
Chinese Remaindering with Errors

Oded Goldreich

Department of Computer Science

Weizmann Institute of Science

Rehovot, Israel

oded@wisdom.weizmann.ac.il.

�

Dana Ron

Department of Electrical Engineering { Systems

Tel Aviv University

Ramat Aviv, Israel

danar@eng.tau.ac.il.

y

Madhu Sudan

Department of Electrical Engineering and Computer Science

Massachusetts Institute of Technology

545 Technology Square

Cambridge, MA 02139, USA

madhu@mit.edu.

z

Abstract

The Chinese Remainder Theorem states that a positive integer m is uniquely speci�ed by

its remainder modulo k relatively prime integers p

1

; : : : ; p

k

, provided m <

Q

k

i=1

p

i

. Thus the

residues of m modulo relatively prime integers p

1

< p

2

< � � � < p

n

form a redundant repre-

sentation of m if m <

Q

k

i=1

p

i

and k < n. This suggests a number-theoretic construction of

an \error-correcting code" that has been implicitly considered often in the past. In this paper

we provide a new algorithmic tool to go with this error-correcting code: namely, a polynomial-

time algorithm for error-correction. Speci�cally, given n residues r

1

; : : : ; r

n

and an agreement

parameter t, we �nd a list of all integers m <

Q

k

i=1

p

i

such that (m mod p

i

) = r

i

for at least

t values of i 2 f1; : : : ; ng, provided t = 
(

q

kn

log p

n

log p

1

). We also give a simpler algorithm, with

a nearly linear time implementation, to decode from a smaller number of errors, i.e., when

t > n� (n� k)

log p

1

log p

1

+log p

n

. In such a case there is a unique integer which has such agreement

with the sequence of residues.

One consequence of our result is a strengthening of the relationship between average-case

complexity of computing the permanent and its worst-case complexity. Speci�cally we show

that if a polynomial time algorithm is able to guess the permanent of a random n�n matrix on

2n-bit integers modulo a random n-bit prime with inverse polynomial success rate, then then

P

#P

= BPP. Previous results of this nature typically worked over a �xed prime moduli or

assumed success probability very close to one (as opposed to bounded away from zero).

�

Work done in part while visiting MIT, and partially supported by DARPA grant DABT63-96-C-0018.

y

Work done in part while visiting MIT, supported by an ONR Science Scholar Fellowship of the Bunting Institute.

z

Research supported in part by a Sloan Foundation Fellowship and a MIT-NEC Research Initiation Grant.

1



1 Introduction

The Chinese Remainder Theorem states that a positive integer m is uniquely speci�ed by its

remainder modulo k relatively prime integers p

1

; : : : ; p

k

, provided m <

Q

k

i=1

p

i

. Thus if we pick

n > k relatively prime integers p

1

< � � � < p

n

such that m <

Q

k

i=1

p

i

, then the remainders

of m modulo the p

i

's form a redundant encoding of m. Speci�cally, m can be recovered given

any k of the n remainders. Thus this representation of integers yields a natural error-correcting

code: given any two integers m;m

0

<

Q

k

i=1

p

i

, the sequences f(m mod p

1

); : : : ; (m mod p

n

)g and

f(m

0

mod p

1

); : : : ; (m

0

mod p

n

)g di�er in at least n� k + 1 coordinates.

This redundancy property of the Chinese remainder representation has been exploited often in

theoretical computer science. The Karp-Rabin pattern matching algorithm is based on this redun-

dancy [20]. This representation was used to show the strength of probabilistic communication over

deterministic communication protocols (cf. [23, Exercise 3.6]). The representation allows for easy

arithmetic | addition, multiplication, subtraction and division | on large integers and was even

proposed as a potential representation for numbers in computers

1

. The ability to reduce computa-

tion over large integers to that over small integers is also employed in complexity-theoretic settings,

with a notable example being its use in showing the hardness of computing the permanent of 0=1

matrices [40].

The redundancy of the Chinese remainder representation of integers and its similarity to error-

correcting codes raises a natural algorithmic question:

Given a sequence of integers hr

1

; : : : ; r

n

i that are obtained from taking residues of an

integer m <

Q

k

i=1

p

i

modulo relatively prime integers p

1

< � � � < p

n

, where some of the

residues are erroneous, can we �nd m?

If the number of residues that are erroneous is less than

n�k

2

, then m is uniquely speci�ed by

the vector hr

1

; : : : ; r

n

i. However this fact is not algorithmic { it is not clear how to recover m in

polynomial time (i.e., in time polynomial in n and log p

n

). Even in the case where the number of

errors e is larger (but not larger than n�

p

nk), there exists a small list containing all integers whose

Chinese remainder representations di�er from the vector hr

1

; : : : ; r

n

i in at most e coordinates [16].

Again it is not clear how to recover this list in polynomial time.

In this paper we present e�cient algorithms for solving the above problems. Speci�cally we provide

polynomial-time algorithms for the following two tasks:

2

1. Unique Decoding: Given n relatively prime integers p

1

< � � � < p

n

; n residues r

1

; : : : ; r

n

, with

0 � r

i

< p

i

; and an integer k; �nd an integer m <

Q

k

i=1

p

i

satisfying (m mod p

i

) 6= r

i

for at

most (n� k)

logp

1

log p

1

+logp

n

values of i 2 f1; : : : ; ng, if such an integer exists. (Theorem 6.)

2. List Decoding (for large error): Given n relatively prime integers p

1

< � � � < p

n

; n residues

r

1

; : : : ; r

n

, with 0 � r

i

< p

i

; and an integer k; construct a list of all integers m satisfying

m <

Q

k

i=1

p

i

and (m mod p

i

) = r

i

for at least

q

2n(k+ 2)

logp

n

log p

1

+

k+3

2

+ 2 logn = �(

q

nk

logp

n

logp

1

)

values of i 2 f1; : : : ; ng. (Theorem 11.) (We comment that this list contains at most

p

2n=k

integers; cf., [16].)

1

Unfortunately, it does not allow for easy inequality comparisons | which is presumably why it was not employed.

2

In fact, the �rst task can be performed in nearly linear time (Theorem 17).

2



In the context of coding theory, our algorithms add a new dimension to the family of codes that

are e�ciently correctable. The known examples of asymptotically good error-correcting codes with

e�cient algorithms can be classi�ed in one of two categories:

1. Algebraic codes: These are codes de�ned using the properties of low-degree polynomials over

�nite �elds and include a wide variety of codes such as Reed-Solomon codes, BCH codes, Alter-

nant codes and algebraic-geometry codes. Such codes admit e�cient error-correction algorithms;

in fact all the algorithms (for unique-decoding) are similar in spirit and can be uni�ed quite

nicely [31, 22, 10].

2. Combinatorial codes: A second class of codes with e�cient decoding algorithms evolve from

combinatorial concepts such as expanders, super-concentrators etc. Examples of this family

include the codes of Sipser and Spielman [36], and Spielman [37]. In both cases, the description

of the code is captured by a graph; and the existence of a decoding algorithm is then related to

combinatorial properties of the graph.

Our work provides the �rst example of a number theoretic code that is e�ciently correctable. To

the best of our knowledge - this is the only example which does not fall into one of the two classes

above.

Our algorithms are obtained by abstracting from known paradigms for correcting algebraic codes:

The �rst of our algorithms abstracts from a large collection of (unique) error-correcting algorithms

for algebraic codes [32, 4, 30, 42]. In fact, an elegant uni�cation of these results (see [31, 22, 10]

or Appendix A) provides the inspiration for our algorithm. The second algorithm described above

abstracts from the recent works on \list-decoding" algorithms [3, 38, 35, 18]. We stress however,

that the translation of the above mentioned algorithms to our case is not immediate. In particular,

the usual \interpolation" methods, that come in very handy in the algebraic case are not applicable

here. In fact our code is not even linear in the usual sense and so linear algebra is not applicable

in our case. Thus for solving analogies of \simple" problems in the algebraic case, we employ

integer programming algorithms (in �xed dimensions) [25] for the Unique Decoding task, and the

approximate basis reduction algorithm (in varying dimension) [24] for the List Decoding task.

Our �nal algorithms achieve decoding capabilities comparable to those in algebraic cases and in

particular, if p

n

= p

O(1)

1

we can decode uniquely from a constant fraction of errors. We also get a

list-decoding algorithm to recover from n � o(n) errors, provided k = o(n).

Permanent of random matrices One motivation for studying the Chinese remainder repre-

sentation of integers was to study the \random self-reducibility" property of the permanent [26].

The standard presentation of this property �xes a prime p > n + 1, and consists of a randomized

reduction of computing the permanent modulo p of a given n�nmatrix to computing the permanent

modulo p over uniformly distributed n� n matrices. Thus we are taking a two parameter problem

(such as Quadratic Non-Residuosity and DLP) and the process of self-reduction �xes one parameter

(here, the prime p) and randomizes over the second (here, the matrix). This is analogous to the

results of [17, 6] but not to the recent result of Ajtai [1]. Thus, unlike Ajtai's result, the above only

relates the average and worst case complexities of computing the permanent modulo p for any �xed

p. What we want is a relation between the average and worst case complexities, when average-case

complexity refers to all parts of the input.

Consider, for example, the product distribution on pairs (M; p), parameterized by size

3



n, where p is a uniformly distributed n-bit prime and M is a uniformly distributed

n-by-n matrix with 2n-bit entries.

A naive analysis of the complexity of the permanent on such instances would work as follows.

Suppose we have a heuristic to compute the permanent on instances from the above distribution.

Then, given any pair (M; p), pick at random many primes p

1

; : : : ; p

t

, and then compute the per-

manent of M modulo p

i

for every i. In each case use the random-self-reducibility of the permanent

modulo p

i

to reduce the computation of the permanent of M modulo p

i

to n + 1 \random" (but

not independent) instances of the permanent modulo p

i

. If the heuristic does not make errors very

often (say has error probability less than

1

3(n+1)t

) then with high probability (resp., probability at

least 2=3) all calls to the heuristic get answered correctly. Thus if t is large enough (e.g., t = O(n)

will do), then (applying the Chinese Remainder Theorem) we obtain the value of the permanent

of M (over the integers), and can now reduce this modulo p to get the desired output.

However the reduction as described above is not very tolerant of errors. This problem has been

addressed before in the case of one of the two parameters, namely in the choice of the matrix: The

results of [13, 14, 38] imply that if for any prime p, the heuristic computes (M; p) on even a tiny but

non-negligible fraction of the instances correctly then the permanent can be computed correctly on

worst case instances of matrices, but over the same �xed prime p.

Our result complements the above, by allowing a similar treatment of the second parameter as well.

Thus by combining the two results, we get the following natural statement (see Theorem 14):

If there exists a heuristic that computes the permanent of a random pair (M; p), from

the above distribution, with non-negligible probability (over the choice of (M; p)), then

P

#P

= BPP.

In independent related work, Cai et al. [9], provide an alternate formulation of the average-case

hardness of the permanent, which is also hard on all parts of the input. They consider the hardness

of computing the permanent directly over the integers. They show that if a BPP algorithm computes

the permanent (over the integers) of a random n�n matrix with its entries chosen uniformly from

among n-bit integers with non-negligible property then P

#P

= BPP. In fact their techniques also

extend to providing an alternate proof of Theorem 14 that does not use the decoding algorithm for

the Chinese Remainder code.

Organization of this paper: In Section 2 we de�ne the Chinese Remainder Code. In Sec-

tions 3 and 4 we give decoding algorithms for the Chinese Remainder Code, for small and large

error, respectively. Section 5 gives the application to the permanent, and in Section 6 we describe

an improved (nearly linear time) decoding algorithm for small error, and give an application of the

Chinese Remainder Code to secret sharing.

2 The Chinese Remainder Code

Notation: For positive integersM;N , LetZ

M

denote the set f0; : : : ;M�1g, and let [N ]

M

denote

the remainder of N when divided by M . Note that [N ]

M

2Z

M

.

De�nition 1 (Chinese Remainder Code) Let p

1

< � � � < p

n

be relatively prime integers, and

k < n an integer. The Chinese Remainder Code with basis p

1

; : : : ; p

n

and rate k is de�ned for

4



message space Z

K

, where K

def

=

Q

k

i=1

p

i

. The encoding of a message m 2Z

K

, denoted E

p

1

;:::;p

n

(m),

is the n-tuple h[m]

p

1

; : : : ; [m]

p

n

i.

Thus the Chinese Remainder Code does not have a \�xed alphabet" (the alphabet depends on the

coordinate position) and it is not linear in the usual sense (as the natural arithmetic here is done

modulo p

i

for the i'th coordinate). Distance of a code can however be de�ned as usual; i.e., the

distance between two \words" of block length n is the number of coordinates on which they di�er;

and the distance of a code is the minimum distance between any pair of distinct codewords. The

distance properties of this code are very similar to those of Reed-Solomon and BCH codes; and

follow immediately from the Chinese Remainder Theorem:

Theorem 2 (Chinese Remainder Theorem | CRT) If q

1

; : : : ; q

`

are relatively prime posi-

tive integers and r

1

; : : : ; r

`

are integers such that r

i

2 Z

q

i

, then there exists a unique integer

r 2 Z

Q

`

i=1

q

i

such that [r]

q

i

= r

i

. Furthermore, r =

h

P

`

i=1

c

i

�Q

i

� r

i

i

Q

, where Q =

Q

`

j=1

q

j

,

Q

i

= Q=q

i

, and c

i

is the multiplicative inverse modulo q

i

of Q

i

.

Corollary 3 For any n relatively prime integers p

1

; : : : ; p

n

and any integer k < n, the Chinese

Remainder Code with basis p

1

; : : : ; p

n

and rate k has distance n � k + 1. That is, for any two

messages m

1

; m

2

, the code words E

p

1

;:::;p

n

(m

1

) and E

p

1

;:::;p

n

(m

2

) disagree on at least n � k + 1

coordinates.

Thus if p

1

; : : : ; p

n

are all (1 + o(1)) � logn-bit primes, then the information rate and the distance

of the Chinese Remainder Code are comparable with those of the Reed-Solomon code or the BCH

code. For our purposes, it is more useful to consider a variant of the notions of block length, rate

and distance as de�ned below.

De�nition 4 (amplitude) For a Chinese Remainder Code with basis p

1

; : : : ; p

n

and rate k, the

amplitude of the encoding is de�ned to be N =

Q

n

i=1

p

i

; the amplitude of the message space

is de�ned to be K =

Q

k

i=1

p

i

. For vectors ~v = hv

1

; : : : ; v

n

i and ~w = hw

1

; : : : ; w

n

i 2 Z

n

with

v

i

; w

i

2 Z

p

i

, the amplitude of the distance between ~v and ~w is de�ned to be

Q

i:v

i

6=w

i

p

i

. The

amplitude of agreement between ~v and ~w is de�ned to be

Q

i:v

i

=w

i

p

i

. Notice that the product of the

amplitudes of agreement and distance equals the amplitude of the encoding.

It is easy to see that if the distance between ~v and ~w is d, and the amplitude of the distance

between ~v and ~w is D; then d log p

1

� logD � d log p

n

. In case of traditional codes that are

de�ned over �xed alphabets, i.e., p

1

= p

2

= � � � = p

n

, d is directly proportional to logD and hence

there is no need to consider the latter separately. In our case, the latter parameter provides a more

re�ned look at the performance of the algorithms. From the Chinese Remainder Theorem it follows

immediately that the amplitude of distance between any two codewords is larger than N=K.

Our goal is to solve the following error-correction problems (for as large an error parameter as

possible).

The Error-correction/List decoding Problem

Given: (1) n relatively prime integers p

1

< � � � < p

n

and rate parameter k specifying a Chinese

5



Remainder Code; (2) n integers r

1

; : : : ; r

n

, with r

i

2Z

p

i

and an error-parameter e.

Task: Find (all) message(s) x 2Z

K

, where K =

Q

k

i=1

p

i

, s.t. [x]

p

i

6= r

i

for at most e values of i.

It follows from the distance of the Chinese Remainder Code that the answer is unique if e <

n�k

2

.

In this case the problem corresponds to the traditional error-correction problem for error-correcting

codes. If e is larger, then there may be more than one solution. We will expect the algorithm to

return a list of all codewords x with at most e errors.

3 The Decoding Algorithm for Small Error

The �rst algorithm we present is a simple algorithm to recover from a small number of errors. The

algorithm recovers from error of amplitude at most

p

N=K. Translating to classical measures this

yields an error-correcting algorithm for e � (n � k)

logp

1

log p

1

+log p

n

(and in particular, if p

n

= p

O(1)

1

,

then the algorithm can handle a constant fraction of errors).

The algorithm is described below formally. The inspiration for the algorithm comes from a general

paradigm for decoding of many algebraic codes (see [31, 22, 10] or Appendix A). Given a received

word hr

1

; : : : ; r

n

i that is close to the encoding of (a unique) message m, the algorithm Unique-

Decode tries to �nd two integers y and z such that y �m = z. To this end it �rst reconstructs the

integer r 2 Z

N

that corresponds to the received word hr

1

; : : : ; r

n

i (i.e., [r]

p

i

= r

i

, for every i). It

then searches for integers y and z such that y � r � z (modN) (where N =

Q

n

i=1

p

i

), and both y

and z are of bounded sizes. In the analysis of the algorithm we show that the equality (modulo N)

between r �y and z together with the restrictions on the sizes of y and z implies that y �m is equal to

z (over the integers). Furthermore, (as we show in Appendix B), y has the following error-detection

property: For every index i such that r

i

6= [m]

p

i

, it holds that [y]

p

i

= 0, and moreover, the message

m can be reconstructed from the remaining r

i

's Though we do not use this property explicitly in

the algorithm described below (as well as in its analysis), it can be used to obtain a variant of

the algorithm, (described in Appendix B), which is more clearly related to the general decoding

paradigm.

Unique-Decode(p

1

; : : : ; p

n

; k; r

1

; : : : ; r

n

).

Set K =

Q

k

i=1

p

i

, N =

Q

n

i=1

p

i

, and let E be an integer to be determined later.

Let r 2Z

N

be s.t. r

i

= [r]

p

i

(as de�ned by CRT).

1. Find integers y; z s.t.

1 � y � E

0 � z < N=E

y � r � z (modN)

9

>

=

>

;

(1)

2. Output z=y if it is an integer.

The above algorithm can be implemented in polynomial time in the bit sizes of p

1

; : : : ; p

n

. Step 2

is straightforward. The main realization is that Step 1 can be computed using an algorithm for

integer programming in �xed number of variables, due to [25]. To see how to formulate our problem

in this way, we let the �nal equality be expressed as y � r = z + x �N . Our task thus reduces to

6



computing y and x s.t 0 < y � E and 0 � y � r � x �N < N=E. In Section 6.1 we show how this

task can actually be performed in nearly linear time (using the \continued fractions method").

We now analyze the performance of this algorithm. We �rst describe it in terms of the amplitude

of the distance between the message m and the received word r.

Lemma 5 If r is such that for some m 2Z

K

the amplitude of the distance between hr

1

; : : : ; r

n

i and

h[m]

p

1

; : : : ; [m]

p

n

i is at most E, and E <

p

N=(K � 1), then Unique-Decode(p

1

; : : : ; p

n

; k; r

1

; : : : ; r

n

)

returns m.

We prove the lemma using the following two claims.

Claim 5.1 Under the premises of Lemma 5 there exist y; z satisfying Eq. (1).

Claim 5.2 Under the premises of Lemma 5, for any pair (y; z) satisfying Eq. (1) it holds that

y �m = z.

We prove the two claim momentarily, and �rst show how Lemma 5 follows from the claims.

Proof of Lemma 5: By Claim 5.1, Step 1 of the algorithm always returns a pair (y; z) satisfying

Eq. (1). By Claim 5.2, any pair (y; z) that may be the outcome of Step 1 satis�es y �m = z. Thus

z=y = m is an integer and the output of the algorithm is m.

We now prove Claims 5.1 and 5.2.

Proof of Claim 5.1: Let y =

Q

fijr

i

6=[m]

p

i

g

p

i

(so that y equals the amplitude of the distance

between hr

1

; : : : ; r

n

i and h[m]

p

1

; : : : ; [m]

p

n

i), and z = y �m. Then notice that y 6= 0, and y � E,

and so the �rst item of Eq. (1) holds. Since m � K � 1, we have z = m � y � (K � 1) �E. Using

E < N=((K � 1)E) (so that (K � 1) �E < N=E), and since z � 0, the second item of Eq. (1) also

holds. Finally, by CRT, the condition y � r � z (modN) holds since the condition holds modulo

every p

i

: For any �xed i 2 f1; : : : ; ng, either r

i

= [m]

p

i

or [y]

p

i

= 0. In either case, we have

z = ym � yr (mod p

i

).

Proof of Claim 5.2: For every i s.t. [m]

p

i

= r

i

, we have

y �m � y � [m]

p

i

� y � r

i

� y � r � z (mod p

i

) :

Thus, by CRT, y �m � z (mod T ) where T =

Q

fi j [m]

p

i

=r

i

g

p

i

� N=E is the amplitude of the

agreement between hr

1

; : : : ; r

n

i and h[m]

p

1

; : : : ; [m]

p

n

i. But z < N=E andm �y � (K�1)E < N=E.

Thus z = m � y.

As an immediate consequence of Lemma 5, and the observation relating amplitudes of distance to

classical distance, we get the following theorem.

Theorem 6 Unique-Decode(p

1

; : : : ; p

n

; k; r

1

; : : : ; r

n

) solves the error-correction problem in poly-

nomial time for any value of the error parameter e � (n � k)

log p

1

log p

1

+log p

n

, with the setting

E =

Q

n

i=n�e+1

p

i

.

7



Proof: Using N =

Q

n

i=1

p

i

, K =

Q

k

i=1

p

i

and E =

Q

n

i=n�e+1

p

i

, Lemma 5 can be applied if

E

2

� N=K (as N=K < N=(K � 1)). Namely, it su�ces that (

Q

n

i=n�e+1

p

i

)

2

�

Q

n

i=k+1

p

i

, which is

equivalent to

Q

n

i=n�e+1

p

i

�

Q

n�e

i=k+1

p

i

. In turn this condition holds if p

e

n

� p

n�k�e

1

. The theorem

follows by taking logarithms of both sides.

4 Decoding for Large Error

In this section we will describe an algorithm that recovers from possibly many more errors than

described in the previous section. In particular, if we �x k = �n and let n ! 1, the fraction of

errors that can be corrected goes to 1 �

q

2�

logp

n

logp

1

. As � ! 0, this quantity approaches 1. This

algorithm is inspired by the recent progress in list-decoding algorithms [3, 38, 35, 18]. Our algorithm

and analysis follow the same paradigm, though each step is di�erent.

The algorithm List-Decode can be viewed as a generalization of Unique-Decode. In both algorithms,

given the received word hr

1

; : : : ; r

n

i, the algorithm �rst �nds, using CRT, an integer r 2 Z

N

corresponding to the received word (i.e., [r]

p

i

= r for every i). In Unique-Decode the algorithm

then attempts to �nd integers y and z (restricted in size), such that y � r � z (mod N), and

outputs z=y. In other words, the algorithm searches for integers y; z satisfying y � r � z � 0

(mod N), and outputs the (unique) root of the (degree-1) polynomial y �x�z. In List-Decode, the

algorithm instead searches for a sequence of integers c

0

; : : : ; c

`

(of certain bounded sizes), such that

P

i

c

i

r

i

� (mod N) and outputs all roots of the polynomial

P

i

c

i

x

i

. As we show subsequently,

the increase in the degree of the polynomial that the algorithm searches for (together with the

particular restrictions on the sizes of its coe�cients) allows us to decode for much larger error.

List-Decode(p

1

; : : : ; p

n

; k; r

1

; : : : ; r

n

).

Set N =

Q

n

i=1

p

i

; K =

Q

k

i=1

p

i

; and F = 2

`+2

2

�

p

`+ 2 �N

1

`+1

� K

`+1

2

, with ` to be determined

shortly.

Let r 2Z

N

s.t. [r]

p

i

= r

i

for every i (as de�ned by CRT).

1. Find integers c

0

; : : : ; c

`

satisfying

80 � i � l jc

i

j �

F

K

i

s.t.

P

`

i=0

c

i

r

i

= 0(modN)

hc

0

; : : : ; c

`

i 6=

~

0

9

>

=

>

;

(2)

2. Output all roots of the integer polynomial C(x) =

P

`

i=0

c

i

x

i

.

The running time of Step 2 above is bounded by a polynomial in n; `; logN and logF (one can use

LLL's algorithm for factoring polynomials over the integers if required, though faster algorithms

exist for this simpler task of \root-�nding"). We need to show how to implement Step 1. Mainly

the idea is to set up a lattice whose short vectors correspond to small values of the coe�cients c

i

's.

We show �rst that very small vectors of this form exist; and then use the basis reduction algorithm

of LLL to �nd short (but not shortest) vectors in this lattice; and this will su�ce for Step 1.

Lemma 7 (Algorithm for Step 1.) c

i

's as required in Step 1 of List-Decode exist and can be

found in polynomial time.

8



Proof: We set up an `+2-dimensional integer lattice using basis vectors v

0

; : : : ; v

`

and w described

next. Let M be a very large integer (to be determined later as a function of N and `). For

j 2 f0; : : : ; `+ 1g, the jth coordinate of the vector v

i

, denoted (v

i

)

j

is given by:

(v

i

)

j

=

8

>

<

>

:

K

i

if j = i

M � r

i

if j = `+ 1

0 otherwise.

The vector w is zero everywhere except in the last coordinate where (w)

`+1

= M �N .

A generic vector in this lattice is of the form u =

P

`

i=0

c

i

v

i

+ dw, for integers c

0

; : : : ; c

`

and d.

Explicitly the jth coordinate of u is given by:

(u)

j

=

(

c

j

K

j

0 � j � `

M � (

P

`

i=0

c

i

r

i

+ dN) if j = `+ 1:

We are interested in showing that this lattice contains \short" vectors whose last coordinate equals

0, and every other coordinate has absolute value at most F (thus satisfying Eq. (2)). Furthermore,

we would like to show that such vectors can be found e�ciently. To his end, we �rst prove the

following technical lemma.

Lemma 8 For integers r;N if B

0

; : : : ; B

`

are positive integers such that

Q

`

i=0

B

i

> N , then there

exist integers c

0

; : : : ; c

`

, such that jc

i

j < B

i

, hc

0

; : : : ; c

`

i 6=

~

0 and

P

`

i=0

c

i

r

i

� 0 (mod N).

Proof: Consider the function f : Z

B

0

� � � � �Z

B

`

! Z

N

given by f(c

0

; : : : ; c

`

) = [

P

`

i=0

c

i

r

i

]

N

.

Since the domain has larger cardinality than the range, there exist di�erent hd

0

; : : : ; d

`

i and

he

0

; : : : ; e

`

i s.t. f(d

0

; : : : ; d

`

) = f(e

0

; : : : ; e

`

). Setting c

i

= d

i

� e

i

, we get jc

i

j < B

i

,

P

i

c

i

r

i

= 0, and

hc

0

; : : : ; c

`

i 6=

~

0 as required.

Using Lemma 8 with B

i

= N

1

`+1

�K

`+1

2

�i

, we observe that the lattice de�ned above has a (short)

non-zero vector (where the c

i

's are as guaranteed by the lemma and d = �

P

`

i=0

c

i

r

i

=N) with

the last coordinate identically 0, and each other coordinate has absolute value at most B

i

�K

i

=

N

1

`+1

� K

`+1

2

. Thus, the L

2

-norm of this vector is at most

p

`+ 2 � N

1

`+1

� K

`+1

2

. By using the

\approximate shortest vector" algorithm of [24], we �nd, in polynomial time, a vector of L

2

-norm

at most F = 2

`+2

2

�

p

`+ 2 �N

1

`+1

�K

`+1

2

. For su�ciently large M (any M > F will do), all \short"

vectors (i.e., with L

2

-norm at most F ) have a last coordinate identical to 0, and thus yield a

sequence of c

i

's satisfying

P

i

c

i

r

i

� 0 (mod N) and jc

i

�K

i

j � F . This sequence is as required in

Step 1.

Now we move on to Step 2 of List-Decode. We argue next that any solution to the list-decoding

problem is a root of the polynomial whose coe�cients are given by any solution to Step 1. Instead

of performing the analysis in terms of the amount of error in the received word, we do so in terms

of the amount of agreement with some message.

Lemma 9 If r is such that for some m 2Z

K

the amplitude of the agreement between hr

1

; : : : ; r

n

i

and h[m]

p

1

; : : : ; [m]

p

n

i is greater than 2(`+ 1)F , and c

0

; : : : ; c

`

are integers satisfying Eq. (2), then

P

`

j=0

c

j

m

j

= 0 (i.e., m is a root of the polynomial C(x)).

9



Proof: We �rst observe that since the c

j

's are small,

P

j

c

j

m

j

is small in absolute value:

�

�

�

�

�

�

`

X

j=0

c

j

m

j

�

�

�

�

�

�

� (`+ 1) �max

j

fjc

j

m

j

jg

� (`+ 1) �max

j

fjc

j

K

j

jg

� (`+ 1) � F:

Now we observe that for i such that [m]

p

i

= r

i

it holds that

`

X

j=0

c

j

m

j

�

`

X

j=0

c

j

[m]

j

p

i

�

`

X

j=0

c

j

r

j

i

�

`

X

j=0

c

j

r

j

� 0 (mod p

i

):

De�ne P =

Q

fijr

i

=[m]

p

i

g

p

i

. By CRT,

P

`

j=0

c

j

m

j

� 0 (mod P ). Since the sum

P

`

j=0

c

j

m

j

has

absolute value at most (`+1)F , the hypothesis P > 2 � (`+1)F implies that the sum is identically

zero as required.

As an immediate consequence of the last two lemmas, we get a proof of the correctness of List-

Decode. The following proposition describes the performance in terms of amplitude (for any choice

of `).

Proposition 10 For any choice of the parameter `, List-Decode(p

1

; : : : ; p

n

; k; r

1

; : : : ; r

n

) produces

a list of up to ` integers which includes all messages m 2Z

K

such that the amplitude of agreement

between h[m]

p

1

; : : : ; [m]

p

n

i and ~r is at least 2(`+ 2)

3=2

2

`+2

2

N

1

`+1

K

`+1

2

.

Proof: By Lemma 7, c

i

's satisfying Eq. (2) exist and are found in Step 1. By Lemma 9, any m

as in the lemma is a root of the polynomial

P

j

c

j

x

j

, and thus is included in the output.

The following theorem is obtained by optimizing the choice of the parameter ` in the above propo-

sition.

Theorem 11 List-Decode(p

1

; : : : ; p

n

; k; r

1

; : : : ; r

n

) with parameter ` =

l
q

2n log p

n

k log p

1

� 1

m

solves the

error-correction problem in polynomial time, for e < n �

q

2(k+ 3)n

logp

n

logp

1

�

k+6

2

.

Remark: If k=n = �, then the above theorem indicates that approximately 1�

r

2 �

�

logp

n

logp

1

�

� ���=2

fraction of errors can be corrected. In particular this fraction approaches 1 as �! 0.

Proof: Suppose we want to �nd all codewords which agree with hr

1

; : : : ; r

n

i on t coordinates.

Setting f

1

def

=(`+ 2)

3=2

and f

2

def

=2

`+2

2

, and applying Proposition 10, it su�ces to show that

t

Y

i=1

p

i

� f

1

� f

2

�

 

n

Y

i=1

p

i

!

1

`+1

�

 

k

Y

i=1

p

i

!

`+1

2

10



Setting t = t

1

+ t

2

+ t

3

, we will �nd t

1

; t

2

; t

3

s.t.

p

t

1

1

� f

1

(3)

p

t

2

1

� f

2

(4)

and

t

3

Y

i=1

p

i

�

 

n

Y

i=1

p

i

!

1

`+1

�

 

k

Y

i=1

p

i

!

`+1

2

(5)

We start with an analysis of the last inequality. For this we need

 

t

3

Y

i=1

p

i

!

1�

1

`+1

�

0

@

n

Y

i=t

3

+1

p

i

1

A

1

`+1

�

 

k

Y

i=1

p

i

!

`+1

2

Let q = (

Q

k

i=1

p

i

)

1=k

. Then q � p

1

and (

Q

t

3

i=1

p

i

) � q

t

3

, provided t

3

� k. Thus it su�ces to show

q

t

3

`=(`+1)

� p

(n�t

3

)=(`+1)

n

� q

k�

`+1

2

(6)

Fact: Eq. (6) holds if t

3

�

k(`+1)

2

+

n logp

n

(`+1) logp

1

and ` � 1.

Proof: By the hypothesis, t

3

� k and so

�

t

3

�

k(`+ 1)

2

�

log p

1

�

n

`+ 1

log p

n

)

�

`

`+ 1

t

3

�

k(`+ 1)

2

�

log q �

n � t

3

`+ 1

log p

n

)

`t

3

`+ 1

log q �

n� t

3

`+ 1

log p

n

+

k(`+ 1)

2

log q

and Eq. (6) follows. 2

Setting ` + 1 =

l
q

2n log p

n

k log p

1

m

, shows that t

3

=

q

2kn

log p

n

log p

1

+

k

2

su�ces to achieve Eq. (5). This

setting of ` also implies that to satisfy Eq. (4), which is equivalent to t

2

�

`+2

2 logp

1

, it su�ces to set

t

2

=

q

2n log p

n

k log p

1

+

3

2

. Finally, to satisfy Eq. (3), which is equivalent to t

1

�

3 log(`+2)

2 log p

1

, it su�ces to

set t

1

=

log(2n logp

n

=k log p

1

)

log p

1

, which is smaller than 2 log t

2

= log p

1

� t

2

.

Thus we �nd that it su�ces to have

t = 2

s

2n log p

n

k log p

1

+ 3 +

s

2kn

log p

n

log p

1

+

k

2

=

�

1 +

2

k

�

�

s

2kn

log p

n

log p

1

+

k + 6

2

<

r

1 + 3 �

2

k

�

s

2kn

log p

n

log p

1

+

k + 6

2

=

s

2(k+ 3)n

log p

n

log p

1

+

k + 6

2

Setting e < n � t yields the theorem.

11



Comparison with [3, 38] Our algorithm List-Decode is similar to those of [3, 38] in the basic

steps. In their case also, they �rst �nd a polynomial \explaining" the corrupted word and then

factor it to retrieve a list of messages. However the speci�cs are quite di�erent: They look for a

bivariate polynomial explanation; their criterion is to �nd a non-zero polynomial of low degree;

they �nd it by solving a linear system; and then employ a bivariate factorization step. We look

for a univariate polynomial explanation; our criterion is the size of the coe�cients; we �nd it by

(essentially) solving Diophantine systems; and �nally employ univariate factorization. Similarly our

analysis follows the same steps. The existence proof (Lemma 8) is similar to an analogous step in

[38]; though our proof here appears to be more general than his proof. In particular, the pigeonhole

argument could also be applied to his case achieving analogous results. Finally, Lemma 9 is also

analogous in spirit to similar lemmas in [3, 38] - again our proofs are di�erent since our criteria are

di�erent.

5 The Permanent of Random Matrices

In this section we show that computing the permanent of a random matrix modulo a random prime

is very hard. The distribution of matrices and primes we consider is the following:

D is an ensemble of distributions fD

s

g where D

s

consists of pairs (T; p) where T is an s� s matrix

whose entries are chosen uniformly and independently fromZ

2

2s
, and p is a prime chosen uniformly

fromZ

2

s

.

The distributional problem we consider is: Given a randomly chosen pair (T; p) from D

s

, compute

the permanent of T modulo p. We show that no polynomial time algorithm is likely to have inverse

polynomial probability of solving this distributional problem.

Lemma 12 ([2] following [28]; cf., [8]) Suppose there exists a probabilistic polynomial time al-

gorithm A

0

and a polynomial r : Z! Zsuch that on input M , an s � s matrix of 2s-bit integer

elements, A

0

(M) outputs a list of r(s) integers such that the permanent of M is included in this

list (with probability at least, say,

1

2

over the internal coin tosses of A

0

). Then P

#P

= BPP.

We complement this lemma with an algorithm that utilizes a subroutine for computing the perma-

nent on random instances, and uses it to compute a list of values of the permanent on worst-case

instances.

Lemma 13 Suppose there exists a polynomial time algorithm A and a function � :Z! [0; 1] such

that for every positive integer s,

Pr

(T;p)2D

s

[A(T; p) = [perm(T )]

p

] � �(s):

Then there exists a randomized poly(s=�(s))-time algorithm A

0

that on input an s � s matrix M

with entries from Z

2

2s, outputs a list of at most O(1=�(s)

4

) integers, which includes the permanent

of M with high probability.

Proof: Assume, w.l.o.g, that when given a pair (T; p), algorithm A �rst reduces each entry of

T modulo p. Our algorithm for reconstructing the permanent of any s-by-s matrix, M , is given

below:

12



Algorithm Perm(M).

� Parameters n = poly(s=�(s)), n

0

= O(s=�(s)

2

)

� Uniformly select n random primes p

1

; : : : ; p

n

in the interval [2

s=2

; 2

s

].

� For i = 1 to n do /* try to obtain [perm(M)]

p

i

*/

Subroutine Mod-Perm(M; p

i

).

{ Uniformly select an s� s random matrix R with entries fromZ

p

i

.

{ For j = 1 to n

0

do /* try to obtain [perm(M + jR)]

p

i

*/

Let v

j

= A(M + j �R; p

i

);

{ Reconstruct a list of all degree s univariate polynomials ff

1

; : : : ; f

`

0

g that satisfy f

h

(j) =

v

j

for at least an �(s)=16 fraction of the v

j

's.

{ Uniformly select a random h 2 f1; : : : ; `

0

g and set r

i

= f

h

(0).

/* with probability poly(�(s)) (taken over the choice of p

i

and the internal coins of

Mod-Perm), we will have r

i

= [perm(M)]

p

i

*/

� Reconstruct a list of all integers x � s!2

s

2

such that [x]

p

i

= r

i

for at least t = O(�(s)

4

) � n of

the i's, and output this list. Namely, apply List-Decode with parameters p

1

; : : : ; p

n

, k = 6s

(as K = s!2

s

2

< 2

3s

2

and 8i; p

i

� 2

s=2

), and r

1

; : : : ; r

n

.

The polynomial reconstruction step may be performed using the algorithm of [38], which requires

n

0

� 2s � (�(s)=16)

�2

. (To recover polynomials of degree s from a list of values at n

0

places, the

algorithm requires the agreement t

0

to satisfy t

0

>

p

2sn

0

.) The reconstruction of integers satisfying

the Chinese Remainder Property uses Theorem 11 and works when n = 
(s=�(s)

8

). (Here to recover

all sequences with agreement t out of n places, the algorithm requires t = 
(

p

kn) = 
(

p

sn).)

Let P

s

denote the set of primes in the interval [2

s=2

; 2

s

]. Let D

0

s

be the distribution over pairs

(T

0

; p

0

) where p

0

is chosen uniformly in P

s

(rather than among the primes in Z

2

s

, as de�ned by

D

s

), and then T

0

is chosen uniformly from the set of s � s matrices with entries from Z

p

0

(rather

than by reducing modulo p

0

a matrix with entries chosen independently and uniformly inZ

2

2s). We

notice that the statistical di�erence between the two distributions is at most O

�

2

s=2

=(s=2)

2

s

=s

�

+s

2

�

2

s

2

2s

,

which is negligible (where the �rst term comes from the probability that in D

s

a prime smaller

than 2

s=2

is selected, and the second from uneven wrap-around in the reduction modulo a prime).

In particular this implies that

Pr

(T

0

;p

0

)2D

0

s

�

A(T

0

; p

0

) = [perm(T

0

)]

p

0

�

�

�(s)

2

:

Say that a prime p

0

(from P

s

) is good if

Pr

T

0

2Z

s�s

p

0

�

A(T

0

; p

0

) = [perm(T

0

)]

p

0

]

�

�

�(s)

4

:

A simple counting argument shows that at least �(s)=4 fraction of the primes in P

s

are good.

13



For any �xed good prime p

0

, and for any j 2 f1; : : : ; n

0

g, we thus have that

Pr

R2Z

s�s

p

0

�

A(M + jR; p

0

) = [perm(M + jR)]

p

0

�

�

�(s)

4

(recall that we assume that when given a pair (T; p), algorithm A �rst reduces each entry of T

modulo p). Say that a matrix R is compatible with p

0

if

Pr

�

�

�

�

j : A(M + jR; p

0

) = [perm(M + jR)]

p

0

	
�

�

>

�(s)

16

n

0

�

>

�(s)

16

;

(where the probability here is taken only over the coin 
ips of A). It is not hard to verify that the

probability that a random R is compatible with p

0

is at least �(s)=8. It follows that for any good

p

0

,

Pr

�

Mod-Perm(M; p

0

) = [perm(M)]

p

0

�

�

�(s)

8

�

�(s)

16

�

1

`

0

where the �rst term (�(s)=8) is the probability that R is compatible with p

0

; the second (�(s)=16)

is the probability that A returns the correct output for at least �(s)=16 fraction of the j's (so that

the polynomial reconstruction can work), conditioned on R being compatible; and the third term

(1=`

0

) is the probability of selecting the correct index h. As `

0

� 2 � (�(s)=16)

�1

(cf., [38]), the above

probability is 
(�(s)

3

).

Recall that the probability that each p

i

(uniformly selected in P

s

) is good is at least �(s)=4. Hence,

the probability, taken over the choice of p

i

and the random coin 
ips of Mod-Perm that Mod-

Perm(M; p

i

) = [perm(M)]

p

i

, is 
(�(s)

4

). Finally, since the success events of the various i's are

independent, by applying a Cherno� bound, we get that with high probability, the number of

p

i

's for which r

i

= [perm(M)]

p

i

is at least 
(�(s)

4

) � n. In this case List-Decode will succeed in

reconstructing a list that includes perm(M).

By combining Lemma 12 and Lemma 13 we get

Theorem 14 Suppose there exists a polynomial time algorithm A and a positive polynomial func-

tion q :Z!Zsuch that for every positive s,

Pr

(T;p)2D

s

[A(T; p) = [perm(T )]

p

] �

1

q(s)

Then P

#P

= BPP.

Remark 15 A quick examination of the proof shows that the theorem continues to hold if the

distribution D

s

is altered so that the primes are chosen uniformly from Z

f(s)

, and the entries

of the matrix are chosen uniformly from Z

f

2

(s)

, where f is any super-polynomial function. For

f(s) > 2

4s

2

, there exists a simpler argument which does not use the CRT decoding algorithm.

Speci�cally, For f; g :Z

+

!Z

+

, let D

f;g

be an ensemble of distributions fD

f;g

s

g where D

f;g

s

consists

of pairs (T; p) where T is an s � s matrix whose entries are chosen uniformly and independently

from Z

g(s)

, and p is a prime chosen uniformly from Z

f(s)

. Lemma 13 is replaced by the following

lemma.

14



Lemma 16 Suppose there exists a polynomial time algorithm A, functions f; g : Z

+

! Z

+

with

g(s) � f(s)

2

and f(s) > 2

4s

2

and a function � :Z! [0; 1] such that for every positive integer s,

Pr

(T;p)2D

f;g

s

[A(T; p) = [perm(T )]

p

] � �(s):

Then there exists a randomized poly(s=�(s))-time algorithm A

0

that on input an s � s matrix M

with entries from Z

2

2s
, outputs a list of at most O(1=�(s)

4

) integers, which includes the permanent

of M with high probability.

Proof [Sketch]: Given any s � s matrix M with entries from Z

2

2s, we iterate the following

process several times. Pick a random prime p from Z

f(s)

and invoke Subroutine Mod-Perm(M;p)

(from Algorithm Perm(M)). Finally, output a list of all integers returned in all invocations of this

subroutine.

To see the correctness, notice �rst that perm(M) is an integer of magnitude at most s!�(2

2s

)

s

< 2

3s

2

.

Thus if p > 2

3s

2

, then [perm(M)]

p

= perm(M). Furthermore, by the choice of f , p is likely to

be this large with all but negligibly small probability. The lemma now follows from the usual

argument that if p is such that A(R; p) computes [perm(R)]

p

with non-negligible probability, then

perm(M) = [perm(M)]

p

is very likely to be part of the output.

6 Improvements and Applications

6.1 Nearly linear time algorithms for the CRT Code

In this section we review some well-known results which yield fast algorithms for tasks associated

with the CRT code. In particular, there exist nearly linear time algorithms for encoding and for

decoding with (n� k)

log p

1

log p

1

+log p

n

errors. The following theorem summarizes these results.

Theorem 17 For relatively prime integers p

1

; : : : ; p

n

, let b =

P

n

i=1

(1 + blog

2

p

i

c). Then the fol-

lowing tasks can be performed in time O(b log

c

b) for some constant c:

1. Encoding: Given k � n and m <

Q

k

i=1

p

i

, compute ([m]

p

1

; : : : ; [m]

p

n

).

2. Decoding without errors: Given k � n and (r

1

; : : : ; r

n

), r

i

2 Z

p

i

, compute m <

Q

k

i=1

p

i

such

that [m]

p

i

= r

i

for every i 2 f1; : : : ; ng, in case such m exists.

3. Decoding with errors: Given k � n and (r

1

; : : : ; r

n

), r

i

2Z

p

i

, compute m <

Q

k

i=1

p

i

such that

[m]

p

i

6= r

i

for at most (n� k)

log p

1

log p

1

+log p

n

values of i 2 f1; : : : ; ng, in case such m exists.

Parts (1) and (2) of Theorem 17 follow immediately from the fact that the Chinese remainder

representation can be computed and inverted in nearly linear time (cf. [7, Theorems 4.5.3 and

4.5.8]). These results in turn follow from nearly linear time algorithms due to Schonhage and

Strassen [33] for multiplying and dividing two integers. (These algorithms are combined with a

binary-tree structure in which the residues modulo individual p

i

's are associated with the leaves

and the residue modulo

Q

n

i=1

p

i

is associated with the root.) So we just need to prove Part (3);

that is, we show that the algorithm Unique-Decode can be implemented in nearly linear time.

15



A nearly linear time implementation of Step 2 (i.e., computing z=y) follows from the nearly linear

time algorithm for integer division of Schonhage and Strassen [33] and from the fact that both z

and y are at most b-bits long. Thus, we focus on Step 1. In this step we wish to compute y and z

subject to the Eqn. (1). Equivalently, given N;E and r, we wish to �nd integers x; y such that

1 � y � E; x � 0; and 0 � y � r� x �N < N=E: (7)

In turn the above can be rewritten as:

1 � y � E; x � 0; and

x

y

<

r

N

<

x

y

+

1

y �E

: (8)

Setting � =

r

N

, the above problem is that of approximating a rational � from below by another

rational number

x

y

with denominator no larger than E. (In particular the approximation should

be within an additive factor of less than

1

y�E

.) This will be done using the \continued fractions

method", and speci�cally algorithms due to Knuth [21].

We brie
y introduce some notation and summarize known results regarding continued fractions.

We follow the description in Lovasz [27, pages 9{12]. Given a positive real �, consider the sequence

a

0

; a

1

; : : : ; de�ned as follows: �

0

= � and a

0

= b�

0

c. For i = 0; 1; : : :, if �

i

= a

i

then the

sequence terminates, else we de�ne �

i+1

=

1

�

i

�a

i

and a

i+1

= b�

i+1

c. Let CF(�) denote the

sequence (a

0

; a

1

; : : :). It is well known that this sequence has �nite length if and only if � is

rational. Furthermore, for every �nite sequence (a

0

; : : : ; a

l

) of integers a

i

� 1, there exists a unique

rational number � such that CF(�) = (a

0

; a

1

; : : : ; a

l

). We use CF

�1

(a

0

; : : : ; a

l

) to denote this

�. Turning to algorithmics, we recall that the function CF can be computed and inverted in

nearly linear time [21]: That is, if � is given as the ratio of two n-bit integers, then CF(�) can

be computed in time O(n log

O(1)

n). Conversely, given a sequence of integers (a

0

; : : : ; a

l

) with bit

lengths summing to n, a pair of integers p; q such that p=q = CF

�1

(a

0

; : : : ; a

l

) can also be computed

in time O(n log

O(1)

n).

The properties of the continued fraction representation that are of interest to us are the following.

For rational �, let (a

0

; a

1

; a

2

; : : : ; a

l

) = CF(�). For 0 � i � l, let

g

i

h

i

= CF

�1

(a

0

; : : : ; a

i

). Then the

following facts hold (see [27, pages 9{12] for proofs):

(CF1) The h

i

's are monotonically increasing.

(CF2) The g

i

's and h

i

's satisfy g

i+1

�h

i

� g

i

�h

i+1

= (�1)

i

= sgn

�

��

g

i

h

i

�

. In particular it follows

that j��

g

i

h

i

j �

1

h

i

�h

i+1

for every i.

(CF3) For any integer E, let k be the largest index such that h

k

� E. Let j =

j

E�h

k�1

h

k

k

, �

def

=

g

k

h

k

,

and �

0

def

=

g

k�1

+j�g

k

h

k�1

+j�h

k

g. Then,

1. the number � lies between �

1

= minf�; �

0

g and �

2

= maxf�; �

0

g (each being a rational

with denomenator at most E); and

2. every rational lying strictly between �

1

and �

2

has a denominator strictly larger than E.

It follows that �

1

is the largest rational less than � with denominator at most E.

16



We show that �

1

as in (CF3) necessarily satisfy Eqn. (8), in case some y

0

; x

0

satisfying this equation

do exist. Furthermore, we show that in case � = r=N and r;N are given, �

1

can be found in almost

linear time. This yields the algorithm we were looking for. We comment that �

1

is the best rational

lower bound on � =

r

N

with denominator bounded by E. That is, y; x satisfy

x

y

� �, y � E and

every rational between

x

y

and � has denominator greater than E.

Proposition 18 Let E be an integer and � be a number so that

1 � y � E; x � 0; and

x

y

� � <

x

y

+

1

y �E

(9)

has a solution. Then the rational �

1

as in (CF3) is a solution. Furthermore, given b-bit integers

r;N;E, and setting � = r=N , it is possible to compute the rational �

1

in time O(b log

c

b).

By the premise of Part 3 of Theorem 17 (concerning the existence of m as desired), and Claim 5.1,

we know that there exists a solution to Eqn. (9). Part 3 of Theorem 17 follows using the same

arguments as in the proof of Theorem 6.

Proof: Let us start with the algorithmic part; that is, computing b

1

. It su�ces to �nd integers

k; j; g

k�1

; h

k�1

; g

k

and h

k

as described in (CF3), since they determine �; �

0

via a constant number

of operations (additions, multiplications and divisions). Observe that given r;N and i, the pair

g

i

; h

i

(giving the ith approximant to � = r=N) can be computed in nearly linear time. (This is

done by �rst computing (a

0

; :::; a

l

) = CF(r=N) and next computing CF

�1

(a

0

; :::; a

i

) which yields

g

i

; h

i

.) Using (CF1) we may perform binary search to �nd k. Once k is found, we can compute

g

k�1

; h

k�1

; g

k

; h

k

as well as j =

j

E�h

k

h

k�1

k

in nearly linear time.

We next show that �

1

=

g

h

satis�es Eqn. (9). By (CF3), g � 0, 1 � h � E and

g

h

� �. So all that

is left is to show that � �

g

h

+

1

h�E

. In case �

1

= � =

g

k

h

k

(� �) the claim follows from (CF2):

� �

g

k

h

k

�

1

h

k

� h

k+1

<

1

h

k

�E

(10)

So we are left with the case �

1

= �

0

=

g

k�1

+j�g

k

h

k�1

+j�h

k

(and �

2

= � =

g

k

h

k

).

Suppose that

s

t

is a solution to Eqn. (9). We consider two subcases.

Case 1: t > h

k�1

+ j � h

k

. Since t � E and

s

t

� �, we can use (CF3) and derive

s

t

� �

1

. So,

��

g

k�1

+ j � g

k

h

k�1

+ j � h

k

� � �

s

t

�

1

t �E

<

1

(h

k�1

+ j � h

k

) �E

(11)

Case 2: t � h

k�1

+ j � h

k

. Since �

2

=

g

k

h

k

> � while

s

t

� �, the following rational must be positive

and so

g

k

h

k

�

s

t

=

g

k

� t� h

k

� s

h

k

� t

�

1

t � h

k

(12)

Combining Eqn. (12) with the hypothesis � �

s

t

<

1

t�E

, and using the case hypothesis t �

h

k�1

+ j � h

k

, we get

g

k

h

k

� � >

1

t � h

k

�

1

t �E

�

1

h

k�1

+ j � h

k

�

�

1

h

k

�

1

E

�

(13)

17



We next observe that

g

k

h

k

�

g

k�1

+ j � g

k

h

k�1

+ j � h

k

=

g

k

� (h

k�1

+ j � h

k

)� h

k

� (g

k�1

+ j � g

k

)

h

k

� (h

k�1

+ j � h

k

)

=

1

h

k

� (h

k�1

+ j � h

k

)

(14)

where the last equality follows from (CF1). By combining Eqn. (13) and Eqn. (14) we get

��

g

k�1

+ �j � g

k

h

k�1

+ j � h

k

<

1

h

k�1

+ j � h

k

�

�

1

h

k

�

1

h

k

+

1

E

�

=

1

(h

k�1

+ j � h

k

) �E

(15)

(Proposition 18)

6.2 Secret Sharing based on CRT

We present a new scheme for secret sharing. The scheme is based on the CRT-code, analogously

to the way Shamir's secret-sharing scheme [34] is based on Reed-Solomon codes.

Recall that in Shamir's scheme, for parameters t < n and q > n, one is given a secret s 2 GF(q)

and shares it among n parties by uniformly selecting a degree t polynomial, p, over GF(q) with

free term s, and handing p(i) to the i

th

party. Clearly, any t+ 1 parties can recover the secret (by

interpolation), whereas no set of t parties obtains any information about the secret. In abstract

terms, Shamir's scheme consists of selecting a random codeword among those of a certain \label",

and giving each party a block of bits in the codeword. We can do the same in case of the CRT

code, and our secret sharing scheme follows.

Construction 19 (The CRT secret-sharing scheme):

parameters: t < n and primes p

0

< p

2

< p

1

< � � � < p

n

.

sharing: To share a secret a

0

def

= s 2 GF(p

0

) one does the following

1. uniformly selects a

1

2 GF(p

1

),..., a

t

2 GF(p

t

);

2. �nds x 2Z

Q

t

i=0

p

i

so that x � a

i

(mod p

i

), for i = 0; 1; :::; t;

3. sets the i

th

share to be x mod p

i

, for i = 1; :::; n.

reconstructing: Given any t + 1 shares, s

i

1

; :::; s

i

t+1

, corresponding to parties i

1

; :::; i

t+1

, one

reconstructs the secret as follows

1. �nds y 2Z

Q

t+1

j=1

p

i

j

so that y � s

i

j

(mod p

i

j

), for j = 1; :::; t; t+ 1.

2. recover the secret to be (y mod p

0

).

We �rst show that the reconstruction indeed works. Consider x and y as computed in Step (2)

of the Sharing procedure and Step (1) of the Reconstruction procedure, respectively. Clearly,

y � x (mod p

i

j

), for j = 1; :::; t; t + 1. Viewing x and y as non-negative integers, we have

x <

Q

t

i=0

p

i

<

Q

t+1

j=1

p

i

j

and x = y. Thus, y � x (mod p

i

) for every i = 0; 1; :::; t, and y � s

(mod p

0

) follows. On the other hand, the �rst t shares yield no information about the secret. As

for other sets of upto t shares, here some information about the secret is leaked, but we can upper

bound its amount.

18



Proposition 20 Let s; s

0

2 GF(p

0

), let r

1

; :::; r

t

be chosen as in Step (1) of the sharing Sharing,

and let X(s) (resp., X(s

0

)) denote the value computed in Step (2). Then, for every set I � [n] of

indices, the statistical di�erence between (X(s) mod

Q

i2I

p

i

) and (X(s

0

) mod

Q

i2I

p

i

) is at most

2 �

Q

i2I

p

i

Q

t

i=1

p

i

Thus, in general, security is provided only for jI j � t � 1 (rather than for jI j � t as in case of

Shamir's shceme). An advised choice of parameters is to have p

i

's be of the same magnitude and

large enough so that 1=p

i

is negiligible in the security parameter.

Proof: Let us further generalize the claim and consider, for two integers K;M each relatively

prime to p, the randomized process R :Z

p

7!Z

pK

which maps each s 2Z

p

to a uniformly selected

member of fr 2 Z

pK

: r � s (mod p)g. We are interested in the statistical di�erence between

(R(s) mod M) and (R(s

0

) mod M), for the worst possible pair s; s

0

2 Z

p

. (In our case, p

def

= p

0

,

K

def

=

Q

t

i=1

p

i

, R(s)

def

=X(s), and M �

Q

i2I

p

i

.)

Clearly R(s) � s+ r � p, where r is uniformly chosen in Z

K

(and same for R(s

0

)). So,

[R(s)]

M

� [s]

M

+ [r]

M

� [p]

M

(mod M)

The point is that [r]

M

is the only randomness in the r.h.s., and that multiplying by [p]

M

is a

permutation over Z

M

(since p is relatively prime to M). Thus, if [r]

M

is uniformly distributed

overZ

M

then [R(s)]

M

and [R(s

0

)]

M

are identically distributed. In general, the statistical di�erence

between the latter is bounded by twice the statistical di�erence of [r]

M

(where r is uniformly chosen

inZ

K

) from the uniform distribution onZ

M

. In case M divides K the statistical di�erence is zero,

and otherwise it is (K mod M)=K which is bounded above by M=K. The claim follows.

Acknowledgments

We would like to thank Venkatesan Guruswami for bringing the work of [10] to our attention. We

would like to thank Valentine Kabanets for pointing out an error in the earlier version of this paper.

References

[1] M. Ajtai. Generating hard instances of lattice problems (extended abstract). Proceedings

of the Twenty-Eighth Annual ACM Symposium on the Theory of Computing, pages 99-108,

Philadelphia, Pennsylvania, 22-24 May 1996.

[2] A. Amir, R. Beigel, and W. Gasarch. Cheatable, P-terse, and P-superterse sets,

manuscript, Dec. 1989.

[3] S. Ar, R. Lipton, R. Rubinfeld and M. Sudan. Reconstructing algebraic functions from

mixed data. SIAM Journal on Computing, 28(2):488-511, 1999. Preliminary version in FOCS,

1992.

[4] E. R. Berlekamp. Algebraic Coding Theory. McGraw Hill, New York, 1968.

19



[5] E. R. Berlekamp. Bounded Distance +1 Soft-Decision Reed-Solomon Decoding. IEEE

Transactions on Information Theory, 42(3):704-720, 1996.

[6] M. Blum and S. Micali. How to Generate Cryptographically Strong Sequences of Pseudo-

Random Bits. SIAM J. Computing, Vol. 13, pages 850{864, 1984. Preliminary version in 23rd

FOCS, 1982.

[7] A. Borodin and I. Munro. The Computational Complexity of Algebraic and Numeric

Problems. American Elsevier Publishing Company, New York, 1975.

[8] J. Cai and L. A. Hemachandra. A note on enumerative counting. Information Processing

Letters, 38(4):215-219, 31 May 1991.

[9] J. Cai, A. Pavan, and D. Sivakumar. On the Hardness of Permanent. STAACS , 1999.

[10] I. M. Duursma. Decoding codes from curves and cyclic codes. Ph.D. Thesis, Eindhoven, 1993.

[11] P. Elias. List decoding for noisy channels. Technical Report 335, Research Lab. of Electronics,

MIT, 1957.

[12] P. Elias. Error-correcting codes for list decoding. IEEE Trans. on Information Theory,

37:5-12. 1991.

[13] P. Gemmell, R. Lipton, R. Rubinfeld, M. Sudan and A. Wigderson. Self-

testing/correcting for polynomials and for approximate functions. Proceedings of the Twenty

Third Annual ACM Symposium on Theory of Computing, pages 32-42, New Orleans,

Louisiana, 6-8 May 1991.

[14] P. Gemmell and M. Sudan. Highly resilient correctors for multivariate polynomials. Infor-

mation Processing Letters, 43(4):169-174, 1992.

[15] O. Goldreich, D. Ron and M. Sudan. Chinese Remaindering with Errors. Available from

ECCC, 1998.

[16] O. Goldreich, R. Rubinfeld and M. Sudan. Learning polynomials with queries: The

highly noisy case. 36th FOCS, pages 294{303, 1995. Revised version available from ECCC,

1998.

[17] S. Goldwasser and S. Micali. Probabilistic Encryption. JCSS, Vol. 28, No. 2, pages

270{299, 1984. Preliminary version in 14th STOC, 1982.

[18] V. Guruswami and M. Sudan. Improved decoding for Reed-Solomon and algebraic-

geometric codes. FOCS 1998.

[19] E. Kaltofen. Polynomial factorization 1987{1991. LATIN '92, I. Simon (Ed.) Springer

LNCS, v. 583:294-313, 1992.

[20] R. M. Karp and M. O. Rabin. E�cient randomized pattern-matching algorithms. Technical

report TR-31-81, Aiken Computation Laboratory, Harvard University, 1981.

[21] D.E. Knuth. The analysis of algorithms. Actes du Congres International des Mathematiciens,

Tome 3, 269-274, 1970.

20



[22] R. Kotter. A uni�ed description of an error locating procedure for linear codes. Proceedings

of Algebraic and Combinatorial Coding Theory, Voneshta Voda, Bulgaria, 1992.

[23] E. Kushilevtitz and N. Nisan. Communication Complexity. Cambridge University Press,

1997.

[24] A. K. Lenstra, H. W. Lenstra and L. Lovasz. Factoring polynomials with rational

coe�cients. Mathematische Annalen, 261:515{534, 1982.

[25] H. W. Lenstra. Integer programming with a �xed number of variables. Mathematics of

Operations Research, 8: 538{548, 1983.

[26] R. J. Lipton. New directions in testing. Distributed Computing and Cryptography, J. Feigen-

baum and M. Merritt (ed.), DIMACS Series in Discrete Mathematics and Theoretical Com-

puter Science, American Mathematics Society, 2:191{202, 1991.

[27] L. Lov

�

asz. An Algorithmic Theory of Numbers, Graphs and Convexity. SIAM Publications,

1986.

[28] C. Lund, L. Fortnow, H. Karloff, and N. Nisan. Algebraic Methods for Interactive

Proof Systems. JACM, Vol. 39, No. 4, pages 859{868, 1992. Preliminary version in 31st FOCS,

1990.

[29] F. J. MacWilliams and N. J. A. Sloane. The Theory of Error-Correcting Codes. North-

Holland, Amsterdam, 1981.

[30] J. L. Massey. Shift register synthesis and BCH decoding. IEEE Transactions on Information

Theory, 15:122{127, 1969.

[31] R. Pellikaan. On decoding linear codes by error correcting pairs. Eindhoven University of

Technology, preprint, 1988.

[32] W. W. Peterson. Encoding and error-correction procedures for Bose-Chaudhuri codes. IRE

Transactions on Information Theory, IT-60:459-470, 1960.

[33] A. Schonhage and V. Strassen. Schnelle multiplikation grosser zahlen. Computing, 7:281-

292, 1971.

[34] A. Shamir. How to Share a Secret. CACM, Vol. 22, Nov. 1979, pages 612{613.

[35] M. A. Shokrollahi and H. Wasserman. Decoding algebraic-geometric codes beyond the

error-correction bound. STOC, 1998.

[36] M. Sipser and D. A. Spielman. Expander codes. IEEE Transactions on Information

Theory, 42(6):1710{1722, 1996.

[37] D. A. Spielman. Linear-time encodable and decodable error-correcting codes. IEEE Trans-

actions on Information Theory, 42(6):1723{1732, 1996.

[38] M. Sudan. Decoding of Reed-Solomon codes beyond the error-correction bound. Journal of

Complexity, 13(1):180-193, 1997.

[39] J. H. van Lint. Introduction to Coding Theory. Springer-Verlag, New York, 1982.

21



[40] L. G. Valiant. The complexity of computing the permanent. Theoretical Computer Science,

8(2):189-201, April 1979.

[41] A. Vardy. Algorithmic complexity in coding theory and the minimum distance problem.

STOC, 1997.

[42] L. Welch and E. R. Berlekamp. Error correction of algebraic block codes. US Patent

Number 4,633,470, issued December 1986.

A The paradigm for decoding linear codes

Our algorithm in Section 3 was inspired by the following general method for decoding linear codes

(which satisfy some special properties). The exposition below is reproduced from [10] where it is

attributed to [31] and [22]. In Appendix B we present a variant of our algorithm that exhibits the

relation to the general paradigm more clearly.

De�nition 21 For integers n, k, and d and a �eld F, a linear code C over F of block length n is

a linear subspace of F

n

. The rate of the code C, denoted r(C), is the rank of C. The distance of

C, denoted d(C), is the largest integer d such that any two vectors in C disagree on at least d � 1

coordinates.

In what follows, we will assume that a linear code C over F, of block length n and rate k, is speci�ed

by an n � k matrix M

C

2 F

n�k

such that C = fM

C

� xjx 2 F

k

g.

For vectors x; y 2 F

n

, let x�y 2 F

n

denote the vector given by (x�y)

i

= x

i

�y

i

. For sets X; Y � F

n

,

let X � Y � F

n

denote the set fx � yjx 2 X; y 2 Y g.

De�nition 22 (t-error correcting pair) A t-error correcting pair for a linear code C over F of

block length n is a pair of linear codes A;B satisfying:

A � C � B (16)

r(A) > t (17)

d(A) > n� d(C) (18)

d(B) > t (19)

Theorem 23 For t � n, let A;B; C be linear codes over F of block length n, such that (A;B) form

a t-error correcting pair for C. Then, given A;B; C and a \received word" r 2 F

n

, a codeword c 2 C

that di�ers from r in at most t locations can be found in O(n

3

) time.

Proof: We start by describing the algorithm for �nding the codeword c.

Linear-Decode(A;B; C; r;F; n);

1. Find a; b satisfying:

a 2 A � f0

n

g; b 2 B and a � r = b (20)

22



2. Let I

def

= fi : [a]

i

6= 0g. Find c 2 C s.t. c

i

= r

i

for every i 2 I and output it.

Let M

A

, M

B

and M

C

be the generating matrices of A, B and C respectively. Then Step 1 above

amounts to �nding vectors x

A

2 F

r(A)

and x

B

2 F

r(B)

such that (M

A

� x

A

)

i

r

i

= (M

B

� x

B

)

i

. This

amounts to solving a linear system with n equations and r(A) + r(B) � 2n unknowns and can

certainly be solved using O(n

3

) �eld operations. Similarly, Step 2 amounts to �nding x

C

2 F

r(C)

such that (M

C

�x

C

)

i

= r

i

for i 2 I . Again these form at most n linear equations in r

C

� n unknowns

and can be solved in O(n

3

) time. This yields the claim about the running time.

We prove the correctness in the following three claims. The �rst of the claims shows that if r is

in fact close to some codeword c, then a pair satisfying Eq. (20) must exist. The second claim

shows that for any pair a; b satisfying Eq. (20), every codeword c that is close to r will satisfy the

conditions required in Step 2. The third claim shows that for any pair a; b, there is at most one

solution to Step 2, thus completing the proof that c is the unique answer output by our algorithm.

(The properties in Eq. (16)-Eq. (19) will be used in the claims below. The property A � C � B is

used everywhere. The property on the rate of A is used in the �rst claim. The property on the

distance of B is used in the second and the property on the distance of A in the third.)

Claim 23.1 If there exists a codeword c 2 C that di�ers from r in at most t coordinates, then there

exist a; b satisfying Eq. (20).

Proof: Let E = fijr

i

6= c

i

g. We �rst claim there exists an a 2 A � f0

n

g s.t. a

i

= 0 for i 2 E.

This is true since A has rank at least t + 1 and we have added at most t constraints of the form

a

i

= 0 (for i 2 E). This yields a linear subspace of F

n

which has rank at least 1 and hence has a

non-zero vector.

For such an a, we claim that the vector b = a � c satis�es the conditions of Eq. (20). b 2 B, since

A � C � B; and a � r = b since for every i 2 f1; : : : ; ng, exactly one of the following holds:

1. r

i

= c

i

and hence a

i

� r

i

= a

i

� c

i

= b

i

.

2. r

i

6= c

i

and hence a

i

= 0 and hence a

i

� r

i

= 0 = a

i

� c

i

= b

i

.

Claim 23.2 For any solution a; b to Eq. (20), and any codeword c 2 C such that c and r disagree

on at most t coordinates, a � c = a � r (and hence c

i

= r

i

if a

i

6= 0).

Proof: Consider the vector b

0

2 B given by b

0

= a � c. (b

0

)

i

and b

i

may di�er only if c

i

6= r

i

(since

b

i

= a

i

� r

i

); and this happens for at most t values of i 2 f1; : : : ; ng. Thus b

i

and b

0

i

di�er in at most

t locations; but since both are members of a linear code of distance at least t + 1, they must be

identical. The claim follows.

Thus we now know that a codeword c 2 C satisfying the requirements in Step 2 does exist. Finally

we need to show that any codeword returned in Step 2 is close to r. Notice that by Step 2, r

i

6= c

i

implies i =2 I .

Claim 23.3 For any pair a 2 A, b 2 B, there exists at most one codeword c 2 C satisfying a�c = b.

23



Proof: Assume c

1

; c

2

2 C satisfy a � c

1

= a � c

2

= b. Then a � (c

1

� c

2

) = 0

n

. Thus for every

index i, it must be that a

i

= 0 or (c

1

� c

2

)

i

= 0. But a

i

= 0 for at most n � d(A) values of

i 2 f1; : : : ; ng and (c

1

� c

2

)

i

= 0 for at most n � d(C) values of i 2 f1; : : : ; ng. Thus we have that

n� d(A) + n� d(C) � n which contradicts the fact that d(A) > n� d(C).

This concludes the proof of the correctness of algorithm Linear-decode; and this yields the theo-

rem.

The above paradigm for decoding uni�es most of the known (unique) decoding algorithms. For

example, the Welch-Berlekamp algorithm [42, 5] (as described in [14]) can be obtained as a special

case of the above. Recall the de�nition of a Reed-Solomon code: For integers n and k � n and

�eld F of cardinality n + 1, the Reed-Solomon code RS

n;k

over F and block length n is given by

RS

n;k

= f(f(x))

x2F�f0g

jf is a polynomial of degree k � 1g:

It is easy to verify that RS

n;k

has rate k and distance n�k+1. Notice further that RS

n;k

�RS

n;t

�

RS

n;k+t�1

. Thus setting t = b

n�k+1

2

c we notice that the pair RS

n;t

;RS

n;k+t�1

form a t-error

correcting pair for Reed-Solomon codes; and by Theorem 23 has an e�cient algorithm for correcting

up to t errors. Decoding algorithms for other algebraically speci�ed codes such as the BCH codes,

Alternant codes and algebraic-geometric codes follow by similar constructions of error-correcting

pairs.

B A Variant of Unique-Decode

As mentioned previously, our algorithm Unique-Decode (presented in Section 3) was inspired by

the paradigm described in Appendix A. To gain more intuition about the relation between our

algorithm and the general paradigm, we present below a variant of our algorithm, which more

directly exhibits this relation. Note that Step 1 of the alternative algorithm is the same as Step 1

of the original algorithm, but the integers y and z found in this step are used di�erently in the

remaining steps. In view of this di�erence, the goal of Step 1 is interpreted di�erently. Details

follow.

Given a received word hr

1

; : : : ; r

n

i that is close to the encoding of (a unique) message m, similarly

to what is done in Linear-Decode, the algorithm Unique-Decode' tries to detect the indices for which

r

i

6= [m]

p

i

. It then reconstructs the message, using CRT, from those r

i

's that are assumed to

be correct (or more precisely, from [r]

p

0

i

, where p

0

i

is a factor of p

i

determined by the algorithm).

The above detection is done by �nding an integer y that satis�es [y]

p

i

= 0 whenever r

i

6= [m]

p

i

.

By restricting y to be relatively small we ensure that [y]

p

i

does not equal 0 for many i satisfying

r

i

= [m]

p

i

(so that CRT can in fact be applied). To �nd this y, we need some way to (describe

and) exploit the fact that there exists some small m s.t., for every i, [y]

p

i

= 0 or [m]

p

i

= r

i

; or

equivalently [y]

p

i

� [m]

p

i

� [y]

p

i

� r

i

(mod p

i

). The �nal condition suggest that we may attempt to

�nd z

def

= y �m such that [z]

p

i

� [y]

p

i

� r

i

(mod p

i

). While ideally we would like to specify further

that z is a multiple of y, we relax this and simply use the fact that z is also small (since both y

and m are small). This leads to the following algorithm:

Unique-Decode'(p

1

; : : : ; p

n

; k; r

1

; : : : ; r

n

).

24



{ Set K =

Q

k

i=1

p

i

, N =

Q

n

i=1

p

i

, and F = (K � 1)E, with E to be determined later.

{ Let r 2Z

N

be s.t. r

i

= [r]

p

i

(as de�ned by CRT).

1. Find integers y; z s.t.

1 � y � E

0 � z � F

y � r � z (modN)

9

>

=

>

;

(21)

2. Let I

def

= fi : [y]

p

i

6= 0g. For every i 2 I let p

0

i

= p

i

=gcd(y; p

i

), and set x

i

= [r]

p

0

i

. (Note

that if p

i

is prime, p

0

i

= p

i

and so x

i

= r

i

.)

3. Find x 2Z

K

s.t. [x]

p

0

i

= x

i

for every i 2 I (if such an x exists) and output it.

Similarly to the algorithm Unique-Decode, the above algorithm can be implemented in polynomial

time in the bit sizes of p

1

; : : : ; p

n

. Step 1 is as in Unique-Decode, Step 2 is straightforward, and

Step 3 is just an application of the Chinese Remainder Theorem (i.e., �nd x 2 Z

Q

i2I

p

0

i

via CRT

and check if it is smaller than K).

Theorem 24 Unique-Decode'(p

1

; : : : ; p

n

; k; r

1

; : : : ; r

n

) solves the error-correction problem in poly-

nomial time for any value of the error parameter up to (n � k)

logp

1

log p

1

+logp

n

, with the setting

E =

Q

n

i=n�e+1

p

i

.

The proof of Theorem 24 follows from the next lemma exactly as the proof of Theorem 6 follows

from Lemma 5.

Lemma 25 If r is such that for some m 2 Z

K

the amplitude of the distance between hr

1

; : : : ; r

n

i

and h[m]

p

1

; : : : ; [m]

p

n

i is at most E, and N > E

2

�K then Unique-Decode'(p

1

; : : : ; p

n

; k; r

1

; : : : ; r

n

)

returns m.

Proof: We �rst observe that Claims 5.1 and 5.2, which were used to prove Lemma 5 hold here as

well since Step 1 of Unique-Decode' is identical to Step 1 of Unique-Decode. By Claim 5.1, Step 1

of the algorithm always returns a pair (y; z) satisfying Eq. (1). By Claim 5.2, any pair (y; z) that

may be the outcome of Step 1 satis�es y �m = z. Since y � r � z (mod N), it follows that for

every i, y � r � y �m (mod p

i

), and so for every i 2 I (where I is as de�ned in Step 2), we have

r � m (mod p

0

i

) (since y has a multiplicative inverse modulo p

0

i

). Thus, m 2Z

K

is a valid solution

for the task in Step 3 (since 8i 2 I; [m]

p

0

i

= [r]

p

0

i

= x

i

).

It remains to show that m is the only possible solution. For this, let

�

I = f1; : : : ; ng n I (i.e.,

8i 2

�

I; y � 0 (mod p

i

)). Let q

i

def

= p

i

=p

0

i

, and observe (by de�nition of p

0

i

) that y � 0 (mod q

i

)

for every i 2 I . (Note that for the special case in which the p

i

's are prime numbers (and not only

relatively prime), p

0

i

= p

i

and so q

i

= 1). By CRT, y � 0 (mod

Q

i2

�

I

p

i

Q

i2I

q

i

), and since y > 0 it

follows that y �

Q

i2

�

I

p

i

Q

i2I

q

i

. Since y � E, we have

Q

i2

�

I

p

i

Q

i2I

q

i

� E and

Y

i2I

p

0

i

=

N

Q

i2

�

I

p

i

Q

i2I

q

i

�

N

E

> K

follows. Thus, again by CRT, the message m is the only solution in Z

K

to the system fx �

r (mod p

0

i

)g

i2I

.

25


