
Public-key cryptography and password protocols

Shai Halevi

�

Hugo Krawczyk

y

February 2, 1999

Abstract

We study protocols for strong authentication and key exchange in asymmetric scenarios

where the authentication server possesses a pair of private and public keys while the client has

only a weak human-memorizable password as its authentication key. We present and analyze

several simple password protocols in this scenario, and show that the security of these protocols

can be formally proven based on standard cryptographic assumptions. Remarkably, our analysis

shows optimal resistance to o�-line password guessing attacks under the choice of suitable public

key encryption functions. In addition to user authentication, we enhance our protocols to provide

two-way authentication, authenticated key exchange, defense against server's compromise, and

user anonymity. We complement these results with a proof that public key techniques are

unavoidable for password protocols that resist o�-line guessing attacks.

As a further contribution, we introduce the notion of public passwords that enables the use of

the above protocols in situations where the client's machine does not have the means to validate

the server's public key. Public passwords serve as \hand-held certi�cates" that the user can

carry without the need for special computing devices.

�

IBM T.J.Watson Research Center, PO Box 704, Yorktown Heights, New York 10598, USA Email: shaih@

watson.ibm.com.

y

Department of Electrical Engineering, Technion, Haifa 32000, Israel, and IBM T.J. Watson Research Center,

New York, USA. Email: hugo@ee.technion.ac.il.

0

1 Introduction

In this paper we study the use of human passwords for strong authentication and key exchange

in asymmetric scenarios where the authentication server can store a strong secret (such as the

private key for public-key encryption) while the client uses a weak human-memorizable password

as its only authentication key. This asymmetry arises naturally in applications, such as remote

user authentication, where the user does not carry any computational device (e.g., a laptop or

smart-card) capable of storing a long secret. It also arises in applications of protocols such as SSL,

IPSEC and SET in the cases where the client end does not possess a public key

1

.

A common problem with password-based methods is the low entropy available in user-chosen

passwords, which may be used by an attacker to mount password-guessing attacks. Such attacks

may proceed by simply guessing passwords and verifying the guessed value using publicly available

information, such as the transcript of a legitimate authentication session between the user and

server. This attack is very powerful, since it can be performed o�-line, so the attacker does not

need to interact with the legitimate parties, and can use a lot of computing power. (In contrast,

on-line attacks where the attacker actively tries di�erent passwords against the server are easier to

detect and limit.)

The �rst to deal with the use of public key techniques in conjunction with password authen-

tication were Gong, Lomas, Needham and Saltzer [12]. They suggested that by providing the

authentication server with a pair of private/public keys, one could protect weak human passwords

against strong attacks via the use of public key encryption. The emphasis of that work was in

protecting passwords against o�-line password-guessing attacks. Our work extends the public key

based approach of [12] in several ways with special emphasis on the analysis and provability of the

proposed protocols.

� We consider several simple and intuitive protocols for password authentication, and formally

analyze their security. We show that the security of these protocols strongly depends on the

choice of the public key encryption function, and demonstrate how some natural and \seem-

ingly secure" realizations of the protocols can be broken. On the other hand, by strengthening

the notion of encryption (to resist some form of chosen ciphertext attack) we can formally

prove the security of the protocols. In particular, we show optimal resistance to o�-line

password-guessing attacks.

� We enhance our basic protocols to provide important features such as two-way authentication,

authenticated key exchange, resistance to server's compromise, and user anonymity.

� We introduce the notion of public passwords, as an enabler for the use of our protocols in

situations where the certi�ed server's public key is not available to the client's machine.

� Finally, we prove a general theoretic result, showing that the use of public key techniques is

unavoidable in password protocols that provide defense against o� line guessing attacks.

Security of password protocols. The main di�culty in designing secure password mechanisms

arises from the fact that the space of passwords is usually small and much easier to attack than

random cryptographic keys. In particular, exhaustive search attacks as the o�-line guessing attacks

mentioned above become practical. Moreover, using a low-entropy password as a key to a crypto-

graphic function, can transform an otherwise strong function into a weak one. Namely, when using

passwords as cryptographic keys, one makes the assumption that these functions remain secure

1

SET de�nes a \certless" option to support these cases. SSL and IPSEC currently do not de�ne such password-

based modes of authentication but the need for them has been repeatedly pointed out.

1

even when the keys are chosen from a very small set. These assumptions are so unusual that, to

the best of our knowledge, no one has been able to formally de�ne the requirements from these

cryptographic functions under which existing protocols can be proved secure.

2

Our work avoids these problems by providing mechanisms that do not use the password as a key

to cryptographic functions and which we formally prove secure based on standard cryptographic

assumptions. Our assurance of security is very strong: we prove that the attacker cannot do better

than just trying its luck in active (on-line) impersonation attempts (e.g., by trying to authenticate

to the server using a guessed password). Note that if the attacker performs v such attempts and

the password is taken from a dictionary of size d then the attack can succeed with probability v=d.

We show that additional o�-line work by the attacker does not increase this probability (as long as

the attacker cannot break the encryption function).

Security of public key encryption. In this work we use public key encryption to design

password authentication protocols. Although the protocols themselves are very simple and intuitive,

proving their security is not straightforward. In particular, it turns out that the basic notion of

security for encryption algorithms (i.e., secrecy against eavesdroppers) is not su�cient to ensure

the security of these protocols, and that a stronger notion must be used. We brie
y discuss these

notions here.

The basic notion of security for public key encryption, due to Goldwasser and Micali [11],

essentially means that it is infeasible to derive any partial information on the encrypted plaintext

given its ciphertext. In particular, given x

1

; x

2

; c it should be infeasible to determine whether or

not c is an encryption of x

1

or x

2

. (This implies that such a secure public-key encryption algorithm

must be randomized.) Although this notion provides very high assurance of secrecy protection, it

is still not enough to ensure the security of our protocols. Indeed, in Section 3.5 we show how the

use of a particular encryption function (which satis�es the Goldwasser-Micali notion) leads to an

insecure implementation of the protocols. Hence a stronger notion of security of the encryption

algorithm is needed. This stronger notion of security, known as resistance to chosen ciphertext

attacks, was introduced by Racko� and Simon [22], and is also the subject of [8, 2]. We prove

that when using encryption that satis�es this stronger property (e.g., [3, 6]) the protocols that we

describe are indeed secure.

Public passwords. Our protocols enjoy several attractive properties and are suited for imple-

mentation in cases where the authentication server possesses a public key. However, this requires

the client machine to know the correct value of this public key. Under certain circumstances, this

is possible via a certi�cation of the server's public key by a trusted party or via some other form of

trusted distribution to the client machine. However, if a user needs to authenticate from a remote

machine that does not have a way to validate the correct public key of the authentication server,

then the security of these protocols is in danger. In these cases, we propose to provide the users

with a digest of the server's public key. This digest, typically of length 60-80 bits, does not need

to be memorized by the user. It can be safely written on paper, a plastic card, etc. In Section 4

we discuss several ways to implement these digests; we suggest that the user does not even need to

type such a digest, but just recognize it when displayed. We call this digest a public password. This

notion may be of signi�cant practical value beyond our applications in order to bootstrap trust in

public keys before a public key infrastructure is in place (and possibly even after that).

2

It may be possible to de�ne these requirements in terms of idealized assumptions like the random oracle model;

see [19]. However, when we replace these ideal functions with actual cryptographic functions the security of the

resultant scheme is unknown.

2

Applications. The protocols described and analyzed in this paper can have extensive application

in scenarios where users authenticate themselves using human-memorizable passwords. For exam-

ple, they can be used to improve the user authentication techniques in remote applications such as

telnet, ftp, etc., and for exchanging a key used to protect the actual data transmitted under these

applications. Moreover, our protocols can be used in conjunction with general security protocols,

such as IPSEC or SSL, to create \secure sessions" between server and terminal. This is done by

�rst exchanging a key between the terminal and the server using our protocols, namely, where the

authentication of the terminal side is done using the user's password. Then this key is used with

the IPSEC or SSL mechanisms for the protection of the data itself.

We note that if the terminal does have its own public key, and the server has the means to

verify this key, then one can directly use SSL or IPSEC (with their own public-key-based key-

exchange mechanisms) to establish a secure session over which the application's data, including

user's password, is transmitted. The advantage of this method is that the authentication of the

terminal can be based on a strong cryptographic key. It is interesting to note that our analysis of

Section 5 shows that the transmission of the user's password for authentication is secure provided

that the encrypted channel is secure against chosen ciphertext attacks. Although our analysis

there focuses on public key encryption we note that the same analysis is valid for symmetric-

key encryption. In the later case, a combination of semantically secure encryption and message

authentication provide for the required resistance to chosen ciphertext attacks.

Necessity of public key techniques. All the published solutions for password authentication

protocols that resist guessing attacks use public key techniques; we show that this is no accident.

Speci�cally, we prove that every authentication protocol which resists o�-line password-guessing

attack requires the use of some form of public key techniques. More precisely, we show that given

any password protocol resistant to o�-line guessing attacks one can build a secure key-exchange

protocol (i.e., a protocol that allows parties that do not share any initial secret to exchange a fresh

secret via a public and authenticated conversation, as in the case of the Di�e-Hellman protocol).

From the outset, this result implies that a secure password protocol is \at least as hard to devise" as

a secure key-exchange protocol. Moreover, using a result from [14], our proof implies that the task

of building a secure password authentication protocol using only simple symmetric cryptographic

primitives, such as hash functions, block ciphers or pseudorandom functions, is of paramount

di�culty if not impossible. This provides yet another indication for the inherent complexity of the

design of secure password protocols.

Related work. We have already mentioned the work of Gong et al. [12] which was also the �rst

to deal with the problem of guessing attacks against password protocols. Another very in
uential

work, by Bellovin and Merrit [4], introduced Encrypted Key Exchange (EKE) which became the

basis for many of the subsequent works in this area, e.g., [5, 15, 23, 19, 21, 24]. The security of

these solutions has not been proven and is based on heuristic arguments. Other forms of password

authentication, such as one-time passwords, are discussed in Section 2. For a survey of works and

techniques related to password authentication see [20, 16].

Organization. In Section 2 we brie
y discuss basic password mechanisms and the security re-

quirements for password-based authentication and key exchange. In Section 3 we present our

protocols and their extensions, and in Section 4 we expand on the notion of public passwords and

discuss some issues regarding their implementation. The formal de�nitions and a formal proof

of security are presented in Section 5. Finally, in Section 6 we prove the necessity of public key

techniques for designing password authentication resistant to password-guessing attacks.

3

2 Password Mechanisms and Their Security

In this section we brie
y discuss several mechanisms for password authentication, and describe the

notion of security for these mechanisms, which we use in this paper. A reader who is familiar with

password security issues can skip most of this section and go right to the description of our notion

of security in Subsection 2.3.

2.1 A brief survey

Password transmission. The simplest password mechanism is the transmission of a password in the

clear from the user to the server. To validate the password, the server stores a �le containing either

the plain passwords (attached to the user name) or an image of the passwords under a one-way

function. The latter is the classic method of the Unix system and is used in remote authentication

for functions like ftp and telnet. In the case of remote authentication the drawback of this

mechanism is clear as the password can be easily read by an eavesdropper from the network.

Challenge response. A more secure form of password authentication uses the so called challenge

response mechanisms. In this case the password is never transmitted in the clear but is used to

compute a secret function on a challenge which is selected by the authentication server with each

new authentication instance. This provides freshness for the authentication but leaves the password

open to password-guessing attacks which work as follows. The attacker is assumed to have access to

a relatively small dictionary, containing many common passwords. It �rst records an authentication

session including the challenge and the corresponding response from the user. Later, the attacker

tries a set of possible passwords on the challenge to see whether the same response is obtained. If

so, the password was found (with high probability). Unfortunately, in reality many passwords are

indeed found in such dictionaries, thus the above attack is highly e�ective.

One-time passwords. One variant of challenge-response mechanisms is the so called \one-time

password" authentication (e.g., see [18, 13]), in which the user uses a di�erent password every time

it tries to authenticate itself. If these one-time passwords are derived from a human password, the

latter is still vulnerable to password-guessing attacks. This can be avoided by providing the user

with a list of one-time passwords written on paper. This has the advantage that such a password

cannot be re-used (even by the local terminal or by somebody breaking into the authentication

server). However it entails the inconvenience for the user of carrying a long list of passwords,

the requirement to keep this list safe and secret, and the need to type relatively complex strings

into the terminal. In addition, this mechanism is vulnerable to several attacks, ranging from stolen

passwords (e.g., copied from the person's paper) to man-in-the-middle attacks, and does not support

the important extensions discussed next.

Beyond simple authentication. Password mechanisms can provide additional functionalities

on top of one-way authentication of user to server. In particular, we often need them to have the

following features.

� Mutual authentication. Not only the user authenticates itself to the server, but the server

authenticates to the user as well. This is important to avoid man-in-the-middle and server

impersonation attacks. The importance of such two-way authentication increases with the

need to authenticate remote users over completely untrusted networks like the Internet.

� Authenticated key-exchange. At the end of the protocol, the user and the server share a secret

session key. This session key is then used to authenticate or encrypt subsequent communica-

4

tion in the current session. This prevents hijacking of sessions by an intruder, data forgery

and data exposure.

� User identity protection. An eavesdropper to the authentication protocol does not learn the

identity of the user. (This is particularly important with remote authentication of mobile

users.)

In all these cases the strength of the authentication provided by the password mechanism is usually

the security bottleneck for the added functionalities.

2.2 Security of password authentication

Below we informally describe the notion of security for password authentication which we use in

this work. Refer to Subsection 2.3 for a semi-formal de�nition and to Section 5 for a completely

formal one. We begin by presenting a list of basic attacks that a password-based protocol needs to

guard against.

� Eavesdropping. The attacker listens on the line and tries to learn some useful information

from the on-going communication.

� Replay. The attacker records messages which were sent in past communications and re-sends

them at a later time.

� Man-in-the-middle. The attacker intercepts the messages sent between the parties and re-

places them with its own messages. It plays the role of the user in the messages which it

sends to the server, and at the same time plays the role of the server in the messages that it

sends to the user.

� Password-Guessing attacks. The attacker is assumed to have access to a relatively small

dictionary containing common choices of passwords. There are primarily two ways in which

the attacker can use the dictionary:

{ O�-line attack. The adversary records past communication, and then goes over the

dictionary and looks for a password which is consistent with the recorded communication.

If such a password is found, the attacker concludes that this is the password of the user.

{ On-line attack. The attacker repeatedly picks a password from the dictionary and tries

to use it in order to impersonate as the user. If the impersonation fails, the attacker

eliminates this password from the dictionary and tries again, using a di�erent password.

The standard ways of preventing such on-line attacks in practice are to either limit the

number of failed runs that a user is allowed to have before the password is expired, or

reduce the rate in which the user is allowed to make login attempts.

� Insider-assisted attacks. Quite often, an attacker may recruit the help of insiders to mount

attacks. In fact, it is often the case that the attacker is just another user of the system.

Therefore, we should take into account the possibility that the attacker may have its own

account (or accounts), together with a valid password for this account. We should make sure

that even in this case, the protocol prevents an attacker from using a \legitimate" account in

order to attack other accounts.

� Exposure of secrets. An attacker may occasionally also get access to sensitive data which

is supposed to be kept secret at the participating parties (i.e., if the server or the user are

compromised). In this case the goal is to minimize the e�ect that the compromise of any

single key or �le has on the entire system. (An example for this is the notion of perfect

forward secrecy [7].) In particular, in the context of passwords mechanism, one needs to

5

consider the e�ect of a compromised password on the derived session-keys (and vice-versa),

and the e�ects of compromising the password �le or the secret-key of the server. In principle,

the compromise of any of these secrets can potentially in
uence any of the other secrets, so

one needs to consider the following matrix of threats and vulnerabilities:

vulnerability of ! session keys password

to compromise of ! other session keys session keys

passwords other passwords

server's password �le server's password �le

server's cryptographic keys server's cryptographic keys

2.3 A semi-formal de�nition

Here we sketch our de�nition for the basic notion of security for a password-based one-way authen-

tication protocol. We present the notion of security through the description of the attacker that

we consider. The attacker, which we call an intruder I , is allowed to watch regular runs of the

protocol between the user U and the server S, and can also actively communicate with the user

and the server in replay, impersonation and man-in-the middle attacks. The intruder I can prompt

the parties to initiate new authentication sessions. In each session, I can see all the messages sent

between the U and S, and can intercept these messages, change them to any value of its choice,

or drop them altogether. It can also send arbitrary messages to the parties (including replay of

previous messages). Finally, I also gets to see whether S accepts the authentication or not. On top

of these abilities, we also allow the intruder to establish other \accounts" with the server, using its

own passwords, run arbitrarily many authentication sessions using these accounts, and use the data

so gathered for its attack. (This provision allows the intruder full control over arbitrarily many

users.)

For a protocol to be secure in the presence of such a intruder, we require that whenever the

server S accepts an authentication session with the user U , it is the case that this user indeed

participated in this authentication session. Namely, we require that at the end of each session

between U and S, the server outputs (U; sid) and the user outputs (S; sid), where sid is a session

identi�er which is unique to that session (and is the same for the user and the server). We say that

the intruder breaks the authentication protocol if S either outputs the same pair (U; sid) twice, or if

it outputs a pair (U; sid) but user U does not output a matching pair (S; sid).

It is clear that if the user picks its password from a dictionary D, then an intruder that attempts

m active impersonation attacks with the server can break the protocol with probability of at least

m=jDj (just by trying in each impersonation attempt a di�erent password from D). A protocol is

considered secure if I cannot do signi�cantly better than this trivial bound.

Informal De�nition 1 We say that a password authentication protocol ensures one-way authen-

tication up to � (for some � > 0), if no feasible

3

attacker can break the protocol with probability

higher than � +

m

jDj

, using only m impersonation attempts with the server.

We note that keeping the value m=jDj small should be enforced by auditing mechanisms that

either expire a password after a certain number of failed authentication attempts, or limit the rate

3

The computational \feasibility" of attackers can be formalized as polynomial-time or, concretely, using some

speci�c computational bounds. In particular, we want to consider realistic attackers that can perform an exhaustive

search over a password dictionary but cannot break the cryptographic primitives used in the protocol. For example,

it is reasonable to assume that an attacker can carry out 2

40

computational steps, that may be enough to exhaust a

password dictionary, but not 2

80

as may be needed to break some encryption scheme.

6

in which such attempts can be made.

3 Password Authentication Using the Server's Public Key

Below we present several protocols in the asymmetric scenario where the authentication server is

assumed to have a pair of private and public keys while the client authenticates on the basis of

a user's password. It is a requirement for the security of these protocols that the server's public

key used by the client for encryption be a valid public key for that server. As discussed in the

Introduction, when the client machine does not have a way to validate this public key we suggest

to provide the user with a public password that acts as a \hand-held certi�cate" for that key (see

also Section 4). For the sake of illustration and concreteness, we assume in the description of our

protocols the availability of such a public password.

For clarity of presentation and analysis we start by presenting only the basic protocols for user

authentication. Later (Section 3.4) we augment these protocols to provide mutual authentication

and key exchange. We �rst introduce some terminology and tools common to our di�erent protocols.

Terminology and tools: The user name is denoted by U and the server's name is denoted by

S. A
ow of a protocol is denoted with arrows. For example, S m U means message m

sent from U to S. The secret password memorized by the user U is denoted by spwd (typically,

the value of spwd is computed as a hash value of the user's typed secret password). The public

key of the server S is denoted pk

S

. The public password of the user is denoted by ppwd. In all the

protocols of this section we have ppwd = MD(pk

S

), where MD is a collision-resistant (or second

pre-image resistant) hash function, e.g., SHA-1.

In the protocols below, the symbol n stands for a \nonce", namely, a non-repeating string freshly

chosen by S with each protocol execution. This can be implemented as a counter, or as a random

string which is long enough as to have only negligible probability of ever repeating. The symbol

Enc stands for a randomized encryption scheme, which we assume is resistant to some forms of

chosen ciphertext attack (see below). We denote encryption using Enc under the public key of S

by Enc

pk

S

.

In the protocols of Section 3.4 we use families of pseudorandom functions [10], which we denote

by prf. An individual function in the family is indexed by its key, e.g., prf

k

. We use pseudorandom

functions for key derivation as well as message authentication codes. Typical implementations of

pseudorandom functions are based on block ciphers and keyed cryptographic hash functions.

In our description of protocols we omit an initialization
ow in which U communicates to S the

fact that it wants to talk to S. Also, for simplicity, we omit explicit speci�cation of some of the

obvious (yet essential) veri�cation steps by the parties.

3.1 Encrypted password transmission

We start by presenting an extremely simple protocol where the password is encrypted with the

server's public key, and then sent to the server for veri�cation. We note that this protocol is

reminiscent of the Identi�cation Protocol of [12] (but is even simpler). Later we augment this

protocol to provide stronger security properties.

7

Encrypted Password Transmission

Set-up: ppwd := MD(pk

S

)

S U

1. Pick a nonce n ! n; pk

S

! Check ppwd = MD(pk

S

)

2. Verify password U; n;Enc

pk

S

(spwd;U; S; n)

Notice that the public password ppwd identi�es the public key as being the authentic server's

public key, and thus the user can safely use it to encrypt its password. We remark that this simple

protocol does not rely on the password as a cryptographic key by itself, thus it avoids the weakness

of choosing a cryptographic key from a too small space as discussed earlier in this paper. We also

stress again that the encryption scheme is randomized, and thus an attacker cannot cannot simply

guess spwd and verify the guess by re-encrypting Enc

pk

S

(spwd;U; S; n).

An important aspect of this protocol is the use of the nonce n sent from S to U . This acts as

a proof of freshness without which the authentication could be trivially broken by replaying the

ciphertext. However, this protocol uses the encryption function Enc not only to hide the password

but also to bind the nonce to the password. Thus, it requires that the encryption function will have

other properties than simply hiding the encrypted message. For example, it should be infeasible

(without knowing spwd) to obtain Enc

pk

S

(n

0

; spwd) from Enc

pk

S

(n; spwd) for some other n

0

6= n.

For example, even using a perfect one-time pad encryption of (n; spwd) would be insecure here

since modifying it to an encryption of (n

0

; spwd) is trivial even without knowing the encryption key.

Similarly, ElGamal encryption is vulnerable to such an attack, too. Our analysis below provides

a characterization of the additional properties required from the encryption function in order to

ensure the security of this protocol.

The above simple protocol is a special case of a broader (and more powerful) family of protocols

that we call \encrypted challenge-response" mechanisms and that we discuss next.

3.2 Generic encrypted challenge-response protocol

Here we propose to use the challenge-response approach but to encrypt the user's response under

the server's public key as a means to protect against password-guessing attacks. It turns out that

this approach, although natural and intuitive, is less straightforward than it may seem at �rst

glance. Indeed, the intuition that merely hiding the response from an attacker should be enough to

prevent guessing-attacks is false. To stress this point we present in Section 3.5 a password-guessing

attack against a particular \bad implementation" of this protocol, that succeeds even when the

public key encryption scheme in use provides provable secrecy protection against eavesdroppers.

Fortunately, we are able to show that under a stronger (yet achievable) notion of security for the

encryption function, our protocols are provably secure.

Another drawback of regular challenge-response mechanisms is the use of weak human passwords

as keys to cryptographic functions; we note that the security of these functions under such a small

space of keys is clearly questionable. In contrast, in our basic authentication protocols we use

the password under functions that do not have any \cryptographic requirements" related to the

password but just require very simple combinatorial properties (e.g., being one-to-one).

We �rst present a skeleton protocol using a generic challenge-response function f that combines

the password spwd and challenge n into some response, and analyze the security of this protocol in

terms of the structure of f and the security of the encryption function. Armed with this information

we then proceed to suggest concrete protocols that achieve secure user authentication.

8

Generic Encrypted Challenge-Response Protocol

Set-up: ppwd := MD(pk

S

)

S U

1. Pick a nonce n ! n; pk

S

! Check ppwd = MD(pk

S

)

2. Decrypt and verify U; n;Enc

pk

S

(f(spwd ;U; S; n))

Security of the encryption function Enc. The basic notion of security for public key encryp-

tion, called semantic security, was introduced by Goldwasser and Micali [11]. In a nutshell, an

encryption scheme is said to be semantically secure if, given a public key pk, a ciphertext c and two

possible plaintexts x

1

; x

2

, it is infeasible to determine is c is an encryption of x

1

or an encryption of

x

2

. (Clearly, such an encryption function must be randomized, so that simply re-encrypting x

1

; x

2

and comparing the result to c does not work.) This, in turn, implies other strong properties of

the encryption function such as the infeasibility to derive any partial information on the encrypted

plaintext given its ciphertext.

As we already said in the introduction, this notion of security is not enough to ensure the

security of our protocols. Instead, we require that the encryption function Enc satis�es the stronger

notion of resistance to chosen ciphertext attacks, due to Racko� and Simon [22]. According to this

de�nition, it should be infeasible to determine if c is an encryption of x

1

or x

2

, even when you are

given some \extra help" in the form of the ability to ask for the decryption of ciphertexts of your

choice (but not for the decryption of c itself).

In fact, in this work we use a seemingly weaker form of chosen ciphertext attacks, which we call

ciphertext-veri�cation attacks. In this form, the \extra help" is limited to the ability to generate

pairs (x

0

; c

0

) of plaintext and ciphertext (with c

0

6= c), and to query whether or not c

0

is an encryption

of x

0

. Such a query is called a veri�cation query.

Informal De�nition 2 Let Enc be an encryption scheme and let � > 0. We say that Enc

resists ciphertext veri�cation attacks with security �, if no feasible adversary has an advantage of

more than � (over a random guess) in deciding if c is an encryption of x

1

or x

2

, even after asking

arbitrarily many ciphertext veri�cation queries for pairs (x

0

; c

0

) with c

0

6= c.

Stronger notions of security against chosen ciphertext attacks can be found in [22, 8, 3, 2]. In

particular, Bellare and Rogaway presented in [3] a simple encoding of data (called OAEP) for use

with RSA encryption that provides defense against these strong attacks. Although the analysis of

that construction is given on the basis of ideal random functions, it should be considered as a good

heuristic and, in particular, advisable for use in our (less demanding) scenario. Also, very recently

Cramer and Shoup [6] described a simple encryption scheme which is provable secure against the

strongest type of chosen ciphertext attacks without using an \ideal random function".

Structure of the function f. Below we assume that the function f(� ; �) has the property that

for every �xed strings spwd; x, the induced functions f(spwd; �); f(� ; x) are one-to-one. We say that

a function f as above is one-to-one on its components. (For example, the concatenation function

f(x; y) = (x; y) has this property, as does the XOR function if x and y are of the same length.) We

note that in fact, it is su�cient that f(spwd; �) be collision-resistant and it does not actually have

to be one-to-one. Nonetheless, for clarity of presentation we assume below that it is one-to-one.

Informal Theorem 1 Let � be any positive real number, let E be an encryption scheme that

resists ciphertext veri�cation attacks with security �, and let f be one-to-one on its components.

Then the encrypted challenge-response protocol using E and f ensures one-way authentication up

9

to �

0

= ` �m � �, where ` is the number of login attempts by the user and m is the number of active

impersonation attacks against the protocol.

4

We present the proof of Theorem 1 in Section 5.3.

Corollary 1 The encrypted password transmission protocol is secure under the above assumptions

on the encryption scheme E.

Proof. Obviously the concatenation function f(spwd ; n; U; S) = (spwd; n; U; S) is one-to-one on

its components.

Remark (user anonymity). It is possible to derive, from the above generic scheme, protocols in

which the user's identity is only sent encrypted in the second
ow under the server's public key. In

this case, the remote terminal �rst informs the server of a request for authentication but does not

specify the user. In the above protocol, S can send ppwd and the challenge without knowing the

identity of the speci�c user (here we use the fact that all users carry the same value of ppwd). This

provides the important user anonymity property in cases of remote and mobile authentication.

3.3 Resistance to server compromise

Although the proof of security implies that every implementation of the Encrypted Challenge-

Response protocol ensures one-way authentication, di�erent implementations may have very dif-

ferent security properties with respect to the compromise of the secret information stored on the

server. (For example, it is clear that the encrypted password transmission protocol of Section 3.1

becomes totally insecure once the private key of the server is compromised).

To protect against compromise of the server, one can use some common heuristics for the

de�nition of the f function. For example, one can set

p

1

= H

1

(spwd; U; S)

p

2

= H

2

(spwd; U; S)

p

3

= H

3

(p

2

; salt)

f(spwd; n; U; S)

def

= hMac

p

1

(n; U; S); p

2

; ni

and have the server store the values salt; p

3

and p

1

(where H

1

; H

2

; H

3

are one-way functions, Mac

is a message authentication code, and salt is a random string).

The above mechanism defends against compromise of either password �le or server's private

key (but not simultaneously against both)

5

. If the password �le is compromised but the server's

private key remains secret, then the attacker still needs to mount a password-guessing attack to

�nd p

2

. If, on the other hand, the attacker gets the server's private key but does not gain access

to the password �le, then it still cannot trivially authenticate the user since it needs to be able to

compute the value Mac

p

1

(n; U; S).

We stress that in this case we are making the heuristic assumption that the attacker cannot

break the Mac function in any better way than a password-guessing attack. As said before, this

is a non-standard assumption for mostMac functions since they were designed to be keyed over a

much larger space. Still, in our case this assumption is not the basis for the authentication security

but only a second line of defense in case of server's key compromise.

4

For example, if Enc has security � = 2

�80

, the password expires after 100 failed trials, and users change their

password before trying 1000 login attempts, then we get �

0

� 2

�80

�100�1000 � 2

�63

. Thus, no attacker has probability

of more than 100=jDj+ 2

�63

for a successful impersonation.

5

Defense against compromise of both the password �le and the server's private key can be achieved by using

Lamport's one-time password mechanism [18, 20] instead of the �xed value p

2

. This mechanism requires a pre-

established limit on the number of password authentications before the password value in the server is to be re-set.

10

3.4 Mutual authentication and key exchange

Here we add to the above basic authentication protocols the capability of authenticating the server

to the user as well as of exchanging an authenticated secret key between the two. This added

functionality is needed in many security applications. In particular, our solutions can provide au-

thenticated key exchange for protocols such as IPSEC and SSL where the client's end authenticates

via a user's password.

Our extensions for mutual authentication and key exchange follow the general design of SKEME

[17]. The basic idea is that the user U adds an encryption of a random key k to the authentication

information that it sends to S in the second
ow of the protocol. The server S uses this key to

authenticate itself, by using k as a key to a Mac function. (It is the sole ability of S to decrypt k

which forms the basis for the server's authentication.) A shared key can be derived by applying a

pseudorandom function, keyed with the above key k, to the exchanged information. (In actuality,

we use the pseudorandom function prf in this protocol both as a MAC and for key derivation.)

Note that here the strength of the authentication from S to U is based on the cryptographic keys of

S and hence it is stronger than in other mechanisms that base this authentication on the strength of

the user's password. An analysis of this later form of authentication, based on public key encryption

resistant to chosen ciphertext attacks, can be found in [1].

Mutual Authentication and Key Exchange

Set-up: ppwd := MD(pk

S

)

S U

1. Pick a nonce n ! n; pk

S

! Check ppwd = MD(pk

S

)

2. Decrypt and verify U; n;Enc

pk

S

(k; f(spwd ; n; k; U; S)) Pick random key k

3. y := prf

k

(n; S; U) ! y ! Check y = prf

k

(n; S; U)

4. Set k

0

:= prf

k

(y) Set k

0

:= prf

k

(y)

Note that the two �rst
ows are the same as in the generic encrypted challenge response protocol

of section 3.2 except that the key k is included in the encryption and in the function f .

The above protocol does not provide perfect forward secrecy, since if the servers private key is

eventually exposed then the session key k

0

is revealed. As with any key-exchange protocol, perfect

forward secrecy can be added through the use of Di�e-Hellman exchange. The resulting protocol

is as follows (below we assume a common prime modulus over which the DH exchange is carried.

We omit the mod p notation.)

Mutual Authentication and Di�e-Hellman Key Exchange

Set-up: ppwd :=MD(pk

S

)

S U

1. Pick n; g

x

! n; g

x

; pk

S

! Check ppwd = MD(pk

S

)

Pick k; g

y

2. Decrypt and verify U; n; g

y

; c c := Enc

pk

S

(k; f(spwd ; n; g

x

; g

y

; k; U; S))

3. z := prf

k

(c) ! z ! Check z = prf

k

(c)

4. Set k

0

:= prf

k

(g

xy

) Set k

0

:= prf

k

(g

xy

)

We note that if g

x

is chosen at random in every run, then the nonce n is not needed and can

be omitted. The derivation of the session key through the application of prf

k

to the DH key

11

g

xy

is intended to \hash" the DH key into a shorter and stronger key (it also makes the protocol

resistant to the breaking of either the Di�e-Hellman exchange or the encryption function, namely,

to compute k

0

an attacker needs to be able to compute g

xy

and also to �nd the value k

0

). Finally,

we stress that the information in the second argument of the function f can be hashed under a

collision resistant hash function (such as SHA-1) before computing f on it. This preserves the

security properties that we prove and shortens the information to �t under the encryption.

As mentioned before, these protocols can provide user anonymity (as required, for example, in

IPSEC) by including the user identity under the public key encryption.

3.5 Semantic security is not su�cient

For the proof of Theorem 1 we need to assume that the encryption scheme resists some (weak)

form of chosen ciphertext attack. We comment that this requirement is needed for the Encrypted

Challenge Response protocol, even if the function f is assumed to have additional cryptographic

properties. Speci�cally, it can be shown that there exists an encryption scheme which preserves

secrecy (but is not resilient to chosen ciphertext attack), and for which this protocol is vulnerable to

a password-guessing attack, regardless of the choice of the function f (as long as f is a deterministic

function).

To see this, let Enc be any encryption that encrypts bit-by-bit (e.g., the encryption scheme

in [11], which is proven to be semantically secure). To attack the protocol that uses this scheme,

the intruder I records the server's message x = hpk

S

; ni and intercepts the user's response c =

Enc

pk

S

(f(spwd ;U; S; n)). It then modi�es the response to get c

0

where c

0

is the same as c, except

that the encryption of the last bit of f(spwd ;U; S; n) is replaced by an encryption of the bit '0'.

The modi�ed response is sent by the attacker to S. Depending on whether the server accepts

or not, the intruder now knows the least signi�cant bit of f(spwd ;U; S; n), and it can use this

to eliminate (approximately) half of the passwords in the dictionary. This can be repeated with

di�erent challenges, until only a single password remains in the dictionary.

One should note that as opposed to an on-line password-guessing attack, this attack only re-

quires about log jDj attempts before the password is revealed (e.g., 20 attempts for a dictionary of

one million passwords).

4 Public Passwords

In order to enable the use of our secure protocols in cases where the client's machine cannot verify

the authenticity of the server's public key, we suggest to provide the user with a hashed version

of this public key. We call this information a \public password". This results in an extension to

the usual human-password paradigm, where the user carries not only a secret password, but also

a public password. The latter requires no secrecy protection but requires integrity. The public

password should be short enough so that a human user is able to recognize it if displayed, or even

to type it in if requested to do so, but it does not need to be memorized and can be safely written

down on a piece of paper, a sticker, a plastic card, etc.

In our applications, the public password serves as \hand-held certi�cate" for a public key,

which the user can conveniently carry with him. Whenever presented with the actual public key

(e.g., after being transmitted to the user's terminal) the user can verify the validity of the public

key against the hand-held certi�cate. This enables a human user to participate in protocols that

otherwise would be impossible to carry out without a memory device. This notion may be useful

in other scenarios as well. This solution is suited, for example, to credit-card applications, where

the hand-held certi�cate can be recorded on the credit-card itself. Moreover, even when public key

12

infrastructure is available, hand-held certi�cates may be useful as a supplement to the trust level

o�ered by other mechanisms such as certi�cation authorities (e.g., X.509), distributed directories

(e.g., Secure DNS), and others.

6

As said, we use public passwords as digests of public keys. Hence, it should be infeasible to �nd

a second public key that hashes to the same public password. The length of the public password

depends on the amount of trust that we have on the party generating these public keys. If this

party (user or server) is trusted not to look for collisions in the hash function during the process

of key generation, then the public password needs only to resist \second preimage attacks". That

is, it should be infeasible { given a public key pk { to �nd another pk

0

such that H(pk) = H(pk

0

).

In this case, a public password of 60 to 80 bits will su�ce. If the generator of the public key is not

trusted then H needs to be fully collision resistant and then its output should be in the 120-160

bit range. For the uses in this paper it seems reasonable to assume that the key-generation process

is done properly.

4.1 Representation and identi�cation of public passwords

Even though public passwords are short enough to be carried by a human being, they usually

represent unstructured strings. Thus, for a user to be able to read, recognize, and type the public

password, it is advisable to have a user-readable format for these passwords. A representation for

mapping arbitrary binary strings into easy-to-read (and write) words was introduced in the context

of one-time passwords [13]. This solution de�nes a dictionary of 2048 words (mostly English words,

2 to 4 letter long) and a mapping of each 11-bit string to a di�erent word in the dictionary. Thus a

66 bit string is represented by 6 words from that dictionary, e.g., moss mont sit rear rage pit.

Such a representation could be used by a public password system as well. Of course, many

other representations are possible, e.g., using just alphanumerics (without case distinction) would

require about 12 characters to represent 60-bit strings, e.g., a6et qw29 hzjv.

Another di�erence between the public passwords and the secret ones is that in our applications

there is no need for the user to type in the public password. Consider again the case of a public

password ppwd consisting of a hash of a public key pk. The latter is stored in some remote machine

and sent over the network to the local terminal where the user is working. The terminal computes

the hash of the public key and then compares the computed value with the public password ppwd.

This can be done by having the user enter ppwd, but also by just displaying the computed hash on

the screen and asking the user to approve it. Moreover, many users may be able, after some time,

to recognize the right value without even carrying it with them.

In this case, however, it is important that a user carefully checks for the validity of the displayed

value. Thus, the user-interface should be designed carefully to avoid the tendency of users to answer

every question by simply hitting the Enter-key. An example of one possible user-interface is to

display �ve strings to the user, one of which is the correct password, and have the user type the

number corresponding to the right public password. For instance, if the public password is moss

mont sit rear rage pit, the user may be presented with:

1. eddy weak half net ohio ok

2. moss mont sit rear rage pit

3. ivan laud loy an gal but

6

One can envision applications of this notion where users carry hand-held certi�cates for public keys of a few

entities with which they interact frequently (e.g., the public key of their administrative domain, etc.), thus avoiding

the need to rely on public-key infrastructure in every connection with these entities. This is somewhat similar to

carrying a short list of often used telephone numbers to avoid the need to refer to the directory for every phone call.

13

4. bloc ave fire grad beef aye

5. vary hone ton limb pry stew

to which he is required to answer with '2'. We stress that it is important that the user does not

blindly decide by a matching pre�x or so, as this would help an attacker in delivering a public key

of its choice. Thus, in the above example it may be more e�ective to present the user with strings

that are actually visually related to each other (and only one being the right value). There may

be other graphical encodings of bits that will be even more easily recognizable by the user. Some

recent work on a similar recognition problem can be found in [9].

5 Formal de�nitions and proofs

In this section we formally de�ne our notion of security for password protocols and prove that the

Encrypted Challenge-Response protocol is secure, provided that the encryption scheme used in it

resists \ciphertext-veri�cation attacks".

5.1 One way password authentication

We de�ne a general model of one-way password authentication, intended to capture the realistic

scenarios where such authentication protocols are run and to establish their security requirements.

This de�nition includes the description of the parties to the protocol, the attacker and its capa-

bilities, and the notion of security. Here we restrict ourselves to one-way authentication and do

not formalize the notions of security related to more general tasks such as two-way authentication,

defense against compromised servers, and key exchange (see Section 5.4).

Before formally describing our model, we motivate some of its elements. Three important

aspects captured by this model are: (i) the existence of many users in the system, (ii) the fact that

di�erent runs of the protocol, called sessions, can be executed sequentially and/or concurrently by

one or more users (e.g., the same or di�erent users can have open authentication sessions with the

server at the same time), and (iii) the realistic capabilities of attackers which are powerful but not

omnipotent. We assume that the attacker not only controls the information transmitted over the

communication lines (i.e., a \man in the middle") but can also corrupt and control some of the users

of the system. In the later case the attacker knows, and even chooses, the secrets of these parties.

The computational power of the attacker is large but limited. We call this a feasible attacker. Our

treatment and analysis allows for formalizing the exact notion of feasibility via polynomial-time

computation or using concrete time bounds. We do not specify this here; the underlying assumption

is that the attacker's power does not su�ce to break the cryptographic primitives (e.g., encryption)

used in the protocol.

For simplicity, and to strengthen the model, we assume that all the users of the system, except

for one, are controlled by the attacker; yet, it should be infeasible for the attacker to impersonate

the legitimate user to the server. Thus we consider three parties: the (legitimate) user, the server,

and the attacker. Among the capabilities of the latter will be the ability to create and register

additional (corrupted) users. For reasons of simplicity, we consider a single server but we stress

that extensions to more servers is straightforward. This server is assumed to be secure, i.e. not

controlled by the attacker.

We now turn to describe the formal details of our authentication model. Following the common

practice in cryptography, we de�ne this model by means of a \probabilistic game" involving the

legitimate parties and the attacker. We call this a probabilistic game since the parties are allowed

to use randomized algorithms in their execution of the game, i.e., they possess a source of \random

14

coins". The rules of the game de�ne the capabilities of the attacker, and also de�ne what it means

for the attacker to \win" (i.e., to break the scheme). A scheme is deemed secure if feasible attackers

can only win with very small probability.

5.1.1 The one-way password authentication game

The players. The players in the probabilistic game are the user, the server, and an intruder.

A password-based scheme (U; S) speci�es the protocols followed by the user and the server, re-

spectively, whereas the intruder can follow any arbitrary (feasible) protocol (denoted I). All the

protocols in this game (user, server and intruder) are message-driven. That is, for a given internal

state and input message, the protocol speci�es the changes in the state and the resulting output

message. (Note that we identify the user, server and intruder with the protocols that they run.)

The game. Each game is parameterized by a security parameter k (which controls the strength

of the underlying cryptographic functions and keys), and a \dictionary" D, containing a set of

possible passwords. We assume that k and D are known to everyone (including the intruder). The

game itself proceeds as follows.

First, there is a set-up phase, in which passwords and cryptographic keys are selected. In this

phase, the server picks a name, which is an arbitrary string denoted by S, and publishes it. The

protocol for the server can also specify the choice by S of secret and/or public cryptographic keys.

If public keys are used then S publishes them too. Then, the user picks an arbitrary user-name,

U, and a password spwd from D.

7

The user publishes U and gives spwd to the server while keeping

it secret from the intruder. The intruder can also register additional users with the server at any

time (before, during, or after the set-up phase), by picking any pair of user-name U

0

and password

spwd

0

(provided that U

0

6= U), publishing U

0

and giving spwd

0

to the server.

After the set-up phase, the intruder I has full control over all the \parties" U

0

it created, as well

as over the communication between U and S. To model the ability of the intruder to control the

communication lines, we formally let U and S communicate only through I . Every message that U

and S send goes to I , and every message they receive comes from I . The intruder I may choose to

forward the messages between U and S unchanged, or it may choose to modify or eliminate some

messages or send other messages instead (including replay of previous messages). At any time,

I can send special \prompt" messages to the parties, causing them to start new authentication

sessions (in particular, several simultaneous sessions by the same or di�erent users are possible).

Sessions have unique identi�ers (i.e., di�erent sessions have di�erent identi�ers). This game is run

until the intruder I decides to halt.

To capture our security requirements, we require that the protocols for U and S specify some

outputs. These are special outputs, di�erent than the messages exchanged by the parties, and

intended to record events related to the security of the authentication. User U outputs a pair

(S; sid) whenever it authenticated itself to server S under session identi�er sid. Server S outputs a

pair (U; sid) whenever a successful authentication by user U has been veri�ed during session sid. If

an attempt to authenticate by (alleged) user U during session sid fails (i.e. is not veri�ed as correct

by S) then S outputs (U; sid;?). The latter is needed, so that we can count the \number of failed

authentication attempts", after which the password must expire.

7

For simplicity we assume that the user chooses a passwords from D uniformly at random; however, our analysis

can easily accommodate other probability distributions over D.

15

5.1.2 Security

Based on the above game we de�ne what is considered as a secure one-way password authentication

protocol (U; S). We �rst develop some terminology regarding such protocols and the actions of the

intruder I .

� A protocol (U; S) is said to be syntactically correct, if whenever all the messages between U and

S in a session sid are passed unchanged, then S and U output (U; sid) and (S; sid), respectively.

(This means that if no attacker is active against the protocol then the authentication should

succeed. We will use this as a \non-triviality" condition to prevent calling \secure" protocols

where S is speci�ed to reject all authentications.)

� An event in which the server outputs (U; sid) but the legitimate user U does not output a pair

(S; sid) is called a successful impersonation. An event in which the server outputs (U; sid;?)

is called an authentication failure. An event in which the server outputs a pair (U

0

; sid) after

already outputting some other pair (U

00

; sid) in the past, is called a successful replay. (Here

U

0

;U

00

are arbitrary users, and sid is the same in both pairs.) We refer to all the above events

as active impersonation attempts.

� An (`;m)-run of the game is a run with at most m active impersonation attempts, and in

which the legitimate user outputs at most ` pairs (S; sid). An (`;m)-win for the intruder is

an (`;m)-run which contains at least one successful impersonation or replay event.

Our de�nition of security essentially says that the \best" possible strategy for the intruder is to

actively try passwords with the server until the right password of the user is found. (As discussed

earlier in the paper, such an attack can be thwarted by limiting the number of \authentication

failures" allowed to each user.)

De�nition 1 Let �(�; �; �) be a positive real function, and let (U; S) be a syntactically correct pro-

tocol. We say that (U; S) ensures one-way password authentication up to �, if for every feasible

intruder I, every �nite dictionary D, every value k for the security parameter, and every `;m, we

have

Pr

h

(`;m)-win for I

i

�

m

jDj

+ �(k; `;m)

where the probability is taken over the random coins of U; S and I in an execution of the above

probabilistic game with dictionary D and security parameter k.

5.2 Security of the encryption function

Here we give a formal de�nition for our notion of a public key encryption scheme which resists

ciphertext-veri�cation attacks. Let E = (Gen;Enc;Dec) be an encryption scheme, where Gen

is the key-generation algorithm, Enc is the (probabilistic) encryption algorithm and Dec is the

decryption algorithm. A ciphertext-veri�cation attack is formally de�ned via the following game,

which involves the three algorithms and an adversary A.

1. The key-generation algorithm is run (with security parameter k) to generate a secret/public

key pair, (sk; pk). The adversary A is given the public key pk.

2. The adversary adaptively generates queries (x

i

; c

i

). Below we refer to these as veri�cation

queries. For each veri�cation query (x

i

; c

i

) the adversary is told whether or not x

i

= Dec

sk

(c

i

).

3. The adversary generates a pair of plaintexts x

1

; x

2

of the same length, and asks for an en-

cryption of one of them. Below we call this the test query of A. With probability 1=2, A gets

an answer c = Enc

pk

(x

1

), and with probability 1=2 it gets c = Enc

pk

(x

2

).

16

Server algorithm S(D; k): (Server name denoted by S)

Setup: pick (sk

S

; pk

S

) with security parameter k

publish pk

S

and record sk

S

accept and record pairs (U; spwd)

Operation: when prompted to start a new session,

pick a new session-id sid, record it and send it to the initiator of the session

upon receipt of a message hU; sid; ai,

if you have records for (U; spwd) and sid

if Dec

sk

S

(a) = f(spwd ;U; S; sid)

output (U; sid) and delete the record for sid

else output (U; sid;?)

else ignore incoming message

User algorithm U(D; k): (User name denoted by U)

Setup: pick spwd D, publish U and secretly give spwd to server

record server's name and public key (S; pk

S

)

Operation: upon receipt of a message sid,

set a = Enc

pk

S

(f(spwd ;U; S; sid))

send hU; sid; ai to server

output (S; sid)

Figure 1: The Server- and User-algorithms of the Encrypted Challenge-Response protocol.

4. The adversary may adaptively generate more veri�cation queries (x

i

; c

i

), subject to the con-

straint that c

i

6= c. Again, for each veri�cation query (x

i

; c

i

), the adversary is told whether

or not x

i

= Dec

sk

(c

i

).

5. The adversary A guesses whether c is an encryption of x

1

or x

2

.

De�nition 2 An encryption scheme E = (Gen;Enc;Dec) is said to resist ciphertext-veri�cation

attacks with security � = �(k) if for any feasible adversary A,

�

�

�
Pr[A guesses \encryption of x

1

" j Dec

sk

(c) = x

1

]

�Pr[A guesses \encryption of x

1

" j Dec

sk

(c) = x

2

]

�

�

�
� �

where the probabilities are taken over the execution of Gen, the random coins of A, and the ran-

domness used in Step 3 above. The di�erence between these two probabilities is called the advantage

of A.

5.3 Proof of Theorem 1

We start by casting the Encrypted Challenge-Response protocol in the syntax of De�nition 1.

The server and user protocols are speci�ed in Fig. 1. This description assumes that the user stores

the server's public key. As we discussed earlier, this requirement can be avoided using public

passwords. Using the syntax of De�nitions 1 and 2, we re-state Theorem 1 as follows:

17

Theorem 1 Let E be an encryption scheme that resists ciphertext-veri�cation attacks with security

�(k), and let f be a function which is one-to-one on its components. Then, the Encrypted Challenge-

Response protocol (U; S) with encryption E and function f ensures one-way password authentication

up to �

0

(k; `;m) = m � ` � �(k).

In the following proof of Theorem 1 we formulate several auxiliary Lemmas that we later prove

in Subsection 5.3.1.

Proof We begin by setting a few notations. For the rest of the proof, �x the security parameter k

and the dictionary D. Now consider a run of the game between U; S and I . We denote the messages

that the server sends in response to prompts for a new session by sid

1

: : : sid

n

, the messages that

the intruder sends to U by sid

0

1

: : :sid

0

n

0

, the responses of U to these messages by y

0

1

: : : y

0

n

0

, and the

messages that I sends to S by y

1

: : : y

n

00

.

In what follows, we use the convention that U represents the legitimate user not corrupted by

the intruder. Recall that each reply y

i

from I to S is of the form

U

0

; sid

0

; a

0

�

, for some user U

0

.

The replies for which U

0

= U play a special role in the proof. Below we call them U-replies (i.e., y

is a U-reply if y = hU; sid; ai for some values of sid; a).

A U-reply y = hU; sid; ai is considered successful for the intruder, if it is di�erent than all the

replies of the user U (i.e., y 6= y

0

j

for all j = 1 : : :n

0

) and yet it is accepted by the server (namely,

the server outputs the pair (U; sid)). The intruder I is said to fool the server if it generates at least

one successful U-reply. Our �rst observation is that the intruder must fool the server in order to

win the game.

Lemma 2 If a run of the game between U; S and I is a win for the intruder I, then in this run

the intruder I fools the server.

Our next observation is that without loss of generality, we can assume that the intruder I never

forwards an unmodi�ed U-reply to the server (since by de�nition this U-reply cannot be successful),

and also never replays the same message twice to the sever (since the server always reject replays).

Formally, we say that an intruder I is restrained if it never forwards an unmodi�ed U-reply to S

and never replays the same message twice to S.

Lemma 3 Let `;m be two integers and let p be a probability (0 � p � 1). If there exists an intruder

I such that Pr[I fools the server in an (`;m)-game] = p, then there also exists a restrained intruder

I

0

such that Pr[I

0

fools the server in an (`;m)-game] = p.

For the rest of the proof, we consider only restrained intruder algorithms. We note that for such

algorithms, any U-reply that is accepted by the server is necessarily a successful one. We continue

by way of contradiction. Namely, we show that if there exists a restrained intruder I that fools the

server with probability of more than v=jDj + �

0

, then there also exists an adversary A which has

advantage of more than � = �

0

=`m in guessing the correct answer in a ciphertext-veri�cation attack

on E .

The proof proceeds with two lemmas. In the �rst lemma, we show that if it is possible to fool

the server in an (`;m)-run with probability p, then it is also possible to fool it with probability

p=m in an (`; 1)-run. That is, instead of sending to the server m U-replies, the intruder sends only

a single U-reply, and the success probability of the intruder then decreases from p to p=m.

Lemma 4 Let `;m be two integers and let p be a probability (0 � p � 1). If there exists a restrained

intruder I, such that Pr[I fools the server in an (`;m)-run] = p, then there also exists a restrained

intruder I

0

such that Pr[I

0

fools the server in an (`; 1)-game] � p=m.

18

In particular, Lemma 4 implies that if it is possible to fool the server in an (`;m)-run with

probability m=jDj+ �

0

, then it is also possible to fool it with probability 1=jDj+ �

0

=m in an (`; 1)-

run. The next and �nal lemma shows that if the latter is possible, then it is also possible to achieve

advantage �

0

=`m in a ciphertext-veri�cation attack against the encryption scheme E .

Lemma 5 Let ` be an integer and let � be a real number (0 � � � 1). If there exists a restrained

intruder algorithm I such that Pr[I fools the server in an (`; 1)-run] = � + 1=jDj, then there also

exists an adversary A, which has advantage of at least �=` in a ciphertext-veri�cation attack against

the encryption scheme E.

The combination of Lemmas 2 through 5 yield Theorem 1 as follows: Assume that there is

an intruder that wins in an (`;m)-run with probability more than �

0

+ m=jDj. By Lemma 2, it

means that I also fools the server with the same probability. Lemma 3 then implies that there

exists a restrained intruder I

0

that fools the server with the same probability, and by Lemma 4,

there also exists a restrained intruder algorithm I

00

that fools the server with probability more than

�

0

=m+1=jDj in an (`; 1)-run. Finally, Lemma 5 implies that there exists an adversary A which has

an advantage of more than �

0

=`m in guessing the right answer in a ciphertext-veri�cation attack

against E , contradicting our assumption that E resists ciphertext-veri�cation attacks with security

� = �

0

=`m.

5.3.1 Proofs of the lemmas

Proof of Lemma 2 Consider a run of the game in which I does not fool the server, and we

prove that I does not win in this run of the game. First, since all the session-id's that S chooses

are unique, and since S discards session-id sid once it accepts it, then it never outputs the same

value sid twice. It is left to show that whenever the server outputs a pair (U; sid), the user outputs

a matching pair (S; sid). To see that, notice that the server only outputs the pair (U; sid) after it

receives a U-reply hU; sid; ai. If I does not fool the server, then all these U-replies that S accepted

indeed came from U and were not modi�ed. But the user U always output the pair (S; sid) after

sending hU; sid; ai.

Proof of Lemma 3 Consider a run � in which I fools the server, and let y = hU; sid; ai be

a successful U-reply in this run. Clearly, y was not replayed, since the server always rejects (or

ignores) replayed messages. Also, y were not forwarded unmodi�ed from U (by the de�nition of a

successful reply).

Consider now the run �

0

which results by omitting all the replays to the server as well as all the

U-replies that were forwarded unmodi�ed from U to S. This run would also include the U-reply

y = hU; sid; ai, and moreover, this U-reply would still be successful for the intruder. To see that,

notice the following points:

� The server in �

0

is prompted for the same number of sessions as in � , and so it produces the

same set of session-id's. In particular, if the server in � has a record for session-id sid, then

so does the server in �

0

.

� The communication between the intruder and the user U in �

0

is the same as in � . Therefore,

if y is not equal to any of the user replies in � , then it still is not equal to any of the user

replies in �

0

.

� If y is successful in � then it means that Dec

sk

S

(a) = f(spwd ;U; S; sid), and this still holds

true in �

0

. Therefore, the server in �

0

also accepts y and outputs the pair (U; sid).

19

guess

S

U

I

A

verification queries

test query

pk

Figure 2: The reduction of Lemma 5.

Notice also that if � is an (`;m)-game, then so is �

0

(since it has at most the same number of

outputs for the user and server as �).

Consider, therefore, an intruder I

0

that behaves exactly like I , except that it does not send any

of the replayed messages and unmodi�ed U-replies that I does. Note that for every I-message that

I

0

does not send, I

0

knows what would have been the server's response to that message had it been

sent. Namely, it would be rejected if it is a replay, and it would be accepted if it is an unmodi�ed

U-reply that is not replayed.

If follows that if we have Pr[I fools the server in an (`;m)-game] = p, then the same still holds

for I

0

.

Proof of Lemma 4 The intruder algorithm I

0

is almost the same as I , except for the way it

handles U-replies. At startup time, I

0

picks a random index i 2 f1; : : : ; mg. Then, it behaves

exactly as I does, except that I

0

only sends to the server the i'th U-reply (among all the U-replies

that I sends). For all the other U-replies, I

0

does not send them, and instead behaves as if they

were sent and rejected by the server.

Let � be an (`;m)-run in which I fools the server, and let j be the the index of the �rst

successful U-reply that I sends to the server in this run, and denote this reply by y. Consider now

what happens in the corresponding run using I

0

, assuming that I

0

happens to choose the index

i = j. Recall that I

0

behaves just like I except for the U-replies that I sends to the server. Notice

also that the �rst j�1 such U-replies were rejected in � (since the j'th U-reply if the �rst successful

one), and that since i = j then I

0

behaves as if these U-replies were indeed rejected. Hence, the

actions of I

0

exactly mirror those of I , and in particular I

0

produces the same U-reply y. Using the

same arguments as in the proof of Lemma 3, this U-reply would still be successful.

We conclude that whenever I fools the server in a run � , and I

0

chooses the index of the �rst

successful U-reply in that run, then I

0

would also fool the server. Therefore, if I has probability

p of fooling the server with m U-replies, then I

0

has probability at least p=m of fooling the server

with a single U-reply.

20

Proof of Lemma 5 We start by describing the algorithm of the adversaryA, and then we analyze

it to show that it satis�es the assertion of the lemma. The adversary A gets a public key pk as

an initial input, and then it needs to mount a ciphertext-veri�cation attack against the encryption

scheme E . To mount that attack, it uses the intruder algorithm I from the premise of the lemma.

On a high level, A has two interfaces: an \external interface" where it issues the veri�cation

queries and test query of the ciphertext veri�cation attack, and an \internal interface" where it

runs the intruder algorithm I , and interacts with it, playing the roles of both the server S and the

user U. See a pictorial demonstration in Fig. 2.

After A receives its input pk, it picks names S;U for the server and user, respectively, picks

a random password spwd 2 D, and also picks a random index t 2 f1; : : : ; `g. It records all of

these values, and then then runs I , giving it the public key pk and the names S;U as input, and

responding to I 's actions as described below:

1. Whenever I \opens a new account" by giving the server the pair (U

0

; spwd

0

), A records this

pair. When I prompts the server for a new session, the adversary A picks a new session-id

sid

i

, records it, and sends it back to I .

2. When I sends a message sid

0

j

to the user, A responds with a triple y

0

j

=

D

U; sid

0

j

; a

j

E

where a

j

is computed as follows.

If j < t then A sets w

j

= f(spwd ;U; S; sid

0

j

) and a

j

= Enc

pk

(w

j

).

If j = t then A sets w

t

= f(spwd ;U; S; sid

0

t

) and �w

t

= f(0; 0), and asks its test query of the

ciphertext-veri�cation attack, by setting x

1

= w

t

; x

2

= �w

t

, asking for an encryption of one of

them, and receiving a ciphertext c which is an encryption of either x

1

or x

2

. Then, A sets

a

t

= c.

If j > t then A sets �w

j

= f(0 ; 0) and a

j

= Enc

pk

(�w

j

).

3. When I sends to the server a message y

i

=

U

0

; sid

0

; a

0

�

with U

0

6= U, the adversary A responds

as follows: If it does not have a record for user U

0

or for session-id sid

0

, then A ignores the

message y

i

(as the server would do in such a case). If a

0

= a

t

(i.e., a

0

is the same ciphertext that

was returned in the test query), then A rejects the reply y

i

.

8

Otherwise, A �nds the password

spwd

0

associated with U

0

, computes z

i

= f(spwd

0

;U

0

; S; sid

0

), and issues a veri�cation query

(of the ciphertext-veri�cation attack) to �nd out whether Dec

sk

(a

0

) = z

i

. If it equals then A

accepts the reply y

i

, and if not it rejects it.

4. Finally, when I sends its (single) U-reply to the server (denoted y = hU; sid; ai), A does the

following: It veri�es that a 6= a

t

(i.e., a is not the same ciphertext that was returned in

the test query), computes z = f(spwd ;U; S; sid), and uses one last veri�cation query, asking

whether or not Dec

sk

(a) = z. If the answer is yes, A guesses that c is an encryption of x

1

.

Otherwise, A guesses that c is an encryption of x

2

.

If a = a

t

then A guesses that c is an encryption of x

1

. This is completely arbitrary and does

not e�ect the analysis below. To see why, recall that I is a restrained intruder, and so it

never forwards an unmodi�ed U-reply. It follows that if a = a

t

then the session-id sid in y is

not the one that was used to compute w

t

in Step 2. Hence, this U-reply will be rejected, so

it cannot be a successful one.

Once this is done, A halts.

8

Notice that the server indeed would have rejected this reply. If a

t

is an encryption of f(spwd ;U; S; sid) then it

will be rejected since U

0

6= U, and if a

t

is an encryption of f(0; 0) then it will be rejected since f(0; 0) has the wrong

format.

21

Analysis of A. We �rst need to show that the queries made by A on its \external interface"

adhere to the conditions set for the ciphertext-veri�cation attack. Speci�cally, we need to show

that A never asks a veri�cation query with the same ciphertext it got for its test query, but this

is guaranteed since A always checks this condition before making any veri�cation query (See in

Steps 3 and 4 above).

It is left to analyze the success probability of A. To that end, we de�ne the following ` + 1

\mental experiments", which are all variations on the probabilistic game between U; S and I . For

j = 0; 1; : : :`, the j'th experiment (which we denote E

j

) consists of running the usual game up

to the j'th message that I sends to U . Namely, for the j �rst messages sid

0

1

: : : sid

0

j

, the user U

follows the protocol and sets a

i

= Enc

pk

(f(spwd ;U; S; sid

0

i

)), and y

0

i

=

U; sid

0

i

; a

i

�

. For all the other

messages sid

0

j+1

; sid

0

j+2

; : : :, the user instead sets a

i

= Enc

pk

(f(0; 0)), and y

0

i

=

U; sid

0

i

; a

i

�

.

As in the usual game, we say that I fools the server in E

j

if the server accepted any of the

U-replies that I sends to it. (Recall that I is a restrained intruder, so the U-replies that it sends

to the server are all di�erent than what it receives from U .) We denote by p

j

the probability that

I fools the server in an (`; 1)-run in E

j

. We now note that p

`

is exactly the probability that I

fools the server in an (`; 1)-run of the original game, and by the premise of the lemma, we have

p

`

� � + 1=jDj. On the other hand, we have

Proposition 6 p

0

� 1=jDj

Before proving Proposition 6, we show how it is used to complete the proof of Lemma 5. Let

t be the index that A picks at the beginning of its operations. Note that if the test query of A is

answered with an encryption of x = f(spwd ;U; S; sid

0

t

), then the game that I sees is exactly the

t'th mental experiment, so its success probability is p

t

. On the other hand, if the test query of A is

answered with an encryption of f(0; 0), then the game that I sees is exactly the (t � 1)'th mental

experiment, so its success probability is p

t�1

. Thus we get

Pr[A guesses \encryption of x

1

" j Dec

pk

(c) = x

1

]

�Pr[A guesses \encryption of x

1

" j Dec

pk

(c) = x

2

]

=

`

X

j=1

Pr[t = j] � (p

j

� p

j�1

)

=

1

`

`

X

i=1

(p

j

� p

j�1

) =

1

`

(p

`

� p

0

) � �=`

Proof of Proposition 6. Let y = hU; sid; ai be the �rst U-reply that I sends in the experiment

E

0

, and recall that this reply is successful if and only if Dec

sk

(a) = f(spwd ;U; S; sid).

Since f is one-to-one on its components, it follows that for every spwd

0

6= spwd, f(spwd

0

;U; S; sid) 6=

f(spwd ;U; S; sid). Therefore, for every key pair (pk; sk), every ciphertext a and every session-id sid,

it holds that

Pr

spwd2D

h

Dec

sk

(a) = f(spwd ;U; S; sid)

i

�

1

jDj

Since the messages that the adversary sees in experiment E

0

up until it sends y are all independent

of the password spwd, then y itself must also be independent of spwd, and therefore the probability

that it is successful (taken over the choice of the password spwd) is at most 1=jDj.

22

5.4 Mutual authentication and key exchange

In this paper we do not formalize or prove the security of the extensions to our basic one-way

authentication protocol as presented in Section 3.4 for providing mutual authentication and key

exchange. Formalizing authentication and key-exchange, in general, is beyond the scope of this

paper. However, we point out that a suitable framework for the analysis of such protocols has

been recently developed by Bellare, Canetti and Krawczyk [1]. That paper analyzes key-exchange

protocols which are very similar to the ones presented here. The signi�cant di�erence is that they do

not analyze password-based protocols. Fortunately, it can be shown that our security formalization

and proof of the Encrypted Challenge-Response protocol for one-way authentication provides a

password-based authenticator in the language of [1], and so the analysis methodology from that

work applies to our protocols too.

(Authenticators are protocols that guarantee \secure delivery" of messages in the presence of

active attackers. It is shown in [1] that when an authenticator is applied on top of a key-exchange

protocol which is secure against eavesdroppers-only (such as the Di�e-Hellman protocol) then

the whole key exchange is secure against active attackers too. This is the way that we build the

key-exchange protocols presented in this paper.)

In this regard, it is worth noting that while [1] only present protocols that use the same form of

authentication in the two directions of the protocol, here we use a password-based authentication

from user to server, and an encryption-based authentication from server to user. Yet, this framework

is extendible to this \a-symmetry" in the authentication methods.

6 Do secure password protocols require public-key tools?

It is interesting to note that although in a password setting, the user and server have a shared

secret (albeit, a weak one), all the strong password mechanisms proposed in the literature, including

ours, employ public key techniques (e.g., [12, 4]). An interesting question, therefore, is whether

password authentication mechanisms resistant to o�-line guessing can be built based on symmetric

key techniques only, e.g. solely based on the existence of a secure block cipher. Below we provide

very strong evidence against such possibility, by proving that a public key primitive such as key

exchange is inherently necessary in the construction of password protocols which resist password-

guessing attacks.

What we speci�cally prove is that given a secure password protocol resistant to guessing attacks

one can use it (without further cryptographic functions) to implement a key-exchange protocol. The

latter is a protocol that allows parties that do not share any initial secret to exchange a fresh secret

via a public and authenticated conversation, as in the case of the Di�e-Hellman protocol. It

follows that secure password authentication protocol must use whatever machinery is required for

building secure cryptographic key exchange protocols. Or, equivalently, that these cryptographic

techniques are essential for constructing strong password authentication. Combined with a result

by Impagliazzo and Rudich [14], our result implies that constructing secure password protocols

using only symmetric key techniques such as block ciphers and hash functions is extremely unlikely

(barring some major breakthrough in cryptography and complexity theory, see discussion below).

6.1 Secure password authentication implies key-exchange

For simplicity, in the presentation below we focus on protocols for exchanging a single bit. Clearly,

such protocols can be used to implement exchange of longer keys (simply by repeating the same

protocol many times). Below we formally de�ne such protocols and their security against passive

23

eavesdroppers; we then prove that such key-exchange protocols can be implemented using any

secure password protocol.

De�nition 3 A two-party protocol (A;B) is a key exchange protocol for one bit, if at the end of

the protocol, both A;B output the same bit.

9

(The input to both A;B is a security parameter k.)

Let �(�) be a function, and let (A;B) be a key exchange protocol for one bit. We say that (A;B)

is secure up to � if no feasible eavesdropper E can guess the bit that A;B output with probability

better than 1=2 + �(k), where k is the security parameter of (A;B).

Theorem 2 Any protocol that ensures one-way password authentication up to �(k; `;m) can be

transformed into a key exchange protocol for one bit, which is secure up to �

0

(k) = �(k; 1; 1).

Proof overview We start with a somewhat informal overview of the proof. Assume that we

have a password protocol that resists o�-line guessing attacks. In particular, this means for any

dictionary D that is used by the parties, a passive eavesdropping adversary (which only listen on

the lines) cannot guess the user's password with probability signi�cantly larger than 1=jDj. In

particular, if the parties are using a dictionary of size 2, then the adversary cannot guess the user's

password with probability signi�cantly larger than a half.

In order to exchange a secret bit, the two parties use the password protocol with a dictionary of

size 2. To exchange a bit, each of the parties chooses at random a password from the dictionary, and

then they execute the password protocol with one party playing the server and the other playing

the user. It follows from the security of the password protocol that this execution succeeds if and

only if they both choose the same password. If the execution succeeds, then their secret bit is set

to '0' in the case that the password that they chose was the �rst password in the dictionary, or to

'1' otherwise. If the execution fails (i.e., they chose di�erent passwords) then they choose new pass-

words and try again. Since the protocol resists password-guessing attacks, then an eavesdropping

adversary cannot guess the password that was used in a successful execution, and so the exchanged

bit is indeed secret. After expected 2 trials, the parties will be able to exchange the secret bit. A

more formal description follows.

Formal proof Let �(k; `;m) be a real function and let (U; S) be any (syntactically correct)

password protocol that ensures one-way authentication up to �. The key exchange protocol (A;B)

works as follows: The parties use the protocol (U; S) with A playing the role of U and B playing

the role of S. On security parameter k, A and B �rst execute the setup phase of the protocol

(U; S) with a dictionary D of size two and the same security parameter, but without exchanging

the password. Instead, each of A;B picks a random password from D and behaves as if this is the

password that was exchanged. Then, A;B execute an authentication session, and at the end of this

session B (who plays the role of the server S) sends to A a message, telling it if the session was

successful or not. If the session does not succeed, then A;B repeat the whole process (including the

setup phase) again, until the session is successful. Once the session succeeds, each party outputs a

`0' if it chose the �rst password in the dictionary for this session, or `1' if it was the second password.

We note that the protocol (A;B) ends after expected two executions of the protocol (U; S).

We start by proving that when the parties choose di�erent passwords, then the authentication

session fails (except with probability of at most 2�(k; 1; 1)). To see that, consider an intruder I that

simply guesses a password from D at random and tries an authentication session with the server

9

In fact, we may allow the protocol to have a small probability of error, when the bits output by the two parties

are di�erent. Of course, to be of any use, the probability that the parties agree on the bit must be strictly larger

than the probability that an eavesdropper guesses this bit.

24

using that password. On one hand, since (U; S) is syntactically correct, we know that this intruder

wins if it chooses the correct password (which happens with probability 1/2). On the other hand,

since (U; S) is secure then we also know that the intruder cannot win with probability more than

1=2 + �. Hence we have

1=2 + � � Pr[I wins]

= 1=2 � Pr[I wins j password is correct] + 1=2 � Pr[I wins j password is incorrect]

= 1=2 + 1=2 �Pr[I wins j password is incorrect]

and therefore Pr[I wins j password is incorrect] � 2�. It follows that the probability that the bit

output by the two parties (A;B) is not the same, is at most 2�=(1 + 2�) < 2�.

We now show that (A;B) is indeed secure up to �

0

(k) = �(k; 1; 1). Formally, we reduce the

security of (A;B) to that of (U; S), by showing that if there is an eavesdropper E with advantage

of more than �

0

against (A;B), then there also exists an intruder I with advantage of more than �

against (U; S). In this reduction we let the intruder I use the algorithm E as a subroutine in its

attack against the protocol (U; S).

The intruder I is given the security parameter k, a dictionary D of two passwords, and the names

(and possibly public keys) of the user and server. It prompts the parties to start an authentication

session and records that session, passing the messages back and forth without modifying anything.

Denote the transcript of that session by � . Then, I repeatedly picks pairs of passwords from D

ha

i

; b

i

i. As long as a

i

6= b

i

, the intruder I generates a session of the protocol (A;B) in which A

picks the password a

i

and B picks the password b

i

, and records the transcript of this session �

i

.

In the �rst instance where a

i

= b

i

, the intruder I invokes the eavesdropper E, giving it as input

the sequence of transcripts h�

1

; : : : ; �

i�1

; �i. The eavesdropper then guesses a bit �, and then I

attempts an on-line impersonation attack using the �rst passwords from D if � = 0, and the second

if � = 1.

It is clear that the view of the eavesdropper E in this execution is identical to the view when it

interacts with the real protocol (A;B), and therefore, by our assumption, E guesses the right bit

(and I uses the right password) with probability of more than 1=2 + �

0

(k). Hence, we have

Pr[I wins in a (1,1)-game] > 1=2 + �

0

(k) = 1=2 + �(k; 1; 1)

which contradicts the security assumption on the protocol (U; S).

Remark: In the above proof we use the fact that strong password-based authentication protocols

need to resist o�-line guessing attacks for any size dictionary D. In particular, even for jDj = 2.

That is, given two candidate passwords only it shouldn't be feasible for the attacker to guess the

right password with probability signi�cantly better than 1/2. This is guaranteed for our protocols

by Theorem 1, and is also commonly conjectured (but not proved) for the EKE protocols of [4] and

some of its variants. The assumption in these protocols is that given a single candidate password,

there is no e�cient way to check o�-line whether this password is the one used by the user; this

implies the above condition on dictionaries of size 2. We stress that if a given protocol is guaranteed

to resist guessing attacks with dictionaries of at least t entries, for some number t, then the proof

still works but the complexity of exchanging a bit is t expected trials instead of 2.

6.2 Discussion

Since key-exchange protocols are themselves \public key tools", then Theorem 2 can be viewed

as suggesting a positive answer to the question in the title of this section. Certainly, it means

25

that whatever tools are needed for key exchange, are also needed for secure password protocols.

But is it possible that both password protocols and key exchange protocols can be implemented

using only primitives such as symmetric ciphers and hash functions? The answer to this question

is \probably not", and it follows from the work of Impagliazzo and Rudich [14]: In that work, they

devised a mathematical model in which \only secret-key tools are available", and analyzed which

protocols can or cannot be obtained in this model. There are two features that distinguish the

Impagliazzo-Rudich model from the standard model of computation.

Powerful adversary. To eliminate all \public key tools" from the model, the adversary is given

the power to \solve any NP computational problem". Speci�cally, the adversary is given an

oracle access to an NP-complete problem. (In particular, this means that given a \public

key", the adversary can �nd the corresponding \secret key" in polynomial time.)

Access to a random oracle. To enable \non public-key tools" in the presence of this powerful

adversary, all the parties in this model are given access to a random function f , mapping

arbitrary-length strings into strings of length k (where k is a security parameter). Given such

function, it is easy to implement primitives such as collision-intractable hashing, symmetric

encryption, etc. For example, collision-intractable hashing is achieved simply by applying

the function f to an arbitrary-length string. Also, when two parties share a secret key �,

they can use f to generate a random one-time pad by computing the i'th block of the pad as

f(�; i), and then use this pad for encryption.

The main result in [14] is that secure key exchange protocols are not possible in this model. Namely

Theorem 3 ([14]) There is no key-exchange protocol in the Impagliazzo-Rudich model which is

secure up to �, for any � < 1=2.

Using Theorem 2, we therefore have

Corollary 7 There is no password protocol in the Impagliazzo-Rudich model that ensures one way

authentication up to �, for any � < 1=2.

Implications in the standard model. The above corollary suggests that \non public-key tools"

are not su�cient for secure password protocols, as there is a model where the former exist and the

latter do not. But in fact, this result has also implications for the standard model of computations.

Speci�cally, it means that exhibiting a password protocol which can be proven secure based only

on the security of \generic secret-key tools" (such as symmetric encryption, MAC or collision-

intractable hashing) is at least as hard as proving that P 6= NP . To see that, assume that we

have such a password protocol (U; S). Since the security of this protocol is proven based only on

the security of the \generic secret-key tools" that it uses, then the protocol remains secure also

in the model where all parties have access to a random function, and these \secret-key tools" are

implemented using that function. However, the Impagliazzo-Rudich result says that in this model,

being able to solve any NP-complete problem is su�cient to break the protocol. Since we assume

that the scheme is proven secure, then we know that no e�cient adversary can break it, which

implies that no e�cient adversary can solve NP-complete problems. Hence this would prove that

P 6= NP .

26

References

[1] M. Bellare, R. Canetti and H. Krawczyk, \A Modular Approach to the Design and

Analysis of Authentication and Key Exchange Protocols", Proceedings of the Thirtieth

ACM Symposium on the Theory of Computation (STOC), 1998, pp. 419{428.

[2] M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway, \Relations Among Notions of

Security for Public-Key Encryption Schemes", Advances in Cryptology - CRYPTO'98

Proceedings, Lecture Notes in Computer Science Vol. 1462, H. Krawczyk, ed., Springer-

Verlag, 1998, pp. 26{45.

[3] M. Bellare, and P. Rogaway, \Optimal Asymmetric Encryption { How to encrypt with

RSA", Advances in Cryptology - EUROCRYPT'94 Proceedings, Lecture Notes in Com-

puter Science Vol. 950, A. De Santis ed, Springer-Verlag, 1995.

[4] S. M. Bellovin and M. Merritt, \Encrypted Key Exchange: Password- Based Protocols

Secure Against Dictionary Attacks", Proceedings of the IEEE. Symposium on Research

in Security and Privacy, Oakland, May 1992.

[5] S. M. Bellovin and M. Merritt, \Augmented Encrypted Key Exchange: a Password-Based

Protocol Secure Against Dictionary Attacks and Password File Compromise", Proceedings

of the First ACM Conference on Computer and Communications Security, 1993, pp. 244-

250.

[6] R. Cramer and V. Shoup, \A Practical Public Key Cryptosystem Provably Secure against

Adaptive Chosen Ciphertext Attack",Advances in Cryptology - CRYPTO'98 Proceedings,

Lecture Notes in Computer Science Vol. 1462, H. Krawczyk, ed., Springer-Verlag, 1998,

pp. 13{25.

[7] W. Di�e, P. C. Van-Oorschot, and M. J. Weiner. Authentication and authenticated key

exchanges. Designs, Codes and Cryptography, 2:107{125, 1992.

[8] D. Dolev, C. Dwork, and M. Naor. \Non-malleable cryptography". Proceedings of the

Twenty Third Annual ACM Symposium on Theory of Computing, pages 542-552, 1991.

[9] I. Goldberg, H. Finney and R. Levien. \Visual Fingerprints" and \Snow
akes".

http://www.cs.berkeley.edu/�iang/visprint.html

[10] O. Goldreich, S. Goldwasser and S. Micali. \How to Construct Random Functions",

Journal of the ACM, Vol. 33, no. 4, 1986, pp. 792-807

[11] S. Goldwasser, and S. Micali. \Probabilistic Encryption", Journal of Computer and Sys-

tem Sciences, Vol. 28, 1984, pp. 270-299.

[12] L. Gong, M. Lomas, R. Needham, and J. Saltzer, \Protecting Poorly Chosen Secrets from

Guessing Attacks", I.E.E.E. Journal on Selected Areas in Communications, Vol. 11, No.

5, June 1993, pp. 648-656.

[13] N. Haller, \The S/KEY One-Time Password System", RFC 1760, Feb. 1995.

[14] R. Impagliazzo and S. Rudich. \Limits on the provable consequences of one-way permu-

tations". In Proceedings of the 21st Annual ACM Symposium on Theory of Computing,

1989, pages 44-61.

27

[15] D. Jablon, \Strong Password-Only Authenticated Key Exchange". Computer Communi-

cation Review, ACM SIGCOMM, vol. 26, no. 5, pp. 5-26, October 1996.

[16] C. Kaufman, R. Perlman, and M. Speciner, \Network Security," Prentice Hall, 1997.

[17] H. Krawczyk, \SKEME: A Versatile Secure Key Exchange Mechanism for Internet,",

Proceedings of the 1996 Internet Society Symposium on Network and Distributed System

Security, Feb. 1996, pp. 114-127.

[18] L. Lamport, \Password authentication with insecure communication," Comm. of the

ACM, Vol. 24 Number 11, Nov 1981, pp. 770-772.

[19] S. Lucks, \Open Key Exchange: How to Defeat Dictionary Attacks Without Encrypting

Public Keys", The Security Protocol Workshop '97, Ecole Normale Superieure, April 7-9,

1997.

[20] A. Menezes, P. Van Oorschot and S. Vanstone, \Handbook of Applied Cryptography,"

CRC Press, 1997.

[21] S. Patel, \Number Theoretic Attacks On Secure Password Schemes" IEEE Symposium

on Security and Privacy, Oakland, California, May 5-7, 1997.

[22] C. Racko� and D. Simon, \Non-interactive zero-knowledge proof of knowledge and chosen

ciphertext attack", Advances in Cryptology - CRYPTO'91 Proceedings, Lecture Notes in

Computer Science Vol. 576, J. Feigenbaum ed, Springer-Verlag, 1991.

[23] M. Steiner, G. Tsudik, and M. Waidner, \Re�nement and Extension of Encrypted Key

Exchange", Operating Systems Review, vol. 29, Iss. 3, pp. 22-30 (July 1995).

[24] T. Wu, The Secure Remote Password Protocol, in Proceedings of the 1998 Internet Society

Network and Distributed System Security Symposium, San Diego, CA, Mar 1998, pp. 97-

111.

28

