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Abstract

This paper describes a Di�e-Hellman based encryption scheme, DHAES. The scheme is as e�cient

as ElGamal encryption, but has stronger security properties. Furthermore, these security properties are

proven to hold under appropriate assumptions on the underlying primitive.

We show that DHAES has not only the \basic" property of secure encryption (namely privacy un-

der a chosen-plaintext attack) but also achieves privacy under both non-adaptive and adaptive chosen-

ciphertext attacks. (And hence it also achieves non-malleability.)

DHAES is built in a generic way from lower-level primitives: a symmetric encryption scheme, a

message authentication code, group operations in an arbitrary group, and a cryptographic hash function.

In particular, the underlying group may be an elliptic-curve group or the multiplicative group of integers

modulo a prime number.

The proofs of security are based on appropriate assumptions about the hardness of the Di�e-Hellman

problem and the assumption that the underlying symmetric primitives are secure. The assumptions are

all standard in the sense that no random oracles are involved.

We suggest that DHAES provides an attractive starting point for developing public-key encryption

standards based on the Di�e-Hellman assumption.

Keywords: Cryptography, Di�e-Hellman key exchange, ElGamal encryption, Elliptic curve cryptosystems,

Provable security.
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1 Description of the Scheme

This paper describes a method for encrypting strings using the Di�e-Hellman assumption. We are concerned

with the \details" of Di�e-Hellman based encryption | how a message should be \packaged" in order to

best exploit the group operations (eg., modular exponentiation) which are at the core of a Di�e-Hellman

based encryption.

The method we suggest is called DHAES. It is as e�cient as ElGamal encryption, but has more and better

security properties. The scheme is versatile, in that it can be used in any setting where the Di�e-Hellman

problem is hard | so not only the group of integers modulo a prime (or subgroups thereof), but also

elliptic-curve groups.

DHAES uses symmetric encryption, message authentication, and hashing. This may seem like a lot of

cryptography beyond the group operation, but it is exactly this additional cryptography which ensures, by

and large, that we get our security guarantees.

In this section we specify DHAES; the following sections provide background and comparisons, and explain

the sense in which DHAES is demonstrably secure. To specify our scheme in a compact and precise way,

we �rst specify the \syntax" of an asymmetric encryption scheme and the types of primitives which our

asymmetric encryption scheme employs.

1.1 Preliminaries

Represented Groups. DHAES makes use of a �nite cyclic group G = hgi. (This notation indicates that

G is generated by the group element g.) We will use multiplicative notation for the group operation. So, for

u 2 N, g

u

denotes the group element of G that results from multiplying g by itself u times. Naturally, g

0

names the identity element of G. Note that, if u 2 N, then, by Lagrange's theorem, g

u

= g

u mod jGj

.

Algorithms which operate on G will be given string representations of elements in G. We thus require an

injective map : G! f0; 1g

gLen

associated toG, where gLen is some number (the length of the representation

of group elements). Similarly, when a number i 2 N is an input to, or output of, an algorithm,it must be

appropriately encoded, say in binary. We assume all necessary encoding methods are �xed, and do not

explicitly invoke any encoding functions in our scheme descriptions and proofs.

Any \reasonable" group supports a variety of computationally feasible group operations. Of particular

interest is there being an algorithm " which takes (the representations of) a group element x and a number i

and computes (the representation of) x

i

. For clarity, we write this operator in in�x, so that (x) " (i) returns

x

i

. We will call the tuple GROUP = (G; g; ; ") a represented group.

We will be making assumptions about the hardness of the Di�e-Hellman problem in a given represented

group.

Message Authentication Codes. A message authentication scheme enables users sharing a secret key to

tag data for the purpose of authenticity and integrity. DHAES will make use of such a scheme. Any scheme

meeting the security requirements will be adequate.

To describe the operation of a scheme we �rst let Message = f0; 1g

�

be the space of message we can MAC.

Let mKey = f0; 1g

mLen

for some number mLen. Let Tag = f0; 1g

tLen

for some number tLen (a superset

of the possible tags). A message authentication code is a pair of algorithms MAC = (MAC:gen;MAC:ver).

Algorithm MAC:gen (the MAC generation algorithm) takes a key k 2 mKey and a message x 2 Message

and returns a string MAC:gen(k; x). (One could also have allowed MAC:gen to be probabilistic.) This string

is called the tag. Algorithm MAC:ver (the MAC veri�cation algorithm) takes a key k 2 mKey, a message

x 2 Message, and a purported tag � 2 Tag. It returns a bit MAC:ver(k; x; �) 2 f0; 1g, with 0 indicating that

the message was rejected (deemed unauthentic) and 1 indicating that the message was accepted (deemed

1



authentic). We require that for all k 2 mKey and x 2 Message, MAC:ver(k; x;MAC:gen(k; x)) = 1. The �rst

argument of either algorithm may be written as a subscript.

We assume for simplicity that the MAC generation algorithm and the veri�cation algorithm are deterministic.

This is true in most existing schemes.

Candidate algorithms for the MAC are HMAC [2, 27], the CBC MAC based on a block cipher with large

key and block sizes [5], or any of a variety of MACs based on the Wegman-Carter paradigm [37].

Symmetric Encryption. A symmetric encryption scheme permits users sharing a key to encrypt data to

achieve privacy. DHAES can use any such scheme meeting the appropriate security requirements discussed

later. To describe the components of such a scheme let Message be as before, and let eKey = f0; 1g

eLen

,

for some number eLen. Let Ciphertext = f0; 1g

�

(a superset of all possible ciphertexts). Let Coins be a

synonym for f0; 1g

1

(the set of in�nite strings). A symmetric encryption scheme is a pair of algorithms

SYM = (SYM:enc; SYM:dec). Algorithm SYM:enc (the encryption algorithm) takes a key K 2 eKey, a

plaintext x 2 Message, and coins r 2 Coins, and returns ciphertext SYM:enc(k; x; r). Algorithm SYM:dec

(the decryption algorithm) takes a key k 2 eKey and a purported ciphertext y 2 Ciphertext, and returns a

value SYM:dec(k; y) 2 Message [ fBADg. We require that for all x 2 Message, k 2 Key, and r 2 Coins,

SYM:dec(k; SYM:enc(k; x; r)) = x. Usually we omit mentioning the coins of SYM:enc, thinking of SYM:enc

as a probabilistic algorithm, or thinking of SYM:enc(k; x) as the induced probability space. A return value

of BAD from SYM:dec is intended to indicate that the ciphertext was regarded as \invalid" (it is not the

encryption of any plaintext). The �rst argument of either algorithm may be written as a subscript.

Candidate algorithms for the symmetric encryption are CBC encryption with a block cipher of large enough

key and block size [3], or some other mode meeting the security requirements of [3] or De�nition 4. However,

the security theorems will show that the symmetric encryption scheme can be quite weak, in that it su�ces

to be able to securely encrypt a single message. Thus, a simple way to implement it is to use the key as a

seed, apply a pseudorandom bit generator to it to get a pad, and XOR the message with this pad to get the

ciphertext.

Asymmetric Encryption. DHAESis a scheme for asymmetric encryption. Let Coins, Message, Ciphertext

be as before and let PK � f0; 1g

�

and SK � f0; 1g

�

be sets of strings. An asymmetric encryption scheme is a

three-tuple of algorithms ASYM = (ASYM:enc;ASYM:dec;ASYM:key). The encryption algorithm ASYM:enc

takes a public key pk 2 PK, a plaintext x 2 Message, and coins r 2 Coins, and returns a ciphertext

y = ASYM:enc(k; x; r). The decryption algorithm ASYM:dec takes a secret key sk 2 SK and a cipher-

text y 2 Ciphertext, and returns a plaintext ASYM:dec(sk; y) 2 Message [ fBADg. The key generation

algorithm ASYM:key takes coins r 2 Coins and returns a pair (pk; sk) 2 PK � SK. We require that

for all (pk; sk) which can be output by ASYM:key, for all x 2 Message and r 2 Coins, we have that

ASYM:dec(sk;ASYM:enc(pk; x; r)) = x. The �rst argument to ASYM:enc and ASYM:dec may be written

as a subscript.

1.2 De�nition of DHAES

Refer to Figure 1 for a pictorial representation of encryption under DHAES, and Figure 2 for the formal

de�nition of the scheme. Let us explain the scheme in reference to those descriptions.

Let GROUP = (G; g; ; ") be a represented group, where group elements are represented by strings of gLen

bits. Let SYM = (SYM:enc; SYM:dec) be a symmetric encryption scheme with key length eLen, and let

MAC = (MAC:gen;MAC:ver) be a message authentication code with key length mLen and tag length tLen.

Let H : f0; 1g

2gLen

! f0; 1g

mLen+eLen

be a function. From these primitives we de�ne the asymmetric

encryption scheme DHAES = (DHAES:enc;DHAES:dec;DHAES:key). If we want to explicitly indicate the

dependency of DHAES on its associated primitives, then we will write DHAES

[[

GROUP; SYM;MAC;H

]]

. The

component algorithms of DHAES |the encryption algorithm, decryption algorithm, and key-generation

2
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Figure 1: Encrypting with the scheme DHAES. We use a symmetric encryption algorithm, SYM:enc; a

MAC generation algorithm, MAC:gen; and a hash function, H . The emboldened rectangles comprise the

ciphertext.

algorithm| are de�ned in Figure 2.

Each user's public key and secret key is exactly the same as with the ElGamal scheme: g

v

and v, respectively,

for a randomly chosen v. (Here we will not bother to distinguish group elements and their bit-string

representations.) To send a user an encrypted message we choose a random u and compute an \ephemeral

public key," g

u

. Including g

u

in the ciphertext provides an \implicit" Di�e-Hellman key exchange: the sender

and receiver will both be able to compute the \secret value" g

uv

. We pass g

uv

to the hash function H , along

with the ephemeral public key, g

u

. The result is parsed into two pieces: a MAC key, macKey, and an

encryption key, encKey. We symmetrically encrypt the message we wish to send with the encryption key,

and we MAC the resulting ciphertext using the MAC key. The ciphertext consists of the ephemeral public

key, the symmetrically encrypted plaintext, and the authentication tag generated by the MAC.

1.3 Notes

The conventions of [23] associate each scheme with exactly one \cryptographic family," where three crypto-

graphic families are currently described: discrete logarithm over �nite �elds (DL); discrete logarithm over

elliptic curve groups (EC); and integer factorization (IF). Since DHAES works over an arbitrary represented

cyclic group, it is natural to use it to de�ne two DHAES schemes in the sense of [23]: DLES and ECES.
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Algorithm DHAES:enc(pk;M)

begin

u f1; : : : ; jGjg

X  pk " u

U  g " u

hash H(U k X)

macKey  hash[1 ::mLen]

encKey  hash[mLen+ 1 ::

mLen+ eLen]

encM  SYM:enc(encKey;M)

tag  MAC:gen(macKey ;M)

EM  U k tag k encM

return EM

end

Algorithm DHAES:dec(sk;EM)

begin

U k tag k encM  EM

X  U " sk

hash H(U;X)

macKey  hash[1 ::mLen]

encKey  hash[mLen+ 1 ::

mLen+ eLen]

if MAC:ver(macKey; encM ; tag) = 0

then return BAD

EM  SYM:dec(encKey ; encM)

return EM

end

Algorithm DHAES:key

begin

v  f1; : : : ; jGjg

pk  g " v

sk  v

return (pk; sk)

end

Figure 2: The scheme DHAES = (DHAES:enc;DHAES:dec;DHAES:key), where: SYM is a symmetric encryp-

tion scheme using keys of length eLen; MAC is a message authentication code with keys of length mLen and

tags of length tLen; GROUP = (G; g; ; ") is a represented group whose group elements encoded by strings of

length gLen; and H : f0; 1g

2gLen

! f0; 1g

eLen+mLen

.

2 Attributes and Advantages of the Scheme

To explain the problem which DHAES solves, and the sense in which it solves this problem, let us back up

and provide a bit of background.

2.1 Encrypting with Di�e-Hellman: The ElGamal Scheme

Let G be a �nite cyclic group, say G = Z

�

p

, the multiplicative group of integers modulo a (large) prime p.

We'll denote the group operation of G multiplicatively, so that repeated multiplication is represented by

exponentiation. Let g be a generator for G; that is, the elements of G are fg

1

; g

2

; : : : ; g

jGj

g. Fix such a

group G and its generator g. All multiplications (or exponentiations, which is just shorthand for repeated

multiplication) will be performed in G.

Di�e and Hellman suggested that two parties communicating over a channel subject to (passive) eaves-

dropping could come to share share a secret key as follows [16]. The �rst party chooses a random num-

ber u 2 f1; : : : ; jGjg and sends g

u

to the second party. The second party chooses a random number

v 2 f1; : : : ; jGjg and sends g

v

to the �rst party. The shared key is declared to be g

uv

, which the �rst

party can calculate as (g

v

)

u

and the second party can calculate at (g

u

)

v

.

Roughly said, the Di�e-Hellman assumption for G asserts that an adversary who sees g

u

and g

v

(for a

random u; v) cannot compute g

uv

.

ElGamal [19] explained how to adapt the above to give a public key encryption method. The intended receiver

of an encrypted message has a public key which speci�es g

v

(where v was chosen randomly from f1; : : : ; jGjg).

The sender wants to send to that receiver a ciphertext C which is the encryption of a message M . We

assume M 2 G. The sender computes C by choosing a random u (again in f1; : : : ; jGjg) and transmitting

C = (g

u

;M � g

uv

). Knowing v, the receiver can compute g

uv

= (g

u

)

v

from C and then multiply M � g

uv

by

the inverse of g

uv

to recover M .
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2.2 De�ciencies of ElGamal Encryption

We highlight a number of issues arising from the encryption method we have just described.

1. Limited message space. First there was the assumption that M 2 G. Messages are naturally regarded

as bit strings, not group elements. Often there will be a natural embedding of some bit strings into group

elements, but that may fall short of all potential messages.

2. May not provide good privacy. As Goldwasser and Micali explain and formalize in [21], a good en-

cryption scheme should do more than make it infeasible for an adversary to decrypt: the scheme should

conceal from an adversary mounting a passive attack \any" information about the plaintext. For example,

it shouldn't be possible to determine even one bit of the plaintext given the ciphertext. This property has

been de�ned in several ways which have been shown to be equivalent [21], including a de�nitions known as

\indistinguishability" and one known as \semantic security."

Even in groups for which one anticipates using ElGamal encryption, the ElGamal encryption does not achieve

semantic security. For example, when the scheme is implemented in the group G = Z

�

p

, there are attacks

showing that some information about the plaintext can be determined from the ciphertext. See Appendix A

for a description of such an attack.

It is possible to guarantee the semantic security of ElGamal encryption if it is done in special groups, and

if we make a stronger assumption about the Di�e-Hellman problem. Speci�cally, the order of the group

should be prime (note the order of Z

�

p

is p�1 which is not prime) and we make the decisional Di�e-Hellman

assumption, which says that it is infeasible to distinguish the following two distributions: (g

u

; g

v

; g

uv

), for a

random u and v, and (g

u

; g

v

; g

z

), for a random u,v, and z. This is a very strong assumption.

It would be preferable to have a scheme which worked in any group where the Di�e-Hellman problem is hard,

and one which was guaranteed to achieve semantic security under a weaker number-theoretic assumption.

3. We want more than basic privacy. For an encryption scheme to be a maximally useful tool in the design of

higher-level protocols it should actually do more than shield information about the plaintext in the presence

of a passive attack. Stronger goals include non-malleability [17] and chosen-ciphertext security [33, 36].

Informally, non-malleability means that an adversary cannot mutate one ciphertext into a related one.

Chosen-ciphertext security means that an adversary cannot break an encryption scheme even if she can

cause some ciphertexts to be decrypted. ElGamal encryption achieves neither of these \beyond semantic

security" goals: it is easy to see that the scheme is malleable and also insecure under a chosen-ciphertext

attack. (See Appendix A).

We are �nding that uses of encryption in cryptographic practice relies more and more on the scheme meeting

these \beyond semantic security" goals. For example, the designers of SET (Secure Electronic Transactions)

mandated the use of an encryption scheme which achieves more than semantic security. This was necessary, in

the sense that the SET protocols would be wrong if instantiated by a primitive which achieves only semantic

security, and to design SET-like protocols using a primitive which achieves only semantic security would

seem to yield more complicated protocols. As a second example, Bleichenbacher has recently shown that

encryption under RSA PKCS #1 is vulnerable to chosen-ciphertext attack, and he goes on to demonstrate

how this leads to an attack on SSL 3.0. Because schemes which achieve \only" semantic security are so easily

misused by protocol designers, we believe it is highly desirable that standardized schemes achieve \beyond

semantic security" goals, particularly non-malleability and chosen-ciphertext security.

2.3 Overcoming De�ciencies in ElGamal Encryption: DHES

The scheme we have presented, DHAES, does Di�e-Hellman based encryption in a way which overcomes

the limitations enumerated above, but without signi�cant increase in cost compared to ElGamal. Key

characteristics and advantages of DHAES include the following.
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1. Basic privacy | Proven in the sense of provable security. Roughly said, to achieve semantic security

we assume the existence of a function H : G ! f0; 1g

�

such that hg

u

; g

v

; H(g

u

k g

uv

)i looks like a pair of

random group elements together with a random string. For non-trivial functions H this assumption |that H

is hardcore for the Di�e-Hellman problem on G| would seem to be weaker than decisional Di�e-Hellman.

We prove that under this assumption, our scheme achieves semantic security. For reasonable choices of H ,

this assumption would seem to hold for any group one would imagine using, not just particular groups.

2. Beyond basic privacy: Non-malleability and chosen-ciphertext security | Proven in the sense of provable

security. We prove that our scheme is secure against both non-adaptive and adaptive chosen-ciphertext at-

tacks. This is proved under an assumption called the Di�e-Hellman independence assumption, and assuming

the underlying MAC and encryption schemes are secure.

It is shown in [3, 18] that security under adaptive chosen-ciphertext attack implies non-malleability, so that

property is achieved automatically.

3. No random oracles. The proofs here do not appeal to the random oracle model. They are all in the

standard model. This addresses concerns that have been raised about this model [14].

4. E�ciency. The e�ciency of ElGamal encryption is preserved: the cost of encryption is essentially the

same as with ElGamal encryption: two exponentiations to encrypt, one to decrypt. For encryption, both of

these exponentiations can be o�-line, meaning that they can be done even before the message M is known.

The length of ciphertexts and the public key is the same as in ElGamal.

5. Versatile instantiation | The group. We allow considerable versatility in instantiating DHAES. First,

the group G in which we perform our operations can be essentially any group in which our version of the

Di�e-Hellman assumption is reasonable. It could be Z

�

p

, or a subgroup of Z

�

n

, or an elliptic curve group (in

which case the group operation is usually written additively, so what we have been denoting g

u

would be

written multiplicatively, as ug). Our proofs assume no algebraic structure for G beyond its being a �nite

cyclic group.

6. Versatile instantiation | Ancillary primitives. Cryptography beyond the group operations is performed

using generic primitives. We employ primitives for symmetric encryption, message authentication, and hash-

ing. For achieving semantic security, the underlying symmetric encryption and hashing schemes must meet

weak, formalized assumptions. For achieving non-malleability and chosen-ciphertext security the encryption

scheme and message authentication code must meet weak, formalized assumptions, while the hash function

is modeled by a public random oracle.

7. Arbitrary message space. Finally, messages to be encrypted are arbitrary bit strings; messages are not

restricted in length or content.

2.4 More on Provable Security

It is easy to come up with a DH-based encryption scheme which might work well when its primitives

(cryptographic hash function, universal hash families, etc.) are concretely instantiated, in the sense that no

attacks seem discernible. What we do here is provide a greater assurance of security, by proving that the

scheme meets formally de�ned objectives under given model and complexity-theoretic assumptions.

Let us explain. A cryptographic scheme S based on a primitive P is said to be provably secure if the security

of P has been demonstrated to imply the security of S. More precisely, we use this phrase when someone

has formally de�ned the goals G

P

and G

S

for some primitive P and scheme S, respectively; and then has

proven that the existence of an adversary A

S

who breaks scheme S, in the sense of violating G

S

, implies the

existence of an adversary A

P

who breaks primitive P , in the sense of violating G

P

.

What provable security means is that as long as we are ready to believe that P is secure, then there are no

attacks on S. This obviates the need to consider any speci�c cryptanalytic attacks on S.
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2.5 Concrete Security

Following works such as [8, 9], we take a concrete, quantitative approach to proving security. Let S be an

encryption scheme which makes use of a primitive P , and let A

S

be an adversary which attacks S. To show

the security of S one converts A

S

into an adversary A

P

which attacks P . Ideally, A

P

should use the same

computational resources as A

S

and, with this investment in resources, A

P

should be just as as successful in

attacking P as A

S

was successful in attacking S. This way \practical" attacks on P imply practical attacks

on S, and so the assumed absence of practical attacks on P implies the absence of practical attacks on S.

To quantify how close to this ideal we come we de�ne the success probability of A

P

attacking P , we de�ne the

success probability of A

S

attacking S, and then we give concrete formulas to show how A

P

's computational

resources and success probability depend on A

S

's computational resources and success probability. These

formulas measure the demonstrated security. By giving explicit formulas we make statements which are

more precise than those that are given in doing asymptotic analyses of reductions.

2.6 Related Work

The current work has grown out of interest from within the IEEE P1363 committee, which has been drafting

a bit-level standard to cover a variety of cryptographic aims [23]. A version of DHAES is suggested in the

draft standard [1]. The scheme described here was �rst proposed in an earlier version of this work [6]. The

current document provides the technical support for the DHAES proposal.

We view DHAES as the natural adaptation of the ElGamal scheme to withstand active attacks and apply to

arbitrary length messages. The use of symmetric primitives is based on the classical cryptographic paradigm

of �rst encrypting a symmetric key and then using the latter to process the actual data.

Zheng and Seberry [39] have proposed an ElGamal adaptation that uses universal one-way hash functions.

Security of their scheme is not supported by proofs in the reductionist sense of modern cryptography. Lim

and Lee [28] have pointed out that in some of the cryptosystems proposed in [39], the method of adding

authentication capability may fail just under known plaintext attacks. A submission to IEEE P1363a based

on [39] has been made by Zheng [38].

Another contemporaneous suggestion was put forward by Johnson, Matyas and Peyravian [26]. Assume that

the message M already contains some redundancy (e.g., some number of �xed bits) and unpredictability

(e.g., random bits have been embedded in M). Then to asymmetrically encrypt M , [26] suggest to subject

it to 4 rounds of a Feistel network based on a function H , thereby obtaining a new string M

0

. Encrypt,

using an arbitrary encryption primitive, an arbitrary piece of M

0

. It is plausible that if H is modeled as a

random function then the above approach can be proven sound, but no such proof has been given.

Recently Cramer and Shoup described an encryption scheme based on the decisional Di�e-Hellman problem

which achieves security against adaptive chosen-ciphertext attack [15]. Their scheme has the advantage of

provably meeting a strong notion of security under a standard assumption. Their assumption is weaker than

the ones used in this paper, so that the theoretical guarantees provided by their scheme should be considered

superior to ours.

1

However, this is at the cost of e�ciency: their scheme is more costly than ours in terms

of key sizes, encryption time, and decryption time. (In particular, encryption takes �ve exponentiations.)

3 Security Assessment of the Scheme

Some simple variants of DHAES do not retain its security properties. Before getting into the de�nitions and

proofs of security for DHAES, let us demonstrate that point by looking at a simple variant of DHAES is not

1

Strictly speaking, the assumptions are not comparable due to the presence of the hash function in our assumptions, but

they do not need the kind of independence assumptions we make, and hence their assumptions are in spirit weaker.
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secure.

3.1 Variants

An Incorrect Variant of DHAES. One of the more mysterious aspects of DHAES may be the placing

of U = g

u

, the \ephemeral public key," in the scope of H . The reason for feeding g

u

into H is to ensure

non-malleability and chosen-ciphertext security. This stems from the fact that, in some represented groups

GROUP (including Z

�

p

), g

uv

and g

v

together might not uniquely determine g

u

. That is, there may exist two

values u and u

0

such that u 6= u

0

but g

uv

= g

u

0

v

. As a result, both u and u

0

would produce two di�erent

valid ciphertexts for the same plaintext when g

u

is not part of the input of H . Therefore, if, given g

u

and

g

v

, we can compute g

u

0

in such a way that g

uv

= g

u

0

v

holds with high probability, then we would break the

scheme in the malleability sense.

As a concrete example, let p be a prime number, Z

�

p

the group, and g a generator of it. Here is an attack

showing that scheme fails non-malleability when we do not feed g

u

to H . Let ` = (p � 1)=2. Then,

using a basic result from number theory which states that g

`

= �1, we can show that, given a ciphertext

EM = g

u

k encM k tag, we can generate a new ciphertext EM

0

= g

u

0

k encM k tag which is a encryption for

the same message with very high probability. Let g

u

0

= g

u

� g

`

. In this case, g

u

0

v

= g

uv

� g

`v

= g

uv

� (g

`

)

v

=

g

uv

� (�1)

v

. Thus, whenever v is even, g

uv

= g

u

0

v

. As the probability for this to happen is 1=2, EM and

EM

0

would represent the encryption for the same message half of the time if g

u

is not fed into H .

Note this implies the scheme is insecure against adaptive chosen ciphertext attack, since otherwise it would

be non-malleable [3, 18].

Some Correct Variant of DHAES. In [6], on encryption we providedMAC:gen with a further argument:

a string which encodes (unspeci�ed, publicly known) \auxiliary information." We believe that this may be

useful: it has the e�ect of binding to the ciphertext the (non-secret) auxiliary information, so that the same

auxiliary information must be presented to decrypt a ciphertext. Since we never formalized the associated

security assertion we have ceased to carry this into the present exposition.

In [6] we also provided MAC:gen with a string which encodes the length of jM j. This had historical reasons

for being there, but no formal signi�cance. So we have again ceased to carry this forward.

3.2 Security assumptions about DHES primitives

DHAES uses three primitives as discussed in Section 1.1. We require (1) group-theoretic operations corre-

sponding to the Di�e-Hellman assumption; (2) a symmetric encryption scheme; and (3) a message authenti-

cation code. In this section we give quantitative security de�nitions for these notions, measuring adversarial

success in relation to adversarial resources.

Note that DHAES also uses a hash function H . This is not discussed separately, but rather as part of (1): we

make assumptions about the quality of the bits that H extracts from the DH key. At the end of Section 3.2.1

we discuss choices of H in light of the DH assumptions we make there.

3.2.1 Di�e-Hellman Problem

Diffie-Hellman Assumptions. We refer to the standard Di�e-Hellman assumption as the computational

Di�e-Hellman assumption, CDH-A. It states that given g

u

; g

v

, where u; v were drawn at random from

f1; : : : ; jGjg, it is hard to compute g

uv

. However, given just CDH-A, it might still be possible for the

adversary to compute something interesting about g

uv

, such as its most signi�cant bit. Thus this assumption

is too weak to be fruitful in the design of encryption schemes. (Even the ElGamal scheme is not semantically
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secure given only this assumption.) We must make some assumption about the unpredictability of bits of

the DH key rather than just the ability to compute the entire key.

A stronger assumption that is gaining popularity these days is the Decisional Di�e-Hellman assumption,

DDH-A. (For a nice discussion, see Boneh's survey [11].) It states, roughly, that the distributions (g

u

; g

v

; g

uv

)

and (g

u

; g

v

; g

w

) are computationally indistinguishable when u; v; w are drawn at random from f1; : : : ; jGjg.

This assumption can only hold in a group G of prime order, and in such groups su�ces to prove the semantic

security of the ElGamal scheme. Note that DDH-A implies CDH-A in any group in which the DDH-A holds.

The assumption we make to prove the semantic security of DHES is actually weaker than the DDH-A, but

still stronger than the CDH-A. (Remember, the weaker the assumption under which security can be proven,

the better!) It is called the Hash Di�e-Hellman assumption, HDH-A. To prove the security of DHES under

chosen-ciphertext attacks, we will make stronger versions of the Hash Di�e-Hellman assumptions which

say the assumption is true even when the adversary has additional power in the form of oracles giving

certain kinds of information about other, independent DH keys. The precise formulation of all three of our

assumptions is below, and they are followed by a discussion on the choice of hash functions suitable for these

assumptions.

Hash Diffie-Hellman Assumption. As indicated above, semantic security of a DH based scheme requires

that we be able to get some number of \hardcore" bits from the DH key, namely key derived bits that cannot

be distinguished from random bits. Our assumption is that applying a suitable hash function H to g

u

k g

uv

will yield such bits. The assumption we make, called the Hash Di�e-Hellman assumption, HDH-A, is a

composite one, in the sense that the assumption speaks about the interaction between the hash function and

the Di�e-Hellman problem.

The HDH-A states that for reasonable values of the time t invested by the adversary, the quantity

InSec

DH

(H;GROUP ; t) de�ned below is small.

De�nition 1 Let GROUP = (G; g; ; ") be a represented group, let hLen be a number, let H : f0; 1g

�

!

f0; 1g

hLen

, and let A be an adversary. The advantage of A in violating H being hardcore on GROUP is

Adv

DH

A

(H;GROUP)

def

= Pr [u; v f1; : : : ; jGjg : A(g

u

; g

v

; H(g

u

k g

uv

)) = 1]�

Pr

�

u; v f1; : : : ; jGjg; r f0; 1g

hLen

: A(g

u

; g

v

; r) = 1

�

:

The security of H on GROUP is the function

InSec

DH

(H;GROUP ; t)

def

= max

A

fAdv

DH

A

(H;GROUP)g ;

where the maximum is over all adversaries A running in time at most t.

Informally, adversary A breaks (GROUP; H) if A spends \reasonable" time t in order to get \signi�cant"

advantage �. Certainly A can break (GROUP; H) if it is easy to compute discrete logarithms (base g) of

random group elements, or solve the computational DH problem. But to make an e�cient encryption scheme

under weak assumptions we make the potentially stronger assumption we have just described.

Here and throughout this paper \running time" is understood to mean the maximal number of steps that

the algorithm requires (relative to some �xed model of computation) plus the size of the encoding of the

algorithm (relative to some �xed convention on writing algorithms). Henceforth we continue to employ this

convention that running time actually includes the space for the algorithm's description.

We are considering the complexity of adversaries who try to attack a speci�c represented group GROUP. Such

an adversary may depend on GROUP, so explicitly providing a description of GROUP to A is unnecessary.

This should be compared with the Decisional Di�e-Hellman assumption discussed above. That assumption

says that the DH key g

uv

looks like a random group element. In groups where the DDH-A is true, one
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can almost imagine that setting H to return the DH key g

uv

will su�ce to make the HDH-A true. This is

almost, but not quite true, the di�erence being that between a random group element and random string of

some length. See further discussion below.

HDH independence assumptions: Motivating discussion. We will now strengthen the HDH-A to

say it also holds in the presence of oracles that give information about DH keys, as long as these keys are

su�ciently \independent" of the target instance. We make two assumptions, one under which we will prove

the security of DHES under non-adaptive chosen-ciphertext attack; the second, stronger one, for proving

security against adaptive chosen-ciphertext attack. Before stating them let us try to provide some intuition.

The intuition is that the ability to compute g

uv

from g

u

and g

v

does not seem to increase if one has access to

a DH oracle solving the same problem, as long as one invokes the oracle only on instances \independent" from

the target. We wish to capture this in a formal assumption. However, one needs to be careful, particularly

with regard to what \independent" means.

The �rst setting we consider has a strong notion of \independence:" the target instance is simply not known

at the time the oracle is present. More precisely consider an adversary that is given g

v

and an oracle that

takes X 2 G and returns X

v

, where v 2 f1; : : : ; jGjg is unknown to the adversary. (This is a DH oracle

relative to v, since if X = g

u

then X

v

= g

uv

is the DH key corresponding to g

u

and g

v

.) We let the adversary

play with this oracle for a while. Now take the oracle away, and then give the adversary a challenge g

u

and

ask it to compute g

uv

. Our assumption is that it will fail. The independence here is in the fact that g

u

(the

target) is given to the adversary only after the oracle is taken away. (Else of course it could invoke the oracle

on X = g

u

and get back X

v

= g

uv

at once. But not knowing the target in advance, the oracle appears to

be useless.)

In the actual assumption made below (called the non-adaptive hash Di�e-Hellman independence assump-

tion), we consider not the ability to compute g

uv

, but to predict H(g

u

k g

uv

), as before; namely we want

to say that the hardcore bits corresponding to the target remain hard even when the oracle is allowed in

the pre-processing stage. We also weaken the oracle, having it return not the actual DH key X

v

, but the

corresponding hash H(X k X

v

). (This is not crucial to the assumption, but weakens it, and is all we need.)

This assumption will be used to prove the security of DHES under non-adaptive chosen-ciphertext attack.

To prove the security of DHES under adaptive chosen-ciphertext attack, we must strengthen the assumption

to allow oracle queries that are a function of the target g

u

. Of course we cannot allow g

u

itself to be queried,

so that particular query is disallowed.

Notice that in the adaptive case, it is crucial to consider the weakened oracle that given X returns not X

v

but H(X k X

v

). For otherwise (meaning if the oracle returned X

v

) we could exploit the self-reducibility of

the discrete log problem to obtain g

uv

from the oracle without querying g

u

. For example let X = g � g

u

,

query it to get back X

v

= g

v

� g

uv

, and divide out by g

v

(which we know) to get back g

uv

. This kind of

attack does not however appear possible when the oracle returns H(X k X

v

) rather than X

v

.

Now let us state the assumptions formally.

Non-adaptive HDH independence assumption. Given a represented group GROUP = (G; g; ; "), a

hash function H and a number v 2 f1; : : : ; jGjg, we let HDH

v

be an oracle, called the HDH oracle, which

behaves as follows:

HDH

v

(X) = H(X k X

v

)

for all X 2 G. In other words, HDH

v

(g

x

) = H(g

x

k g

vx

) for any x 2 f1; : : : ; jGjg. Now the following de�ni-

tion tells us when an adversary is considered successful. The non-adaptive hash Di�e-Hellman independence

assumption, HDHI1-A, says that the quantity InSec

DHI1

(H;GROUP ; t; q) de�ned below is small as long as t

and q are not too large.
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De�nition 2 Let GROUP = (G; g; ; ") be a represented group, let hLen be a number, let H : f0; 1g

�

!

f0; 1g

hLen

, and let A be an adversary with access to a DH oracle. Then the advantage of A in violating H

being hardcore on GROUP under non-adaptive DH attack is

Adv

DHI1

A

(H;GROUP)

def

=

Pr

h

u; v f1; : : : ; jGjg; s A

HDH

v

(�)

(�nd; g

v

); A(guess; s; g

u

; H(g

u

k g

uv

)) = 1

i

�

Pr

h

u; v f1; : : : ; jGjg; s A

HDH

v

(�)

(�nd; g

v

); r f0; 1g

hLen

: A(guess; s; g

u

; r) = 1

i

:

The security of H on GROUP is the function

InSec

DHI1

(H;GROUP ; t; q)

def

= max

A

fAdv

DHI1

A

(H;GROUP)g ;

where the maximum is over all adversaries A running in time at most t and making at most q queries to its

oracle.

The formalization in the de�nition captures the setting explained above: the adversary is given access to

a HDH oracle in a �rst �nd stage, but at that time is not given any information about u. (In particular

is not given g

u

, else A could just call the DH oracle on g

u

and get back H(g

u

k g

uv

).) At the end of this

stage A outputs some state information s, which is passed on to the second stage, where A must now guess

H(g

u

k g

uv

), having only just got g

u

. At this point, A no longer has the HDH oracle. (Note that the task

before A is to distinguish H(g

u

k g

uv

) from a random string r, as in the HDH assumption above. This can

certainly be done if A can compute g

uv

, but we are making the stronger assumption that H extracts some

un-predictable hardcore bits from g

uv

.)

We note that the presence of the hash function H in the de�nition of the HDH oracle does not appear to be

crucial: the assumption appears to be true even if the oracle simply returns the DH key X

v

. In weakening

the oracle we are weakening the assumption, which is good. This will not be true in the next assumption;

there the presence of the hash in the oracle is crucial, as explained above.

Adaptive HDH independence assumption. Given a represented group GROUP = (G; g; ; "), a hash

function H and a number v 2 f1; : : : ; jGjg, we let HDH

v

be the oracle de�ned above, namely

HDH

v

(X) = H(X k X

v

)

for all X 2 G. Now the following de�nition tells us when an adversary is considered successful. The Adaptive

hash Di�e-Hellman independence assumption, HDHI2-A, says that the quantity InSec

DHI2

(H;GROUP ; t; q)

de�ned below is small as long as t and q are not too large.

De�nition 3 Let GROUP = (G; g; ; ") be a represented group, let hLen be a number, let H : f0; 1g

�

!

f0; 1g

hLen

, and let A be an adversary with access to a DH oracle. Then the advantage of A in violating H

being hardcore on GROUP under adaptive DH attack is

Adv

DHI2

A

(H;GROUP)

def

= Pr

h

u; v f1; : : : ; jGjg; A

HDH

v

(�)

(g

u

; g

v

; H(g

u

k g

uv

)) = 1

i

�

Pr

h

u; v f1; : : : ; jGjg; r f0; 1g

hLen

: A

HDH

v

(�)

(g

u

; g

v

; r) = 1

i

:

Here A is not allowed to call its oracle on g

u

. The security of H on GROUP is the function

InSec

DHI2

(H;GROUP ; t; q)

def

= max

A

fAdv

DHI2

A

(H;GROUP)g ;

where the maximum is over all adversaries A running in time at most t and making at most q queries to its

oracle.
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That is, the adversary is allowed to make oracle queries that depend on the target g

u

, with the sole restriction

of not being allowed to query g

u

itself. The assumption is that this still does not help predict the value of

H(g

u

k g

uv

).

Choice of hash function. Now that we understand how we want the hash function to interact with the

group, we can consider various choices for the hash function H .

Our suggested choice is to appropriately derive H from some cryptographic hash function like SHA-1. (The

precise manner in which H is derived from SHA-1 is important and should be discussed.) A primary

reason we prefer a cryptographic function is that one-wayness of H appears important to the adaptive

HDH independence assumption: it should be hard to recover g

uv

from H(g

u

k g

uv

), since otherwise the

self-reducibility-based attack we discussed above can be mounted.

Let us back up a bit and try to see what requirements the di�erent assumptions impose on the choice of

H . Suppose �rst we are interested only in semantic security, namely we need just the HDH assumption.

There is no known choice of H for which one can prove the hardcoreness under the CDH assumption. Under

the DDH assumption, however, things get much easier, since this assumption already says that the DH key

is indistinguishable from a random group element: the only remaining problem is to go from a random

group element to a random string of appropriate length. In some groups this can be done quite easily by

simple truncation of the key. Alternatively, Naor and Reingold show that application of a function h chosen

at random from a family of universal hash functions will su�ce [32]. (Zheng and Seberry [39] had earlier

suggested the application of a universal hash function to the DH key as a heuristic under the computational

DH assumption. The result of [32] says that under the stronger DDH assumption this heuristic is valid.)

Note this function can be chosen at random once and for all and included in the public key. (In [39] the

function is chosen anew for each encryption and included in the ciphertext, which increases the size of the

ciphertext.)

However, the use of truncation or universal hash functions appears more dangerous when we come to consider

the stronger independence assumptions above. In particular, the result of Boneh and Venkatesan [13] showing

that computing the most signi�cant bits of DH keys is as hard as computing the key itself can be turned on

its head to give an algorithm to attack these assumptions. Namely, their results show that for some simple

choices of functions H , an adversary can use the HDH oracle HDH

v

de�ned above to solve the DH problem.

These attacks do not appear to work when a one-way cryptographic hash function is used, which is why

we recommend this choice. (We do not know whether these attacks rule out all choices of universal hash

families, but they do seem to rule out some particular ones.)

A further drawback of using simple truncation or universal hash functions, even just for semantic security,

is that we must make the DDH assumption, and thus must work in a group of prime order; recall one of the

goals of our scheme was to be able to work in any group for which the Di�e-Hellman problem is hard.

3.2.2 Symmetric Encryption

Security of a symmetric encryption scheme is de�ned as in [4], in turn an adaptation of the notion of poly-

nomial security as given in [21, 31]. We imagine an adversary A that runs in two stages. During either stage

the adversary may query an encryption oracle SYM:enc(K; �) which, on input x, returns SYM:enc(K;x; r)

for a randomly chosen r. In the adversary's �nd stage she endeavors to come up with a pair of equal-length

messages, x

0

and x

1

, whose encryptions she wants to try to tell apart. She also retains some state infor-

mation s. In the adversary's guess stage she is given a random ciphertext y for one of the plaintexts x

0

; x

1

,

together with the saved state s. The adversary \wins" if she correctly identi�es which plaintext goes with y.

The encryption scheme is \good" if \reasonable" adversaries can't win signi�cantly more than half the time.
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De�nition 4 [4] Let SYM = (SYM:enc; SYM:dec) be a symmetric encryption scheme and let A be an

adversary. The advantage of A in attacking SYM is

Adv

Sym

A

(SYM)

def

= 2 � Pr

h

K  eKey; (x

0

; x

1

; s) A

SYM:enc(K;�)

(�nd); b f0; 1g;

y  SYM:enc(K;x

b

) : A

SYM:enc(K;�)

(guess; y; s) = b

i

� 1 :

The security of SYM is the function

InSec

Sym

(SYM ; t; �;m;m

0

)

def

= max

A

fAdv

Sym

A

(SYM)g ;

where the maximum is taken over all adversaries A running in time at most t, asking queries which total

at most � bits, and whose output x

0

(and x

1

) has length at most m bits, and m

0

bounds the length of a

SYM:enc-produced ciphertext whose plaintext is of length m.

It is understood that, above, A must output x

0

and x

1

with jx

0

j = jx

1

j. The multiplication by 2 and

subtraction by 1 are just scaling factors, to make a numeric value of 0 correspond to no advantage and a

numeric value of 1 correspond to perfect advantage. As a reminder, \time" for an adversary A is always

understood to be the sum of the actual running time and the length of A's description.

Candidate algorithms were discussed in Section 1.1.

3.2.3 Message Authentication Codes

The security of a MAC is de�ned by an experiment in which we �rst choose a random key K 2 mKey and

then give an adversary F a MAC:gen

K

(�) oracle, we say that F 's output (x

�

; �

�

) is unasked if �

�

is not the

response of the MAC:gen

K

(�) oracle to an earlier query of x

�

. Our de�nition of MAC security follows.

De�nition 5 Let MAC = (MAC:gen;MAC:ver) be a message authentication scheme and let F be an

adversary. Then the success (or forging probability) of F on MAC is

Succ

MAC

A

(MAC)

def

= Pr

h

K  mKey; (x

�

; �

�

) F

MAC:gen(K;�)

:

MAC:ver

K

(x

�

; �

�

) = 1 and (x

�

; �

�

) is unasked

i

:

The security of MAC is the function

InSec

MAC

(MAC ; t; q)

def

= max

F

fSucc

MAC

F

(MAC)g ;

where the maximum is taken over all adversaries F running in time at most t and asking at most q oracle

queries.

Adversary F is said to have forged when, in the experiment above, F outputs an (x

�

; �

�

) such that

MAC:ver

K

(x

�

; �

�

) = 1 and (x

�

; �

�

) is unasked.

This de�nition is stronger than the usual one as given in [5]. There, one asks that the adversary not be able

to produce MACs of new messages. Here we require additionally that the adversary not be able to generate

new MACs of old messages. However, if the MAC generation function is deterministic and veri�cation is

done by simply re-computing the MAC (this is typically true) then there is no di�erence.

Candidate algorithms were discussed in Section 1.1.
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3.2.4 Asymmetric Encryption

Privacy Against Chosen-Plaintext Attack. Our treatment mimics the �nd-then-guess notion of [4]

and follows [21, 31, 20]. The de�nition is similar to De�nition 4, so we state it without further discussion.

De�nition 6 Let ASYM = (ASYM:enc;ASYM:dec;ASYM:key) be an asymmetric encryption scheme and

let A an adversary. The advantage of A in attacking ASYM is

Adv

Asym

A

(ASYM)

def

= 2 � Pr

h

(sk; pk) ASYM:key; (x

0

; x

1

; s) A (�nd; pk) ; b f0; 1g;

y  ASYM:enc

pk

(x

b

) : A (guess; pk; s; y) = b

i

� 1 :

The security of ASYM is the function

InSec

Asym

(ASYM ; t;m)

def

= max

A

fAdv

Asym

A

(ASYM)g ;

where the maximum is taken over all adversaries A running in time at most t and whose output x

0

(and x

1

)

has length at most m bits.

Privacy Against Non-Adaptive Chosen-Ciphertext Attack. The de�nition of non-adaptive chosen-

ciphertext security of an asymmetric encryption scheme is very similar to that given in De�nition 6. The

di�erence is that here the adversary is given access to a decryption oracle in the �nd stage. So we state it

without further discussion.

De�nition 7 Let ASYM = (ASYM:enc;ASYM:dec;ASYM:key) be an asymmetric encryption scheme and

let A an adversary for its non-adaptive chosen-ciphertext security. The advantage of A in attacking ASYM

is

Adv

CCA1

A

(ASYM)

def

= 2 � Pr

h

(sk; pk) ASYM:key; (x

0

; x

1

; s) A

ASYM:dec

sk

(�nd; pk) ;

b f0; 1g; y  ASYM:enc

pk

(x

b

) : A (guess; pk; s; y) = b

i

� 1 :

The security of ASYM is the function

InSec

CCA1

(ASYM ; t; q; �;m)

def

= max

A

fAdv

Asym

A

(ASYM)g ;

where the maximum is taken over all adversaries A running in time t, making at most q queries to its

ASYM:dec

sk

-oracle, all these totaling at most � bits, and whose output x

0

(and x

1

) has length at most m

bits.

Privacy Against Adaptive Chosen-Ciphertext Attack. The de�nition of chosen-ciphertext security

of an asymmetric encryption scheme is very similar to that given in De�nition 6. The di�erence is that here

the adversary is given access to a decryption oracle in both stages. So we state it without further discussion.

De�nition 8 Let ASYM = (ASYM:enc;ASYM:dec;ASYM:key) be an asymmetric encryption scheme and

let A an adversary for its chosen-ciphertext security. The advantage of A in attacking ASYM is

Adv

CCA2

A

(ASYM)

def

= 2 � Pr

h

(sk; pk) ASYM:key; (x

0

; x

1

; s) A

ASYM:dec

sk

(�nd; pk) ;

b f0; 1g; y  ASYM:enc

pk

(x

b

) : A

ASYM:dec

sk

(guess; pk; s; y) = b

i

� 1 :

14



The security of ASYM is the function

InSec

CCA2

(ASYM ; t; q; �;m)

def

= max

A

fAdv

Asym

A

(ASYM)g ;

where the maximum is taken over all adversaries A running in time t, making at most q queries to its

ASYM:dec

sk

-oracle, all these totaling at most � bits, and whose output x

0

(and x

1

) has length at most m

bits.

3.3 Privacy against Chosen-Plaintext Attack

We show that DHAES

[[

GROUP; SYM;MAC;H

]]

meets the notion of indistinguishability under a chosen-

plaintext attack, as de�ned in De�nition 6.

Theorem 1 Let GROUP be a represented group, let SYM be a symmetric encryption scheme, let MAC be

a message authentication scheme, and let H be a function. Let DHAES be the asymmetric key encryption

scheme associated to these primitives, as de�ned in Section 1.2. Then for any numbers t;m, and m

0

,

InSec

Asym

(DHAES ; t;m) � 2 � InSec

DH

(GROUP;H ; t

1

) + InSec

Sym

(SYM ; t

2

; 0;m;m

0

) ;

where t

1

2 O(t+ TIME

"

+ TIME

MAC:gen

(m

0

)) and t

2

2 O(t+ TIME

SYM:enc

(m) + TIME

MAC:gen

(m

0

)).

The time overhead is tiny; for all practical purposes, t

1

and t

2

can be considered the same as t.

Idea of Proof. The assumption is that the symmetric encryption scheme SYM is secure and H is hardcore

for the Di�e-Hellman problem in the underlying group. (The assumption that MAC is secure is not needed

to ensure semantic security.) The proof considers an adversary A who defeats the semantic security of the

scheme. Let g

v

be the recipient public key and let y = U k encM k tag be the challenge ciphertext that

this adversary gets in its guess stage. We consider two cases depending on whether the output of H \looks

random".

� Case 1 | The output of H looks random. In this case, we present an adversary B that breaks the

encryption scheme SYM.

� Case 2 | The output of H does not look random. In this case, we present an algorithm C that breaks

the hardcoreness of H on GROUP.

The formal proof below does not actually consider separate cases, but the underlying intuition is the same.

Given A, we construct B and C and then relate A's advantage to that of B and C.

Proof of Theorem 1. Let A be an adversary attacking DHAES in the sense of semantic security. Assume

it has running time at most t and outputs at the end of its �nd stage a string of length at most m. We

construct an adversary B attacking SYM and an adversary C attacking H being hardcore for GROUP, and

then upper bound the advantage of A in terms of the advantages of these adversaries.

Algorithm B. Figure 3 describes algorithm B. Recall from De�nition 4 that B has access to an oracle for

encryption, and runs in two stages. Notice that B never invokes its encryption oracle O. Moreover, B runs

in time t

1

= t+ 2 � TIME

"

+ TIME

MAC:gen

(m

0

) +mLen+ 2 � gLen = O(t + TIME

"

+ TIME

MAC:gen

(m

0

)).

Algorithm C. Figure 4 depicts the behavior of algorithm C. C is given as input U; V;W , where U = g

u

and V = g

v

for random u; v, and W is either H(g

u

k g

uv

) or a random string. C outputs at the end a bit

indicating its guess as to which of these cases occurs. Notice that C runs in time t

2

= O(t+TIME

SYM:enc

(m)+

TIME

MAC:gen

(m

0

)).
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Algorithm B

O

(�nd)

begin

v f1; : : : ; jGjg

pk  g

v

(x

0

; x

1

; s) A(�nd; pk)

return (x

0

; x

1

; (x

0

; x

1

; s; pk))

end

Algorithm B

O

(guess; y

0

; s

0

)

begin

parse s

0

as (x

0

; x

1

; s; pk)

u f1; : : : ; jGjg

macKey f0; 1g

mLen

tag  MAC:gen

macKey

(y

0

)

y  g

u

k y

0

k tag

b A(guess; pk; s; y)

return b

end

Figure 3: Algorithm B for attacking the security of SYM.

Algorithm C(U; V;W )

begin

macKey  W [1 : : :mLen]

encKey  W [mLen+ 1 : : :mLen+ eLen]

pk  V

(x

0

; x

1

; s) A(�nd; pk)

b

0

 f0; 1g

encM  SYM:enc

encKey

(x

b

0

)

tag  MAC:gen

macKey

(encM)

y  U k encM k tag

b A(guess; pk; s; y)

if b = b

0

then return 1 else return 0

end

Figure 4: Algorithm C for attacking the hardcoreness of H on GROUP.

Analysis. When W = H(g

u

k g

uv

) we notice that C is running A as the latter would be run in its attack

on the semantic security of DHAES. From the de�nition of Adv

Asym

A

(DHAES) we have that

Pr[u; v f1; : : : ; jGjg; W  H(g

u

k g

uv

) : C(g

u

; g

v

;W ) = 1 ] =

1

2

+

Adv

Asym

A

(DHAES)

2

:

On the other hand, when W is a random string, we notice that C runs A in the same way as B does, and

hence

Pr[u; v f1; : : : ; jGjg; W  f0; 1g

hLen

: C(g

u

; g

v

;W ) = 1 ] =

1

2

+

Adv

Sym

B

(SYM)

2

:

Subtracting gives us

Adv

DH

C

(H;GROUP) =

1

2

+

Adv

Asym

A

(DHAES)

2

�

1

2

�

Adv

Sym

B

(SYM)

2

=

Adv

Asym

A

(DHAES)

2

�

Adv

Sym

B

(SYM)

2

;

whence

Adv

Asym

A

(DHAES) = 2 �Adv

DH

C

(H;GROUP) +Adv

Sym

B

(SYM) :

Since the running time of C is at most t

2

, we conclude that Adv

DH

C

(H;GROUP) � InSec

DH

(H;GROUP ; t

2

).

Moreover, since B makes 0 encryption queries and runs in time at most t

1

, we also have Adv

Sym

B

(SYM) �

16



InSec

Sym

(SYM ; t

1

; 0;m;m

0

). Thus from the above we have

Adv

Asym

A

(DHAES) � 2 � InSec

DH

(H;GROUP ; t

2

) + InSec

Sym

(SYM ; t

1

; 0;m;m

0

) :

But A was an arbitrary adversary subject to the constraint that it ran for at most t steps and the length of

each of its output messages x

i

from its �nd stage is at most m. The theorem follows.

3.4 Privacy against Non-Adaptive Chosen-Ciphertext Attack

We show that DHAES

[[

GROUP; SYM;MAC;H

]]

meets the notion of indistinguishability under a non-adaptive

chosen-ciphertext attack, as de�ned in De�nition 7.

Theorem 2 Let GROUP be a represented group, let SYM be a symmetric encryption scheme, let MAC be

a message authentication scheme, and let H be a function. Let DHAES be the asymmetric key encryption

scheme associated to these primitives, as de�ned in Section 1.2. Then for any numbers t; q; �;m, and m

0

,

InSec

CCA1

(DHAES ; t; q; �;m) � InSec

Sym

(SYM ; t

1

; 0;m;m

0

) + 2 � InSec

DHI1

(H;GROUP ; t

2

; q) +

q � 2

�(gLen+hLen)+1

;

where t

1

2 O(t+TIME

"

+TIME

MAC:gen

(m

0

)) and t

2

2 O(t+TIME

SYM:enc

(m)+TIME

MAC:gen

(m

0

)+ q � (hLen+

gLen)).

Idea of Proof. The assumption is that the symmetric encryption scheme SYM is secure and H is hardcore

for the Di�e-Hellman problem in the underlying group under non-adaptive DH attack. The proof considers

an adversary A who defeats the non-adaptive chosen-ciphertext security of the scheme. Let g

v

be the

recipient public key and let y = U k encM k tag be the challenge ciphertext that this adversary gets in its

guess stage. We consider two cases depending on whether the output of H \looks random."

� Case 1 | The output of H does not look random. In this case, we present an algorithm C that breaks

the hardcoreness of H on GROUP under non-adaptive DH attack.

� Case 2 | The output of H looks random. In this case, we present an adversary B that breaks the

encryption scheme SYM.

As in the proof of Theorem 1, given A, we construct B and C and then relate A's advantage to that of B

and C.

Proof of Theorem 2. Let A be an adversary attacking DHAES in the sense of non-adaptive chosen-

ciphertext security. Assume it has running time at most t, makes at most q queries to its decryption oracle,

and outputs at the end of its �nd stage a string of length at most m. We construct an adversary B attacking

SYM and an adversary C attacking H being hardcore for GROUP under non-adaptive DH attack, and then

upper bound the advantage of A in terms of the advantages of these adversaries.

Algorithm B. Figure 5 shows algorithm B. Recall from De�nition 4 that B has access to an oracle for

encryption and runs in two stages. Notice that B never invokes its encryption oracle O. Moreover, since

A's running time accounts for the time taken by decryption queries, also notice that B's running time is

t

1

= t+ 2 � TIME

"

+ TIME

MAC:gen

(m

0

) +mLen+ 2 � gLen = O(t + TIME

"

+ TIME

MAC:gen

(m

0

)).

Algorithm C. Figure 6 de�nes the behavior of algorithm C. Recall from De�nition 2 that C runs in two

stages. In the �nd stage, C is given as input V = g

v

for a random v and outputs some state information

that should be carried on to the guess stage. C is also granted access to a HDH oracle HDH

v

in this stage.

In the guess stage, in addition to the state information, C is given as input U and W , where U = g

u

for a
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Algorithm B

O

(�nd)

begin

v f1; : : : ; jGjg

pk  g

v

run A on input (�nd; pk)

{ For each decryption query y

i

parse y

i

as U

i

k encM

i

k tag

i

hash

i

 H(U

i

k U

v

i

)

macKey

i

 hash

i

[1::mLen]

encKey

i

 hash

i

[mLen+ 1::mLen+ eLen]

if MAC:ver

macKey

i

(encM

i

; tag

i

) = 1 then

return SYM:dec

encKey

i

(encM

i

)

else return BAD

{ Let (x

0

; x

1

; s) be the output of A

return (x

0

; x

1

; (x

0

; x

1

; s; pk))

end

Algorithm B

O

(guess; y

0

; s

0

)

begin

parse s

0

as (x

0

; x

1

; s; pk)

u f1; : : : ; jGjg

U  g

u

macKey f0; 1g

mLen

tag  MAC:gen

macKey

(y

0

)

y  U k y

0

k tag

b A(guess; pk; s; y)

return b

end

Figure 5: Algorithm B for attacking the security of SYM.

Algorithm C

HDH

v

(�)

(�nd; V )

begin

pk  V

Hlist fg

run A on input (�nd; pk)

{ For each decryption query y

i

parse y

i

as U

i

k encM

i

k tag

i

hash

i

 HDH

v

(U

i

)

Hlist Hlist [ f(U

i

; hash

i

)g

macKey

i

 hash

i

[1::mLen]

encKey

i

 hash

i

[mLen+ 1::mLen+ eLen]

if MAC:ver

macKey

i

(encM

i

; tag

i

) = 1 then

return SYM:dec

encKey

i

(encM

i

)

else return BAD

{ Let (x

0

; x

1

; s) be the output of A

return (x

0

; x

1

; s; pk;Hlist)

end

Algorithm C(guess; s

0

; U;W )

begin

parse s

0

as (x

0

; x

1

; s; pk;Hlist)

if 9 (U

i

; hash

i

) 2 Hlist : U

i

= U then

if W = hash

i

then return 1

else return 0

macKey  W [1 : : :mLen]

encKey  W [mLen+ 1 : : :mLen+ eLen]

b

0

 f0; 1g

encM  SYM:enc

encKey

(x

b

0

)

tag  MAC:gen

macKey

(encM)

y  U k encM k tag

b A(guess; pk; s; y)

if b = b

0

then return 1

else return 0

end

Figure 6: Algorithm C for attacking the hardcoreness of H on GROUP under non-adaptive DH attack.

random u and W is either H(g

u

k g

uv

) or a random string. At the end, C outputs a bit indicating its guess

as to which of these cases occurs.

Notice that, since A's running time accounts for the time taken by decryption queries, the queries to the

HDH oracle HDH

v

do not incur any extra time in the computation. However, we do need to account for the

time taken to handle Hlist. Therefore, C's running time is t

2

= O(t+TIME

MAC:gen

(m

0

)+TIME

SYM:enc

(m)+

q � (hLen+ gLen)).
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Analysis. Call Experiment 1 the following:

(pk; sk) DHAES:key; (x

0

; x

1

; s) A

DHAES:dec

sk

(�nd; pk);

b f0; 1g; y  DHAES:enc

pk

(x

b

); b

0

 A(guess; pk; s; y) :

and let Pr

1

[ � ] denote the probabilities in this experiment. Parse the challenge ciphertext y into U k encM k tag

and let u and v be de�ned by g

v

= pk and g

u

= U , respectively. Let us call a Type 1 query a ciphertext of

the form U k encM

0

k tag

0

. A Type 2 query have the form U

0

k encM

0

k tag

0

with U

0

6= U . We consider the

following events in Experiment 1:

SuccA : b = b

0

AskA : A makes a Type 1 query y

0

to its decryption oracle

Our goal is to upper bound Pr

1

[SuccA ] and, consequently, Adv

CCA1

A

(DHAES). For this purpose, we make

use of the following three claims.

Claim 3

Pr[u; v f1; : : : ; jGjg; s C

HDH

v

(�)

(�nd; g

v

); W  H(g

u

k g

uv

) :

C(guess; s; g

u

;W ) = 1 ] �

1

2

+

Adv

CCA1

A

(DHAES)

2

:

Proof: When W = H(g

u

k g

uv

) and AskA, we notice that C is running A as the latter would be run in

its attack on the non-adaptive chosen-ciphertext security of DHAES. On the other hand, when AskA and

W = H(g

u

k g

uv

), C always outputs 1. Thus, we have that

Pr[u; v f1; : : : ; jGjg; s C

HDH

v

(�)

(�nd; g

v

); W  H(g

u

k g

uv

) : C(guess; s; g

u

;W ) = 1 ]

= Pr

1

�

SuccA j AskA

�

� Pr

1

�

AskA

�

+ 1 � Pr

1

[AskA ]

� Pr

1

�

SuccA j AskA

�

� Pr

1

�

AskA

�

+Pr

1

[ SuccA j AskA ] � Pr

1

[AskA ]

= Pr

1

[SuccA ] :

The claim follows from De�nition 7.

Claim 4

Pr[u; v f1; : : : ; jGjg; s C

HDH

v

(�)

(�nd; g

v

); W  f0; 1g

hLen

:

C(guess; s; g

u

;W ) = 1 ^AskA ] �

1

2

+

Adv

Sym

B

(SYM)

2

:

Proof: Call Experiment 2 the following:

K  Key; (x

0

; x

1

; s) B

O

(�nd); b f0; 1g; y  O(x

b

); b

0

 B

O

(guess; y; s) ;

and let Pr

2

[ � ] denote the probabilities in this experiment. We consider SuccB to be the event b = b

0

in

Experiment 2.

When W is a random string and AskA, we notice that C runs A in the same way as B does. Notice that

the de�nition of event AskA (and, therefore, AskA) can also be applied in Experiment 2 since B runs A as
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a subroutine. Moreover, since A is considered an arbitrary adversary subject to the same constraints in all

experiments, the probability for event AskA to happen is the same in all these experiments. Therefore,

Pr[u; v f1; : : : ; jGjg; s C

HDH

v

(�)

(�nd; g

v

); W  f0; 1g

hLen

: C(guess; s; g

u

;W ) = 1 ^AskA ]

= Pr

�

u; v f1; : : : ; jGjg; W  f0; 1g

hLen

: W = H(g

u

k g

uv

) j AskA

�

� Pr

1

[AskA ]

= Pr

2

�

SuccB j AskA

�

� Pr

2

�

AskA

�

� Pr

2

[SuccB ] :

The claim follows from De�nition 4.

Claim 5

Pr[u; v f1; : : : ; jGjg; s C

HDH

v

(�)

(�nd; g

v

); W  f0; 1g

hLen

:

C(guess; s; g

u

;W ) = 1 ^AskA ] � 2

�(gLen+hLen)

:

Proof: When W is a random string and AskA, C outputs 1 only if W = H(g

u

k g

uv

). Since all decryption

queries are made before A sees the challenge ciphertext, Pr

1

[AskA ] � q � 2

�gLen

. The claim follows from

the fact that Pr[u; v f1; : : : ; jGjg; W  f0; 1g

hLen

: W = H(g

u

k g

uv

) ] = 2

�hLen

.

From De�nition 2 and Claims 3, 4, and 5, we have that:

Adv

DHI1

C

(H;GROUP) �

1

2

+

Adv

CCA1

A

(DHAES)

2

�

1

2

�

Adv

Sym

B

(SYM)

2

� q � 2

�(gLen+hLen)

=

Adv

CCA1

A

(DHAES)

2

�

Adv

Sym

B

(SYM)

2

� q � 2

�(gLen+hLen)

;

whence

Adv

CCA1

A

(DHAES) � Adv

Sym

B

(SYM) + 2 � Adv

DHI1

C

(H;GROUP) + q � 2

�(gLen+hLen)+1

:

Since B runs in time at most t

1

and makes 0 encryption queries, Adv

Sym

B

(SYM) � InSec

Sym

(SYM ; t

1

; 0;m;m

0

).

As C runs in time at most t

2

and makes at most q queries to its HDH oracle, Adv

DHI1

C

(H;GROUP) �

InSec

DHI1

(H;GROUP ; t

2

; q). Thus, from the above, we have

Adv

CCA1

A

(DHAES) � InSec

Sym

(SYM ; t

1

; 0;m;m

0

) + 2 � InSec

DHI1

(H;GROUP ; t

2

; q) + q � 2

�(gLen+hLen)+1

:

But A was an arbitrary adversary subject to the constraint that it ran for at most t steps and the length of

each of its output messages x

i

from its �nd stage is at most m. The theorem follows.

3.5 Privacy against Adaptive Chosen-Ciphertext Attack

We show that DHAES

[[

GROUP; SYM;MAC;H

]]

meets the notion of indistinguishability under an adaptive

chosen-ciphertext attack, as in De�nition 8.

Theorem 6 Let GROUP = (G; g; ; ") be a represented group, let SYM be a symmetric encryption scheme,

and let MAC be a message authentication scheme. Let DHAES be the asymmetric encryption scheme asso-

ciated to these primitives as de�ned in Section 1.2. Then for any numbers t; q; �;m, and m

0

,

InSec

CCA2

(DHAES ; t; q; �;m) � InSec

Sym

(SYM ; t

1

; 0;m;m

0

) + 2 � InSec

DHI2

(H;GROUP ; t

2

; q) +

2 � q � InSec

MAC

(MAC ; t

3

; q � 1) ;
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where t

1

2 O(t + TIME

"

+ TIME

MAC:gen

(m

0

)), t

2

2 O(t + TIME

SYM:enc

(m) + TIME

MAC:gen

(m

0

)), and t

3

2

O(t+ TIME

"

+ TIME

MAC:gen

(m

0

) + TIME

SYM:enc

(m) + q).

Idea of Proof. The assumption is that both symmetric encryption scheme SYM and the message au-

thentication scheme MAC are secure and H is hardcore for the Di�e-Hellman problem on GROUP under

adaptive DH attack. The proof considers an adversary A who defeats the adaptive chosen-ciphertext security

of the scheme. Let g

v

be the recipient public key; let y = U k encM k tag be the challenge ciphertext that

algorithm A gets in its guess stage. Let Type 1 and Type 2 queries be de�ned as in Section 3.4. We consider

three cases depending on whether the output of H looks random and on whether there was a Type 1 query

y

0

to the decryption oracle DHAES:dec

sk

such that DHAES:dec

sk

(y

0

) 6= BAD.

� Case 1 | The output of H does not look random. In this case we present an algorithm C that breaks

the hardcoreness of H on GROUP under adaptive DH attack.

� Case 2 | The output of H looks random and there was a Type 1 query y

0

to DHAES:dec

sk

such

that DHAES:dec

sk

(y

0

) 6= BAD. In this case we present an adversary F which breaks the message

authentication scheme MAC.

� Case 3 | The output of H looks random and there was not a Type 1 query y

0

to DHAES:dec

sk

such

that DHAES:dec

sk

(y

0

) 6= BAD. In this case we present an adversary B which breaks the encryption

scheme SYM.

Proof of Theorem 6. Let A be an adversary attacking DHAES in the sense of adaptive chosen-ciphertext

security. Assume it has running time at most t, makes at most q queries to its decryption oracle, and outputs

at the end of its �nd stage a string of length at most m. We construct an adversary B attacking SYM, an

adversary C attacking H being hardcore for GROUP under non-adaptive DH attack, and an adversary F

for the message authentication scheme MAC and then upper bound the advantage of A in terms of the

advantages of these adversaries.

Algorithm B. Figure 7 describes algorithm B. Recall from De�nition 4 that B has access to an oracle

for encryption and runs in two stages. Since A's running time accounts for the time taken by decryption

queries, notice that B runs in time t

1

= t+2 �TIME

"

+TIME

MAC:gen

(m

0

)+mLen+2 � gLen = O(t+TIME

"

+

TIME

MAC:gen

(m

0

)).

Algorithm C. Figure 8 de�nes the behavior of algorithm C. C is given as input U; V;W , where U = g

u

and V = g

v

for random u and v, respectively, and W is either H(g

u

k g

uv

) or a random string. Recall from

De�nition 3 that C is also given access to a HDH oracle HDH

v

. At the end, C outputs a bit indicating its

guess as to which of these cases occurs.

Notice that, since A's running time accounts for the time taken by decryption queries, the queries to the

HDH oracle HDH

v

do not incur any extra time in the computation. As a result, C's running time is

t

2

= O(t+ TIME

MAC:gen

(m

0

) + TIME

SYM:enc

(m)).

Algorithm F . Figure 9 describes algorithm F . Recall from De�nition 5 that F has access to a tag-

generation oracle O and outputs a pair message-tag, a possible forgery. Notice that, since A's running

time accounts for the time taken by decryption queries, the queries to the oracle O due to these decryption

queries do not incur any extra time in the computation. Consequently, F 's running time is t

3

= t+TIME

"

+

TIME

MAC:gen

(m

0

) +TIME

SYM:enc

(m) + eLen+2 � gLen+ lg(q) + q �O(1) = O(t+TIME

"

+TIME

MAC:gen

(m

0

) +

TIME

SYM:enc

(m) + q).

Analysis. Call Experiment 1 the following:

(pk; sk) DHAES:key; (x

0

; x

1

; s) A

DHAES:dec

sk

(�nd; pk);
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Algorithm B

O

(�nd)

begin

v f1; : : : ; jGjg

pk  g

v

run A(�nd; pk)

{ For each decryption query y

i

parse y

i

as U

i

k encM

i

k tag

i

hash

i

 H(U

i

k U

v

i

)

macKey

i

 hash

i

[1::mLen]

encKey

i

 hash

i

[mLen+ 1::mLen+ eLen]

if MAC:ver

macKey

i

(encM

i

; tag

i

) = 1 then

return SYM:dec

encKey

i

(encM

i

)

else return BAD

{ Let (x

0

; x

1

; s) be the output of A

return (x

0

; x

1

; (x

0

; x

1

; s; v; pk))

end

Algorithm B

O

(guess; y

0

; s

0

)

begin

parse s

0

as (x

0

; x

1

; s; v; pk)

ASK false

u f1; : : : ; jGjg

U  g

u

macKey f0; 1g

mLen

tag  MAC:gen

macKey

(y

0

)

y  U k y

0

k tag

run A(guess; pk; s; y)

{ For each decryption query y

i

parse y

i

as U

i

k encM

i

k tag

i

hash

i

 H(U

i

k U

v

i

)

macKey

i

 hash

i

[1::mLen]

encKey

i

 hash

i

[mLen+ 1::mLen+ eLen]

if MAC:ver

macKey

i

(encM

i

; tag

i

) = 1 then

if U

i

6= U then

return SYM:dec

encKey

i

(encM

i

)

else ASK true;

return BAD

{ if ASK = true then b f0; 1g

else let b be the output of A

return b

end

Figure 7: Algorithm B for attacking the security of SYM.

b f0; 1g; y  DHAES:enc

pk

(x

b

); b

0

 A

DHAES:dec

sk

(guess; pk; s; y) :

and let Pr

1

[ � ] denote the probabilities in this experiment. Let v = sk be de�ned by g

v

= pk. We consider

the following events:

SuccA : b = b

0

SomeValid : There was a Type 1 query y

0

such that DHAES:dec

sk

(y

0

) 6= BAD

As in the proof of non-adaptive chosen-ciphertext security, our goal is to upper bound Pr

1

[SuccA ] and,

consequently, Adv

CCA2

A

(DHAES). For this purpose, we make use of the following three claims.

Claim 7

Pr[u; v f1; : : : ; jGjg; W  H(g

u

k g

uv

) : C

HDH

v

(�)

(g

u

; g

v

;W ) = 1 ] =

1

2

+

Adv

CCA2

A

(DHAES)

2

:

Proof: When W = H(g

u

k g

uv

), we notice that C is running A as the latter would be run in its attack

on the adaptive chosen-ciphertext security of DHAES. Therefore, the claim follows from the de�nition of

Adv

CCA2

A

(DHAES).

Claim 8

Pr[u; v f1; : : : ; jGjg; W  f0; 1g

hLen

: C

HDH

v

(�)

(g

u

; g

v

;W ) = 1 ^ SomeValid ]

�

1

2

+

InSec

Sym

(SYM ; t

1

;0;m;m

0

)

2

:
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Algorithm C

HDH

v

(�)

(U; V;W )

begin

macKey  W [1 : : :mLen]

encKey  W [mLen+ 1 : : :mLen+ eLen]

pk  V

run A(�nd; pk)

{ For each decryption query y

i

return Decr-Simulator(y

i

; U; V;W )

{ Let (x

0

; x

1

; s) be the output of A

b

0

 f0; 1g

encM  SYM:enc

encKey

(x

b

0

)

tag  MAC:gen

macKey

(encM)

y  U k encM k tag

run A(guess; pk; s; y)

{ For each decryption query y

i

return Decr-Simulator(y

i

; U; V;W )

{ Let b be the output of A

if b = b

0

then return 1 else return 0

end

Subroutine Decr-Simulator(y

i

; U; V;W )

begin

parse y

i

as U

i

k encM

i

k tag

i

if U

i

= U then

macKey

i

 W [1 : : :mLen]

encKey

i

 W [mLen+ 1 : : :mLen+ eLen]

else

hash

i

 HDH

v

(U

i

)

macKey

i

 hash

i

[1::mLen]

encKey

i

 hash

i

[mLen+ 1::mLen+ eLen]

if MAC:ver

macKey

i

(encM

i

; tag

i

) = 1 then

return SYM:dec

encKey

i

(encM

i

)

else return BAD

end

Figure 8: Algorithm C for attacking the hardcoreness of H on GROUP under adaptive DH attack.

Algorithm F

O

begin

v f1; : : : ; jGjg; pk  g

v

u f1; : : : ; jGjg; U  g

u

encKey f0; 1g

eLen

i 0

j f1; : : : ; qg

run A(�nd; pk)

{ For each decryption query y

0

return Decr-Simulator(y

0

)

{ Let (x

0

; x

1

; s) be the output of A

b

0

 f0; 1g

encM  SYM:enc

encKey

(x

b

0

)

tag  O(encM )

y  U k encM k tag

run A(guess; pk; s; y)

{ For each decryption query y

0

return Decr-Simulator(y

0

)

{ Let b be the output of A

return W

end

Subroutine Decr-Simulator(y

0

)

begin

parse y

0

as U

0

k encM

0

k tag

0

hash

0

 H(U

0

k U

0v

)

macKey

0

 hash

0

[1::mLen]

encKey

0

 hash

0

[mLen+ 1::mLen+ eLen]

i i+ 1

if i 6= j then

if U

0

= U then

if O(encM

0

) = tag

0

then

return SYM:dec

encKey

(encM

0

)

else return BAD

else

if MAC:ver(macKey

0

; encM

0

; tag

0

) = 1 then

return SYM:dec

encKey

0

(encM

0

)

else return BAD

else

W  (encM

0

; tag

0

)

return SYM:dec

encKey

(encM

0

)

end

Figure 9: Algorithm F for attacking the security of MAC.
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Proof: When A does not make a Type 1 query to its decryption oracle nor makes a Type 1 query y

0

such

that DHAES:dec

sk

(y

0

) 6= BAD, C runs A in the same way B does. Hence, the probability that C outputs 1

given SomeValid is at most 1=2 +Adv

Sym

B

(SYM)=2. Since B makes 0 encryption queries and runs in time

at most t

1

, the claim follows directly from the assumed security of SYM.

Claim 9

Pr[C

HDH

v

(�)

(g

u

; g

v

;W ) = 1 ^ SomeValid : u; v f1; : : : ; jGjg; W  f0; 1g

hLen

]

� q � InSec

MAC

(MAC ; t

3

; q � 1) :

Proof: When there is a Type 1 query y

0

to the decryption oracle such that DHAES:dec

sk

(y

0

) 6= BAD, let i be

the number of one such query and let y

i

= U k encM

i

k tag

i

be its value. If j 2 f1; : : : ; qg in algorithm F

takes this value, then F succeeds in breaking MAC since (encM

i

; tag

i

) is a valid pair. Because this can

happen with probability at least 1=q, Pr

1

[SomeValid ] � q � Succ

MAC

F

(MAC). Hence, since F runs in time

at most t

3

and makes at most q� 1 queries to its oracle, Pr

1

[SomeValid ] � InSec

MAC

(MAC ; t

3

; q� 1) due

to the assumed security of MAC. The claim follows from basic probability properties.

From De�nition 3 and Claims 7, 8, and 9, we have that:

Adv

DHI2

C

(H;GROUP) �

1

2

+

Adv

CCA2

A

(DHAES)

2

�

1

2

�

InSec

Sym

(SYM ; t

1

; 0;m;m

0

)

2

�

q � InSec

MAC

(MAC ; t

3

; q � 1)

=

Adv

CCA1

A

(DHAES)

2

�

InSec

Sym

(SYM ; t

1

; 0;m;m

0

)

2

� q � InSec

MAC

(MAC ; t

3

; q � 1) ;

whence

Adv

CCA2

A

(DHAES) � InSec

Sym

(SYM ; t

1

; 0;m;m

0

)+2 �Adv

DHI2

C

(H;GROUP)+2 � q � InSec

MAC

(MAC ; t

3

; q�1) :

We conclude that, since C runs in time at most t

2

and makes at most q to its HDH oracle,Adv

DHI2

C

(H;GROUP) �

InSec

DHI2

(H;GROUP ; t

2

; q). Thus, from the above, we have

Adv

CCA2

A

(DHAES) � InSec

Sym

(SYM ; t

1

; 0;m;m

0

) + 2 � InSec

DHI2

(H;GROUP ; t

2

; q) +

2 � q � InSec

MAC

(MAC ; t

3

; q � 1) :

But A was an arbitrary adversary subject to the constraint that it ran for at most t steps and the length of

each of its output messages x

i

from its �nd stage is at most m. The theorem follows.

4 Limitations

None known.

5 Intellectual Property Statement
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A Attacks on the ElGamal Scheme

One of the main reasons for building DHAES is that one usually wants a scheme that not only shields

information about the plaintext in the presence of a passive attack, but also achieves stronger goals such as

non-malleability and chosen-ciphertext security. One main problem with ElGamal scheme is that it fails to

achieve these stronger security notions in any represented group. In fact, it does not even achieves semantic

security in some groups such as Z

�

p

. To support these claims, we here provide the reader with examples of

attacks on the ElGamal scheme.

The �rst of these attacks against the ElGamal scheme shows that it is not semantically secure when Z

�

p

is the

underlying group of GROUP, p is a prime, and g is a generator. The attack is based on the fact that we can

check whether a number x 2 Z

�

p

is a square or not in polynomial time by computing the value x

(p�1)=2

mod p,

which is 1 if x is a quadratic residue mod p and -1, otherwise. In the �nd stage, we choose two messages

in Z

�

p

, one which is a square and one which is not. In the guess stage, we �rst check whether g

u

and g

v

are

square. We know that g

uv

is a non-square if and only if both g

u

and g

v

are non-square. Then, knowing this,

we can tell which message was encrypted by checking whether the encrypted message M � g

uv

is a square or

not. That is, if g

uv

is a square, then M � g

uv

is a square if and only if M is a square. If g

uv

is a non-square,

then M � g

uv

is a square if and only if M is a non-square.

In order to provide a malleability attack against the ElGamal scheme, we can see that, given a ciphertext

EM = (g

u

; encM) where encM = M � g

uv

, we can easily produce a valid ciphertext EM

0

by just modifying

the second part of EM . That is, if we multiply encM by some value g

k

(k 6= 0) to obtain encM

0

, then the

resulting ciphertext EM

0

= (g

u

; encM) will be an encryption for a message M

0

= M � g

k

because the value

of g

uv

does not change in this case. Note that this is not dependent on which group G is being used.

To provide a chosen-ciphertext attack against the ElGamal scheme, we can show that we can obtain the

plaintext for any given ciphertext. Let EM = (g

u

; encM) be the challenge ciphertext. Let encM

0

be a point

in G such that encM

0

6= encM and let M

0

be the decryption of EM

0

= (g

u

; encM

0

). As we know that

M

0

= encM

0

=g

uv

, we can compute g

uv

and then encM=g

uv

, which is the decryption of EM .
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