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Abstract

In this paper, we construct a 3-round zero-knowledge protocol for any NP language. Our
protocol achieves weaker notions of zero-knowledge than black-box simulation zero-knowledge.
Therefore, our result does not contradict the triviality result of Goldreich and Krawczyk [GoKr96]
which shows that 3-round black-box simulation zero-knowledge exist only for BPP languages.
Our main contribution is to provide a non-black-box simulation technique. Whether there exists
such a simulation technique was a major open problem in the theory of zero-knowledge. Our
simulation technique is based on a non-standard computational assumption related to the Diffie-
Hellman problem, which was originally proposed by Damg̊ard [Da91]. This assumption, which
we call the DA-1, says that, given randomly chosen instance of the discrete logarithm problem
(p, q, g, ga), it is infeasible to compute (B,X) such that X = Ba mod p without knowing the
value b satisfying B = gb mod p.

Our protocol achieves different notions of zero-knowledge under different variants of DA-1.
All variants are augmented by an auxiliary-input. Under non-uniform DA-1 w.r.t. auxiliary-
input of restricted length, it achieves the notion of non-uniform zero-knolwedge. Furthermore,
under the stronger variant called non-uniform DA-1 w.r.t. auxiliary-input of non-restricted

length, it achieves the notion of auxiliary-input non-uniform zero-knowledge. Unfortunately,
these variants have some kind of reverse-engineering property which seems to be unreasonable.
It also achieves the standard notions called GMR zero-knowledge and auxiliary-input zero-
knowledge under uniform variants of these assumptions, but they have the stronger reverse-
engineering property.

Since the required computational assumptions seem to be unreasonable, our protocol may
have no practical significance. However, our result is interesting in the sense that its zero-
knowledge property can be demonstrated using the non-black-box simulation technique unlike
almost all known zero-knowledge protocols. We note that it is still open whether one can
construct a 3-round zero-knowledge protocol for a non-trivial language based on reasonable
computational assumptions.

Keywords: Zero-knowledge, interactive proofs, interactive arguments, Diffie-Hellman problem,
NP.

∗An earlier version of this paper appeared in CRYPTO’98 [HT98]. We reformulated our main claim since our
original one was wrong (See Appendix B).
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1 Introduction

The fundamental notion of zero-knowledge (ZK) introduced by Goldwasser, Micali and Rackoff
plays a central role in modern cryptography [GMR85]. In this paper, we investigate the methodol-
ogy underlying ZK and construct a 3-round ZK protocol for NP.

1.1 Background on Zero-Knowledge Protocol

Consider an interactive protocol in which a prover convinces a verifier that a common input x
belongs to some underlying language L (In this paper, L is in NP). The length of x is denoted by n
and one measures complexity in terms of n. The verifier is always a probabilistic polynomial-time
machine. We focus on two properties: “soundness” and “zero-knowledge.” Each can be formalized
in two ways depending on whether or not we restrict the adversary (the cheating prover and the
cheating verifier) to a resource bounded machine.

The soundness asks that if x /∈ L, any cheating prover can not convince the verifier to accept,
except with negligible error probability. This notion is formalized in two ways: “proofs” and “ar-
guments.” These provide the statistical soundness and the computational soundness, respectively.
The former requires that even a computationally unrestricted cheating prover should be unable to
make the verifier accept x /∈ L, except with negligible probability [GMR85]. On the other hand, the
latter requires that any cheating prover restricted to probabilistic polynomial-time should be unable
to make the verifier accept x /∈ L, except with negligible probability [BrCr86][BCC88]. Although
the notion of arguments is weaker than the notion of proofs, it is good enough for cryptographic
applications. The soundness of arguments will typically depend on the complexity assumptions
such as the discrete logarithm assumption. In this paper whenever we talk of proofs or arguments,
we always mean ones with negligible error probability.

Zero-knowledge asks that when x ∈ L, an interaction with the prover yields no information
(other than the fact x ∈ L) to any cheating verifier. This notion is also formalized in two ways:
“statistical ZK” (SZK) and “computational ZK” (CZK). The former requires that even a com-
putationally unrestricted cheating verifier will gain no useful information, except with negligible
probability. On the other hand, the latter requires that any cheating verifier restricted to proba-
bilistic polynomial-time will gain no useful information, except with negligible probability. Clearly,
SZK is a special case of CZK.

In this paper, unless stated explicitly, ZK protocols mean CZK arguments. Our proposed
protocol is a CZK argument.

1.2 Classification of Zero-Knowledge

There are several notions of ZK. Our proposed protocol achieves four different notions of ZK, called
GMR zero-knowledge, non-uniform zero-knowledge, non-uniform auxiliary-input zero-knowledge,
and auxiliary-input zero-knowledge, under different computational assumptions. We will begin by
discussing the relationships among them.

ZK was originally formalized in [GMR85] as follows: For any probabilistic polynomial-time
machine V̂ (the cheating verifier), there exists a probabilistic polynomial-time machine S

V̂
(the

simulator) which produces a probability distribution which is computationally indistinguishable
from the distribution of conversations of V̂ with the prover P . This original definition which we
call GMR-ZK is not suitable for cryptographic applications since it is not closed under sequen-
tial composition [GoKr96]. In cryptographic applications, the cheating verifier may have some
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additional a-priori information.

In order to overcome the above problem, the notion of auxiliary-input zero-knowledge (AIZK)
was introduced in [GoOr94] (The similar notion appeared in [TW87][GMR89]). AIZK is defined
by augmenting GMR-ZK by an auxiliary-input. That is, the simulation requirement is extended to
deal with non-uniform verifiers, which are allowed to take an auxiliary-input (an arbitrary string
of polynomial length). The simulator is also allowed to take the same auxiliary-input used by the
verifier. It was shown that AIZK is closed under sequential composition [GoOr94].

The above two notions only require that, for each cheating verifier V̂ , there exists a simulator
S

V̂
. It is important to note that S

V̂
is allowed to examine the internal state of the cheating verifier

V̂ . On the other hand, black-box simulation zero-knowledge (BSZK) requires that there exists a
single universal simulator that, using any non-uniform cheating verifier V̂ as a black-box, succeeds
in simulating the interaction of V̂ with the prover P (Note that the order of quantifiers is reversed).
That is, the simulator is only allowed to simply observe the input/output behavior of V̂ . Although
BSZK is most restrictive among three notions, almost all known ZK protocols are BSZK 1. It was
shown that BSZK implies AIZK [GoOr94].

All the above definitions are “semi-uniform” in the sense that it uses uniform machines but
quantifies over all common inputs x ∈ L. In the totally non-uniform formalization of ZK, all
machines are modeled by a polynomial-size circuit family [Go93]. We consider two non-uniform
formalizations, i.e., non-uniform zero-knowledge and auxiliary-input non-uniform zero-knowledge.

Non-uniform zero-knowledge (NUZK) is a non-uniform variant of GMR-ZK. That is, it requires
that for any polynomial-size circuit family V̂ , there exists a (probabilistic) polynomial-size circuit
family S

V̂
which produces a probability distribution which is computationally indistinguishable

from the distribution of conversations of V̂ with the prover P . It is important to note that NUZK
does not imply GMR-ZK [Go98b]. In fact, one can devise artificial protocols for sparse languages
such that it achieves the notion of NUZK but not GMR-ZK. For example, consider the following
interactive proof for a sparse language Lsp = {1n}n∈N. The prover sends the verifier the value of
a hard function K(·) on the common input x ∈ Lsp (e.g., K is a non-recursive function indicating
whether the nth Turing machine accepts every input). The verifier accepts if and only if x is of the
form 1n. Certainly, this is an interactive proof for Lsp. It is not GMR-ZK since there is no way
to simulate in probabilistic polynomial-time the conversation in which the prover sends the value
of K(x). On the other hand, it is still NUZK since the simulator may just incorporate the hard
bit K(x). This shows that NUZK is a very weak notion of ZK and does not satisfy the intuitive
requirement of ZK. Also, the result of [GoKr96] can be extended to show that NUZK is not closed
under sequential composition.

Auxiliary-input non-uniform zero-knowledge (AINUZK) is defined by augmenting the notion of
NUZK by an auxiliary-input. The above interactive proof for a sparse language achieves not only
NUZK but also AINUZK. That is, AINUZK also does not satisfy the intuitive requirement of ZK.
However, AINUZK has an advantage over NUZK since it is closed under sequential composition
[GoOr94][Go93].

Let Cl(def) denote the class of all interactive proofs and arguments satisfying the requirements
of definition def . In light of the above, it holds that

Cl(BSZK) ⊆ Cl(AIZK) ⊂ Cl(GMR−ZK) ⊂ Cl(NUZK)

1The only exception is the contrived protocol constructed by Goldreich and Krawczyk for the purpose of separating
GMR-ZK and AIZK [GoKr96]. They used the black-box simulation of uniform cheating verifier rather than non-
uniform cheating verifier. However, their simulation technique does not seem useful for constructing 3-round zero-
knowledge protocols for a non-trivial language.
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and

Cl(AIZK) ⊂ Cl(AINUZK) ⊂ Cl(NUZK).

It is an open problem whether Cl(BSZK) equals Cl(AIZK) [GoOr94].

1.3 Motivation and Contributions

The round complexity, the number of messages exchanged, is a standard complexity measure for
the efficiency of ZK protocols. Several researchers constructed constant round ZK protocols for NP
[BCY89][FeSh89] [GoKa96] 2 [BJY97]. In particular, it is known that 4-round BSZK arguments
exist for any NP language assuming the existence of one-way functions [BJY97].

The lower bounds on the round complexity have been investigated from the practical and the-
oretical viewpoint. Goldreich and Oren proved that 1-round GMR-ZK or 2-round AIZK protocols
exist only for BPP languages [GoOr94]. Their result can be easily extended to show that 1-round
NUZK or 2-round AINUZK protocols exist only for P/poly languages. Furthermore, Goldreich and
Krawczyk proved that only languages in BPP have 3-round BSZK protocols [GoKr96] 3.

As mentioned above, almost all known ZK protocols are BSZK, where the simulator is only
allowed to simply observe the input/output behavior of the cheating verifier. Also, there has been
no known way to make use of the verifier’s internal state so far. Therefore, many researchers
considered that 4 is the minimal number of rounds required to satisfy the ZK property. However,
since the argument in [GoKr96] uses the notion of black-box simulation in an essential way, their
result does not apply to the weaker notions: NUZK, GMR-ZK, AINUZK and AIZK. That is, with
respect to them, it is an interesting open problem whether there exists a 3-round ZK protocols
for a non-trivial language. In other words, it asks whether there exists a non-black-box simulation
technique which enables the simulator to make use of the internal state of any cheating verifier.

The main contribution of this paper is to provide such a non-black-box simulation technique.
It is based on a non-standard computational assumption introduced by Damg̊ard [Da91] 4. We
call it the DA-1. Loosely speaking, DA-1 says that, given randomly chosen instance of the discrete
logarithm problem (p, q, g, ga), it is infeasible to compute (B,X) such that X = Ba mod p without

knowing the value b satisfying B = gb mod p. Damg̊ard used DA-1 to construct a practical public-
key cryptosystem provably secure against chosen-ciphertext attack. Interestingly, he pointed out
that DA-1 implied a non-black-box simulation technique. However, he did not present a 3-round
ZK protocol for a non-trivial language.

1.4 Our Results

We construct a 3-round ZK protocol for any NP language by transforming a 3-round honest-verifier
ZK protocol into another 3-round protocol satisfying the ZK property against any cheating verifier.
Our transformation preserves the statistical zero-knowledgeness. That is, if the starting protocol
is SZK, the resultant protocol is SZK as well. However, the perfect zero-knowledgeness can not be
preserved.

Our proposed protocol is an interactive argument under DA-2 which is a variant of DA-1. We
will show that, using our non-black-box simulation technique, it achieves different notions of ZK
(NUZK, GMR-ZK, AINUZK, AIZK) under different variants of DA-1. Table 1 summarizes the

2The ZK protocol constructed in [GoKa96] is a proof rather than an argument.
3The discussion in [GoKr96] are for CZK proofs. However, their result extends to CZK arguments. See Remarks

6.3 and 6.5 in that paper.
4[HT98] missed this reference since we were unaware of it.
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achieved ZK notions. Unfortunately, all results are problematic since all variants of DA-1 have
some kind of reverse-engineering property which seems to be unreasonable. In particular, the case
of AIZK seems to be most problematic since uniform DA-1 w.r.t. auxiliary-input of non-restricted
length has the strongest reverse-engineering property. We don’t know whether one can get rid of the
reverse-engineering property. It is still open whether one can construct a 3-round zero-knowledge
protocol for a non-trivial language based on reasonable computational assumptions.

Table 1: Summary of achieved ZK notions

Assumption Achieved notion Comment

non-uniform DA-1 w.r.t. aux-input of restricted length NUZK less problematic

non-uniform DA-1 w.r.t. aux-input of non-restricted length AINUZK

uniform DA-1 w.r.t. aux-input of restricted length GMR-ZK

uniform DA-1 w.r.t. aux-input of non-restricted length AIZK most problematic

1.5 Organization

In Section 2, we give the definitions of interactive arguments, several ZK notions, and some stan-
dard complexity assumptions. Section 3 describes our proposed protocol. In Section 4, we give
Damg̊ard’s assumption and its variants. In Section 5, we prove the correctness of our protocol. In
Section 6, we discuss the properties and the implications of our results. In Section 7, we conclude
with some remarks.

2 Preliminaries

In this section, we give the definitions of ZK arguments and some standard complexity assumptions.

Our notations for probabilistic machines, spaces and experiments follow [BeRo93]. If A is a prob-
abilistic machine then A(x1, x2, · · ·) denotes the output distribution of A on inputs (x1, x2, · · ·). If S
is any probability distribution then x← S denotes the operation of selecting an element according
to S. If S is a set then we use the same notation to denote the operation of picking an element
x uniformly from S. For deterministic machines C (such as circuits), we write y = C(x1, x2, · · ·)
to mean that the output of C on inputs (x1, x2, · · ·) is y. Pr[x1 ← S1;x2 ← S2; · · · : p(x1, x2, · · ·)]
denotes the probability that the predicate p(x1, x2, · · ·) is true after the ordered execution of the
operation x1 ← S1, x2 ← S2, · · ·.

We deal with NP languages and let WL(x) denote the witness set of x which belongs to an NP
language L. We say that a function ν(·) : N → R is negligible if for every polynomial poly(·) and
all sufficiently large n’s, it holds that ν(n) < 1/poly(n). Also, we say that a function g(·) : N→ R
is overwhelming if g(·) = 1− ν(·) for some negligible function ν(·).

2.1 Interactive Arguments

We consider two probabilistic polynomial-time interactive machines called the prover and the ver-
ifier. Initially both machines have access to a common input tape which includes x of length n.
The prover and the verifier send messages to one another through two communication tapes. After
exchanging a polynomial number of messages, the verifier stops in an accept state or in a reject
state. Each machine, denoted by A, only sees its own tapes, namely, the common input tape,
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the random tape, the auxiliary-input tape and the communications tapes. Typically, the prover’s
auxiliary-input tape includes a witness w ∈ WL(x). Let A(x, y, m;R) denote A’s next message
when x is the common input, y the auxiliary-input, R the random coins and m the messages ex-
changed so far. We omit R when it is unnecessary to make the random coins explicit. That is,
A(x, y, m) denotes the distribution of A’s next message.

The view of the verifier V̂ , denoted by [x, y, m;R], consists of the common input x, V̂ ’s auxiliary-
input y, V̂ ’s random coins R and the sequence m of messages exchanged by the prover and the
verifier during the interaction. Let 〈P (x,w), V̂ (x, y)〉 denote the probability distribution of V̂ ’s
view when interacting with P on the common input x, where w is the auxiliary-input to P , and
y the auxiliary-input to V̂ . Let ρV (x,m,R) denote the deterministic computation used by the
prescribed verifier V to determine whether to accept or to reject. Let Acc〈P (x,w), V (x, y)〉 denote
the probability that 〈P (x,w), V (x, y)〉 is accepting, that is,

Acc〈P (x,w), V (x, y)〉 = Pr [ [x, y, m;R]← 〈P (x,w), V (x, y)〉;ρV (x,m,R) = Accept ] .

Definition 2.1 [interactive arguments [Go98a]] Let P, V be two probabilistic polynomial-time in-
teractive machines. We say that (P,V ) is an interactive argument for L if the following two conditions
are satisfied:

- Efficient Completeness: For every x ∈ L, there exists a string w, Acc〈P (x,w), V (x,−)〉 = 1.

- Computational Soundness: For every probabilistic polynomial-time machine P̂ (the cheating
prover), every polynomial poly(·), all sufficiently long x /∈ L and all w’s,

Acc〈P̂ (x,w), V (x,−)〉 <
1

poly(|x|)
.

In both conditions, the auxiliary-input to the verifier V is empty. The auxiliary-input w to P
is typically a witness of the common input x, i.e., w ∈ WL(x). We note that the cheating prover
P̂ is allowed to take an auxiliary-input. This simplifies the proof of the soundness of our proposed
protocol in Section 5.

2.2 Zero-Knowledge

Here, we give the definitions of GMR-ZK, AIZK, NUZK and AINUZK. We first give a general
definition and then define GMR-ZK and AIZK as special cases. We give the definitions of NUZK
and AINUZK in the same way. Let PL(x) denote the set of strings w satisfying the efficient
completeness condition with respect to x ∈ L. We basically follow the definition given in [Go98a].

Definition 2.2 [zero-knowledge w.r.t. auxiliary-input of length lZK AI ] Let lZK AI(·) be a poly-
nomial. Let P, V be two probabilistic polynomial-time interactive machines. We say that (P,V ) is
zero-knowledge w.r.t. auxiliary-input of length lZK AI for L if for every probabilistic polynomial-time
machine V̂ (the cheating verifier), there exists a probabilistic polynomial-time machine S

V̂
(the

simulator) such that the following two ensembles are computationally indistinguishable:

{S
V̂

(x, y)}x∈L,y∈{0,1}lZK AI (|x|) and {〈P (x,w), V̂ (x, y)〉}x∈L,w∈PL(x),y∈{0,1}lZK AI (|x|).

Namely, for every polynomial-size circuit family D = {Dx,y}x∈L,y∈{0,1}lZK AI (|x|) , every polynomial

poly(·), all sufficiently long x ∈ L and all y ∈ {0, 1}lZK AI (|x|),

|Pr
[
v ← S

V̂
(x, y) : Dx,y(v) = 1

]
− Pr

[
v ← 〈P (x,w), V̂ (x, y)〉 : Dx,y(v) = 1

]
| <

1

poly(|x|)
.

7



If the above two ensembles are statistically close (resp., identical), we say that (P,V ) is statistical
(resp., perfect) zero-knowledge w.r.t. auxiliary-input of length lZK AI for L

We give the definitions of GMR-ZK and AIZK as special cases.

Definition 2.3 [GMR zero-knowledge] We say that (P,V ) is GMR zero-knowledge for L if it is
zero-knowledge w.r.t. auxiliary-input of length lZK AI = 0 for L. We say that (P,V ) is GMR
statistical (resp., perfect) zero-knowledge for L if it is statistical (resp., perfect) zero-knowledge
w.r.t. auxiliary-input of length lZK AI = 0 for L.

Definition 2.4 [auxiliary-input zero-knowledge] We say that (P,V ) is auxiliary-input zero-knowledge
for L if for every polynomial lZK AI , it is zero-knowledge w.r.t. auxiliary-input of length lZK AI for
L. We say that (P,V ) is auxiliary-input statistical (resp., perfect) zero-knowledge for L if for every
polynomial lZK AI , it is statistical (resp., perfect) zero-knowledge w.r.t. auxiliary-input of length
lZK AI for L.

Next, we define NUZK and AINUZK in the same way. They are non-uniform variants of
GMR-ZK and AIZK.

Definition 2.5 [non-uniform zero-knowledge w.r.t. auxiliary-input of length lZK AI ] Let lZK AI(·)
be a polynomial. Let P, V be two probabilistic polynomial-time interactive machines. We say
that (P,V ) is non-uniform zero-knowledge w.r.t. auxiliary-input of length lZK AI for L if for every
polynomial-size circuit family V̂ (the cheating verifier), there exists a probabilistic polynomial-
size circuit family S

V̂
(the simulator) such that the following two ensembles are computationally

indistinguishable:

{S
V̂

(x, y)}x∈L,y∈{0,1}lZK AI (|x|) and {〈P (x,w), V̂ (x, y)〉}x∈L,w∈PL(x),y∈{0,1}lZK AI (|x|).

If the above two ensembles are statistically close (resp., identical), we say that (P,V ) is non-uniform
statistical (resp., perfect) zero-knowledge w.r.t. auxiliary-input of length lZK AI for L

We note that the simulator (polynomial-size circuit family) is allowed to toss the random coins.
That is, the simulator takes an auxiliary-input which is uniformly selected. Otherwise, two ensem-
bles are always distinguishable since the output of the simulator is deterministic.

Definition 2.6 [non-uniform zero-knowledge] We say that (P,V ) is non-uniform zero-knowledge for
L if it is non-uniform zero-knowledge w.r.t. auxiliary-input of length lZK AI = 0 for L. We say that
(P,V ) is non-uniform statistical (resp., perfect) zero-knowledge for L if it is non-uniform statistical
(resp., perfect) zero-knowledge w.r.t. auxiliary-input of length lZK AI = 0 for L.

Definition 2.7 [auxiliary-input non-uniform zero-knowledge] We say that (P,V ) is auxiliary-input
non-uniform zero-knowledge for L if for every polynomial lZK AI(·), it is non-uniform zero-knowledge
w.r.t. auxiliary-input of length lZK AI for L. We say that (P,V ) is auxiliary-input non-uniform
statistical (resp., perfect) zero-knowledge for L if for every polynomial lZK AI(·), it is non-uniform
statistical (resp., perfect) zero-knowledge w.r.t. auxiliary-input of length lZK AI for L.

We remark that in all definitions above, it is not required that, given a verifier V̂ , the simulator
S

V̂
can be effectively constructed, but rather that it exists.

8



2.3 DLA and DHA

We give two complexity assumptions related to the discrete logarithm problem. All exponentiations
in this paper are in Z∗

p . The definition of the prime p will be clear by the context. To simplify the
notations, we omit the expression “mod p”.

First, we recall the discrete logarithm assumption (DLA). In this paper, we need a stronger
formulation (than usual one) in which we assume nothing on the distribution of the prime p and
the base g.

Definition 2.8 Let LPQG denote the set {(p, q, g)} of primes and generators, where p and q are
primes such that p = 2q + 1 and g is an element of order q in Z∗

p (a generator of a subgroup of Z∗
p

of order q).

LPQG can be recognized in probabilistic polynomial-time with negligible error probability by
testing primality for p and q in probabilistic polynomial-time [SS77][Ra80], and verifying that g
is not the identity and that gq = 1. Furthermore, there exists a probabilistic polynomial-time
machine which, on input 1n, outputs (p, q, g) ∈ LPQG such that p is of length n.

Assumption 2.9 [non-uniform DLA] For every family of polynomial-size circuits I = {In}n≥1,
every polynomial poly(·), all sufficiently large n’s and all (p, q, g) ∈ LPQG such that p is of length
n,

Pr[a← Zq : In(p, q, g, ga) = a] <
1

poly(n)
.

Next, we give the definition of the Diffie-Hellman assumption (DHA) which says that the Diffie-
Hellman problem [DH76] is intractable in the same setting as the above definition of DLA.

Assumption 2.10 [non-uniform DHA] For every family of polynomial-size circuits I = {In}n≥1,
every polynomial poly(·), all sufficiently large n’s and all (p, q, g) ∈ LPQG such that p is of length
n,

Pr[a← Zq; b← Zq : In(p, q, g, ga, gb) = gab] <
1

poly(n)
.

Although uniform DLA and uniform DHA are defined analogously, we omit them here.

3 Protocol 3R-ZK

In this section, we describe a 3-round ZK protocol (called the 3R-ZK) for any NP language. We
construct it by combining two transformations.

3.1 The Starting Point

Our starting point is a 3-round honest-verifier ZK protocol (A,B) for an NP-complete language L.
We call it the 3R-HVZK. Let M1, Y,M2 denote the messages exchanged in the protocol. M1 and
M2 are the first and the second messages sent by the prover, respectively. Y is the message sent
by the verifier. We require that the protocol 3R-HVZK satisfies the following properties.

B0. The message Y is chosen uniformly at random from a polynomially sampleable subdomain
DY of {0, 1}n, where n is the length of the common input x.
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B1. The prover A can be implemented in probabilistic polynomial-time when it is given as its
auxiliary-input an NP witness w ∈ LW (x).

B2. It satisfies a strong soundness property which requires that for every common input x /∈ L
and every possible first message M1, there exists at most one verifier’s message Y such that
the prover can answer properly in its second message M2. This means that if the size of DY

is superpolynomial in n then the probability that the verifier accepts x /∈ L is negligible.

B3. It satisfies the ZK property with respect to a prescribed verifier B, i.e., honest-verifier zero-
knowledge (HVZK). That is, there exists a simulator which produces a probability distribution
computationally indistinguishable from the distribution of the real view of B.

The typical example of 3R-HVZK is the parallel composition of Blum’s ZK protocol for the
Hamiltonian circuit problem [Bl86] (See Appendix A). The following theorem summarizes our
starting point.

Theorem 3.1 [Starting point [Bl86]] Assuming the existence of non-uniformly secure commitment
scheme, there exists a 3-round protocol (A,B) satisfying the properties B0, B1, B2 and B3 for any
NP language.

3.2 The Preliminary Transformation

In the preliminary transformation, we just modify 3R-HVZK so that the message Y of the verifier
are randomly chosen from a domain DY specified by the first message of the prover. We denote by
(P̄ , V̄ ) the resultant protocol.

Protocol: (P̄ , V̄ ) for an NP-complete language L.

Common Input: a common input x of length n.

Prover’s Aux-Input: an NP witness w in WL(x).

P1: The prover P̄ generates an instance (p, q, g) ∈ LPQG such that p is of length n. P̄ also
computes M1 according to (A,B). Then P̄ sends (M1, p, q, g) to the verifier V̄ .

V1: V̄ checks whether (p, q, g) is in LPQG and p is of length n. If this is true then V̄ chooses Y
uniformly at random in a subgroup of Z∗

p of order q and send Y to P̄ .

P2: P̄ computes M2 according to (A,B) and sends it to V̄ .

V2: V̄ checks whether M2 is valid according to (A,B). If this is true then V̄ accepts, otherwise V̄
rejects.

It is easy to see that the protocol (P̄ , V̄ ) satisfies the properties B1, B2 and B3. B1 and B2 are
clearly satisfied. B3 is also satisfied because of the properties B0 and B3 of 3R-HVZK. We restate
the property B3 of (P̄ , V̄ ) formally as follows:

B3. For the prescribed verifier V̄ , there exists a probabilistic polynomial-time simulator SHV

(the honest-verifier simulator) such that the following two ensembles are computationally
indistinguishable:

{SHV (x)}x∈L and {〈P̄ (x,w), V̄ (x,−)〉}x∈L,w∈WL(x).

Namely, for every polynomial-size circuit family D = {Dx}x∈L, every polynomial poly(·), and
all sufficiently long x ∈ L,

|Pr [v ← SHV (x) : Dx(v) = 1]− Pr
[
v ← 〈P̄ (x,w), V̄ (x,−)〉 : Dx(v) = 1

]
| <

1

poly(|x|)
.

10



We note that the output of SHV (x) is of the form [x,−, (M1, p, q, g, Y,M2);RY ], where the
auxiliary-input to V̄ is empty, RY denotes V̄ ’s random coins used to compute Y and Y is an
element of Z∗

p of order q.

We use this honest-verifier simulator SHV to demonstrate the zero-knowledge property of 3R-ZK
in Section 5,

3.3 The Main Transformation

Now we present our main transformation. Before describing it, we roughly review the approach
used by Feige and Shamir to construct a 4-round ZK protocol for NP [FeSh89]. First of all, their
protocol is a “secret-coin” protocol. That is, the messages sent by the verifier are not just random
coins, but they are computed using secret random coins. Their protocol satisfies the following
properties.

R1. The verifier proves to the prover that he knows the secret coins inducing the messages sent
by him.

R2. A simulator is able to get the secret coins used by the cheating verifier no matter how he
behaves. Furthermore, once the simulator get the secret coins, the simulation is easy to
complete. As a result, the ZK property is satisfied.

R3. Any cheating prover can not get the secret coins. Furthermore, the protocol is designed so
that the computational soundness is satisfied under this property.

In [FeSh89], these properties have been implemented using the notion of witness-hiding proofs
of knowledge [FeSh90][BeGo92]. The verifier executes a witness-hiding proof of knowledge of the
secret coins. The property R3 is satisfied by the witness-hiding property [FeSh90]. R1 and R2
are also satisfied by the notion of “proof of knowledge” [BeGo92]. That is, the simulator is able
to extract the secret coins of the cheating verifier by using it as a black-box and “rewinding” it.
The computational soundness condition is satisfied simultaneously since any cheating prover is not
allowed to “rewind” the verifier.

We follow their approach to construct 3R-ZK, but the notion of witness hiding proofs does not
seem useful for our purpose since proofs of knowledge require an interaction (i.e., the verifier must
send at least two messages) which we can not afford here. Nevertheless, we overcome this problem
using a non-standard computational assumption introduced by Damg̊ard [Da91].

Now we transform (P̄ , V̄ ) into our proposed protocol 3R-ZK (P,V ) satisfying all properties R1,
R2 and R3.

Protocol: 3R-ZK (P,V ) for an NP-complete language L.

Common Input: a common input x of length n.

Prover’s Aux-Input: an NP witness w in WL(x).

P1: The prover P computes the first message as follows:

P1-1: P generates (M1, p, q, g) according to (P̄ , V̄ ).

P1-2: P generates uniformly a random number a ∈ Zq and computes A = ga.

P sends (M1, p, q, g,A) to the verifier V .

V1: V checks whether (p, q, g) is in LPQG and p is of length n. If this is true then V generates
a random number b ∈ Zq, computes (B,X) = (gb, Ab) and sends (B,X) to P . Otherwise V
rejects. Note that b is the secret-coin used by V .

11



P2: P checks whether X = Ba. If this is false then P stops, otherwise P computes the second
message as follows:

P2-1: P generates a random number c ∈ Zq and computes (C,Y ) = (gc, Bc) (These may also
be computed as (C,Y ) = (Ac,Xc)).

P2-2: According to (P̄ , V̄ ), P computes M2 using Y as the message sent by V̄ .

P sends (M2, C, Y ) to V .

V2: V checks whether the following two conditions are satisfied:

V2-1: V checks whether Y = Cb.

V2-2: According to (P̄ , V̄ ), V checks whether M2 is valid using Y as the message sent by V̄ .

If either condition is violated then V rejects, otherwise V accepts.

We explain that 3R-ZK satisfies all properties R1, R2, and R3. We can make the following
observation on the computation of V in V1: It seems that any cheating verifier must start by
simply choosing b and compute (gb, Ab) in order to pass the check X = Ba by the prover in P2.
That is, we assume that the verifier knows the secret coins b whenever it holds that X = Ba. This
means that the property R1 is satisfied. Informally, this assumption can be defined as follows: For
any cheating verifier V̂ , there exists another verifier V̂ ′ who outputs not only (B,X) but also the
secret coins b whenever V̂ outputs (B,X) satisfying X = Ba. Therefore, a simulator is able to
get the secret coins b by using V̂ ′ as a black-box rather than V̂ . Once the simulator gets b, the
simulation is easy to do since given Y and b, it is easy to compute the message C such that Y = Cb.
As a result, the property R2 is satisfied. We stress that the simulator does not use the cheating
verifier V̂ as a black-box. The above assumption is very similar to the one proposed by Damg̊ard
in [Da91] which we call the DA-1. However, precisely speaking, it is different from DA-1 due to
the common input x, the message M1 and the auxiliary-input y to the cheating verifier. We must
augment DA-1 by an auxiliary-input in order to demonstrate the ZK property.

The random coins b used by V are kept secret from any cheating prover if we assume that it
is computationally intractable to compute b from (g,A,B,X). Now we focus on the computation
of P in P2-1. As in the case of the computation of V in V1, it seems that any cheating prover
must start by simply choosing c and compute either (gc, Bc) or (Ac,Xc) in order to pass the check
Y = Cb by the verifier in V2-1 (Note that there are two ways of computing (C,Y ) in P2-1 to pass
it). We assume that the prover knows the value of c such that Y = Bc or Xc whenever it holds

Y = Cb. We call this assumption the DA-2, which is defined informally as follows: For any cheating
prover P̂ , there exists another prover P̂ ′ who outputs not only (C,Y ) but also the secret coins c
whenever P̂ outputs (C,Y ) satisfying Y = Cb. Assume that the computational soundness is not
satisfied. Then, given a fixed message Y , the cheating prover P̂ must compute the second message
C satisfying Y = Cb for randomly chosen (B,X). Under DA-2, this means that, given a fixed
message Y , P̂ ′ can compute C and its discrete logarithm c such that Y = Bc or Xc for randomly
chosen (B,X). This contradicts DLA. Therefore, the property R3 is satisfied.

The above observations roughly show that 3R-ZK is a ZK argument for L. The formal proofs
are given in Section 5. Before giving it, we review the formal definitions of DA-1 and give several
augmentations of DA-1 in next section.

12



4 Damg̊ard’s Assumption and Its Variants

In this section, we review Damg̊ard’s assumption introduced in [Da91] and give its variants. As
described in the previous section, there are two versions: DA-1 and DA-2. They are required for
the ZK property and the computational soundness, respectively. First, we give the definitions of
DA-1. Then we augment DA-1 by an auxiliary-input. Lastly, we give the definition of DA-2.

4.1 DA-1

DA-1 can be formulated both in the uniform model and in the non-uniform model as other com-
putational assumptions. The original assumption in [Da91] is called uniform DA-1 formalized as
follows:

Assumption 4.1 [uniform DA-1[Da91]] Let M be a probabilistic polynomial-time machine which
takes as input (p, q, g, ga) and tries to output (B,X) such that X = Ba. For every probabilistic
polynomial-time machine M , there exists a probabilistic polynomial-time machine M ′ which, on
input (p, q, g, ga), outputs (B′,X ′, b) satisfying the following two conditions.

1. Assume that M and M ′ use the same random coins. Then, for every (p, q, g) ∈ LPQG, it holds
that

Pr[a← Zq; (B,X)←M(p, q, g, ga); (B′,X ′, b)←M ′(p, q, g, ga) : (B′,X ′) = (B,X)] = 1.

2. For every polynomial poly(·), all sufficiently large n’s and every (p, q, g) ∈ LPQG such that p is
of length n,

Pr[a← Zq; (B
′,X ′, b)←M ′(p, q, g, ga) : X ′ = B′a ∧ B′ 6= gb ] <

1

poly(n)
.

Roughly, the above conditions say that whenever M outputs (B,X) such that X = Ba, M ′

outputs not only (B,X) but also b such that B = gb (i.e., X = (ga)b) with overwhelming probability.

The non-uniform DA-1 is formalized as follows.

Assumption 4.2 [non-uniform DA-1] Let M = {Mn}n≥1 be a polynomial-size circuit family which
takes as input (p, q, g, ga) and tries to output (B,X) such that X = Ba, where Mn runs on p of
length n. For every polynomial-size circuit family M = {Mn}n≥1, there exists a polynomial-size
circuit family M ′ = {M ′

n}n≥1 which, on input (p, q, g, ga), outputs (B′,X ′, b) satisfying the following
two conditions.

1. For every (p, q, g) ∈ LPQG, it holds that

Pr[a← Zq; (B,X) = Mn(p, q, g, ga); (B′,X ′, b) = M ′
n(p, q, g, ga) : (B′,X ′) = (B,X)] = 1.

2. For every polynomial poly(·), all sufficiently large n’s and every (p, q, g) ∈ LPQG such that p is
of length n,

Pr[a← Zq; (B
′,X ′, b) = M ′

n(p, q, g, ga) : X ′ = B′a ∧ B′ 6= gb ] <
1

poly(n)
.

Clearly, uniform DA-1 implies non-uniform DA-1, but we don’t know whether the reverse impli-
cation holds. The proposition below shows that the combination of DA-1 and DLA implies DHA.
However, it is unlikely that the reverse implication holds.
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Proposition 4.3 Under uniform DA-1 and uniform DLA, uniform DHA holds. Under non-uniform
DA-1 and non-uniform DLA, non-uniform DHA holds.

Proof: We give the proof only in the uniform case. Assume that uniform DHA does not hold.
Then there exists a probabilistic polynomial-time machine M which, on input p, q, g,A = ga, B =
gb, outputs B = gb and X = gab with not negligible probability. Applying uniform DA-1 to
this machine M , we have another probabilistic polynomial-time machine M ′ which, on inputs
p, q, g,A = ga, B = gb, outputs not only (B,X) but also the discrete logarithm b such that B = gb.
This contradicts uniform DLA.

4.2 Augmenting DA-1 by Auxiliary-Input

We need several variants of DA-1 in order to prove that 3R-ZK satisfies the ZK property. They
say that DA-1 holds even when M is allowed to take an auxiliary-input. We first give a general
augmentation of DA-1 and then give two assumptions as special cases. One is called DA-1 w.r.t.
auxiliary-input of non-restricted length. The other is called DA-1 w.r.t. auxiliary-input of restricted

length. The former requires that DA-1 holds when M is allowed to take an auxiliary-input of any
polynomial length. On the other hand, the latter requires that DA-1 holds when M is allowed to
take an auxiliary-input of pre-specified length. Clearly, the former is stronger than the latter. We
note that these variants have some kind of reverse-engineering property. This issue is taken up in
Section 6. Here, we give the definitions only in the non-uniform model. Uniform definitions are
defined analogously, but we omit them here.

Assumption 4.4 [non-uniform DA-1 w.r.t. auxiliary-input of length lDA AI ] Let lDA AI(·) be
a polynomial. Let M = {Mn}n≥1 be a polynomial-size circuit family which takes as input
(p, q, g, ga, aux) and tries to output (B,X) such that X = Ba, where Mn runs on p of length
n. For every polynomial-size circuit family M = {Mn}n≥1, there exists a polynomial-size circuit
family M ′ = {M ′

n}n≥1 which, on input (p, q, g, ga), outputs (B′,X ′, b) satisfying the following two
conditions.

1. For every (p, q, g) ∈ LPQG and every aux ∈ {0, 1}lDA AI(n), it holds that

Pr

[
a← Zq; (B,X) = Mn(p, q, g, ga, aux);
(B′,X ′, b) = M ′

n(p, q, g, ga, aux)
: (B′,X ′) = (B,X)

]

= 1.

2. For every polynomial poly(·), all sufficiently large n’s, every (p, q, g) ∈ LPQG such that p is of
length n and every aux ∈ {0, 1}lDA AI(n),

Pr[a← Zq; (B
′,X ′, b) = M ′

n(p, q, g, ga, aux) : X ′ = B′a ∧ B′ 6= gb ] <
1

poly(n)
.

Assumption 4.5 [non-uniform DA-1 w.r.t. auxiliary-input of restricted length] For a pre-specified
polynomial lDA AI(·), non-uniform DA-1 w.r.t. auxiliary-input lDA AI holds.

Assumption 4.6 [non-uniform DA-1 w.r.t. auxiliary-input of non-restricted length] For every
polynomial lDA AI(·), non-uniform DA-1 w.r.t. auxiliary-input lDA AI holds.

These variants clearly imply non-uniform DA-1, but we don’t know whether the reverse impli-
cations hold.
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4.3 DA-2

We formulate DA-2 in the non-uniform model. Although uniform DA-2 is formulated similarly, we
do not need it in this paper.

Assumption 4.7 [non-uniform DA-2] Let M be a polynomial-time circuit family which takes as
input (p, q, g, ga, gb, gab) and tries to output (C,Y ) such that Y = Cb, where Mn runs on p of length
n. For every polynomial-size circuit family M = {Mn}n≥1, there exists a polynomial-size circuit
family M ′ = {M ′

n}n≥1 which takes as input (p, q, g, ga, gb, gab) and outputs (C ′, Y ′, c) satisfying the
following two conditions.

1. For every (p, q, g) ∈ LPQG such that p is of length n and every a ∈ Zq, it holds that

Pr

[
b← Zq; (C,Y ) = Mn(p, q, g, ga, gb, gab);
(C ′, Y ′, c) = M ′

n(p, q, g, ga, gb, gab)
: (C ′, Y ′) = (C,Y )

]

= 1.

2. For every polynomial poly(·), all sufficiently large n’s, every (p, q, g) ∈ LPQG such that p is of
length n and every a ∈ Zq,

Pr

[
b← Zq;
(C ′, Y ′, c) = M ′

n(p, q, g, ga, gb, gab)
: Y ′ = C ′b ∧ Y ′ 6= (gb)c ∧ Y ′ 6= (gab)c

]

<
1

poly(n)
.

Roughly, the above conditions say that whenever M outputs (C,Y ) such that Y = Cb, M ′

outputs not only (C,Y ) but also c such that Y = (gb)c or Y = (gab)c (i.e., C = gc or (ga)c) with
overwhelming probability.

Although it is clear that DA-2 implies DA-1, we don’t know whether the reverse implication
holds.

In all assumptions above, it is not required that, given M , M ′ can be effectively constructed,
but rather that it exists. This is reminiscent of the definitions of ZK given in Section 2.

Remark 4.8 DA-1 and DA-2 are fundamentally different from the standard complexity assump-
tions such as DLA and DHA in the sense that they have double quantification (i.e., for every
adversary, there exists another one such that something holds), whereas the standard assumptions
have only one quantifier (i.e., for every adversary, something holds). It is unlikely that they are
proved to hold under standard complexity assumptions. We believe that it is interesting to study
their validity.

5 Correctness of 3R-ZK

Theorem 5.1 summarizes the properties of our proposed protocol 3R-ZK.

Theorem 5.1 [Main Theorem] Assume that 3R-HVZK for L satisfies the properties B0, B1, B2
and B3. Then the protocol 3R-ZK for L is:

(0) an argument for L under non-uniform DA-2 and non-uniform DLA.

(1) NUZK for L under non-uniform DA-1 w.r.t auxiliary-input of restricted length.

(2) AINUZK for L under non-uniform DA-1 w.r.t auxiliary-input of non-restricted length.
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(3) GMR-ZK for L under uniform DA-1 w.r.t auxiliary-input of restricted length.

(4) AIZK for L under uniform DA-1 w.r.t auxiliary-input of non-restricted length.

Proof: Combining Lemma 5.2, 5.8, 5.9, 5.11, and 5.12, Theorem 5.1 follows.

Combining Theorem 3.1 and 5.1, it follows that there exists a 3-round ZK interactive argument
for any NP language under non-uniform DLA, non-uniform DA-2 and the above variants of uniform
and non-uniform DA-1.

5.1 3R-ZK is an Argument

Lemma 5.2 [3R-ZK is an argument] Assume 3R-HVZK satisfies the properties B1 and B2. Then
3R-ZK is an argument for L under non-uniform DA-2 and non-uniform DLA.

Proof: We need to show that 3R-ZK satisfies both the efficient completeness and the computational
soundness. The efficient completeness is trivially satisfied because of the property B1 of (P̄ , V̄ ).
Therefore, we focus on the proof of the computational soundness.

Assume that 3R-ZK does not have negligible error probability in the computational soundness.
Then there exist a cheating prover P̂ , a polynomial p0(·) and an infinite set G = {(x,w)} of
common inputs not in L and auxiliary-inputs such that for every (x,w) ∈ G, we have

Acc〈P̂ (x,w), V (x,−)〉 > 1/p0(|x|).

Roughly speaking, G is a set of common inputs and auxiliary-inputs violating the computational
soundness. In order to complete the proof, we will show that this contradicts non-uniform DLA
under non-uniform DA-2.

Without loss of generality, we may assume that P̂ is deterministic since P̂ is allowed to take a
non-uniform auxiliary-input w. Therefore, we may assume that the first message sent by P̂ is
predetermined for each (x,w) ∈ G (i.e., the auxiliary-input w may include it). From now on, we
denote by (M1, p, q, g,A = ga) the predetermined first message sent by P̂ on inputs (x,w). For
simplicity, we also assume that (p, q, g) is in LPQG since the probability that P̂ succeeds to cheat
V is negligible for any (p, q, g) /∈ LPQG.

Let K be the set of all integers n for which G contains a common input x of length n. We
construct an inverter I = {In}n∈K such that for all sufficiently large n ∈ K, there exists a triplet
(p, q, g) ∈ LPQG such that p is of length n and

Pr[a← Zq : In(p, q, g, ga) = a]

is overwhelming. Before describing the inverter I, we claim that under non-uniform DA-2, for any
(deterministic) cheating prover P̂ , there exists a polynomial-size circuit family P̂ ′ who outputs not
only (C,Y ) but also c in Step P2. I uses P̂ ′ as a subroutine. Formally, the claim is as follows:

Claim 5.3 Assume non-uniform DA-2 holds. Then for any polynomial-time machine P̂ (the
cheating prover), there exists a polynomial-size circuit family P̂ ′ = {P̂ ′

n}n≥1 which takes as in-
put (p, q, g, ga, gb, gab) and outputs (M2, C

′, Y ′, c) satisfying the following two conditions.
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1. For every x and every w of polynomial length in |x|, it holds that

Pr





b← Zq;

(M1, p, q, g, ga) = P̂ (x,w,−);

(M2, C, Y ) = P̂ (x,w, ((M1, p, q, g, ga), (gb, gab)));

(M2, C
′, Y ′, c) = P̂ ′

n(p, q, g, ga, gb, gab)

: (M2, C
′, Y ′) = (M2, C, Y )



 = 1.

2. For every polynomial poly(·), all sufficiently large n’s, every x of length n and every w of poly-
nomial length in n,

Pr




b← Zq;

(M1, p, q, g, ga) = P̂ (x,w,−);

(M2, C
′, Y ′, c) = P̂ ′

n(p, q, g, ga, gb, gab)

: Y ′ = C ′b ∧ Y ′ 6= (gb)c ∧ Y ′ 6= (gab)c



 <
1

poly(n)
.

Proof: We focus on the computation of the prover P̂ in P2, where the inputs are 9 strings
(x,w,M1, p, q, g,A = ga, B = gb,X = gab). On the other hand, in non-uniform DA-2, the in-
puts to M are only 6 strings (p, q, g,A = ga, B = gb,X = gab). However, we may consider that the
3 extra inputs (x,w,M1) are incorporated into Mn. Therefore, we can apply non-uniform DA-2 to
the computation of P̂ so that there exists the above circuit family P̂ ′.

Now we describe the inverter I = {In}n∈K which uses P̂ ′ as a subroutine to solve the discrete
logarithm problems. For simplicity, we describe the circuit In as a probabilistic polynomial-time
machine with non-uniform advice strings of polynomial length in n. The random coins used can
be eliminated later by the non-uniformity.

Circuit: In(n ∈ K).

Input: (p, q, g) and β(= gα), where (p, q, g) is a part of the first message sent by P̂ on inputs
(x,w) ∈ G and (x, p) are of length n.

Advice: (M1, A = ga, a) and the description of the circuit P̂ ′
n.

Output: The discrete logarithm α such that β = gα.

Step 1: In generates a random number b ∈ Zq and computes (B,X) = (βgb, (βgb)a).

Step 2: In runs P̂ ′
n on (p, q, g,A,B,X) to get its response (M2, C, Y, c). In checks whether

(M1, Y,M2) is accepting according to (P̄ , V̄ ). If this is false, In goes back to Step 1,
otherwise In goes to Step 3.

Step 3: In checks whether Y = Bc or Y = Xc. If this is false, In goes back to Step 1, otherwise
In goes to Step 4.

Step 4: In generates a random number b′ ∈ Zq such that b′ 6= b and computes (B′,X ′) =
(gb′ , (gb′)a). If B = B′ then In stops and outputs α = b′− b mod q (Note that βgb = gb′).
Otherwise, In goes to Step 5.

Step 5: As in Step 2, In runs P̂ ′
n on (p, q, g,A,B′,X ′) to get its response (M ′

2, C
′, Y ′, c′). In

checks whether (M1, Y
′,M ′

2) is accepting according to (P̄ , V̄ ). If this is false, In goes
back to Step 4, otherwise In goes to Step 6.

Step 6: In checks whether Y ′ = B′c
′

or Y ′ = X ′c
′

. If this is false, In goes back to Step 4,
otherwise In goes to Step 7.

Step 7: In outputs α such that β = gα.
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Intuitively, In tries to find two different accepting conversations in Step 1-6. Once they are found,
In can easily compute α such that β = gα in Step 7. Note that in Step 7, it holds that Y =
βacgabc or βcgbc and it also holds that Y ′ = gab′c′ or gb′c′ . Furthermore, Y must equal Y ′ by the
strong soundness B2 of (P̄ , V̄ ) since x /∈ L. As a result, it is easy to computes α from the values
(a, b, b′, c, c′).

Lastly, we need to analyze the expected running time of In. Recall that we assumed that

Acc〈P̂ (x,w), V (x,−)〉 > 1/p0(|x|).

By the first condition of Claim 5.3, the probability that In passes the checks in Step 2 and 5 is at
least 1/p0(n). Furthermore, the second condition of Claim 5.3 guarantees that the probability that
In passes the check in Step 3 (resp., Step 6) under the condition that In has already passed Step 2
(resp., Step 5) is negligible for all sufficiently large n ∈ K. Therefore, the expected running time of
In is O(p0(n) ·

∑6
i=1 ti(n)+ t7(n)) where ti(n) is a polynomial bounding the running time of Step i.

As a result, we conclude that for all sufficiently large n ∈ K, there exists a triplet (p, q, g) ∈ LPQG

such that p is of length n and

Pr[α← Zq : In(p, q, g, gα) = α]

is overwhelming. This contradicts non-uniform DLA.

5.2 3R-ZK is Zero-Knowledge

We first give a general lemma (Lemma 5.4) in the non-uniform model and then give two lemmas
(Lemma 5.8 and 5.9) as special cases.

Lemma 5.4 Let lZK AI(·) be a polynomial. Let lx,M1(·) denote a polynomial bounding the length
of (x,M1). We denote by lDA AI(·) the polynomial such that lDA AI(n) = lZK AI(n) + lx,M1(n).
Assume that 3R-HVZK satisfies the properties B0 and B3. Then 3R-ZK is non-uniform zero-
knowledge w.r.t. auxiliary-input of length lZK AI for L under non-uniform DA-1 w.r.t. auxiliary-
input of length lDA AI .

Proof: Firstly, we apply non-uniform DA-1 w.r.t. auxiliary-input of length lDA AI to the compu-
tation of the cheating verifier V̂ in V1.

Claim 5.5 Assume that non-uniform DA-1 w.r.t. auxiliary-input of length lDA AI holds. Then
for every polynomial-size circuit family V̂ = {V̂n}n≥1 (the cheating verifier), there exists another
polynomial-size circuit family V̂ ′ = {V̂ ′

n}n≥1 which, on input (x, y, M1, p, q, g, ga), outputs (B′,X ′, b)
satisfying the following two conditions.

1. For every x ∈ L, every w ∈WL(x) and every y ∈ {0, 1}lZK AI(|x|), it holds that

Pr




(M1, p, q, g, ga)← P (x,w,−);

(B,X) = V̂n(x, y, (M1, p, q, g, ga));

(B′,X ′, b) = V̂ ′
n(x, y, (M1, p, q, g, ga))

: (B′,X ′) = (B,X)



 = 1.
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2. For every polynomial poly(·), all sufficiently large n’s, every x ∈ L of length n, w ∈ WL(x) and
every y ∈ {0, 1}lZK AI(|x|),

Pr




(M1, p, q, g, ga)← P (x,w,−);

(B,X) = V̂n(x, y, (M1, p, q, g, ga));

(B′,X ′, b) = V̂ ′
n(x, y, (M1, p, q, g, ga))

: X ′ = B′a ∧ B′ 6= gb



 <
1

poly(n)
.

Proof: In the computation of V̂ , the inputs are x, y, M1, p, q, g and A. If we consider (x, y, M1) as
the auxiliary-input of length lDA AI(n) in non-uniform DA-1 w.r.t auxiliary-input of length lDA AI

then the claim clearly holds.

As described in the observation of the property R2 (in Section 3.3), we can construct the simulator
S

V̂
= {Sn}n≥1 which uses V̂ ′ = {V̂ ′

n}n≥1 as a subroutine so that it is able to get the secret coins b

used by V̂ and complete the simulation using b. S
V̂

also uses the honest-verifier simulator SHV for
(P̄ , V̄ ) as a subroutine. For simplicity, we describe S

V̂
as a probabilistic polynomial-time machine

with a non-uniform advice string of polynomial length in n.

Circuit: Sn.

Input: (x, y), where x ∈ L is of length n and y is of length lZK AI(n).

Advice: The description of the circuit V̂ ′
n.

Output: The view [x, y, (M1, p, q, g,A)(B,X)(M2 , C, Y );−] of V̂n.

Step 1: Sn runs SHV on input x to get the view of V̄

[x,−, ((p, q, g,M1), Y,M2);RY ],

where Y is an element of order q in Z∗
p .

Step 2: Sn generates a uniformly at random in Zq and computes A = ga.

Step 3: Sn runs V̂ ′(x, y, (M1, p, q, g,A)) to get (B,X, b).

Step 4: Sn checks whether X = Ba. If this is true, Sn goes to Step 5, otherwise, Sn stops and
outputs [x, y, (M1, p, q, g,A)(B,X);−].

Step 5: Sn checks whether B = gb. If this is true, Sn goes to Step 6, otherwise, Sn aborts.

Step 6: Sn computes C such that Y = Cb.

Step 7: Sn outputs [x, y, (M1, p, q, g,A)(B,X)(M2 , C, Y );−].

Clearly, Sn runs in probabilistic polynomial-time. Moreover, the second condition of Claim 5.5
guarantees that the probability that S

V̂
aborts in Step 5 is negligible.

In order to complete the proof, we show that the simulator S
V̂

outputs a view computationally

indistinguishable from the real view between P and V̂ .

Claim 5.6 The distribution ensemble {S
V̂

(x)}x∈L,y∈{0,1}lZK AI (|x|) is computationally indistinguish-

able from {〈P (x,w), V̂ (x,−)〉}x∈L,w∈WL(x),y∈{0,1}lZK AI (|x|) .

Proof: The proof is by contradiction. Assume there exists a distinguisher D that can distinguish

{S
V̂

(x, y)}x∈L,y∈{0,1}lZK AI (|x|) from {〈P (x,w), V̂ (x,−)〉}x∈L,w∈LW (x),y∈{0,1}lZK AI (|x|) .
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Then we can construct a distinguisher D′ that distinguishes the distribution ensemble

{SHV (x)}x∈L from {〈P̄ (x,w), V̄ (x,−)〉}x∈L,w∈WL(x)

in contradiction to the property B3 of (P̄ , V̄ ). Given V̄ ’s view [x,−, ((p, q, g,M1), Y,M2);RY ] (from
either distribution ensemble), D′ extends it to a view of V̂ and invokes D on the extended view as
follows:

Distinguisher: D′ = {D′
x,y}x∈L,y∈{0,1}lZK AI (|x|).

Input: [x,−, ((p, q, g,M1), Y,M2);RY ].

Output: 0 or 1.

Step 1: D′
n runs Step 2-7 of Sn to extend the input [x,−, ((p, q, g,M1), Y,M2);RY ] to a view of

V̂

[x, y, ((M1, p, q, g,A), (B,X), (M2 , C, Y ));−],

where the input ((p, q, g,M1), Y,M2) is used as a result of Step 1 in Sn.

Step 2: D′
n invokes Dn on this extended view.

If the input is from {〈P̄ (x,w), V̄ (x,−)〉}x∈L,w∈WL(x), the extended view is distributed statistically

close to {〈P (x,w), V̂ (x,−)〉}x∈L,y∈{0,1}lZK AI (|x|) because of the following two facts:

1. The probability that S
V̂

aborts in Step 5 is negligible.

2. The output distributions of V̂ and V̂ ′ are identical on (B,X) by the first condition of Claim
5.5.

On the other hand, if the input is from {SHV (x)}x∈L, the extended view is clearly identical to the
distribution ensemble {S

V̂
(x, y)}x∈L,y∈{0,1}lZK AI (|x|) .

Therefore, D′ distinguishes the two distribution ensembles

{SHV (x)}x∈L and {〈P̄ (x,w), V̄ (x,−)〉}x∈L,w∈WL(x)

in contradiction to the property B3 of (P̄ , V̄ ).

Lemma 5.4 follows.

Remark 5.7 Claim 5.5 does not say that V̂ ′ can be effectively constructed given V̂ , but rather
that it exists. However, it is sufficient since the definition of NUZK w.r.t. auxiliary input of length
lZK AI also does not require that S

V̂
can be effectively constructed given V̂ .

The following lemmas are easily obtained as special cases of Lemma 5.4.

Lemma 5.8 [3R-ZK is NUZK] Assume that 3R-HVZK satisfies the properties B0 and B3. Then
3R-ZK is non-uniform zero-knowledge under non-uniform DA-1 w.r.t. auxiliary-input of restricted
length.
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Proof: Consider the special case of lZK AI = 0 in Lemma 5.4. For 3R-ZK to achieve NUZK, it is
sufficient to assume non-uniform DA-1 w.r.t. auxiliary-input of length lx,M1, which is a pre-specified
polynomial.

Lemma 5.9 [3R-ZK is AINUZK] Assume that 3R-HVZK satisfies the properties B0 and B3. Then
3R-ZK is auxiliary-input non-uniform zero-knowledge under non-uniform DA-1 w.r.t. auxiliary-
input of non-restricted length.

Proof: Consider the special case that lZK AI is an arbitrary polynomial in Lemma 5.4. In this
case, lDA AI ranges over the set of all polynomials. Therefore, for 3R-ZK to achieve AINUZK, we
require non-uniform DA-1 w.r.t. auxiliary-input of non-restricted length.

The above results easily extend to the uniform model. We give the results in the uniform model
without the proofs.

Lemma 5.10 Let lZK AI(·) be a polynomial. Let lx,M1(·) denote a polynomial bounding the length
of (x,M1). We denote by lDA AI(·) the polynomial such that lDA AI(n) = lZK AI(n) + lx,M1(n).
Assume that 3R-HVZK satisfies the properties B0 and B3. Then 3R-ZK is zero-knowledge w.r.t.
auxiliary-input of length lZK AI for L under uniform DA-1 w.r.t. auxiliary-input of length lDA AI .s

Lemma 5.11 [3R-ZK is GMR-ZK] Assume that 3R-HVZK satisfies the properties B0 and B3.
Then 3R-ZK is GMR zero-knowledge under uniform DA-1 w.r.t. auxiliary-input of restricted
length.

Lemma 5.12 [3R-ZK is AIZK] Assume that 3R-HVZK satisfies the properties B0 and B3. Then
3R-ZK is auxiliary-input zero-knowledge under uniform DA-1 w.r.t. auxiliary-input of non-restricted
length.

6 Discussion

In this section, we discuss the properties and the implications of our results. First, we comment that
the augmented versions of DA-1 have some kind of reverse-engineering property. Next, we show how
hard it is to prove that Cl(AIZK) equals Cl(BSZK). Lastly, we argue that our transformation
preserve the statistical zero-knowledgeness.

6.1 Reverse-Engineering Property

In order to demonstrate the ZK property of 3R-ZK, we required several augmentations of DA-
1. Unfortunately, all of them have some kind of reverse-engineering property which seems to be
unreasonable [Go98b].

Take for example non-uniform DA-1 w.r.t. auxiliary-input of length lDA AI . Consider M =
{Mn}1≥n as a universal polynomial-size circuit family which takes as its auxiliary-input of length
lDA AI(n) the description of a program Π of size lDA AI(n) which, given (p, q, g, ga), outputs (B,X)
such that X = Ba. Then, non-uniform DA-1 w.r.t. auxiliary-input of length lDA AI says that there
exists another circuit family M ′ which can reverse-engineer any program Π of size lDA AI(n) and
output b used by Π. In particular, non-uniform DA-1 w.r.t. auxiliary-input of non-restricted length,
which is required for AINUZK, says that a polynomial-size circuit family M ′ can reverse-engineer
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any program Π of any polynomial size. Also, non-uniform DA-1 w.r.t. auxiliary-input of restricted
length, which is required for NUZK, says a polynomial-size circuit family M ′ can reverse-engineer
any program Π whose size is bounded by a pre-specified polynomial size lx,M1. The former property
seems to be stronger than the latter.

In the case of uniform DA-1 w.r.t. auxiliary-input of length lDA AI , the reverse-engineering
property is stronger than in the non-uniform case. In particular, uniform DA-1 w.r.t. auxiliary-
input of non-restricted length, which is required for AIZK, says that a probabilistic polynomial-time
machine M ′ can reverse-engineer any program Π of any polynomial size. Therefore, we may say
that this assumption seems to have the strongest reverse-engineering property and that our result
regarding AIZK (Lemma 5.12) seems to be most problematic.

6.2 Cl(AIZK) v.s. Cl(BSZK)

As described in [GoOr94], it is an open problem whether or not it holds Cl(AIZK) ⊂ Cl(BSZK).
Our results imply an answer to this problem.

Corollary 6.1 Under uniform DA-1 w.r.t. auxiliary-input of non-restricted length, it holds that

Cl(AIZK) ⊂ Cl(BSZK).

Proof: Combining our results with the results of [GoKr96], it follows.

Although the required assumption is unreasonable, it has an interesting implication. That
is, proving the equality Cl(AIZK) = Cl(BSZK) is as hard as disproving uniform DA-1 w.r.t.
auxiliary-input of non-restricted length. We believe that it is hard to disprove it by the standard
technique. Therefore, Corollary 6.1 can be viewed as an evidence that it is hard to prove that
Cl(AIZK) = Cl(BSZK).

6.3 Statistical Zero-Knowledgeness

Our transformation preserves the statistical zero-knowledgeness. That is, if the starting protocol
3R-HVZK satisfies the statistical zero-knowledgeness with respect to honest verifier in the property
B3, then 3R-ZK satisfies statistical-zero-knowledgeness as well. The class of languages satisfying
the above hypothesis is indeed very large although we don’t know whether it is as large as NP
languages. It includes the following languages.

1. Random-self-reducible languages [TW87].

2. All monotone formulae over random-self-reducible languages [DDPY94].

3. All languages having a non-interactive statistical zero-knowledge interactive proof [DDP94].

We note that the perfect zero-knowledgeness can not be preserved since we can not get rid of
the possibility that the simulator aborts in Step 5 although it happens with negligible probability.

7 Concluding Remarks

We provided a non-black-box simulation technique based on a non-standard computational assump-
tion so that we could construct a 3-round ZK protocol for any NP language. However, the required
computational assumptions have the reverse-engineering property which seems to be unreasonable.
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Therefore, it is still open whether one can construct a 3-round zero-knowledge protocol for a non-
trivial language based on reasonable computational assumptions. We believe that it is interesting
to resolve the situation either way: Either provide a plausible construction based on reasonable
computational assumptions, or prove that some kind of reverse-engineering property is essential for
3-round ZK protocols for non-trivial languages.
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[BCC88] G. Brassard, D. Chaum and C. Crépeau, “Minimum Disclosure Proofs of Knowledge,
” Journal of Computer and System Sciences, Vol. 37, No. 2, pp. 156-189, 1988.
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[BrCr86] G. Brassard and C. Crépeau, “Non-Transitive Transfer of Confidence : A Perfect Zero-
Knowledge Interactive Protocol for SAT and Beyond, ” Proceedings of 27th FOCS,
1986.

[Da91] I. Damg̊ard, “Towards Practical Public Key Systems Secure Against Chosen Ciphertext
Attacks,” Proceedings of CRYPTO’91, pp.445-456, 1991.

[DDP94] A. De Santis, G. Di Crescenzo, and G. Persiano, “The Knowledge Complexity of
Quadratic Residuosity Languages,” Theoretical Computer Science, vol. 132, pp. 291–
317, 1994.

23



[DDPY94] A. De Santis, G. Di Crescenzo, G. Persiano and M. Yung, “On monotone formula closure
of Statistical Zero-Knowledge,” Proceedings of 35th FOCS, pp. 454–465, 1994.

[DH76] W. Diffie and M. Hellman, “New Directions in Cryptography,” IEEE Trans. Inform.
Theory, Vol.22, No.6, pp.644-654, 1976.

[FeSh89] U. Feige and A. Shamir, “Zero Knowledge Proofs of Knowledge in Two Rounds,” Pro-
ceedings of CRYPTO’89, pp.526-544, 1989.

[FeSh90] U. Feige and A. Shamir, “Witness Indistinguishable and Witness Hiding Protocols,”
Proceedings of 22nd STOC, pp.416-426, 1990.

[Go93] O. Goldreich, “A Uniform-Complexity Treatment of Encryption and Zero-Knowledge,”
Journal of Cryptology, Vol.6, No. 1, pp.21-53, 1993.

[Go98a] O. Goldreich, “Foundations of Cryptography (Fragments of a Book - Version 2.03),”
February 27, 1998.

[Go98b] O. Goldreich, private communication, May 1998.

[GoKa96] O. Goldreich and A. Kahan, “How to Construct Constant-Round Zero-Knowledge Proof
Systems for NP,” Journal of Cryptology, Vol.9, No. 3, pp.167-190, 1996.

[GoKr96] O. Goldreich and H. Krawczyk, “On the Composition of Zero-Knowledge Proof Sys-
tems,” SIAM Journal on Computing, Vol.25, No.1, pp.169-192, 1996.

[GMW91] O. Goldreich, S. Micali, and A. Wigderson, “Proofs that Yield Nothing But Their
Validity or All Languages in NP Have Zero-Knowledge Proof Systems,” Journal of the
ACM, Vol.38, No.1, pp.691-729, 1991.

[GoOr94] O. Goldreich and Y. Oren, “Definitions and Properties of Zero-Knowledge Proof Sys-
tems,” Journal of Cryptology, Vol.7, No. 1, pp.1-32, 1994.

[GMR85] S. Goldwasser, S. Micali, and C. Rackoff, “The Knowledge Complexity of Interactive
Proofs,” Proceedings of 17th STOC, pp.291-304, 1985.

[GMR89] S. Goldwasser, S. Micali, and C. Rackoff, “The Knowledge Complexity of Interactive
Proof Systems,” SIAM Journal on Computing, Vol.18, No.1, pp.186-208, 1989.

[HT98] S. Hada and T. Tanaka, “On the Existence of 3-Round Zero-Knowledge Protocols, ” ,
Proceedings of CRYPTO’98, pp. 408-423, 1998.

[Ra80] M. O. Rabin, “Probabilistic Algorithm for Testing Primality, ” Journal of Number
Theory, Vol. 12, pp.128-138, 1980.

[SS77] R. Solovay and V. Strassen, “A Fast Monte-Carlo Test for Primality,” SIAM Journal
on Computing, Vol.6, No.1, pp.84-86, 1977.

[TW87] M. Tompa and H. Woll, “Random Self-Reducibility and Zero Knowledge Interactive
Proofs of Possession of Information,” Proceedings of 28th FOCS, pp.472-482, 1987.

24



A Blum’s Zero-Knowledge Protocol for the Hamiltonian Circuit
Problem

The following protocol is an atomic ZK interactive proof for the Hamiltonian circuit problem
[Bl86][Go98a].

Protocol: 3R-HVZK for the Hamiltonian Circuit Problem.

Common Input: a graph G = (V,E) of size n, V = {1, 2, · · · , |V |}.

Prover’s Aux-Input: a permutation φ over V representing the order of vertices along a Hamil-
tonian circuit, i.e., φ(1),φ(2),· · ·,φ(|V |),φ(1) represent a Hamiltonian circuit.

P1: The prover chooses a random permutation π over V and generates an isomorphic copy G′ =
π(G) = (V,E′). For each pair (j, k) ∈ V 2, pi sets ej,k = 1 if (j, k) ∈ E′ and ej,k = 0
otherwise. The prover computes a commitment xj,k = E(ej,k, rj,k) for each ej,k and sends all
the xj,k’s to the verifier. E(·, ·) is a non-uniformly secure encryption function and used for a
bit-commitment scheme. Let m1 denote this first message.

V1: The verifier selects a random bit y and sends it to the prover.

P2: If the prover receives y = 0, the prover reveals all the commitments xj,k’s, i.e., sends ej,k, rj,k

for each j, k and π to the verifier. If the prover receives y = 1, the prover reveals only |V |
commitments, specifically those corresponding to the Hamiltonian circuit in G′, i.e., sends
φ′(·) = π(φ(·)) and rφ′(1),φ′(2), rφ′(2),φ′(3),· · ·, rφ′(|V |),φ′(1) to the verifier. Let m0

2 and m1
2 denote

the messages in the case of y = 0 and y = 1, respectively.

V2: In case of y = 0, the verifier accepts if all the commitments are revealed correctly and indeed
correspond to the graph π(G). In case of y = 1, the verifier accepts if it holds that xφ′(1),φ′(2) =
E(1, rφ′(1),φ′(2)), xφ′(2),φ′(3) = E(1, rφ′(2),φ′(3)), · · ·, xφ′(|V |),φ′(1) = E(1, rφ′(|V |),φ′(1)).

The above atomic protocol has constant error probability 1
2 . The following parallel composition

is used to decrease the error probability while maintaining the number of rounds.

P1: The prover sends M1 = m1,1,m1,2, · · · ,m1,n.

V1: The verifier sends Y = y1, y2, · · · , yn.

P2: The prover sends M2 = my1
2,1,m

y2
2,2, · · · ,m

yn

2,n

V2: The verifier accepts if and only if all the responses in M2 are valid.

In the above, the message Y is chosen uniformly at random in {0, 1}n, but it may be chosen
from any polynomially sampleable subdomain of {0, 1}n.

B A Flaw in CRYPTO’98 version [HT98]

We wrongly identified the following assumptions:

• non-uniform DA-1 (called SDHA-1 in [HT98]).

• non-uniform DA-1 w.r.t. auxiliary-input of restricted length.

• non-uniform DA-1 w.r.t. auxiliary-input of non-restricted length.

As a result, we wrongly claimed that 3R-ZK achieves the notion of AINUZK under non-uniform
DA-1 (Lemma 12 in [HT98]).
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