �m

6

s < �s

Thus, by Lemma 3.1, the probability that M can return a suitable non-6

p

t� ��-light v in Step 4

is at most exp(�
(s)). On the other hand, if M returns a 6

p

t� ��-light v then the probability

that it will be accepted by the Sample Test is at most km � exp(�
(t

2

)) = exp(�
(s)). The claim

follows.

Simulator for the above protocol, on input (X; Y )

1. Set V = 


k

X and W = 


k

Y , where k

def

= 2

16

�m

6

� s.

2. Select uniformly r

0

; r 2 f0; 1g

km

, and let v = V (r

0

) and w = W (r).

3. Simulate an execution of the Sample Generation protocol on input ((W;

p

k � m;

p

s); w),

obtaining a view, denoted �, ending with output w.

4. Party A uniformly selects h 2 H

kn+km;km

so that h(v; r) = 0.

12

5. Simulate an execution of the Sample Generation protocol on input (V; v;

p

k � m;

p

s) and

auxiliary input r

0

, obtaining a view, denoted �.

12

This step can be e�ciently implemented for all popular constructions of 2-universal families (e.g., the linear

transformations family). Also note that by the 2-universal property of such families, functions mapping any �xed

string to 0 always exist.

15



6. Output ((�;w); h; (v; r); �).

The correctness of this simulator will rely on the following variant of the Leftover Hash Lemma [14],

proved in Appendix D.

Lemma 3.12 (implicit in [16]) Let H be a 2-universal family of hash functions mapping a domain

D to a range R and let 0 be any �xed element of R. Let Z be a distribution on D such that

with probability 1 � � over z selected according to Z, Pr [Z = z] � "=jRj. Then the following two

distributions have statistical di�erence at most 3(� + "

1=3

):

(A) Choose h uniformly in H. Select z according to Z conditioned on h(z) = 0. Output (h; z).

(B) Choose z according to Z. Select h uniformly in fh

0

2 H : h(z) = 0g. Output (h; z).

Lemma 3.13 (zero-knowledge and completeness): Suppose that H(X) > H(Y ) + 1. Then the

statistical di�erence between the view of the veri�er on common input (X; Y ) and the output of

the simulator on input (X; Y ) is at most exp(�
(s)). Furthermore, with probability at least 1 �

exp(�
(s)), the simulator generates an accepting transcript, and so in the real interaction the

veri�er accepts with probability at least 1� exp(�
(s)).

Proof: Analogously to the proof of Lemma 3.11, we note that both V and W are �-at, for

� = 2

8

m

4

p

s, and we have H(V ) > H(W ) + k.

By the strong zero-knowledge property of the Sample Generation protocol, the pair (�;w) in

the output of the simulator has statistical di�erence at most km � 2

�
(s)

= 2

�
(s)

from a real

execution of that protocol. Since W is �-at, the string w is t�-light with probability at most

2

�
(s)

in the simulator. Thus, we consider the distributions on (h; (v; r)) conditioned on any pair

(�;w) such that w is not t�-light. To analyze this, we apply Lemma 3.12 with Z = V � 


W

(w),

D = f0; 1g

kn+km

, and R = f0; 1g

km

. Distribution (A) (resp., (B)) in Lemma 3.12 corresponds to

the distribution of (h; (v; r)) in the proof system (resp., simulator). Since V is �-at, the following

holds with probability � 1� 2

�s+1

over (v; r) selected according to V � 


W

(w):

Pr [V � 


W

(w) = (v; r)] = Pr [V = v] �

1

j


W

(w)j

< 2

�H(V )+t�

�

1

2

km�H(W )�t�

<

2

�k+2t�

jRj

=

2

�2

16

m

6

s+2�2

8

m

4

s

jRj

�

2

�s

jRj

Thus, we can take � = 2

�s+1

and " = 2

�s

in Lemma 3.12, and see that the two distributions on

(h; (v; r)) have statistical di�erence 2

�
(s)

(conditioned on history (�;w)). Finally, including � only

increases the statistical di�erence by 2

�
(s)

by the weak zero-knowledge property of the Sample

Test protocol (noting that in the simulator, v is t�-light with probability at most 2

�s+1

and r is

distributed uniformly in 


V

(v)).

16



4 The Sample Generation and Test Protocols

In this section, we present Okamoto's protocols for generating and testing samples from a nearly

at distribution. Recall that these protocols must be public coin and furthermore must satisfy

certain \zero-knowledge" properties.

4.1 Overview

Sample Generation. Here the input to the protocol (M;A) is a �-at distribution X (encoded

by a circuit) and the output should be a sample x from this distribution. We require that, no

matter what strategy M follows, x will not be too heavy. If, however, both parties play honestly,

then x should be nearly typical with high probability, and should be simulatable for an externally

speci�ed x. In particular, the protocol should not reveal an input to the circuit X that yields x,

as the simulator is only given x and it may be di�cult to �nd an input yielding x in general. If

we remove this condition, the problem becomes trivial: A could just sample x according to X and

reveal both x and the input used to produce it. Since X is nearly at, x will be nearly typical with

high probability.

Okamoto's solution to this problem has the following general structure: M proposes a sample

x (which is supposed to be distributed according to X) and sends it to A. (Of course, if M is

dishonest, he can choose x to be too heavy.) Then M and A engage in a short \game" which ends

by M proposing another sample x

0

. Roughly speaking, this game has the following properties:

1. If x is too heavy, then no matter what strategyM follows, he will be forced to select x

0

which

is noticeably lighter than x.

2. If x is not too heavy, then no matter what strategyM follows, he will be forced to choose x

0

that is also not too heavy.

3. If x is nearly typical and M plays honestly, then x

0

will also be nearly typical.

4. If M plays honestly, then A's view of the game is simulatable for an externally speci�ed x

0

.

Clearly, repeating this game many times to obtain a sequence of samples x

0

; : : : ; x

m

(where x

0

is proposed by M and x

i+1

= x

0

i

) will have the e�ect of pushing a heavy proposal for x

0

closer and

closer to the nearly typical set. Taking m su�ciently large (but still polynomial in the appropriate

parameters), x

m

will be guaranteed to be not too heavy, no matter how M plays. On the other

hand, if M plays honestly, all the samples will be nearly typical. Finally, the simulability property

of the game enables the entire Sample Generation protocol to be simulated \backwards" for an

externally speci�ed x

m

.

Sample Test. Here the input to the protcol (M;A) is a �-at distribution X (encoded by a

circuit) together with a string x from the domain of X . At the end of the protocol, A accepts or

rejects. We require that if x is too light, A should reject with high probabability. If, however, x

is nearly typical and both parties play honestly, then A should accept with high probability, and,

moreover, A's view of the interaction should be simulatable (given additionally a random input for

X which yields x).

The general structure of this protocol is very similar to that of the Sample Generation protocol.

Given x,M and A engage in a short game which ends byM proposing another sample x

0

. Roughly

speaking, this game has the following properties:

17



1. If x is too light, then no matter what strategyM follows, he will be forced to select x

0

which

is noticeably lighter than x.

2. If x is nearly typical and M plays honestly, then x

0

will also be nearly typical.

3. If both parties play honestly, then A's view of the game is simulatable (given a random input

to X which yields x).

Clearly, repeating this game many times to obtain a sequence x

0

; : : : ; x

m

(where x

0

= x and

x

i+1

= x

0

i

) will have the e�ect of making a light input sample lighter and lighter. Taking m

su�ciently large, x

m�1

will be so light that it has zero probability, so there is no x

m

lighter than

x

m�1

and A will reject! Notice that we do not care what happens in the pushing game if x

i

is not

too light and M plays dishonestly; if the original input is too light (which is the the only time we

worry about a dishonest M), all the subsequent x

i

's will also be too light with high probability.

On the other hand, if the original input x is nearly typical and M plays honestly, all the samples

will be nearly typical. Finally, the simulability property of the game enables the entire Sample

Generation protocol to be simulated \forwards" given coins for x. Amazingly, the game used for

the Sample Test protocol is identical to the game used for the Sample Generation protocol. We

describe this \pushing" game in the next section, and subsequently give formal descriptions of the

two protocols.

4.2 The pushing game

Throughout the remainder of Section 4, X is a �-at distribution encoded by a circuit and m

(resp., n) denotes the length of the input (resp., output) of the circuit generating X . Recall that

for positive integers k and `, H

k;`

denotes a 2-universal family of hash functions mapping f0; 1g

k

to f0; 1g

`

.

The basic game underlying the Sample Generation and Sample Test protocols is the following

1-round protocol (called \sequentially recursive hashing" in [16]):

Pushing game (M;A), on input (X; x;�; t), where x 2 f0; 1g

n

and t � �

1. A chooses h uniformly from H

m+n;m�3t�

and sends h to M .

2. M chooses (r; x

0

) from the distribution 


X

(x) � X , conditioned on h(r; x

0

) = 0, and sends

(r; x

0

) to A. (If there is no such pair (r; x

0

), then M sends fail to A.)

3. A checks that X(r) = x and h(r; x

0

) = 0. If both conditions hold, A outputs x

0

. Otherwise A

rejects.

Observe that if j


X

(x)j = ;, then A rejects with probability 1. In order to describe remaining

the properties of the pushing game, we de�ne the weight of a string x relative to a circuit X by

wt

X

(x) = log(Pr [X = x] � 2

H(X)

). So, x is -heavy i� wt

X

(x) �  and x is -light i� wt

X

(x) � �.

Also note that for x in the support of X , jwt

X

(x)j � m. When the distribution X is clear from the

context, we will often write wt(x) instead of wt

X

(x). The following lemma asserts that no matter

how M plays, if the input to the game is atypical, then the output is noticeably lighter. (The

behavior on typical inputs is analyzed later | in Lemma 4.2.)

Lemma 4.1 If A follows the prescribed strategy in the pushing game, then no matter what strategy

M uses, the following hold:

18



1. (\heavy gets lighter") With probability � 1� 2

�
(t

2

)

, either wt(x

0

) < max(wt(x)� 1; 2

p

t�)

or A rejects.

2. (\light gets lighter") If wt(x) � �6

p

t� � �, then with probability � 1 � 2

�
(t

2

)

, either

wt(x

0

) < wt(x)� 1 or A rejects.

Proof: 1. Let S be the set of x

0

such that wt(x

0

) � max(wt(x)� 1; 2

p

t� ��). We need to show

that with probability at most 2

�
(t

2

)

over the choice of h from H

m+n;m�3t�

, there exists a pair

(r; x

0

) 2 


X

(x)� S such that h(x; r

0

) = 0. By the soundness of the standard lower-bound protocol

(Lemma 3.2), it su�ces to prove that

j


X

(x)� Sj � 2

�
(t

2

)

� 2

m�3t�

:

The intuition is that the number of x

0

that are heavier than max(wt(x)� 1; 2

p

t� ��) is so small

that not even the size of 


X

(x) can compensate.

By de�nition of wt(x), j


X

(x)j = 2

m�H(X)+wt(x)

. We now bound jSj. First, since X is �-at,

we have

2

�4t�+1

� Pr

x

0

�X

h

wt(x

0

) � 2

p

t� ��

i

� Pr [X 2 S]

=

X

x

0

2S

Pr

�

X = x

0

�

On the other hand, every x

0

2 S is (wt(x)� 1)-heavy, so Pr [X = x

0

] � 2

�H(X)+wt(x)�1

. Thus,

2

�4t�+1

� jSj � 2

�H(X)+wt(x)�1

:

Putting everything together, we have

j


X

(x)� Sj � 2

m�H(X)+wt(x)

�

�

2

�4t�+1

2

�H(X)+wt(x)�1

�

= 2

m�4t�+2

� 2

�t

2

+2

� 2

m�3t�

;

as desired. (In the last inequality, we used the fact that t � �.)

2. Let S = fx

0

: wt(x

0

) � wt(x)�1g. Again, it su�ces to show that j


X

(x)�Sj � 2

�
(t

2

)

�2

m�3t�

.

Here the intuition is that j


X

(x)j is so small (since x is so light) that the only way forM to succeed

is to choose x

0

even lighter than x (since there cannot be too many strings of noticeable probability

mass). This time we bound jSj by dividing S into two parts. De�ne

S

1

= fx

0

: wt(x)� 1 � wt(x

0

) � �2

p

t� ��g

S

2

= fx

0

: �2

p

t� �� < wt(x

0

)g;

so that S = S

1

[ S

2

. Since every x

0

2 S

2

has probability mass greater than 2

�H(X)�2

p

t���

, we

must have

jS

2

j < 2

H(X)+2

p

t���

� 2

H(X)�wt(x)�4t�

;

19



where the last inequality follows from wt(x) � �6

p

t� �� and � � t. We now bound jS

1

j. Since

X is �-at, we have

2

�4t�+1

� Pr

�

X

0

2 S

1

�

� jS

1

j � 2

�H(X)+wt(x)�1

:

Thus, jS

1

j � 2

H(X)�wt(x)�4t�+2

, and so

jSj = jS

1

j+ jS

2

j < 2

H(X)�wt(x)�4t�+3

;

and

j


X

(x)� Sj � 2

m�H(X)+wt(x)

� 2

H(X)�wt(x)�4t�+3

= 2

m�4t�+3

� 2

�t

2

+3

� 2

m�3t�

;

as desired.

The pushing game has the following simulability and \completeness" properties when both parties

are honest:

Lemma 4.2 If both parties follow the protocol in the pushing game and x is t�-typical, then the

following two distributions have statistical di�erence at most 2

�
(t

2

)

:

(A) Execute the pushing game on input (X; x;�; t) to obtain (h; r; x

0

). Output (h; r; x

0

).

(B) Let x

0

be distributed according to X and let r be selected uniformly from 


X

(x). Choose

h uniformly in H

m+n;m�3t�

subject to h(r; x

0

) = 0. Output (h; r; x

0

).

Proof: We apply Lemma 3.12 with Z = 


X

(x) � X , D = f0; 1g

m+n

and R = f0; 1g

m�3t�

.

Distribution (A) (resp., (B)) in Lemma 3.12 corresponds to Distribution (A) (resp., (B)) above.

Since X is �-at, the following holds with probability � 1� 2

�t

2

+1

over (r; x

0

) selected according

to 


X

(x)�X :

Pr

�




X

(x) = (r; x

0

)

�

= Pr

�

X = x

0

�

�

1

j


X

(x)j

< 2

�H(X)+t�

�

1

2

m�H(X)�t�

=

2

�t�

jRj

Thus, we can take � = 2

�t

2

+1

and " = 2

�t�

� 2

�t

2

in Lemma 3.12, and see that the two distributions

have statistical di�erence 2

�
(t

2

)

.

4.3 The protocols

The sample generation and test protocols simply consist of many repetitions of the basic pushing

game:

20



Sample Generation Protocol (M;A), on input (X;�; t), where t � �

1. M selects x

0

2 f0; 1g

n

according to X and sends x

0

to A.

2. Repeat for i from 1 to m: M and A execute the Pushing Game on input (X; x

i�1

;�; t) and

let x

i

be the output.

3. A outputs x

m

unless it rejected in one of the Pushing Games, in which case it rejects.

Sample Test Protocol (M;A), on input (X; x;�; t), where x 2 f0; 1g

n

and t � �

1. Let x

0

= x.

2. Repeat for i from 1 to m + 1: M and A execute the Pushing Game on input (X; x

i�1

;�; t)

and let x

i

be the output.

3. A rejects if it rejected in any of the Pushing Games, else it accepts.

4.4 Correctness of Sample Generation Protocol

Using the properties of the Pushing Game, we now prove that the Sample Generation Protocol

satis�es De�nition 3.6 and thus Theorem 3.7 holds.

Soundness. By Lemma 4.1 (Part 1) and induction, we see that for every 0 � i � m, with

probability at least 1� i �2

�
(t

2

)

, either wt(x

i

) < max(wt(x

0

)� i; 2

p

t�) or A rejects. In particular,

since wt(x

0

) � m, with probability at least 1�m � 2

�
(t

2

)

, we have

wt(x

m

) < max(wt(x

0

)�m; 2

p

t� ��) = 2

p

t� ��

unless A rejects, as desired.

Completeness and Zero-Knowledge. First we observe that the completeness condition fol-

lows from the strong zero-knowledge condition: In Distribution (B) of De�nition 3.6, x is distributed

according to X , and hence is t�-typical with probability � 1�2

�t

2

+1

by the �-atness of X . Since

x corresponds to the output of the Sample Generation protocol in Distribution (A) and Distribu-

tions (A) and (B) have statistical di�erence at most 2

�
(t

2

)

, the output of the Sample Generation

Protocol must be t�-typical with probability at least 1� 2

�t

2

+1

� 2

�
(t

2

)

= 1� 2

�
(t

2

)

.

Now we prove the zero-knowledge condition. Consider the following probabilistic polynomial-

time simulator:

Simulator for Sample Generation Protocol, on input ((X;�; t); x)

1. Let x

m

= x.

2. For i from m down to 1 repeat:

(a) Choose r

i�1

uniformly from f0; 1g

m

and let x

i�1

= X(r

i�1

).

(b) Choose h

i

uniformly from H

m+n;m�3t�

subject to h

i

(r

i�1

; x

i

) = 0.

3. Output (x

0

; h

1

; (r

0

; x

1

); h

2

; (r

1

; x

2

); : : : ; h

m

; (r

m�1

; x

m

)):

21



We prove by induction on i that the distribution on t

i

= (x

0

; h

1

; (r

0

; x

1

); : : : ; h

i

; (r

i�1

; x

i

)) in

the output of the simulator (when x is chosen according to X) has statistical di�erence at most

i � 2

�
(t

2

)

from the veri�er's view of the Sample Generation protocol up to the end of the i'th

execution of the Pushing Game. Clearly this is true for i = 0, as in both cases x

0

is distributed

according to X . Now suppose it is true for i; we will prove it for i + 1. From the following two

observations it follows that the statistical di�erence only increases by 2

�t

2

+1

+ 2

�
(t

2

)

= 2

�
(t

2

)

when going from i to i+ 1:

1. In the simulator, x

i

is t�-typical with probability at least 1� 2

�t

2

+1

.

2. For any history t

i

= (x

0

; h

1

; (r

0

; x

1

); : : : ; h

i

; (r

i�1

; x

i

)) in which x

i

is t�-typical, the following

two distributions have statistical di�erence 2

�
(t

2

)

:

(A) A's view of the (i+ 1)'st Pushing Game conditioned on history t

i

.

(B) The distribution of (h

i+1

; (r

i

; x

i+1

)) conditioned on history t

i

in the output of the sim-

ulator.

Observation 1 is immediate from the fact that x

i

is distributed according to X in the simulator

and X is �-at. Observation 2 follows from Lemma 4.2, observing that conditioned on history

t

i

, the triple (h

i+1

; (r

i

; x

i+1

)) in the output of the simulator is selected exactly according to the

Distribution (B) in Lemma 4.2. That is, conditioned on history t

i

, r

i

is selected uniformly from




X

(x

i

), x

i+1

is distributed according to X , and h is selected uniformly in H

m+n;m�3t�

subject to

h(r

i

; x

i+1

) = 0.

4.5 Correctness of Sample Test Protocol

Finally, we prove that the Sample Test Protocol satis�es De�nition 3.8 and thus Theorem 3.9 holds.

Soundness. By Lemma 4.1 (Part 2) and induction, we see that if wt(x) � �6

p

t� � �, then

with probability at least 1 � i � 2

�
(t

2

)

, for every 0 � i � m + 1, wt(x

i

) < wt(x

0

) � i (or A

rejects). In particular, since wt(x

0

) < H(X), with probability at least 1 � m � 2

�
(t

2

)

, we have

wt(x

m

) < H(X)�m unless A rejects at some iteration. Since m�H(X) + wt(x

m

) = log j


X

(x

m

)j

cannot be negative unless j


X

(x

m

)j = ;, it follows that with probability at least 1�m � 2

�
(t

2

)

, A

must reject in one of the iterations.

Completeness and Zero-Knowledge. First we prove the zero-knowledge condition. Consider

the following probabilistic polynomial-time simulator:

Simulator for Sample Test Protocol, on input ((X; x;�; t); r)

1. Let x

0

= x and r

0

= r.

2. For i from 1 to m repeat:

(a) Choose r

i

uniformly from f0; 1g

m

and let x

i

= X(r

i

).

(b) Choose h

i

uniformly from H

m+n;m�3t�

subject to h

i

(r

i�1

; x

i

) = 0.

3. Output (x

0

; h

1

; (r

0

; x

1

); h

2

; (r

1

; x

2

); : : : ; h

m+1

; (r

m

; x

m+1

)):

22



We prove by induction on i that the distribution on t

i

= (x

0

; h

1

; (r

0

; x

1

); : : : ; h

i

; (r

i�1

; x

i

)) in

the output of the simulator (when r is selected uniformly from 


X

(x) and x is t�-typical) has

statistical di�erence at most i � 2

�
(t

2

)

from the veri�er's view of the Sample Test protocol up to

the end of the i'th execution of the Pushing Game. Clearly this is true for i = 0. The induction

step is proved analogously to the argument used for the Sample Generation Protocol, using the

same two observations and noting that, although the simulator works in reverse order, the selection

of r

i

and h

i

is as before.

Now we observe that the completeness condition follows from the weak zero-knowledge condition

and the particular simulator we have given above. Speci�cally, the above simulator always outputs

transcripts which would make A accept. Since it has statistical di�erence at most m � 2

�
(t

2

)

from

the Sample Test protocol, A must accept in the Sample Test protocol with probability at least

1�m � 2

�
(t

2

)

.

Acknowledgments

We thank Amit Sahai for many discussions about [16] and collaboration at an early stage of this

research.

References

[1] William Aiello and Johan H�astad. Statistical zero-knowledge languages can be recognized in

two rounds. Journal of Computer and System Sciences, 42(3):327{345, June 1991.

[2] L�aszl�o Babai. Trading group theory for randomness. In Proceedings of the Seventeenth Annual

ACM Symposium on Theory of Computing, pages 421{429, 1985.

[3] L�aszl�o Babai and Shlomo Moran. Arthur-Merlin games: A randomized proof system and a

hierarchy of complexity classes. Journal of Computer and System Sciences, 36:254{276, 1988.

[4] Michael Ben-Or, Oded Goldreich, Sha� Goldwasser, Johan H�astad, Joe Kilian, Silvio Micali,

and Phillip Rogaway. Everything provable is provable in zero-knowledge. In S. Goldwasser,

editor, Advances in Cryptology|CRYPTO '88, volume 403 of Lecture Notes in Computer

Science, pages 37{56. Springer-Verlag, 1990, 21{25 August 1988.

[5] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. Wiley Series in

Telecommunications. John Wiley & Sons, Inc., 2nd edition, 1991.

[6] Giovanni Di Crescenzo, Tatsuaki Okamoto, and Moti Yung. Keeping the SZK-veri�er honest

unconditionally. In Burton S. Kaliski Jr., editor, Advances in Cryptology|CRYPTO '97, vol-

ume 1294 of Lecture Notes in Computer Science, pages 31{45. Springer-Verlag, 17{21 August

1997.

[7] Shimon Even, Alan L. Selman, and Yacov Yacobi. The complexity of promise problems with

applications to public-key cryptography. Information and Control, 61(2):159{173, May 1984.

[8] Lance Fortnow. The complexity of perfect zero-knowledge. In Silvio Micali, editor, Advances

in Computing Research, volume 5, pages 327{343. JAC Press, Inc., 1989.

23



[9] Martin F�urer, Oded Goldreich, Yishay Mansour, Michael Sipser, and Stathis Zachos. On

completeness and soundness in interactive proof systems. In Silvio Micali, editor, Advances in

Computing Research, volume 5, pages 429{442. JAC Press, Inc., 1989.

[10] Oded Goldreich and Eyal Kushilevitz. A perfect zero-knowledge proof system for a problem

equivalent to the discrete logarithm. Journal of Cryptology, 6:97{116, 1993.

[11] Oded Goldreich, Amit Sahai, and Salil Vadhan. Honest-veri�er statistical zero-knowledge

equals general statistical zero-knowledge. In Proceedings of the Thirtieth Annual ACM Sym-

posium on the Theory of Computing, pages 399{408, 1998.

[12] Sha� Goldwasser, Silvio Micali, and Charles Racko�. The knowledge complexity of interactive

proof systems. SIAM Journal on Computing, 18(1):186{208, February 1989.

[13] Sha� Goldwasser and Michael Sipser. Private coins versus public coins in interactive proof

systems. In Silvio Micali, editor, Advances in Computing Research, volume 5, pages 73{90.

JAC Press, Inc., 1989.

[14] Russell Impagliazzo, Leonid A. Levin, and Michael Luby. Pseudo-random generation from

one-way functions (extended abstracts). In Proceedings of the Twenty-First Annual ACM

Symposium on Theory of Computing, pages 12{24, Seattle, Washington, 15{17 May 1989.

[15] Russell Impagliazzo and Moti Yung. Direct minimum-knowledge computations (extended

abstract). In Carl Pomerance, editor, Advances in Cryptology|CRYPTO '87, volume 293 of

Lecture Notes in Computer Science, pages 40{51. Springer-Verlag, 1988, 16{20 August 1987.

[16] Tatsuaki Okamoto. On relationships between statistical zero-knowledge proofs. In Proceedings

of the Twenty Eighth Annual ACM Symposium on the Theory of Computing, 1996. See also

preprint of full version, Oct. 1997.

[17] Erez Petrank and G�abor Tardos. On the knowledge complexity of NP. In Proceedings of the

Thirty Seventh Annual Symposium on Foundations of Computer Science, pages 494{502, 1996.

[18] Amit Sahai and Salil Vadhan. A complete promise problem for statistical zero-knowledge.

In Proceedings of the Thirty Eighth Annual Symposium on Foundations of Computer Science,

pages 448{457, 1997.

[19] Michael Sipser. A complexity theoretic approach to randomness. In Proceedings of the Fifteenth

Annual ACM Symposium on Theory of Computing, pages 330{335, Boston, Massachusetts, 25{

27 April 1983.

A Background

Following [10], we extend the standard de�nition of interactive proof systems to promise problems {

De�nition A.1 (Interactive Proof systems { IP [12]): Let c; s : N 7! [0; 1] be polynomial-time

computable functions so that for some positive polynomial p and all positive integers n's, c(n) +

s(n) < 1� (1=p(n)). An interactive proof system with two-sided error (c; s) for a promise problem

� = (�

yes

;�

no

) is a two-party game, between a veri�er executing a probabilistic polynomial-time

strategy (denoted V ) and a prover which executes a computationally unbounded strategy (denoted

P ), satisfying

24



� Completeness: For every x 2 �

yes

, the veri�er V accepts with probability at least 1� c(jxj)

after interacting with the prover P on common input x.

� Soundness: For every x 2 �

no

and every potential strategy P

�

, the veri�er V accepts with

probability at most s(jxj), after interacting with P

�

on common input x.

In such a case, we say that the proof system has completeness error c and soundness error s.

Public-coin proof systems (a.k.a Arthur-Merlin proof systems) are interactive proof systems in

which the prescribed veri�er's strategy amounts to the following: In each round, the veri�er tosses

a predetermined number of coins and sends the outcome to the prover, and at the end it decides

whether to accept by applying a predicate to the (full) sequence of messages it has sent and received.

We typically denote the prover-veri�er pair in such systems by (M;A) (for Merlin and Arthur).

We are mainly concerned with interactive proof systems having the following zero-knowledge

property [12]:

De�nition A.2 (Honest-veri�er statistical zero-knowledge { HVSZK):

� The view of an interactive machine consists of the common input, its internal coin tosses,

and all messages it has received. We denote by hP; V i(x) the view of the veri�er V while

interacting with P on common input x.

� A function � : N 7! [0; 1] is called negligible if for every positive polynomial p and all su�-

ciently large n 2 N, �(n) < 1=p(n).

� An interactive proof system (P; V ) for a promise problem � = (�

yes

;�

no

) is honest-veri�er

statistical zero-knowledge if there exists a probabilistic polynomial-time machine (called a sim-

ulator), S, and a negligible function � : N 7! [0; 1] (called the simulator deviation) so that for

every x 2 �

yes

the statistical di�erence between S(x) and hP; V i(x) is at most �(jxj).

� HVSZK denotes the class of promise problems having honest-veri�er statistical zero-knowledge

interactive proof systems.

General statistical zero-knowledge proof systems are such where the zero-knowledge requirement

holds for any (polynomial-time computable) veri�er stategy, rather than merely for the prescribed/honest

veri�er V . Actually, even a stronger requirement can be proven to be equivalent to HVSZK {

see [11].

B Statistical Inequalities

Fact B.1 For any two random variables, X and Y , ranging over a domain D it holds that

jH(X)�H(Y )j � log(jDj � 1) � � + H

2

(�)

where �

def

= �(X ; Y ).

This fact can be inferred from Fano's Inequality (cf., [5, Thm. 2.11.1]). A more direct proof follows.

Proof: Assume � > 0 or else the claim is obvious. Let p(x)

def

= Pr [X = x] and q(x)

def

= Pr [X = x].

25



De�ne m(x)

def

= minfp(x); q(x)g. Then

P

x2D

m(x) = 1 � �. De�ne random variables Z

0

, X

0

and

Y

0

so that

Pr

�

Z

0

= x

�

= m

0

(x)

def

=

1

1� �

�m(x)

Pr

�

X

0

= x

�

= p

0

(x)

def

=

1

�

� (p(x)�m(x))

Pr

�

Y

0

= x

�

= q

0

(x)

def

=

1

�

� (q(x)�m(x))

Think of X (resp., Y ) as being generated by picking Z

0

with probability 1 � � and X

0

(resp., Y

0

)

otherwise. Then,

H(X) � (1� �) �H(Z

0

) + � �H(X

0

) + H

2

(�)

H(Y ) � (1� �) �H(Z

0

)

Observing that Pr [X

0

= x] = 0 on at least one x 2 D, it follows that H(X

0

) � log(jDj � 1), and

the fact follows.

Comment: The above bound is tight. Let e 2 D and consider X which is identically e, and Y

which with probability 1� � equals e and otherwise is uniform over D n feg. Clearly, �(X ; Y ) = �

and H(Y )� H(X) = � log(jDj � 1) + H

2

(�)� 0.

Fact B.2 For any random variables X and Y and any function f it holds that KL (X j Y ) �

KL (f(X) j f(Y )).

This fact can be easily inferred from the Log Sum Inequality (cf., [5, Thm. 2.7.1]). A more direct

proof follows.

Proof: Expanding the de�nition of KL (X j Y ) we get

KL (X j Y ) =

X

v

Pr [f(X) = v] �

X

x:f(x)=v

Pr [X = xjf(X) = v] � log

Pr [f(X) = v] � Pr [X = xjf(X) = v]

Pr [f(Y ) = v] � Pr [Y = xjf(Y ) = v]

=

X

v

Pr [f(X) = v] �

X

x:f(x)=v

Pr [X = xjf(X) = v] � log

Pr [f(X) = v]

Pr [f(Y ) = v]

+

X

v

Pr [f(X) = v] �

X

x:f(x)=v

Pr [X = xjf(X) = v] � log

Pr [X = xjf(X) = v]

Pr [Y = xjf(Y ) = v]

Now, the �rst summation equals KL (f(X) j f(Y )), whereas the second equals

P

v

Pr [f(X) = v] �

KL (X

v

j Y

v

), where X

v

(resp., Y

v

) denotes the residual distribution of X conditioned on f(X) = v

(resp., Y conditioned on f(Y ) = v).

Comment: The above bound is in fact equivalent to the Log Sum Inequality (i.e.,

P

i

a

i

log(a

i

=b

i

) �

(

P

i

a

i

) log(

P

i

a

i

=

P

i

b

i

), for all non-negative a

i

's and b

i

's). To deduce to Log Sum Inequality from

the above bound, one may �rst prove a special case in which

P

i

a

i

=

P

i

b

i

= 1 (by de�ning X and

Y so that the a

i

's and b

i

's represent their probability mass, and let f be a constant function). The

general case is derived by easy manipulation.

26



Fact B.3 For any 0 � q

0

� q � p � 1, it holds that KL

2

(p; q

0

) � KL

2

(p; q).

Proof: We use the fact (cf., [5, Thm. 2.7.2]) that for every 0 � p; q

1

; q

2

� 1 and 0 � � � 1.

KL

2

(p; �q

1

+ (1� �)q

2

) � � �KL

2

(p; q

1

) + (1� �) �KL

2

(p; q

2

)

Picking q

1

= q

0

, q

2

= p and � such that �q

1

+ (1� �)q

2

= q, we have KL

2

(p; q) � � �KL

2

(p; q

0

) +

(1� �) � 0, and the fact follows.

C Proof of the Flattening Lemma

For every x in the support of X , we let w(x) = � log Pr [X = x]. Then w maps the support of X ,

denoted D, to [0; m]. Let X

1

; :::; X

k

be identical and independent copies of X . The lemma asserts

that for every t,

Pr

"

�

�

�

�

�

k

X

i=1

w(X

i

)� k �H(X)

�

�

�

�

�

� t �m

p

k

#

� 2

�t

2

+1

Observe that E(w(X

i

)) =

P

x

Pr [X = x]w(x) = H(X), for every i. Thus, the lemma follows by

a straightforward application of Hoe�ding Inequality: Speci�cally, de�ne random variables �

i

=

w(X

i

), let � = E(�

i

) and � = tm=

p

k, and use

Pr

"

�

�

�

�

�

P

k

i=1

�

i

k

� �

�

�

�

�

�

� �

#

� 2 � exp

�

�

2�

2

m

2

� k

�

= 2 � exp

�

�2t

2

�

The lemma follows.

D Proof of the Hashing Lemma

We denote the two distributions on pairs (h; z) in Lemma 3.12 by A = (A

H

; A

Z

) and B = (B

H

; B

Z

).

By the de�nition of statistical di�erence, it su�ces to show that for every set S � H�D, Pr [A 2 S]�

Pr [B 2 S] � 3(� + "

1=3

). In order to do this, we �rst will argue that for \most" pairs (h; z),

Pr [A = (h; z)] is not too much greater than Pr [B = (h; z)]. Observe that both distributions A and

B only output pairs (h; z) such that h(z) = 0. Now, for any (h; z) 2 H�D such that h(z) = 0, we

have

Pr [A = (h; z)] = Pr [A

H

= h] � Pr [A

Z

= zjA

H

= h]

=

1

jHj

�

Pr [Z = z]

P

w2h

�1

(0)

Pr [Z = w]

;

and

Pr [B = (h; z)] = Pr [B

Z

= z] � Pr [B

H

= hjB

Z

= z]

= Pr [Z = z] �

1

jfh

0

: h

0

(z) = 0gj

= Pr [Z = z] �

jRj

jHj

;

27



where the last equality follows from 2-universality.

Thus, showing that Pr [A = (h; z)] is not too much greater than Pr [B = (h; z)] for most pairs

(h; z) amounts to showing that for most h,

P

w2h

�1

(0)

Pr [Z = w] is not too much smaller than

1=jRj. In order to prove a lower bound on this sum (for most h), we restrict the sum to a slightly

smaller set of w's. Let L = fw 2 D : Pr [Z = w] � "=jRjg, so by hypothesis, Pr [Z 2 L] = 1 � �.

For w 2 D and h 2 H, de�ne indicator functions

�

w

(h) =

n

1 if h(w) = 0

0 otherwise

De�ne f(h) =

P

w2L

Pr [Z = w] � �

w

(h). Thus,

X

w2h

�1

(0)

Pr [Z = w] =

X

w2D

Pr [Z = w] � �

w

(h) � f(h)

By 2-universality, for h selected uniformly in H, the random variables f�

w

(h)g

w2D

each have

mean 1=jRj and are pairwise independent. Thus,

E

h

[f(h)] =

X

w2L

Pr [Z = w]

jRj

=

1� �

jRj

and

Var

h

[f(h)] �

X

w2L

Pr [Z = w]

2

jRj

�

X

w2L

Pr [Z = w] � "

jRj

2

�

"

jRj

2

By Chebyshev's inequality,

Pr

h

"

f(h)�

1� �

jRj

<

�"

1=3

jRj

#

�

Var

h

(f(h))

("

1=3

=jRj)

2

� "

1=3

:

Let G = fh 2 H : f(h) � (1� � � "

1=3

)=jRjg be the set \good" h's for which f(h) is not too

much smaller than 1=jRj. Then for every z 2 D and h 2 G,

Pr [A = (h; z)] �

Pr [Z = z]

jHj

�

jRj

1� � � "

1=3

=

Pr [B = (h; z)]

1� � � "

1=3

:

Thus, for any S � H �D,

Pr [A 2 S] � Pr [A 2 S and A

H

2 G] + Pr [A

H

=2 G]

�

Pr [B 2 S and B

H

2 G]

1� � � "

1=3

+ "

1=3

� Pr [B 2 S] +

 

� + "

1=3

1� � � "

1=3

!

�Pr [B 2 S] + "

1=3

� Pr [B 2 S] + 3(� + "

1=3

);

(as long as �+"

1=3

� 1=2, which we may assume as otherwise the lemma is trivially satis�ed). This

completes the proof.

28


