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Abstrat

A new formal seurity model for session key exhange protools is proposed, and several

eÆient protools are analyzed in this model. Our new model is in the style of multi-party

simulatability: it spei�es the servie and seurity guarantees that a key exhange protool

should provide to higher-level protools as a simple, natural, and intuitive interfae to whih

a high-level protool designer an program. The relationship between this new model and

previously proposed models is explored, and in partiular, several aws and shortomings in

previously proposed models are disussed. The model also deals with anonymous users|that is,

users who do not have publi keys, but perhaps have passwords that an be used to authentiate

themselves within a seure session.

�

First version (IBM Researh Report RZ 3120), April 1999; version 2 (Otober 21, 1999) is a substantial revision;

versions 3 (Otober 29, 1999) and 4 are minor revisions.



Contents

1 Introdution 1

1.1 Our ontributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Relation to previous work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Protool Interferene and PKI attaks 6

3 Formal Seurity Model|The Stati Corruption Case 7

3.1 The ideal system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.2 The real system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.3 De�nition of seurity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.4 Disussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 The Priniple Appliation: Seure Sessions 18

5 Cryptographi Primitives 19

5.1 Digital signatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5.2 Publi key enryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5.3 The Deisional DiÆe-Hellman assumption . . . . . . . . . . . . . . . . . . . . . . . . 20

6 The Certi�ate Authority 23

7 A DiÆe-Hellman Based Protool 23

7.1 Protool DHKE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

7.2 Seurity analysis of DHKE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

8 An Enryption Based Protool 26

8.1 Protool EKE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

8.2 Seurity analysis of EKE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

9 Anonymous Users 27

9.1 De�nitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

9.2 A DiÆe-Hellman based protool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

9.3 Two enryption based protools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

9.4 The priniple appliation: seure sessions . . . . . . . . . . . . . . . . . . . . . . . . 30

10 A Formal Model for Seurity Against Adaptive Corruptions 31

10.1 The real system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

10.2 The ideal system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

10.3 A more onservative ompromise rule . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

10.4 The priniple appliation: seure sessions . . . . . . . . . . . . . . . . . . . . . . . . 32

10.5 Non-forward seurity against adaptive orruptions . . . . . . . . . . . . . . . . . . . 33

10.6 Anonymous users . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

i



11 Interlude: On the inseurity of protools DHKE and EKE against adaptive

orruptions 33

11.1 Protool DHKE against adaptive orruptions . . . . . . . . . . . . . . . . . . . . . . 33

11.2 Protool EKE against adaptive orruptions . . . . . . . . . . . . . . . . . . . . . . . 34

12 DiÆe-Hellman Based Protools for Adaptive Corruptions 34

12.1 Protool DHKE-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

12.2 Protool DHKE-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

12.3 Protool DHKE-3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

13 An Enryption Based Protool for Adaptive Corruptions 38

14 Strong Adaptive Corruptions 39

14.1 Strong orruptions in the real world . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

14.2 Inherently vulnerable keys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

14.3 Strong orruptions in the ideal world . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

14.4 A seure key exhange protool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

14.5 De�ning seure sessions with strong adaptive orruptions . . . . . . . . . . . . . . . 42

14.6 Implementing seure sessions with strong adaptive orruptions . . . . . . . . . . . . 43

14.7 Anonymous users . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

15 Comparison with the Bellare-Rogaway Model 47

15.1 The BR model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

15.2 Correting a aw in the original BR model . . . . . . . . . . . . . . . . . . . . . . . 48

15.3 The equivalene of strong adaptive and stati orruptions in the BR model . . . . . 49

15.4 Relation between the BR model and the simulation model . . . . . . . . . . . . . . . 50

15.5 Forward seurity in the BR model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

15.6 An alternative de�nition of seurity against strong adaptive orruptions . . . . . . . 52

16 Comparison with the Model of Bellare, Canetti, and Krawzyk 52

17 Conlusion 54

ii



1 Introdution

In this paper, we investigate formal models of seurity for session key exhange protools. A

session key protool allows two users to exhange a seret key. The most important|and perhaps

the only signi�ant|appliation of a session key exhange protool is to implement a seure session

protool, whih in e�et provides a seure (private, authentiated), bi-diretional hannel between

the two users. A user may establish session keys with many other users, possibly in a onurrent

fashion. The main seurity goals, intuitively speaking, are that session keys should be random and

independent of one another, and that a user really establishes a key with the user he \thinks" he

is, and not with some other user.

There are two basi settings in whih key exhange protools are usually onsidered. In both

settings, there is a trusted third party (TTP). The only di�erene is whether the TTP is \on line,"

i.e., involved in every key exhange, or \o� line," is only needed to register users of the system,

but does not partiipate in the key exhange protool itself. In the on-line TTP setting, one uses

symmetri key ryptography; Kerberos [SNS88℄ is an example of a session key exhange protool

in the on-line setting; the TTP is usually alled a key distribution enter in this setting. In the

o�-line TTP setting, one uses publi key ryptography; the Seure Soket Layer (SSL) provides

an example of a session key exhange protool in the o�-line setting; the TTP is usually alled a

erti�ate authority in this setting.

We propose a new model of seurity for key exhange protools, and analyze the seurity of a

number of protools in this model. Our model is general enough to be applied in either the on-line

or o�-line setting. However, all of the examples of protools we onsider are in the o�-line setting.

Despite the super�ial simpliity of session key exhange protools, it is all too easy to design

protools with seurity weaknesses. Indeed, the history of this subjet is littered with the arnage

of broken protools. Typially, design aws arise either by not arefully speifying what an attaker

is able to do, or by not making the seurity goals preise, or by not making lear the requirements

of the ryptographi primitives. Formal modeling, suh as we do here, serves to prevent suh design

aws.

Our work is inspired by the work of Bellare, Canetti, and Krawzyk [BCK98℄, whih is grounded

in the multi-party simulatability tradition (see, e.g., [Bea91, Can95℄). This approah seems very

attrative, beause it spei�es the servie a session key protool should provide to a higher-level pro-

tool, rather than getting mired in the implementation details of session key protools themselves,

many of whih are irrelevant. This type of de�nition yields a simple, natural, abstrat interfae to

whih a high-level protool designer an program, without worrying about implementation details.

Also, beause of the simpliity and naturalness of the interfae, it is easy to reason about the se-

urity properties of high-level protools. Moreover, seurity in this model implies seurity against

a whole range of spei� attaks.

1.1 Our ontributions

We summarize our main ontributions:

� We present a detailed seurity model that addresses some tehnial shortomings in [BCK98℄,

and that extends and enrihes their model.

� Our model takes into aount the role of the erti�ate authority, making our trust assump-

tions expliit; this is essential in order to model a lass of attaks whih we all Publi Key

Infrastruture (PKI) attaks (see x2).
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� Our model takes into aount the ordinary usage of session keys in arbitrary higher-layer

protools, and how this usage is interleaved with the ongoing exeution of the key exhange

protool, possibly interfering with the orret funtioning of the key exhange protool. That

is, our de�nition of seurity has a built-in \protool omposition" theorem that a priori rules

out subtle problems that an arise when omposing a key exhange protool with an arbitrary

higher-level protool. In partiular, our model allows us to represent a lass of attaks whih

we all protool interferene attaks (see x2).

� We lassify and study in detail three di�erent modes of orruption:

stati orruptions the adversary may operate under a number of aliases, but annot orrupt

honest users;

adaptive orruptions the adversary an hoose to orrupt an honest user, obtaining that

user's long-term seret only;

strong adaptive orruptions the adversary an hoose to orrupt an honest user, obtain-

ing all of that user's internal data that has not been expliitly erased.

We give what we think are natural and useful de�nitions of seurity against these three

di�erent orruption modes. Our models for adaptive and strong adaptive orruptions apture

the notion of forward seurity (a.k.a., perfet forward serey).

� We study the relationship between our de�nitions of seurity and those of Bellare and Rogaway

[BR95℄ (see also [BJM97, BM97℄). In partiular, we show that their notion of seurity (with

one essential �x) is equivalent to our notion of seurity against an adversary that makes stati

orruptions only, despite the fat that in their model the adversary may make strong adaptive

orruptions.

� In addition to de�nitions, we give many examples of key exhange protools and proofs of

their seurity. These examples serve to highlight some of the subtle di�erenes between modes

of orruptions.

� We briey sketh formal de�nitions and implementations of seure sessions, whih an be

built on top session key protools. Arguably, the notion of a seure session protool is more

fundamental than that of a key exhange protool, i.e., that the latter is merely one tool

(among others) that one needs to build the former. Nevertheless, it appears that most of the

subtlety in designing a seure session protool already ours in the design of the underlying

key exhange protool, so it seems worthwhile to study key exhange in isolation. However, in

formulating de�nitions of seurity for key exhange, our main motivation is to get a de�nition

that is useful in building a seure session protool.

� We propose a formal model for session key exhange involving anonymous users, i.e., users

who do not have a erti�ate or have otherwise registered with the TTP. One a seure

session is established in this setting, the anonymous user an authentiate his identity using

a password.

1.2 Relation to previous work

There is a vast literature on this subjet, whih we shall not attempt to survey here. We refer the

reader to [MvOV97, Chapter 12℄ for a more extensive historial disussion. We mention here just

a few of the artiles that are most relevant to this paper.
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The seminal paper in this �eld is of ourse that of Needham and Shroeder [NS78℄. This work

was in the on-line TTP setting. However, one of the protools in their paper was subsequently

found to be awed (see, e.g., [DS81℄). Subsequent to [NS78℄, many other protools have been

proposed, many of whih were also later found to be awed.

Beause of the subtlety of the aws that an arise in key exhange protools, formal logis have

been developed (see, e.g., [BAN90℄) that an help in �nding protool aws. These formal methods,

however, do not appear to give any meaningful seurity guarantees that an be used in the analysis

of higher-level protools that use the session key.

The paper of Bird, et al. [BGH

+

91℄ broke new ground by pointing out a lass of subtle attaks

alled interleaving attaks whih an arise when users are running several instanes of a protool

in parallel. This work was in the on-line TTP setting.

The station-to-station (STS) protool was introdued in the paper of DiÆe, et al. [DvOW92℄.

This paper presents a session key exhange protool based on the lassial DiÆe-Hellman key

exhange protool [DH76℄ (whih establishes a long-term pair key, rather than a session key). The

authors arry out a rather informal seurity analysis, and point out numerous pitfalls and attaks

one should worry about. As we point out in x2, STS is vulnerable to PKI, protool interferene, as

well as interleaving attaks.

Bellare and Rogaway [BR95℄ proposed a formal model of seurity for authentiated key exhange

protools, again in the on-line TTP setting. Their work represents the �rst attempt to lay a �rm

foundation for the analysis of key exhange protools. Their formal model was subsequently adapted

to the publi key setting by Blake-Wilson, et al. [BJM97, BM97℄. The de�nitions of seurity here

seem fairly ompelling, but yet, they also seem a bit tehnial and low level, and it is not at all

lear what impliations these de�nitions have for higher-level protools that use the session keys.

In fat, the de�nition of seurity in the Bellare-Rogaway model is awed, in that it does not allow

one to model protool interferene attaks. We disuss this point in x15.

More reently, Bellare, Canetti, and Krawzyk [BCK98℄ have proposed a quite di�erent approah

to formal seurity models for key exhange in the o�-line TTP setting. This approah is similar

to the simulation-based approah taken in the area of multi-party omputation. One �rst de�nes

an idealized version of a session key protool, in whih pairs of users an \magially" generate a

shared random session key. Then to prove a real world protool is seure, one shows that any real

world adversary is onstrained to behave essentially like an adversary operating in the ideal world.

The paper [BCK98℄ only onsiders adversaries that make what we have alled strong adaptive

orruptions. As already mentioned, we also study stati orruptions and adaptive orruptions.

Certainly, the stati orruption ase is the simplest, most basi ase, and deserves to be studied

by itself.

Arguably, long-term serets are in pratie the most vulnerable serets in the system; in a

typial setting, they are stored on disk, perhaps proteted by a password. Ephemeral data is muh

more diÆult for an attaker to obtain. Therefore, it seems worthwhile to study the ase of adaptive

orruptions by itself, and to see what type of seurity guarantee we an ahieve when the adversary

is limited in this natural way. Also, this type of orruption model is more in line with the traditional

study of key exhange protools.

One ritiism we have of [BCK98℄ is that, like [BR95℄, it is still a somewhat tehnial, low-level

de�nition, and it is not at all lear what seurity properties higher-level protools enjoy. Indeed,

like [BR95℄, it appears to us that their de�nition does not properly model ordinary key usage

and protool interferene attaks. We disuss this in more detail in x16. Aside from this, it is

not at all lear what form a \protool omposition" theorem would take in their model. This is
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more a philosophial ritiism than a tehnial one; however, we would argue that the whole point

of making suh a simulation-based de�nition is that suh impliations should be built in to the

de�nition. In ontrast, our de�nition omes with a \protool omposition" theorem literally built

in.

Another shortoming of the de�nition in [BCK98℄ that we disuss in x16 is that it o�ers no

guarantee of forward seurity for established keys in the fae of strong adaptive orruptions. Or

at least, that appears to be the intention|as we disuss in x16, the intention is not really lear.

Although their is nothing wrong with suh a de�nition, it unfortunately rules out the possibil-

ity of building a seure session protool (with private hannels) that withstands strong adaptive

orruptions on top of a protool that only satis�es suh a de�nition.

Further, their model does not give any aount of the behavior of the erti�ate authority and

of the distribution of publi keys. Rather, all publi keys for all users are generated and distributed

to all users in an idealized initial set-up phase. In ontrast, we expliitly model the role of the

erti�ate authority. We believe this to be important, for three reasons. First, without this, one

annot represent PKI attaks. Seond, in pratie, erti�ates are typially delivered within the

protool itself, whih ould add to the round omplexity of a protool; beause of this, the idealized

initial set-up phase an obsure the true round omplexity of a protool. Third, it turns out

that one an design quite eÆient protools based on the weakest possible trust assumption for

the erti�ate authority|indeed, it seems that there is no point in assuming anything about the

erti�ate authority beyond its ability to properly hek the identity of a user.

The paper [BCK98℄ also advoates a \modular" approah to session key protool design in whih

one implements a session key protool on top of a ommuniation network with ideal \authentiated

links," and then implements an authentiated link network on top of a \raw" network without

authentiated links. In ontrast, we work exlusively in the \raw" network model. Our reason for

this is that the \authentiated links" model somewhat obsures the true round and omputational

omplexity of session key protools, and more importantly, it also rules out ertain very eÆient

protools that do not arise from suh a modular design approah. Although [BCK98℄ de�ne seurity

in the \raw" model as well as the \authentiated links" model, they do not onsider any examples

of protools designed diretly in the \raw" model. In ontrast, we present several quite interesting

protools that exist only in the \raw" model.

Finally, another problem with [BCK98℄ is that both of the protools presented and laimed to

be seure (in the authentiated links model) atually are not, and apparently annot be seure

under any reasonable simulation-based de�nition of seurity.

As already mentioned, we propose a formal model for session key exhange involving anonymous

users. In many situations, one of the two users in a key exhange protool may not have a erti�ate.

This already happens in SSL, and in fat, at the time of this writing, the vast majority of seure

sessions established on the Internet are between a server, who has a erti�ate, and a lient (the

anonymous user), who does not. We show how our formal model an be easily adapted to deal

with this situation, and present and analyze several protools that work in this setting.

A server who establishes a seure session with an anonymous lient has no idea who he is talking

to. It may therefore be neessary for the lient to authentiate himself to the server by means of a

password. This is trivial to do in our model: having established a seure session, the lient simply

passes his password through the seure hannel to the server. Our de�nition of seurity essentially

guarantees everything one ould possibly hope for in this setting, in partiular, protetion against

o�-line password guessing attaks, and against session \hijaking."

The problem of password-based authentiation and key exhange itself has a long history; see,

e.g, [BM92, GLNS93, HK98, Boy99℄. To a large degree, our work generalizes and extends all of
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the previous work on this topi. Moreover, our work provides a formal model in whih one an

analyze protools, like SSL, that yield a more exible and modular approah to designing protools

between servers and anonymous lients: �rst establish a seure session between anonymous lient

and server, and then simply run other protools like \telnet" or \FTP"|that may or may not

require a password (or passwords)|on top of this seure session.

The urrent paper is a signi�antly revised version of [Sho99℄. There are many fairly minor,

tehnial hanges. Most of the hanges made here both simplify and \loosen" the de�nition of

seurity, in an attempt to get at the \ore" seurity issues. The most signi�ant hange is the

treatment of strong adaptive orruptions. The paper [Sho99℄ already deals with suh orruptions,

but in a somewhat di�erent way. Although the de�nitional approah in [Sho99℄ is workable, it is

somewhat more umbersome (and more restritive) than the approah taken here.

1.3 Outline

Here is a guide to the rest of the paper.

� In x2, we disuss protool interferene and PKI attaks.

� In x3, we present our formal seurity model, restrited to the ase of adversaries who statially

orrupt users.

� In x4, we disuss in some detail the priniple appliation of a key exhange protool, namely,

a seure session protool. In partiular, we sketh a formal simulation-based de�nition of

seurity for a seure session protool.

� In x5, we disuss the ryptographi primitives we need: seure signatures, non-malleable

publi-key enryption, and the Deisional DiÆe-Hellman assumption. Readers already famil-

iar with these an safely skip this setion.

� In x6, we desribe the preise role of the erti�ate authority in the protools we present.

� In x7, we present and prove the seurity of a DiÆe-Hellman based key exhange protool

DHKE.

� In x8, we present and prove the seurity of a publi key enryption based key exhange

protool EKE.

� In x9, we disuss an extension to our seurity model that aommodates anonymous users,

inluding a disussion of appliations to seure sessions and password-based authentiation in

this setting. In partiular, we present protool A-DHKE, whih extends protool DHKE

to anonymous users, and protools A-EKE-1 and A-EKE-2, whih extend protool EKE.

� In x10, we present a formal seurity model for key exhange that deals with adaptive or-

ruptions, inluding a disussion of seure sessions and anonymous users in this orruption

senario.

� In x11, we re-examine protoolsDHKE andEKE in the fae of adaptive orruptions, showing

that they are inseure in this senario.

� In x12, we present several variants (DHKE-1, DHKE-3, DHKE-3) of protool DHKE

that are seure against adaptive orruptions, inluding variants (A-DHKE-1, A-DHKE-3)

that deal with anonymous users.
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� In x13, we present a variant EKE-1 of protool EKE that is seure against adaptive orrup-

tions.

� In x14, we present a formal seurity model for key exhange that deals with strong adaptive

orruptions, inluding a disussion of seure sessions and anonymous users in this orruption

senario.

� In x15, we ompare our model of seurity with that of Bellare and Rogaway [BR95℄.

� In x16, we give a tehnial ritique of the seurity model of Bellare, Canetti, and Krawzyk

[BCK98℄.

� In x17, we make some onluding remarks.

2 Protool Interferene and PKI attaks

To motivate ertain aspets of our new formal model, we will disuss two lasses of subtle attaks:

protool interferene attaks, and PKI attaks.

Protool interferene attaks are those where the seemingly benign use of a session key in a

higher level protool an interfere with the proper working of the session key protool itself. This

generalizes the interleaving attak of Bird, et al. [BGH

+

91℄.

PKI attaks involve adversaries who \hijak" honest users' publi keys, obtaining erti�ates

on an honest user's publi key but with an identity determined by an adversary.

We will illustrate these attaks on the lassi STS protool.

The basi STS protool uses a group G of order q and with generator g.

A! B : g

x

,

where x 2 Z

q

is random.

B ! A : g

y

; E

K

(sig

B

(g

x

; g

y

)),

where y 2 Z

q

is random.

A! B : E

K

(sig

A

(g

x

; g

y

)):

Here, K = g

xy

, and E is a symmetri key ryptosystem. Before aepting, both A and B

validate all the signatures. The key K is the session key.

Let us assume that the erti�ates of A and B are publily available, and that the group G is

desribed in, say, A's erti�ate.

As pointed out in [DvOW92℄, if we remove the enryptions on the signatures, then the pro-

tool beomes inseure. We reall here the attak. Consider an adversary ontrolling a di�erent

identity

~

A. Without the enryption on the last message,

~

A ould generate for himself a signature

sig

~

A

(g

x

; g

y

). This would result in the unaeptable situation where B \thinks" he is talking to

~

A,

but in fat shares a key with A, who \thinks" he is talking to B.

One ritiism of STS is that it uses the resulting session key within the protool itself. Not

only does this leak partial information about the session key prematurely, but an lead to the phe-

nomenon we alled protool interferene above. In fat, the adversary an still arry out the same

attak above, even with the enryptions. Suppose A has terminated the protool and generated its

last message. Now suppose that before A's response is ever delivered to B, the adversary interats

with the higher-level protool using A's session key. Just suppose that in this higher level protool,

6



the adversary ould onvine A to ompute an enryption E

K

(msg) of a message msg of the ad-

versary's hoie, and say that msg = sig

~

A

(g

x

; g

y

). Having obtained this enryption, the adversary

forwards it to B, and we have suessfully arried out the attak.

We an ahieve the same result with a PKI attak. Suppose that the adversary an onvine

a relevant erti�ate authority to bind A's publi key to

~

A's identity. Now,

~

A may have all the

relevant douments to prove to the erti�ate authority's satisfation that he \really is"

~

A. If

erti�ates are exhanged as part of the protool, then the adversary an replae A's erti�ate

with

~

A's.

The reader might objet: do not erti�ate authorities verify not only the person is who he says

he is, but that he \knows" the orresponding private key|by demanding, for example, a signature

on a test message? Well, who knows what erti�ate authorities really do. So it seems better not

to depend on this. Moreover, even if the authority makes suh a hek, it is not entirely lear

how to analyze exatly what this buys us in terms of provable seurity properties using standard

de�nitions. Anyway, by appropriately modifying the protool, it is easy enough to defend against

suh PKI attaks, without making speial assumptions about the erti�ate authority.

Besides protool interferene and PKI attaks, this protool an also be attaked by a standard

interleaving attak, as follows. The attaker an take the enrypted signature output by B in the

seond ow, and feed this bak to B in the third ow. Thus, A will think he is talking to B, while

B will think he is talking to another instane of himself. Note that for this attak to work, A and

B must work with the same group parameters G and g.

3 Formal Seurity Model|The Stati Corruption Case

We present our formal notion of seurity, beginning with stati orruptions, i.e., adversaries that

make their deision as to whom to orrupt independently of the network traÆ (but otherwise

are fully adaptive in everything else they do). In this ase, suh statially orrupted users do not

expliitly exist in the model: they are all just absorbed into the adversary.

Sine we want to let the adversary have arbitrary ontrol over the network, we also eliminate

the network: the adversary is the network. Moreover, it is the adversary that drives everything

forward|all other players (the users and the TTP) are ompletely passive, and perform only the

ations that the adversary instruts them to.

Seurity is de�ned via simulation, as follows.

We �rst de�ne an ideal world model in whih all the adversary an do is reate and \onnet"

instanes of users aording to some intuitive and natural rules, whereby these user instanes obtain

random session keys that are hidden from the adversary. User instanes that are \onneted" share

a ommon key, but keys are otherwise unorrelated. As soon as a user instane obtains a key,

he may begin to use it. For example, the user instane might enrypt messages with the key

using a very good ipher or a very bad ipher or it might simply divulge the key. We plae

absolutely no restritions on the use of a key; however, the adversary learns no more information

about the key other than what is leaked through its use, and this information does not a�et the

orderly establishment of onnetions. In the ideal world, there is no TTP, nor are there erti�ates,

signatures, enryptions, or even protool message ows. This is all abstrated away, so that all

that remains is the abstration of the servie a session key protool is supposed to provide to a

higher-lever protool.

We then de�ne a real world model that desribes what adversaries an and annot do in real

life. This inludes all the messy details of the TTP, erti�ates, et.,
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For both real-world and ideal-world adversaries, a transript is generated that logs all impor-

tant events as they happen. Seurity means that for every real-world adversary, there exists a

orresponding ideal-world adversary, suh that the transripts that these two adversaries generate

are omputationally indistinguishable.

Simulatability is this sense is a very powerful notion. It implies that a high-level protool

designer an design and analyze his protools as if they were running in the ideal world. As a

general priniple, whatever seurity properties one an prove about a high-level protool running

in the ideal world immediately transfer to the real world.

3.1 The ideal system

We now desribe the workings of the ideal system. The basi idea is fairly natural and intuitive;

however, it is important to speify all the rules of the game quite preisely, and so unfortunately,

the details may at �rst sight seem somewhat legalisti.

We have a set of (honest) users U

i

, indexed i = 1; 2; : : : : Eah user U

i

may have several user

instanes I

ij

, for j = 1; 2; : : : :

Remark 1 One might think of i as an IP address, and j as a port number. A session key an be

thought of as seuring a onnetion between two IP address/port number pairs.

There is also an adversary. The adversary plays a game. Coneptually, it is onvenient to

think of the adversary's opponent as the ring master

1

whose job it is to generate ertain random

variables, and to enfore ertain global onsisteny onstraints. The adversary plays this game by

issuing a sequene of operations to the ring master. There are six types of operations: initialize

user, initialize user instane, abort session, start session, appliation, and implementation. We

explain in turn how eah of these operations work. As we shall see, the appliation operation is the

only operation in whih the ring master gives the adversary any information. Note that it is the

adversary that drives the game forward|the unorrupted parties and the ring master are purely

passive, and simply reat to the adversary's operations. Also note that all operations are performed

sequentially and atomially.

3.1.1 Initialize user

This operation takes the form

(initialize user; i; ID

i

):

This operation assigns the identity ID

i

to user U

i

. ID

i

may be any bit string, subjet to the

restrition that this identity has not already been assigned to another user. Also, the initialize user

operation may only be applied to users that have not already been previously initialized.

3.1.2 Initialize user instane

This operation takes the form

(initialize user instane; i; j; role

ij

;PID

ij

):

A user instane I

ij

is spei�ed, along with a value role

ij

2 f0; 1g, as well as a partner identity PID

ij

.

User U

i

must have been previously initialized, but I

ij

should not have been previously initialized.

1

Following irus terminology.
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After exeution of this operation, we say that user instane I

ij

is ative, and remains ative until

the exeution of either an abort session or start session operation on I

ij

.

Remark 2 Intuitively, PID

ij

represents the identity of the user that I

ij

wants to talk to. The value

role

ij

identi�es whih of two roles the user instane is to have in establishing a onnetion. We

do not assign any meaning to this role|it is only a tehnial, symmetry breaking devie. See also

points (11) and (12) in x3.4.

3.1.3 Abort session

This operation takes the form

(abort session; i; j):

An ative user instane I

ij

is spei�ed.

Remark 3 Intuitively, this represents a failed attempt to establish a onnetion.

3.1.4 Start session

This operation takes the form

(start session; i; j; onnetion assignment [ ; key ℄ ):

An ative user instane I

ij

is spei�ed.

The onnetion assignment spei�es how the session key K

ij

for user instane I

ij

is generated.

This onnetion assignment is one of the following:

� reate,

� (onnet; i

0

; j

0

), or

� ompromise.

The optional key �eld is present in the start session operation only if the onnetion assignment

is ompromise.

Session keys are bit strings all of some agreed upon length. The session key K

ij

is determined

aording to the onnetion assignment as follows.

reate: the ring master reates K

ij

as a random bit string.

(onnet; i

0

; j

0

): In this ase, the ring master sets K

ij

equal to K

i

0

j

0

.

ompromise: The ring master sets K

ij

to key, the optional optional �eld in the start session oper-

ation.

There are rules governing the legality of these assignments. To desribe these rules suintly, we

make the following de�nition. We say that two initialized user instanes I

ij

and I

i

0

j

0

are ompatible

if

� PID

ij

= ID

i

0

,

� PID

i

0

j

0

= ID

i

, and
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� role

ij

6= role

i

0

j

0

.

Now we present the rules governing the hoie of onnetion assignments.

C1 The onnetion assignment reate is always legal. When this start session operation ompletes,

we say that I

ij

is isolated (see rule C2 below).

C2 The onnetion assignment (onnet; i

0

; j

0

) is legal if I

i

0

j

0

is a user instane that is still isolated

(see rule C1 above), and is ompatible with I

ij

. When this start session operation ompletes,

I

i

0

j

0

is no longer isolated.

C3 The onnetion assignment ompromise is legal provided PID

ij

is not assigned to a user.

The following de�nition will be useful later. If the onnetion assignment is (onnet; i

0

; j

0

), then

we say that user instanes I

ij

and I

i

0

j

0

are partners. Note that this partner relation is symmetri,

and that every user instane has at most one partner.

We shall make a restrition on how the adversary omputes onnetion assignments|see x3.1.8

below.

We will often abuse terminology, and say things like \we reate I

ij

," or \we onnet I

ij

to

I

i

0

j

0

," or \we ompromise I

ij

," to mean that user instane I

ij

is presribed the indiated onnetion

assignment, i.e., reate, (onnet; i

0

; j

0

), or ompromise.

3.1.5 Appliation

Of ourse, the point of establishing a session key is then to run a higher-level appliation protool

using the session key. Any use of a session key will potentially leak information about the key to

the adversary, whih may a�et his behavior. We do not want to restrit in any way the types of

appliation protools. Therefore, we let the adversary obtain any partial information about the

session keys that he wishes. In addition to the session keys fK

ij

g, we also suppose there is a random

bit string R of some agreed upon length hosen at the beginning of the game (and not revealed to

the adversary). We all R the random input.

More spei�ally, the appliation operation takes the form

(appliation; f);

where f is a funtion|spei�ed as a straight-line program or iruit (in some anonial notation)|

on the random input and the set of session keys that have been de�ned so far. Upon exeuting this

operation, the ring master gives the adversary f(R; fK

ij

g).

If we want to, we an allow appliation operations to have side e�ets, i.e., to write to variables

that may then be read by subsequent appliation operations. This would not have any e�et (modulo

polynomial-time omputation), but would yield a model in whih one ould express higher level

protools more naturally and eÆiently.

Remark 4 As an example, in an appliation protool using the session key, a user instane may

enrypt a message using a symmetri key enryption funtion. The key to the enryption funtion

might be derived from that user instane's session key. The message itself being enrypted may

ome from some distribution, so a sub-sequene of bits in the random input an be used to generate

the message. Also, the enryption algorithm itself may use further random bits that also ome from

the random input. The bit string atually output by this user instane an be easily expressed by an

appropriate funtion f of R and fK

ij

g. This example is disussed at greater length in x4.
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Table 1: Operations and their reords in the ideal world transript

initialize user (initialize user; i; ID

i

)

initialize user instane (initialize user instane; i; j; role

ij

;PID

ij

)

abort session (abort session; i; j)

start session (start session; i; j)

appliation (appliation; f; f(R; fK

ij

g))

implementation (implementation, omment)

Remark 5 One may oneptually partition R into segments so that individual user instanes have

a soure of independent random bits. However, having one global bit string R allows us to model

situations where users may share seret information (e.g., passwords) through some mehanism

other than network ommuniation.

3.1.6 Implementation

An implementation operation is a \no op" or \omment ard" that otherwise has no e�et on the

game, exept that the adversary simply makes a omment, whih is an arbitrary bit string. This

may seem strange, but is an essential tehnial point in formulating seurity, whih will hopefully

beome learer later.

The form of this operation is

(implementation; omment):

3.1.7 Transripts

We desribe how a transript is generated.

As the adversary exeutes operations in the ideal system, a transript ompletely logging his

ativities is onstruted. This transript onsists of a sequene of reords.

Eah operation adds a reord to the transript, as desribed in Table 1. Note that no onnetion

assignment information is logged in a start session operation (but see x3.1.8).

For an adversary A

�

we let IdealWorld(A

�

) denote the transript.

Remark 6 IdealWorld(A

�

) is of ourse a random variable, determined by the random bits of the

adversary, the random input, and the values of the session keys. More preisely, IdealWorld(A

�

) is

atually a vetor, or \ensemble" of distributions, indexed by a \seurity parameter."

3.1.8 Transripts and onnetion assignments

Having de�ned the transript, we now return to one tehnial point left unexplained in x3.1.4 on-

erning the alulation of onnetion assignments. We shall require that the onnetion assignment

made in a start session operation be eÆiently omputable as a funtion of the transript up to,

and inluding, the relevant start session operation. The motivation for this will be disussed in

x3.4, point (8).
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3.2 The real system

We now desribe a formal model for \real world" session key protools.

As in the ideal system, we have users U

i

and user instanes I

ij

. Also as in the ideal system there

is an adversary. In addition, there is a speial player T , representing a trusted third party. The

third party T might be on line, as in the private-key setting, or o� line, as in the publi-key setting.

We shall assume that T is initialized with a publi key/private key pair PK

T

/SK

T

, although in the

on-line TTP setting, this may be trivial.

Unlike in the ideal system, users and user instanes are not just plae holders.

When a user U

i

is initialized with identity ID

i

, a protool-spei�, probabilisti initialization

routine registers user U

i

's identity with T , and initializes user U

i

's internal state, as follows. First,

the initialization routine omputes a registration request. Seond, the pair (ID

i

; registration request)

is sent to T to register the identity ID

i

. Upon reeiving this request, using a protool-spei� rou-

tine, T updates its internal state, and omputes a registration reeipt. Finally, U

i

's initialization

routine is given this registration reeipt, and it then omputes and stores its long-term state infor-

mation in the variable LTS

i

.

Note that for simpliity, we have opted for a simple, two-pass registration protool between a

user and T . While protools allowing more interation would be possible, we shall not need them.

A user instane I

ij

is a probabilisti state mahine. It impliitly has aess to PK

T

, ID

i

, and

LTS

i

, and upon initialization, it is also assigned a value role

ij

2 f0; 1g and a partner identity PID

ij

.

After starting in some initial state, its state may be updated by delivering a message, in response

to whih the user instane updates its state, generates a response message, and reports its status,

whih is one of ontinue, aept, or rejet. The meaning of the status value is as follows:

ontinue: user instane prepared to reeive another message.

aept: user instane is �nished and has generated a session key; we denote by K

ij

the session key

generated by user instane I

ij

.

rejet: user instane is �nished, but refuses to generate a session key.

When I

ij

proesses a message, we allow it to update LTS

i

. None of the protools we examine

in this paper expliitly require this faility. However, some digital signature shemes require suh

a faility. One ould also use suh a faility to implement a pseudo-random bit generator to supply

user instanes with pseudo-random bits, instead of making user instanes generate their own random

bits.

Just as in the ideal system, the adversary plays a game against a ring master, and it is the

adversary that drives the game forward by issuing a sequene of operations. In the very �rst step

in this game, the trusted third party T generates a publi key/private key pair. The publi key is

made available to the adversary.

Now we explain preisely the operations that an be performed by the adversary: initialize user,

register, initialize user instane, deliver message, and appliation.

3.2.1 Initialize user

This operation has the form

(initialize user; i; ID

i

):

The adversary assigns an identity ID

i

to user U

i

, where user U

i

was not previously initialized and

ID

i

has not been assigned to other users, nor has been used in a register operation (see below).
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User U

i

registers its identity with T and initializes its long-term internal state LTS

i

, as desribed

above. The adversary is not given any information.

3.2.2 Register

This operation has the form

(register; ID; registration request):

The adversary runs T 's registration protool diretly with the given identity ID and the given

registration request, and obtains the resulting registration reeipt.

There is only one rule restriting the legality of this operation: the set of identities used in

initialize user operations and the set of identities used in register operations must be disjoint. How

this rule is enfored lies outside the model (but see x6).

Remark 7 This operation allows the adversary to operate under various aliases. Alternatively,

one an think of these as being the identities of statially orrupted users.

3.2.3 Initialize user instane

This operation takes the form

(initialize user instane; i; j; role

ij

;PID

ij

):

In this operation, the adversary hooses a user instane I

ij

that has not been previously initialized,

and also spei�es role

ij

2 f0; 1g, and an identity PID

ij

. User U

i

must have been previously

initialized. The adversary is not given any information. After exeution of this operation, we say

that I

ij

is ative.

3.2.4 Deliver message

This operation takes the form

(deliver message; i; j; InMsg):

In this operation, the adversary delivers a message InMsg to an ative user instane I

ij

. As desribed

above, the user instane updates its state, outputs a response message OutMsg, and reports its

status. Also, as mentioned above, I

ij

might also update LTS

i

. The response message and status

information are given to the adversary. If the status is not ontinue, then user instane I

ij

is no

longer ative.

In the o�-line TTP setting, messages are sent only between user instanes, but in the on-line

TTP setting, messages sometimes need to be sent between user instanes and T . In the latter

ase, we assume that messages are appropriately tagged to indiate if the sender/reeiver is a user

instane or T . Also, we assume that users interat with T in a stritly lient/server fashion. The

details of how this tagging is done are not important. Additionally, we need to add an operation

(deliver message to TTP; InMsg)

that delivers a message to T ; upon reeipt of this message, T updates its internal state, and returns

a response message OutMsg to the adversary.

Note that in an atual implementation, a user instane might \time out" after some time if it

is waiting for a message. Although there is no notion of absolute time in our model, the adversary

an deliver a speial \time out" message to a user instane to ahieve the same e�et.
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Table 2: Operations and their reords in the real world transript

initialize user (initialize user; i; ID

i

)

register (implementation; register; registration request; ID; registration reeipt)

initialize user instane (initialize user instane; i; j; role

ij

;PID

ij

)

deliver message (implementation; deliver message; i; j; InMsg;OutMsg; status), and

(start session; i; j) if status = aept, and

(abort session; i; j) if status = rejet

deliver message to TTP (implementation; deliver message to TTP; InMsg;OutMsg)

appliation (appliation; f; f(R; fK

ij

g))

3.2.5 Appliation

This operation takes the form

(appliation; f):

This is exatly the same as the appliation operation in the ideal system, exept that the funtion

now omputed is a funtion of the atual session keys fK

ij

g generated by user instanes, as well as

a random input R. Note that R is independent of any random bits used by users or user instanes

during initialization and the during the exeution of session key protools.

3.2.6 Transripts

We now desribe the transript generated by the adversary's game. This is a sequene of reords

that desribes all the ativities of the adversary and all the information available to it.

The �rst reord in the transript is

(implementation; initalize system;PK

T

):

Eah operation adds one or two reords to the transript, as detailed in Table 2.

For an adversary A, we let RealWorld(A) denote the transript.

3.3 De�nition of seurity

We are �nally ready to formulate the de�nition of seurity of a session key exhange protool.

There are three basi requirements.

Termination. Any (real world) user instane must terminate after a polynomially bounded num-

ber of messages are delivered to it (the bound must be independent of the adversary). In

fat, we shall only onsider here protools that terminate after a onstant number of rounds.

Liveness. For every eÆient real world adversary A, whenever the adversary faithfully delivers

messages between two ompatible user instanes (and T , in the on-line TTP setting), both

user instanes aept and share the same session key.

Simulatability. For every eÆient real world adversary A, there exists an eÆient ideal world

adversary A

�

suh that RealWorld(A) and IdealWorld(A

�

) are omputationally indistinguish-

able.

14



3.4 Disussion

1. The liveness requirement rules out, for example, \do nothing" protools that would trivially

satisfy the simulatability requirement.

2. The simulatability requirement aptures the intuition that any real world adversary does no

more \damage" than an ideal world adversary, and by de�nition, an ideal world adversary is

essentially benign.

3. We do not expliitly plae any internal random bits used by the real-world adversary in the

transript. However, a real-world adversary an always fore any information it wants into

the transript using an appliation operation. To see how this an be done, note that the

funtion f spei�ed in the appliation operation ould very well be a \onstant" funtion of

the adversary's hoie, and this \onstant" an be an arbitrary bit string omputed by the

adversary. Admittedly, this is perhaps a bit arti�ial; alternatively, one ould simply add a

speial operation that allows the real-world adversary to plae \omments" in the transript.

4. Also using appliation operations, the real-world adversary an arrange that the session keys

K

ij

along with the random input R are \dumped" into the transript at the very end of

the game. This will allow a statistial test attempting to distinguish the real-world and

ideal-world transripts aess to otherwise hidden variables.

5. It may be useful to illustrate the de�nition of seurity with a simple example. Suppose that

a real world adversary A has the power to simply output a session key just after it has been

established (but not used). We an arrange that A fores its \guess" of the session key into the

transript, as desribed in point (3). We an also arrange that A fores the atual value of the

session key into the transript at the end of the game, as desribed in (4). In the real world,

the guessed value of the key and the atual value would be equal, at least with non-negligible

probability, assuming A ould really break the sheme as desribed. In the ideal world, these

two values would be equal with only negligible probability (at least for suÆiently long session

keys). But this would immediately give us a statistial test to distinguish real-world from

ideal-world transripts. So either there is no suh A, or the session key protool is inseure.

6. Our de�nition of seurity implies muh more than just the inability of an adversary to guess

a session key. It has a sort of \built in" omposition theorem, sine the appliation operation

allows session keys to be used in an arbitrary way by higher-level protools. We believe that

our de�nition is general enough so that any high-level protool an be diretly and naturally

represented using appropriate appliation operations. The simulatability requirement implies

that any event that happens in the real world must happen in the ideal world with essentially

the same probability, as long as this event an be expressed as a funtion on the transript (as

augmented above in points (3) and (4)). It is in this sense that a high-level protool designer

an \pretend" he is working in the ideal world, rather than the real world.

There is, however, one diretion in whih our de�nition ould be extended. As it is, the fun-

tion omputed by an appliation operation depends on the session keys and on some hidden

random variables. One might also want these funtions to depend on some hidden values that

annot e�etively be modeled as random variables. To deal with this, one ould introdue an

auxiliary input S to be used in both the ideal world and the real world, and the simulatability

requirement would have to hold for all values of S. To prove the seurity of a protool in

this setting, one would have to make non-uniform intratability assumptions. Although one
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an extend the de�nition in this way, it is not lear to us that this is a partiularly useful

extension.

7. We emphasize that the appliation operation is mainly intended to model the normal use of

a session key in a higher-level protool (e.g., to implement a seure session, see x4), although

it an also be used to model unintended information leakage as well (see x14.1).

8. There is no onnetion assignment information expliitly available in either the real-world

or ideal-world transripts. This is learly inevitable, as the real-world transript an not be

expeted to ontain this information, and of ourse the ideal-world transript is supposed to

look just like the real-world transript. However, this information is impliitly available to any

statistial test attempting to distinguish the transripts, sine the ideal-world adversary im-

pliitly de�nes an eÆiently omputable funtion from transripts to onnetion assignments.

This was the main point of the restrition in x3.1.8 on how onnetion assignments are om-

puted. Indeed, it only seems fair that this information is available to the statistial test. Our

de�nition of seurity essentially implies that any real-world adversary ould be replaed by

an equivalent adversary that expliitly announes its intended onnetion assignments.

9. Although we give the ideal-world adversary omplete freedom in determining onnetion

assignments, this freedom is quite super�ial. Indeed, sine all the session keys may be

eventually dumped into the transript, the adversary really has no freedom at all, if the

protool is atually seure. That is, for a seure protool, onnetion assignments are unique.

We ould have restrited the way in whih A

�

omputes onnetion assignments, but this

would only ompliate the de�nitions without any lear advantage.

10. Admittedly, the whole business of onnetion assignments is rather messy, even though we

have tried to simplify it as muh as possible. An alternative approah to handling onne-

tion assignments would be to de�ne them via a \session ID." This is the approah taken by

[BCK98℄. In the real world, one would require that a user instane ompute and output a

session ID when it aepted. In the ideal world, the session ID would be spei�ed by the ad-

versary in a start session operation. One would then formulate rules to alulate onnetion

assignments from session IDs. While this approah may have some appeal, it only seems to

yield a more ompliated de�nition of seurity, with additional, arguably unneessary syn-

tati onstraints. Moreover, it would require that protools atually ompute these session

IDs. For many protools, this would entail only a trivial modi�ation, but for others, suh as

the one analyzed in [BR95℄, it would require a deidedly non-trivial modi�ation.

11. The value role

ij

2 f0; 1g assigned to a user instane may be a bit onfusing at �rst. Session

key exhange protools are typially asymmetri in nature; moreover, higher-level protools

making use of a session key typially an bene�t from this asymmetry as well. See x4 for an

example of this.

12. Our de�nition of seurity does not imply any notion of expliit key on�rmation (a.k.a. \ex-

pliit key authentiation," see, e.g., [MvOV97, p. 492℄). The notion of expliit key on�r-

mation is usually rather vaguely de�ned, but in our terminology it ould be phrased as the

requirement that a user instane is guaranteed that a ompatible user instane has aepted

the same key.

Some researhers distinguish between unilateral and mutual expliit key on�rmation (provid-

ing the above guarantee to one or both user instanes, respetively). We point out, however,
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that mutual expliit key on�rmation is impossible to ahieve. This is essentially a onsensus

problem, and is in general unsolvable in the presene of faulty ommuniation links: the user

instane that sends the last message an never \know" if this message will be delivered, and

therefore an never \know" whether it really has established a onnetion with anyone. Al-

though there may be a ompatible instane of the key establishment protool that holds the

session key, that protool instane may not terminate suessfully, and so may not pass the

key up to a higher-level protool, whih for all pratial purposes is equivalent to not holding

the session key in the �rst plae. This is a rather subtle point that some researhers in the �eld

have failed to appreiate, and in fat, some researhers have laimed that ertain protools

atually provide mutual expliit key on�rmation, e.g., this is laimed in [MvOV97, p. 516℄

for STS. At best, the notion of mutual expliit key on�rmation is meaningless (this mean-

inglessness is simply obsured by the lak of preise de�nitions); at worst, it gives high-level

protool designers an unjusti�ed sense of seurity.

As it happens, all of the protools we examine in this paper, exept protool A-EKE-2 in

x9.3, do indeed provide unilateral expliit key on�rmation. One ould modify our de�nition

of seurity so as to guarantee unilateral expliit key on�rmation, by requiring that a user

instane's role be orrelated with its onnetion assignment. That is, one role would allow

only the onnetion assignment reate, and the other only onnet. This is done, for example,

in [BCK98℄. One should note, however, that suh a requirement would rule out otherwise

perfetly good protools, suh as the one in [BR95℄; moreover, it is not at all lear that

higher-level protools an truly pro�t from suh a requirement.

13. In our de�nition of seurity, we make no attempt to isolate or formulate the notion of \entity

authentiation." Roughly speaking, this notion tries to apture the goal that two parties an

engage in a protool so that at the end of the protool, they are sure that they were really

talking to eah other. This is sometimes pursued as an end in itself [DvOW92, BR93a, BM97℄,

but it is not lear if this is very useful. Suh a protool only establishes that two entities were

talking to eah other in the past, but implies nothing about messages sent in the future|it

is simply a seure, mutual \ping."

14. One tehnial point in our de�nition of seurity is: what happens when a user instane I

ij

runs the session key protool when its partner identity PID

ij

has neither been assigned to

the user nor has it been registered by the adversary? In typial protools in the o�-line TTP

setting, I

ij

will ertainly not aept any session key, sine it will expet to see a erti�ate

ontaining the identity PID

ij

, but will not. However, it is possible to onot protools in

the on-line TTP for whih I

ij

will aept a session key, and this session key may not be

known to the adversary, but may beome known to the adversary at a later time if it registers

the identity PID

ij

; nevertheless, the protool would satisfy our de�nition of seurity, as our

de�nition makes no seurity guarantees when PID

ij

is not assigned to a user (it may be given

a onnetion assignment of ompromise). It seems to be a debatable point as to whether this

is aeptable. One ould strengthen our de�nition by requiring that a user instane rejets

if PID

ij

has neither been assigned nor registered by the adversary. This would be a simple

modi�ation of the de�nition, and at any rate, would not a�et the seurity of any of the

protools we disuss in this paper.

15. Our formal real-world model impliitly forbids higher level protools from making use of the

long-term private keys used in the session key protool. The only \seret" information used

in higher level protools is ontained in the random input R, whih is independent of these
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private keys. This signi�antly simpli�es our model, and is anyway good seurity pratie.

If one did allow the same private keys to be used in the session key protool and the higher

level protool, one would have to be very areful to prevent protool interferene.

4 The Priniple Appliation: Seure Sessions

Perhaps the main reason for exhanging session keys is to establish seure sessions, so it is perhaps

worthwhile to disuss this point in some detail.

Having established a shared key K, two user instanes an then proeed as follows. Applying a

pseudo-random bit generator to K, they an derive sub-keys K

(0)

and K

(1)

. The two user instanes

an identify themselves aording to their roles, so for the purposes of this session, the user instane

with role 0 an be \player 0," and the user instane with role 1 an be \player 1." The key K

(0)

an then be used to implement a seure|i.e., private and authentiated|uni-diretional hannel

from player 0 to player 1. This an be done using standard symmetri key enryption (semantially

seure against hosen message attak) and a message authentiation ode. We assume that messages

are transmitted as �xed-size bloks (the size may depend on a seurity parameter), and that eah

blok is individually enrypted and authentiated, so that not only the integrity of the data in

eah blok is preserved, but also the relative ordering of the bloks. Similarly, the key K

(1)

an be

used to implement a seure uni-diretional hannel from player 1 to player 0. The two players an

interleave the sending of message bloks on the two hannels in an arbitrary way.

All of the funtions for enryption and generating message authentiation odes an be expressed

in our formal model as appropriate appliation operations that are performed by the adversary. This

would be the only aess to session keys|and the bits in the random input used to implement the

seure hannel|that we would allow our adversary, but in general, we might allow the adversary

aess to other bits in the random input.

Our de�nition of seure key exhange then allows one to establish all of the properties one would

expet if the shared key K were truly random.

In fat, one ould arry our formal modeling one step further by giving a simulation-based

de�nition for a seure session protool. Although we do not pursue this in detail here, we sketh

an approah for whih it should be easy to �ll in the details.

As usual, one would de�ne an \ideal world" and the \real world." In the ideal world, the

adversary would initialize users and user instanes, as well as start sessions speifying onnetion

assignments just as in the key exhange setting, exept that in the seure session setting, there

would be no mention of session keys|at this level of abstration, that is an implementation detail,

and not a part of the spei�ation.

We say that the session for a user instane is ompromised if the user instane has a onnetion

assignment of ompromise. We begin by desribing the ideal workings of a hannel assoiated with

an unompromised session.

One a user instane has established a session, it has aess to one input hannel and one output

hannel. The basi operations are to write a message blok to the output hannel and to read a

message blok from the input hannel. As usual, all ativities are direted by the adversary.

Whenever the adversary requests a user instane to write a message blok, this de�nes a mes-

sage blok variable. Assoiated with the output hannel is a sequene of message blok variables

X

1

;X

2

; : : : : The value of a message blok variable X

r

is omputed as a funtion of the random

input, and any previously de�ned message blok variables in the system. This funtion is spei-

�ed by the adversary. This is very similar to the appliation operation in the ontext of session
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key protools, exept that in this setting, all that happens is that variable X

r

is de�ned, and the

adversary is given no information about its value.

Whenever the adversary requests a user instane to read a message blok, this also de�nes a

message blok variable. Assoiated with the input hannel is a sequene of message blok variables

X

0

1

;X

0

2

; : : : : For the rth read operation to be legal (for r = 1; 2; : : :), the user instane must have

a partner, and that partner must have performed at least r write operations. The value of the

variable X

0

r

assoiated with this user instane's input hannel is assigned the value of the variable

X

r

assoiated with its partner's output hannel. The adversary an also expliitly lose a user

instane's input or output hannel, after whih it does not read or write any more messages.

The privay of these hannels is guaranteed by the fat that when a user instane writes to its

output hannel, the ideal-world adversary obtains no information beyond whih it already knows;

namely, that the message blok is the value of the funtion it spei�ed. The authentiity of these

hannels is guaranteed by the fat that the values of the message bloks reeived are equal to the

values of the message bloks atually sent.

That deals with the ase when a session is unompromised. If it is ompromised, all of the

above guarantees are eliminated|spei�ally, when sending a message, the ideal-world adversary

is simply given the message blok diretly, and when reeiving a message, the adversary expliitly

delivers a message blok of its hoie.

In addition to the above, the adversary may make arbitrary requests to obtain the values

of spei� funtions on the random input and on de�ned message blok variables, just like the

appliation operation in the ontext of session key protools. This allows us to model yet higher-

level protools that run on top of the seure session.

The main reason for using �xed-size bloks is that in general, we annot hope to prevent the

adversary from learning something about the lengths of transmitted messages, so we just �x these

lengths in advane.

It should be straightforward to �ll in the details of the ideal world spei�ation, as well as to

desribe an appropriate formal model of the real world, and to show how to implement and prove

the seurity of a seure session protool on top of a seure session key protool, using ompletely

standard symmetri-key ryptographi tehniques. Note that in the real world, user instanes

would also have message blok variables assoiated with (virtual) input and output hannels. Also,

in formulating the de�nition of seurity, one would also have to formulate appropriate notions

of termination and liveness, whih should be straightforward. The liveness requirement would

simply say that in the real world, to the extent an adversary faithfully delivers messages between

two ompatible user instanes, these user instanes e�etively behave as partners with onneted

input/output hannels, and all message bloks are e�etively delivered without modi�ation.

One important point to note, however, is that using standard implementation tehniques, we

will not be able to maintain simulatability if we allow the adversary to arbitrarily expose session

keys. The problem is not that we annot model suh attaks in our formalization|in fat, we

an quite easily. The problem is that a standard symmetri-key enryption of a message is a

ommitment to that message|if the key is later exposed, the simulator annot make it look like

something else was enrypted (but see x14.6).

5 Cryptographi Primitives

In this setion, we disuss the ryptographi primitives that we will be using throughout the rest

of this paper.
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5.1 Digital signatures

We will make use of digital signature shemes, and the notion of seurity we will use is that of

seurity against existential forgery against adaptive hosen message attak, as de�ned in [GMR88℄.

This is the strongest, and most useful notion of seurity.

Briey, seurity in this sense means that it is infeasible for an adversary to win the following

game. A publi key/private key for the sheme is generated, and the adversary is given the publi

key. The adversary then makes a sequene of signing requests. The messages for whih the adversary

requests signatures an be adaptively hosen, i.e., they may depend on previous signatures. The

adversary wins the game if he an forge a signature, i.e., an output a message other than one for

whih he requested a signature, along with a valid signature on that message.

Seure and fairly pratial signature shemes an be onstruted based on various intratability

assumptions [DN94, CD96, GHR99, CS99℄. Even more pratial shemes an be onstruted based

on heuristi arguments (i.e., the \random orale" model) [BR96, PS96℄.

5.2 Publi key enryption

The notion of semanti seurity for a publi-key enryption sheme was formalized by [GM84℄.

Briey, seurity in this sense means that it is infeasible for an adversary to gain a non-negligible

advantage in the following game. A publi key/private key pair for the sheme is generated, and

the adversary is given the publi key. Then the adversary generates two equal length messages

m

0

;m

1

, and gives these to an enryption orale. The enryption orale hooses a bit b 2 f0; 1g at

random, enrypts m

b

, and gives the adversary the orresponding target iphertext  

0

. Finally, the

adversary outputs his guess at b. The adversary's advantage is de�ned to be the distane from 1=2

of the probability that his guess is orret.

The formal de�nition of semanti seurity aptures the intuitive notion that no information

about an enrypted message is leaked to a passive adversary that only eavesdrops. In protool

design and analysis, a muh more robust de�nition is often required that aptures the intuitive

notion of seurity against an ative attak, in whih the adversary not only an eavesdrop, but

an injet his own messages into the network. The type of seurity one needs in this setting is

non-malleability, also alled seurity against hosen iphertext attak, a notion that was formalized

in the sequene of papers [NY90, RS91, DDN91℄.

The de�nition of non-malleability is the same as for semanti seurity, but with the following

essential di�erene. The adversary is given aess to a deryption orale throughout the entire

game; the adversary may request the deryption of iphertexts  of his hoosing, subjet only to

the restrition that after the target iphertext  

0

has been generated, the adversary may not request

the deryption of  

0

itself.

Another intuitive way to understand non-malleability (and the motivation for its name) is that a

non-malleable enryption sheme essentially provides a seure envelope, that is, an envelope whose

ontents an neither be seen nor modi�ed by an adversary.

Fairly pratial non-malleable enryption shemes an be onstruted based on the Deisional

DiÆe-Hellman assumption (see below) [CS98℄. Even more pratial shemes an be onstruted

based on heuristi arguments (i.e., the \random orale" model) [BR93b, BR94, FO99℄.

5.3 The Deisional DiÆe-Hellman assumption

Let G be a group of large prime order q and let g 2 G be a generator. The Computational DiÆe-

Hellman (CDH) assumption, introdued by [DH76℄, is the assumption that omputing g

xy

from
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g

x

and g

y

is hard. It is a widely held belief that the seurity protools suh as STS is implied by

the CDH assumption. This is simply false|under any reasonable de�nition of seurity|exept

in a heuristi sense that we disuss below in x5.3.3. What is almost always needed, but often not

expliitly stated, is the Deisional DiÆe-Hellman (DDH) assumption.

For g

1

; g

2

; u

1

; u

2

2 G, de�ne DHP(g

1

; g

2

; u

1

; u

2

) to be 1 if there exists x 2 Z

q

suh that u

1

= g

x

1

and u

2

= g

x

2

, and 0 otherwise. A \good" algorithm for DHP is an eÆient, probabilisti algorithm

that omputes DHP orretly with negligible error probability on all inputs. The DDH assumption

is the assumption that there is no good algorithm for DHP.

This formulation is equivalent to the more usual one where

g

1

= g; g

2

= g

x

; u

1

= g

y

; u

2

= g

xy

:

5.3.1 DDH random self-redution

There are a few useful random self-redutions that allow us to transform arbitrary inputs to DHP

into random inputs on whih DHP evaluates to the same value.

Let g

1

; g

2

; u

1

; u

2

be given suh that g

1

6= 1 and g

2

6= 1. We an randomize u

1

and u

2

as follows:

~u

1

= u

a

1

g

b

1

; ~u

2

= u

a

2

g

b

2

;

where a; b 2 Z

q

are hosen at random. Suppose that u

1

= g

x

and u

2

= g

y

2

. If x = y, then (~u

1

; ~u

2

)

is a random pair of group elements, subjet to log

g

1

(~u

1

) = log

g

2

(~u

2

): If x 6= y, then (~u

1

; ~u

2

) is a

pair of random, independent group elements.

Next, we an randomize g

2

as follows:

~g

2

= g



2

; ~u

1

= u

a

1

g

b

1

; ~u

2

= u

a

2

g

b

2

;

where  2 Z

q

is hosen at random.

Additionally, we an randomize g

1

as follows:

~g

1

= g

d

1

; ~g

2

= g



2

; ~u

1

= u

ad

1

g

bd

1

; ~u

2

= u

a

2

g

b

2

;

where d 2 Z

q

is hosen at random.

With this transformation, we see that we an transform an arbitrary input to DHP to an

equivalent, random input. From this, it follows that the two distributions

(g

1

; g

2

; g

x

1

; g

y

2

); random g

1

; g

2

2 G; x; y 2 Z

q

;

and

(g

1

; g

2

; g

x

1

; g

x

2

); random g

1

; g

2

2 G; x 2 Z

q

are omputationally indistinguishable under the DDH assumption. This random self-reduibility

property was �rst observed by Stadler [Sta96℄ (and also independently in [NR97℄).

5.3.2 Applying the DDH assumption

In the sequel, we will need to use a super�ially stronger version of the DDH assumption, whih in

fat is implied by the DDH assumption.

First, it follows from the DDH assumption, using a hybrid argument (see [NR97℄), that the two

distributions

(g; (g

x

i

: 1 � i � n); (g

y

j

: 1 � j � m); (g

x

i

y

j

: 1 � i � n; 1 � j � m)
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and

(g; (g

x

i

: 1 � i � n); (g

y

j

: 1 � j � m); (g

z

ij

: 1 � i � n; 1 � j � m))

are omputationally indistinguishable. Here, the base g is random, as are the exponents.

By a slightly more involved hybrid argument, it follows that an adversary's advantage in the

following interative version of the above distinguishing problem is negligible. In this game, a b is

hosen at random, hidden from the view of the adversary. Next, the adversary is given

(g; (g

x

i

: 1 � i � n); (g

y

j

: 1 � j � m)):

For all i; j, we de�ne h

ij

= g

x

i

y

j

if b = 0, and h

ij

= g

z

ij

if b = 1. Now the adversary adaptively

makes a sequene of requests. For any i he an ask to see x

i

, for any j, he an ask to see y

j

, and

for any i; j he an ask to see h

ij

. These requests are subjet to the obvious restrition that if he

asks for h

ij

, he annot also ask, or have asked, for x

i

or y

j

. At the end of the game, the adversary

outputs his guess at b. The adversary's advantage is de�ned to be the distane from 1=2 of the

probability that his guess is orret.

We will use the above observations in the analysis of DiÆe-Hellman based key exhange pro-

tools. Additionally, we will also use the Entropy Smoothing Theorem (a.k.a., the Leftover Hash

Lemma) to transform random group elements into random bit strings using a pair-wise independent

hash funtion. See [Lub96, Chapter 8℄ for an exposition on the Entropy Smoothing Theorem. We

will use this theorem as follows. Having omputed a DiÆe-Hellman key g

xy

, we will derive a session

key as H

k

(g

xy

), where H is a family of pair-wise independent hash funtions, and k is a random

index into this family of funtions. Under an appropriate hoie of parameters, the DDH assump-

tion and the Entropy Smoothing Theorem imply that the distributions (g; g

x

; g

y

; k;H

k

(g

xy

)) and

(g; g

x

; g

y

; k;K)|where K is a random bit string whose length equals the output length of H|are

omputationally indistinguishable.

5.3.3 Using random orales

Instead of the DDH assumption, one an use the CDH assumption in ombination with the random

orale model of seurity analysis (see [BR93b℄). This is a heuristi model of analysis in whih

a ryptographi hash funtion F is treated as if it were a blak box that ontained a random

funtion. This model has been used to analyze numerous ryptographi systems (see, e.g., [BR94℄

and [PS96℄). In all of the DiÆe-Hellman based key exhange protools we analyze, if we ompute

the session key as K = F (g

xy

), then the protools an be proven seure in the random orale model

under the CDH assumption.

We an also ombine the two approahes, obtaining the \best of both worlds." If we ompute

the session key asK = H

k

(g

xy

)�F (g

xy

), then we get a proof of seurity under the DDH assumption

(without resorting to random orales), and under the CDH assumption with random orales.

5.3.4 Disussion

To make all of the above de�nitions and arguments preise, one should view the group G not as

�xed, but as being generated by some probabilisti algorithm taking as input a suÆiently large

seurity parameter. The above hybrid arguments an be readily adapted to the ase where we have

a heterogeneous system of groups G, eah of whih is generated in this way.

The DDH assumption appears to have �rst surfaed in the ryptographi literature in a paper

by S. Brands [Bra93℄. See [Bon98, CS98, NR97, Sta96℄ for further appliations of and disussions

about the DDH assumption. A potentially stronger version of the DDH assumption|whih we
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shall not need in this paper|allows the adversary to hoose one of the two bases g

1

or g

2

in the

above distinguishability problem. Interestingly, it appears that allowing the adversary to hoose

one of the bases may give him more power than he would have if both bases were random. This

is in ontrast to the CDH and Disrete Logarithm assumptions, where it does not matter if the

adversary hooses the base. It remains to be seen whether suh a stronger version of the DDH

assumption has useful ryptographi appliations. We mention this here only beause it seems that

previous works involving the DDH did not make this distintion.

6 The Certi�ate Authority

In this setion, we desribe preisely the role of the trusted third party T as a erti�ate authority

in this and all the other protools in this paper.

We assume that when a user U

i

is initialized (see x3.2), he generates a publi key/private

key pair PK

i

/SK

i

, and the registration request is PK

i

. The trusted third party T , ating as a

erti�ate authority, generates a erti�ate ert

i

, whih onsists of a signature on (ID

i

;PK

i

) under

PK

T

. The registration reeipt is simply ert

i

. The long-term state information LTS

i

of user U

i

is

(SK

i

;PK

i

; ert

i

).

Reall that the rules for registration (x3.2.1-x3.2.2) prevent two honest users from registering

the same name, and prevent the adversary from registering an honest user's name. Of ourse,

the enforement of these rules lies outside our formal model. For example, in real life, the erti�-

ate authority might be able to reasonably enfore these rules by requiring the use of suÆiently

desriptive names and by demanding adequate \proofs" of identity (passport, driver's liense, et.).

Note, however, that we will not require anything more of the erti�ate authority. In partiular,

we shall not require that a user proves that he \knows" the seret key orresponding to a publi

key when he gets a erti�ate|a pratie that is sometimes advoated. So, for example, there is

nothing stopping an adversary from obtaining a erti�ate that binds the name of a \orrupted

user" (i.e., an alias under whih the adversary is operating) to the publi key of an honest user.

There are three reasons for not doing this. First, both from a trust and an eÆieny point of

view, it seems best to require as little of T as possible. Seond, it is easy to design quite eÆient

key exhange protools that are seure under our minimalisti trust assumption. Third, it is not

lear how one would really exploit a \proof of knowledge" to get rigorous seurity proofs|from

a tehnial point of view, \proofs of knowledge" are quite triky to work with, sine they often

involve \rewinding," whih an ause real problems when trying to build a simulator.

Note that as we have set things up, user erti�ates are not available in any \publi diretory."

Instead, we shall require that user erti�ates are transmitted as a part of the session key protool

itself. This losely models what happens in pratie. By impliation, the adversary also does not

get diret aess to user erti�ates: the adversary must obtain user erti�ates by interating with

users, just like an honest user must. This is not at all a serious restrition, and we ould easily add

a erti�ate request ommand in the real system without hanging any of the theorems we later

prove.

7 A DiÆe-Hellman Based Protool

In this setion we desribe and analyze a protool based on the lassial DiÆe-Hellman protool

key exhange [DH76℄. We all our proposed protool DHKE.
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7.1 Protool DHKE

Eah user generates a publi key/private key pair as follows. First, he hooses a publi key/private

key pair for a digital signature sheme. Seond, he onstruts a group G of prime order q, and

selets a random generator g for this group. The user's publi key onsists of the publi key for

the signature sheme, and a desription of G and g. The user's private key onsists of the private

key of the signature sheme. We denote by sig

i

(msg) the output of user U

i

's signature algorithm

on msg. Note that in this paper, signatures do not inlude the message being signed. We remind

the reader that ert

i

denotes the erti�ate that binds user U

i

's publi key with his identity, as

desribed in x6.

We desribe the protool in terms of two users U

i

and U

i

0

. User U

i

initiates the protool, and

in the desription of the protool, G, g, and q refer to the group information reorded in the publi

key of user U

i

. We also assume a family of pair-wise independent hash funtions H

k

, indexed by a

randomly hosen bit string k of some spei�ed length.

U

i

! U

i

0

: g

x

; sig

i

(g

x

; ID

i

0

); ert

i

,

where x 2 Z

q

is hosen at random.

U

i

0

! U

i

: g

y

; k; sig

i

0

(g

x

; g

y

; k; ID

i

); ert

i

0

,

where y 2 Z

q

is hosen at random, and k is a random hash funtion index.

The agreed upon session key is H

k

(g

xy

), omputed in the usual way. Additionally, eah player

validates all erti�ates and signatures in the usual way, rejeting the protool and refusing to

generate a session key if any of these tests fail.

Our desription is not entirely preise. Some user instane I

ij

is running the protool on behalf

of user U

i

, and likewise some user instane I

i

0

j

0

is running the protool on behalf of user U

i

0

. The

identity ID

i

0

written in the �rst ow is atually omputed by I

ij

as PID

ij

, and by I

i

0

j

0

as ID

i

0

j

0

.

Similar remarks apply to other omputations in the protool. Also, we arbitrarily let the roles of

the two user instanes in this and other protools in this paper be determined by who goes �rst.

Remark 8 The reader may already have a funny feeling about this protool, as it onsists of only

two ows, as opposed to the three ows used in STS. Indeed, the �rst message generated by U

i

ould

be sent to several instanes of U

i

0

, at most one of whih an atually end up sharing a key with U

i

.

At worst, this will lead to user instanes I

i

0

j

0

that are permanently isolated. However, any session

key protool ultimately su�ers from this problem: whoever sends the last message in the protool

does not \know" if it was ultimately delivered. As was pointed out in x3.4, point (12), we should

not expet a key exhange protool to solve the onsensus problem, whih is anyway unsolvable in

general. Moreover, even if all messages in the session key protool are delivered, there is in general

no guarantee that any messages in higher-level appliation protools will be delivered.

7.2 Seurity analysis of DHKE

Theorem 1 Protool DHKE is a seure key exhange protool, under the DDH assumption, and

assuming all the digital signatures shemes employed are seure.

We now prove this theorem.

We are given a real world adversary A. Our approah will be to transform A into an ideal

world adversary A

�

, and to simultaneously transform the real world ring master into an ideal world

ring master, doing this without hanging the transript in any (omputationally) disernible way.

Basially, this will simply amount to having A

�

run the adversary A just as in the real world, exept

as follows:
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� A

�

omputes appropriate onnetion assignments, and the ring master in the ideal world

substitutes real-world session keys with idealized session keys;

� whenever A

�

hooses to ompromise a user instane, it supplies a session key as part of the

start session operation by extrating the key from the real-world user instane;

� for any implementation reord that A's ations ause to be plaed in the real-world transript,

A

�

opies this reord into the ideal-world transript using a orresponding implementation

operation;

� any appliation operations are evaluated by the ring master using the idealized session keys.

What we end up with, then, is an adversary A

�

that is a system of interating algorithms

onsisting of A, the real world users, and T . The main thing is to argue that these onnetion

assignments are legal, and that the key substitutions are not detetable.

We make one more notational onvention that will also be used in our other proofs of seurity.

We will always write I

ij

for a user instane that is an originator, i.e., sends the �rst message in

the protool, and I

i

0

j

0

for a user instane that is a responder, i.e., a user instane that sends the

seond message in the protool. For any two suh user instanes, the values role

ij

and role

i

0

j

0

are

omplimentary.

Case 1. Suppose a user instane I

i

0

j

0

has reeived the �rst message in the protool and has

aepted.

Case 1a. If PID

i

0

j

0

is not assigned to a user, then we ompromise I

i

0

j

0

in the ideal world. To do

this, we need to speify the session key, whih we simply extrat from I

i

0

j

0

in the real world.

Case 1b. Now suppose PID

i

0

j

0

is assigned to a user U

i

. We assert that at this point there is

a unique user instane I

ij

suh that PID

ij

= ID

i

0

and that I

ij

sent g

x

in its outgoing message.

This follows easily from the logi of the protool and the seurity of the signatures. So we reate

I

i

0

j

0

, and the ring master substitutes the atual session key with a random session key. We have

to argue that this substitution is unnotiable (omputationally, that is). But this will follow using

the argument in x5.3.2, provided the user instane I

ij

mentioned above has not been or ever will

be ompromised. But this is so, beause PID

ij

= ID

i

0

, and so suh a ompromise onnetion

assignment is not allowed in the rules. The only possible outomes for I

ij

are that it never aepts,

it onnets to I

i

0

j

0

, or it onnets to another instane of user U

i

0

.

Case 2. Suppose that user instane I

ij

has just reeived an inoming message in the protool

and has aepted.

Case 2a. If PID

ij

is not assigned to a user, then we ompromise I

ij

, extrating the needed

session key from I

ij

itself.

Case 2b. Now suppose PID

ij

is assigned to a user U

i

0

. We assert that there is a unique isolated

user instane I

i

0

j

0

suh that PID

i

0

j

0

= ID

i

and the values g

x

, g

y

and k math. This follows easily

from the logi of the protool and the seurity of the signatures. This allows us to onnet I

ij

to I

i

0

j

0

, and the ring master substitutes the atual session key of I

ij

with the session key of I

i

0

j

0

previously generated by the ring master. This substitution will be unnotiable beause the session

keys were the same in the real world.

That ompletes the proof of the simulatability requirement in the de�nition of a seure key

exhange protool. It is trivial to see that the termination and liveness requirements are satis�ed.
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8 An Enryption Based Protool

8.1 Protool EKE

Eah user generates publi key/private key pairs as follows. He hooses a publi key/private key

pair for a signature sheme, as well as a publi key/private key pair for a publi key enryption

sheme.

As in x7, we let sig

i

(msg) denote user U

i

's signature on msg. Also, we let E

i

(msg) denote an

enryption of msg under user U

i

's publi key.

We desribe the protool in terms of two user's U

i

and U

i

0

.

U

i

! U

i

0

: r; ert

i

,

where r is a (suÆiently long) random bit string.

U

i

0

! U

i

: � = E

i

(K; ID

i

0

); sig

i

0

(�; r; ID

i

); ert

i

0

,

where K is a random bit string.

The agreed upon session key is K. As usual, both users hek the relevant signatures. Ad-

ditional, user U

i

heks that the deryption of � is of the right form, ontaining the expeted

identity.

8.2 Seurity analysis of EKE

Theorem 2 Protool EKE is a seure key exhange protool, assuming seure signatures, and

assuming the enryption sheme is non-malleable.

We now prove this theorem. The basi struture of the proof is the same as that of Theorem 1

in x7.

Case 1. Suppose a user instane I

i

0

j

0

has just reeived the �rst message in the protool, and

has aepted.

Case 1a. If PID

i

0

j

0

is not assigned to a user, then we ompromise I

i

0

j

0

in the ideal world,

extrating the key K from I

i

0

j

0

.

Case 1b. Otherwise, suppose PID

i

0

j

0

is assigned to a user U

i

. Then we reate I

i

0

j

0

in the ideal

world, and the ring master substitutes the session key held by I

i

0

j

0

with a random key. Beause

we are assuming the enryptions are non-malleable, this substitution will be undetetable, provided

the iphertext � is never atually derypted. We justify this laim below.

Case 2. Now suppose a user instane I

ij

has just reeived a message.

Case 2a. Suppose that PID

ij

is not assigned to a user.

If the iphertext � reeived was generated by any user instane I

i

0

j

0

with PID

i

0

j

0

= ID

i

, then

we an safely make I

ij

rejet, as the identity embedded in � (ID

i

0

) is not what I

ij

expets (PID

ij

).

This is done without ever derypting �.

Otherwise, if the iphertext � was not generated by any suh user instane, we let I

ij

run to

ompletion. If it aepts, we ompromise I

ij

, extrating the session key from I

ij

. This of ourse

makes impliit use of the deryption funtion of user U

i

, but we have taken are not to derypt

anything that was enrypted by a user instane I

i

0

j

0

with PID

i

0

j

0

= ID

i

. As we will see, this is the

only plae in the game where we derypt anything. This justi�es the laim made above in ase (1b)

that we never derypt iphertexts reated by user instanes with onnetion assignment reate.

Case 2b. If PID

ij

is assigned to a user U

i

0

, we proeed as follows. If the signature veri�ation

sueeds, then the iphertext �must have been reated by a unique user instane I

i

0

j

0

with PID

i

0

j

0

=
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ID

i

, and the the identity embedded in the iphertext must be ID

i

0

, so there is no need to atually

derypt it. Moreover, it is easy to see that onneting I

ij

to I

i

0

j

0

is valid at this moment, beause

the r values are all unique (at least with overwhelming probability). So we onnet I

ij

to I

i

0

j

0

, and

the ring master sets the session key of I

ij

to the key that it generated for I

i

0

j

0

. This substitution is

undetetable, sine the two session keys were the same in the real world.

It is lear from the arguments already made that the real world and ideal world transripts

are indistinguishable. That proves the simulatability requirement. The termination and liveness

requirements are trivial.

Remark 9 One of the main attrations of protool EKE is that it an be implemented so as to

minimize the omputational e�orts of one of the two users|user U

i

0

in this ase. First, one ould

use a low-exponent RSA signature sheme [BR96℄ for the erti�ates, so that erti�ate veri�ation

is heap. Seond, one ould use a low-exponent RSA [BR93b, BR94℄ for the enryption sheme.

Third, for the signature sheme that user U

i

0

uses to sign messages in the protool, one ould use

Shnorr's signature sheme [Sh91℄. In this sheme, one an perform some \o� line" omputations

so that the \on line" ost of signing is extremely heap. Thus, if user U

i

0

is a server that is heavily

loaded at some times, but not at others, the server an perform the \o� line" omputations during

non-peak hours, and thereby provide a fast response time during peak hours.

9 Anonymous Users

In this setion, we extend our formal model of seurity for session key protools to model the setting

where one of the two users establishing a session key is anonymous. By an anonymous user, we

simply mean one without a erti�ate, so perhaps a better term would be unauthentiated.

Of ourse, to the non-anonymous user, the session key protool itself an o�er little protetion,

sine the anonymous user ould be the adversary, or an honest user, and the non-anonymous user

annot tell the di�erene. Typially, however, an anonymous user will authentiate himself within

the seure session using a password. We disuss this in more detail in x9.4.

9.1 De�nitions

Adding anonymous users is simple. We reate a speial user U

0

with the speial identity ID

0

=

anonymous. An entity that wants to run the protool as an anonymous user will simply utilize a

user instane I

0j

for this purpose. Note that user U

0

has no assoiated seret key or long-term

state, and is onsidered to be pre-initialized.

Beyond the introdution of this speial user U

0

, the rest of the model stays exatly the same

as before, with one exeption. The ompromise rule C3 (see x3.1.4) regulating the onnetion

assignment for a user instane I

ij

is replaed by:

C3

�

The onnetion assignment ompromise is legal provided PID

ij

is not assigned to a user, or

PID

ij

= anonymous:

That is, the ideal-world adversary A

�

is always free to make a onnetion assignment of ompromise

for a user instane I

ij

if PID

ij

= anonymous:

Remark 10 Intuitively, this relaxation of the ompromise rule is neessary, sine as we remarked

above, an anonymous user may really be the adversary himself. Note, however, that for any protool

that satis�es our de�nition of seurity, A

�

annot always hoose to ompromise suh a user instane.
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Remark 11 The fat that we group together all anonymous user instanes under a single user U

0

is simply a tehnial onveniene. In pratie, suh user instanes will not typially be running on

the same mahine, and may indeed be running on the same mahine on whih a non-anonymous

user is running.

Remark 12 There is nothing in our de�nition that rules out a protool that attempts to establish

a key between two anonymous user instanes. However, our de�nition would provide no seurity

guarantees for suh a key, so we shall not onsider suh protools here.

9.2 A DiÆe-Hellman based protool

We an extend protool DHKE to obtain the following protool A-DHKE.

U

0

! U

i

0

: g

x

,

where x 2 Z

q

is hosen at random.

U

i

0

! U

0

: g

y

; k; sig

i

0

(g

x

; g

y

; k; anonymous); ert

i

0

;

where y 2 Z

q

is hosen at random, and k is a random hash funtion index.

As usual, the anonymous user heks all the relevant signatures. Both users ompute the session

key as H

k

(g

xy

). Also, we assume here that the group used for the omputations is shared by all

anonymous users. It an wither be \hardwired" into all users, or an be part of the publi key

PK

T

.

Note that we onsider protool A-DHKE to be an extension of protool DHKE, meaning that

both anonymous and non-anonymous key exhanges may take plae in any ombination.

Theorem 3 Protool A-DHKE is seure, under the DDH assumption, and assuming seure sig-

natures.

The proof is just a slight modi�ation of the proof of Theorem 1. The only thing that hanges

is the alulation of the onnetion assignment in ase (1a) of that proof. In this ase, we shall

ompromise I

i

0

j

0

if either

� PID

i

0

j

0

is not assigned to a user, or

� PID

i

0

j

0

= anonymous and there does not exist an anonymous user instane I

0j

with PID

0j

=

ID

i

0

that sent g

x

as its �rst message in the protool.

The rest of the proof goes through without hange.

Remark 13 The reader may have notied that protool A-DHKE is vulnerable to the following

PKI \attak." An adversary ould take the publi key of an honest user B, and register a name

^

B with the same publi key. Then by replaing B's erti�ate in the protool with

^

B's erti�ate,

the adversary ould make the anonymous user think he has a key established with

^

B, whereas he

really shares a key with B. Our de�nition of seurity does not rule out this \attak," and it is

easy to arry out this \attak" on protool A-DHKE. However, we argue that this \attak" is

spurious. Indeed, if the session key is used for the purpose of establishing a seure session, then

the adversary an always ahieve the same e�et muh more easily, as follows. He ould separately

establish session keys with the anonymous user and with B, and then just at as a \bridge" between

these two users, derypting and re-enrypting messages as neessary. Also note that one ould try

to prevent the above \attak" on A-DHKE by having U

i

0

inlude his identity ID

i

0

in the message

that it signs in the seond ow; however, although this would make the \attak" more diÆult to

mount, one ould not rule it out under the standard de�nition of seure signatures.
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9.3 Two enryption based protools

We extend protool EKE in two di�erent ways. The �rst protool, A-EKE-1, runs as follows.

U

i

! U

0

: r; ert

i

,

where r is a (suÆiently long) random bit string.

U

0

! U

i

: E

i

(K; anonymous; r);

where K is a random bit string.

As usual, the agreed upon session key is K, and user U

i

heks that the values embedded in

enrypted message are orret.

Theorem 4 Protool A-EKE-1 is seure assuming seure signatures and non-malleable enryp-

tion.

The proof of this theorem is just a slight modi�ation of the proof of Theorem 2. We need to

modify only ase (2b) of that proof when PID

ij

= anonymous.

� If � was not reated by an anonymous user instane, we let the protool run to ompletion,

and ompromise I

ij

, should it aept. If I

ij

aepts, this involves an impliit deryption of �,

but by the logi of the protool, � annot be one of the iphertexts from step (1b) that we

are not allowed to derypt.

� Otherwise, if � was reated by a (neessarily unique) user instane I

0j

0

, then there are two

sub-ases.

{ If the value r reeived by I

0j

0

mathes that sent by I

ij

, then we onnet I

ij

to I

0j

0

.

{ Otherwise, we let I

ij

rejet, sine that is what I

ij

would anyway do.

In both sub-ases, we do not derypt �.

Remark 14 We have written protool A-EKE with the non-anonymous user U

i

in the role of the

initiator, and the anonymous user U

0

in the role of the responder. In a typial setting, however,

the non-anonymous user is a \server," and the anonymous user is a \lient." In suh a setting,

we would typially expet the lient to initiate the protool. If that is the ase, then the protool

must ontain an initial ow from the lient to the server, just to get things started, so the protool

would atually require three ows.

Remark 15 This protool an be implemented so that the omputational burden on the lient is

very minimal, by using low-exponent RSA based enryptions and signatures. This might be useful

in some settings where the lient is omputationally limited; unfortunately, in many settings, is

turns out to be the server who is already omputationally overburdened.

Here is an alternative, rather amusing protool A-EKE-2. Let f be a pseudo-random funtion

family, indexed by a key K.

U

i

! U

0

: ert

i

.

U

0

! U

i

: E

i

(K; anonymous);

where K is a random bit string.
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U

i

! U

0

: r,

where r is a random bit string.

In this protool, the agreed upon session key is omputed as f

K

(r).

Theorem 5 Protool A-EKE-2 is seure assuming seure signatures, non-malleable enryption,

and a seure pseudo-random funtion.

We leave this proof as an exerise for the reader.

Remark 16 Sine the last ow from U

i

to U

0

is not authentiated, if the adversary modi�es the

value r while it is in transit, then both user instanes will simply be permanently isolated. Thus,

while the protool satis�es our de�nition of seurity, it does not guarantee expliit key on�rmation

for either originator or responder (see x3.4, point (12)).

Remark 17 The point of this protool is to address the issue raised in Remark 14. In the

lient/server setting desribed there, protool A-EKE-2 would in the worst ase require four ows.

However, if the lient happens to already have the erti�ate of the server stored loally, only two

ows are neessary. Indeed, protools A-EKE-1 and A-EKE-2 ould be ombined so that the

lient uses the former if it does not already have the server's erti�ate, and the latter if it does.

9.4 The priniple appliation: seure sessions

We an extend the formal seurity model and implementation skethed in x4 for a seure session

protool to inlude anonymous users. Atually, nothing hanges, exept that we let the adversary

make onnetion assignments using the modi�ed rule C3

�

, desribed above.

We an go one step further, if we wish, and onsider the situation where the anonymous user

authentiates himself to the non-anonymous user by means of a password. Now, one an anonymous

user has an established a seure session, he an simply send his password through the seure hannel.

Sometimes this message an even be piggy-baked on the last message of the key exhange protool,

in whih ase there is no extra ommuniations ost. There is really nothing more to it. It is easy

to see that given the properties of a seure session, suh a password-based sheme will have all the

properties one ould possibly hope for; in partiular,

� an adversary trying to guess a password annot do any better than an \on line" password

guessing attak, and

� if an anonymous user establishes a session and then authentiates himself within the session

using a password, an adversary annot afterwards \hijak" the session.

As already mentioned in x1, our approah to this problem is perhaps an attrative alternative to

the approah taken by many other authors. By appropriately de�ning seure key exhange in the

anonymous user setting, we an easily analyze suh protools without worrying about passwords.

Then using a standard implementation for seure sessions on top of the key exhange protool, and

passing the password through the seure hannel, we get a password-authentiated seure session

essentially \for free." Moreover, one an implement a single \low layer" ommuniation protool

that implements seure sessions with anonymous users, without any passwords; on top of this, one

an implement arbitrary protools that may or may not require passwords: \telnet," \FTP," et.
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10 A Formal Model for Seurity Against Adaptive Corruptions

We now extend our formal seurity model to deal with adaptive orruptions. In an adaptive

orruption, the adversary obtains a user's long-term seret, but nothing else.

In x14, we shall onsider strong adaptive orruptions, in whih the adversary obtains ephemeral

data as well as long-term serets.

Note that our formal model already allows one to model the exposure of session keys (using

appropriate appliation operations), but as was pointed out in x4, a typial implementation of a

seure session protool built on top of a seure key exhange protool will not be seure (in the

sense of simulatability) if we allow the exposure of session keys.

Additionally, we allow a orruption to enompass the possibility of a fault in the erti�ate

authority, whereby the adversary obtains a erti�ate of his hoie on a user's identity.

Our approah will be that when a user is orrupted, that user ontinues to play along in all

interations as usual, following its protool orretly. Of ourse, the adversary, having obtained the

seret key, an interat with other users, \pretending" to be this user.

We need to modify both the real system model and the ideal system model. The de�nition of

seurity, de�ned in terms of termination, liveness, and simulatability, will remain exatly the same.

10.1 The real system

The adversary may exeute a orrupt user operation, whih takes the form

(orrupt user; i):

The adversary spei�es a user U

i

that has been previously initialized, and obtains the user's long-

term state LTS

i

.

The following two reords are added to the transript:

(orrupt user; i);

and

(implementation; orrupt user;LTS

i

):

Additionally, at any point in time after a orrupt user operation, we allow the adversary to

perform register operations using the identity ID

i

Note that sine LTS

i

may hange over time, we allow a orrupt user operation to be applied to

an already orrupted user.

10.2 The ideal system

The adversary may exeute a orrupt user operation,

(orrupt user; i);

speifying a previously initialized user U

i

. The reord

(orrupt user; i)

is added to the transript.

No information is given to the adversary in the ideal world when a user is orrupted.
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The only other hange to the model is that we have to modify the rules in x3.1.4 governing the

legality of the onnetion assignments made during during a start session operation applied to a

user instane I

ij

.

The hange here is minimal. We hange rule C3 as follows:

C3

0

The onnetion assignment ompromise is legal if either

{ PID

ij

is not assigned to a user,

{ PID

ij

is assigned to a orrupted user, or

{ user U

i

is orrupted.

Remark 18 It is important to notie what does not hange. In partiular, the ideal-world ad-

versary is free to make the onnetion assignments reate and onnet, regardless of whether any

of the relevant users have been orrupted|he is never fored to make the onnetion assignment

ompromise. This keeps our de�nitions simple and natural: if Alie thinks she is talking to a user

Bob, but Bob has had his long-term seret key exposed, then Alie may indeed be talking to Bob or

to the adversary. This gives our simulators the exibility they need to deal with situations where a

user is orrupted while it is in the middle of an on-going protool.

10.3 A more onservative ompromise rule

Notie that we allow a onnetion assignment of ompromise for I

ij

if user U

i

itself has been

orrupted. While this may seem fairly natural, one ould make a more onservative ompromise

rule that required that PID

ij

is not assigned to an unorrupted user|orruption of U

i

would not

be suÆient by itself.

Suh a onservative ompromise rule makes a di�erene.

First, it would make a di�erene in the inferenes one ould make in higher-level protools.

For example, Alie ould infer that a supposed message from Bob in a seure session was indeed

from Bob unless Bob was orrupted|it would not matter if Alie's long-term seret key had been

exposed or not. This is preisely the same inferene that Alie ould draw if the message were

authentiated diretly with a digital signature. This inferene ould not be drawn under the liberal

ompromise rule.

Seond, it would make a di�erene in whih protools would be onsidered seure. In x12 we

will see examples of protools that are seure under the liberal ompromise rule but not seure

under the onservative ompromise rule.

In the sequel, we will adopt the liberal ompromise rule as our \default" rule, but will point

out those situations where imposing the onservative rule would make a di�erene.

10.4 The priniple appliation: seure sessions

We ontinue our disussion about the priniple appliation of session key exhange protools,

namely, to build a seure session protool. We an adapt the formal model and implementa-

tion of a seure session protool skethed in x4 to deal with adaptive orruptions. In fat, nothing

really hanges, exept the rules for onnetion assignments. The important thing to note, however,

is that if a user instane starts a session, and that session is initially unompromised, then it will

never be ompromised, even if one of the relevant parties is orrupted while the session is ongoing.
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10.5 Non-forward seurity against adaptive orruptions

Our de�nition of seurity against adaptive orruptions aptures the intuitive notion of forward

seurity. One an easily formulate a notion of non-forward seurity against adaptive orruptions,

wherein the adversary in the ideal world would also obtain all the relevant session keys, whih

means, all the session keys established by instanes of the orrupted user U

i

, as well as all session

keys K

i

0

j

0

with PID

i

0

j

0

= ID

i

. Absolutely nothing else would hange: in partiular, none of this

extra information would be logged in the ideal world or real world transripts.

This notion of non-forward seurity does not seem to be very attrative, for two reasons. First,

it does not seem to be any easier to ahieve non-forward seurity than to ahieve forward seurity.

Seond, it would be very diÆult to build a pratial seure session protool that was seure against

adaptive orruptions on top of suh a key exhange protool.

10.6 Anonymous users

It is trivial to adapt the de�nition of seurity with respet to anonymous users (see x9) to inorporate

adaptive orruptions. All that hanges is rule C3

0

is x10.2, so that the the onnetion assignment

ompromise is also legal when PID

ij

= anonymous (as in rule C3

�

in x9.1). As the anonymous user

U

0

does not have any long-term state, it annot be orrupted.

11 Interlude: On the inseurity of protools DHKE and EKE

against adaptive orruptions

In this setion, we argue that protoolsDHKE and EKE are inseure against adaptive orruptions.

11.1 Protool DHKE against adaptive orruptions

Consider a user instane I

ij

who is engaging in the protool (as an initiator) with a ompatible user

instane I

i

0

j

0

(as a responder). Suppose that the �rst message in the protool is delivered to I

i

0

j

0

,

so that I

i

0

j

0

omputes a session key K

i

0

j

0

= H

k

(g

xy

), along with a response message to be sent to

bak to I

ij

. At this point, the adversary reveals K

i

0

j

0

using an appropriate appliation operation.

Next, the adversary orrupts user U

i

0

before the response message is delivered to I

ij

, so that the

adversary obtains the signing key of U

i

0

. If I

i

0

j

0

's response message was

(g

y

; k; sig

i

0

(g

x

; g

y

; k; ID

i

));

the adversary instead delivers the message

(h; k; sig

i

0

(g

x

; h; k; ID

i

))

to I

ij

, where h is a group element hosen in some mysterious way by the adversary. The adversary

an do this, sine it has the signing key of user U

i

0

. Now, I

ij

will aept and ompute its session

key K

ij

= H

k

(h

x

), and we also reveal this session key using an appropriate appliation operation.

Now, at the point in time when I

i

0

j

0

generated its session key, it was not orrupted, so the only

possible onnetion assignment for I

i

0

j

0

is reate. This means that K

i

0

j

0

should be indistinguishable

from a random key. But we annot hope to prove this under the standard DDH assumption, sine

the additional information H

k

(h

x

) is available to any statistial test.

We believe that the problem is a fundamental one, having more to do with the inherent mal-

leability of DiÆe-Hellman based enryption, than with the partiulars of our formal model.
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11.2 Protool EKE against adaptive orruptions

At best, it is lear that all we ould hope for is that protool EKE is seure against adaptive

orruptions in the non-forward sense desribed in x10.5. This is beause if we orrupt a user U

i

and obtain his private deryption key, we an easily ompute all of the session keys that were ever

sent enrypted to it in the protool.

But things are muh worse than that. Consider the following senario. Say we have n pairs

of users U

i

and U

i

0

, with all users distint. Now we let all n pairs run the session key protool,

and start using their session keys in appliation protools. Now the adversary orrupts a random

subset of the U

i

users, obtaining their long-term deryption keys.

How ould we simulate this? When the session key protools terminate, we want to substitute

all of the atual session keys with random keys before the users start using them in an appliation

protool. We have to, beause we have no idea whih subset the adversary will orrupt. But

when we obtain the deryption keys, we will have an inonsistent transript: the atual iphertexts

derypt to values di�erent from the substituted session keys.

12 DiÆe-Hellman Based Protools for Adaptive Corruptions

In this setion, we examine three DiÆe-Hellman based protools that are seure against adaptive

orruptions. We all these DHKE-n for n 2 f1; 2; 3g:

12.1 Protool DHKE-1

We now show how to modify protool DHKE to obtain a protool that is seure against adaptive

orruptions. We all this protool DHKE-1. It is essentially the same as DHKE, but with an

additional \key on�rmation" ow.

The system set up is the same as before. Additionally, we need a pseudo-random bit generator

BitGen.

The protool runs as follows.

U

i

! U

i

0

: g

x

; sig

i

(g

x

; ID

i

0

); ert

i

,

where x 2 Z

q

is hosen at random.

U

i

0

! U

i

: g

y

; k; sig

i

0

(g

x

; g

y

; k; ID

i

); ert

i

0

,

where y 2 Z

q

is hosen at random, and k is a random hash funtion index.

U

i

! U

i

0

: k

1

,

where (k

1

; k

2

) = BitGen(H

k

(g

xy

)).

The agreed upon session key is k

2

, where (k

1

; k

2

) = BitGen(H

k

(g

xy

)) as above. In addition to

all the usual signature heks, user U

i

0

heks the value k

1

is as expeted. We assume that k

1

is a

suÆiently long bit string (of length, e.g., linear in the seurity parameter).

Theorem 6 Protool DHKE-1 is seure against adaptive orruptions, under the DDH assump-

tion, and assuming seure signatures and that BitGen is a seure pseudo-random bit generator.

We now prove this theorem, whih follows the general outline of all our other proofs so far.

That is, we show how to transform a real world A into an equivalent ideal world A

�

.

Let G

i

denote the desription of the group that is ontained in ert

i

.

34



Case 1. Suppose a user instane I

ij

has just reeived its last message, and all the signatures

are valid.

Case 1a. Suppose PID

ij

is assigned to user U

i

0

, and some instane I

i

0

j

0

with PID

i

0

j

0

= ID

i

reeived the g

x

; G

i

values sent by I

ij

and sent the g

y

; k values reeived by I

ij

. In this ase, we make

I

ij

aept in the ideal world, and we give it the onnetion assignment reate, whereby the ring

master hooses a random string for the session key. Additionally, we will generate a random string

k

1

, whih we will all the on�rmation key of I

ij

for future referene. Note that we do all of this,

even if user U

i

0

has been orrupted.

Case 1b. Suppose the ondition in ase (1a) does not hold. By the logi of the protool, the

only way this ould happen is if PID

ij

is not assigned to an unorrupted user, or user U

i

is itself

orrupted. We extrat the omputed session key and on�rmation key from I

ij

in the real world,

and ompromise I

ij

using the omputed session key.

Case 2. Suppose that I

ij

has reeived its last message, and the signatures do not hek. Then

we let I

ij

rejet in the ideal world, whih is what it would do anyway in the real world.

Case 3. Suppose a player instane I

i

0

j

0

has just reeived its last message, and all the signatures

hek.

Case 3a. Suppose PID

i

0

j

0

is assigned to user U

i

, and some instane I

ij

with PID

ij

= ID

i

0

sent the g

x

; G

i

values reeived by I

i

0

j

0

and reeived the g

y

; k values sent by I

i

0

j

0

. Let k

1

be the

on�rmation key of I

ij

(see ase (1a)). We then test if the last message reeived by I

i

0

j

0

is equal to

k

1

. If not, we let I

i

0

j

0

rejet. Otherwise, we onnet I

i

0

j

0

to I

ij

. As this our only rule for onneting

two user instanes, it is easy to see that no other user instane has onneted to I

ij

, and hene it

is still isolated. Note that we do all of this, even if user U

i

has been orrupted.

This last point is ruial. User U

i

may have been orrupted after I

ij

aepted and sent its

last message, and in the meantime, I

ij

may very well have started to use its session key. In the

simulation we have already substituted K

ij

with an idealized random key, and so we annot a�ord

to ompromise I

i

0

j

0

at this point. This is is the situation referred to in Remark 18.

Case 3b. Suppose the ondition in ase (3a) does not hold. There two further sub-ases to

onsider.

Case 3b

0

. Suppose that at this point in the game, user U

i

0

is not orrupted, and that g

x

; G

i

ame from a user instane I

ij

with PID

ij

= ID

i

0

. Then in the ideal world, we simply make I

i

0

j

0

rejet. See below for a disussion of why this is valid.

Case 3b

00

. If we reah this sub-ase, by the logi of the protool, the only way this ould happen

is if PID

i

0

j

0

is not assigned to an unorrupted user, or user U

i

0

itself is orrupted. We then extrat

both the session key and the on�rmation key from I

i

0

j

0

. We then test the if the reeived message is

equal to the omputed on�rmation key. If this test fails, we let I

i

0

j

0

rejet, just as it would in the

real world. Otherwise, we let it aept, and ompromise I

i

0

j

0

in the ideal world using the omputed

session key.

Case 4. Suppose that I

i

0

j

0

has reeived its last message, and the signatures do not hek. Then

we let I

i

0

j

0

rejet in the ideal world, whih is what it would do anyway in the real world.

Clearly, we have not broken any of the rules governing the ideal world simulation. But we also

have to show that the resulting simulation is faithful to the real world. Notie that the only time we

make two user instanes partners, the orresponding values of G

i

; g

x

; g

y

and k math. Beause this

ondition is symmetri, we will never ompromise one key, while substituting the other instane's

key with a random key.

The faithfulness of the simulation now follows from the DDH assumption, but there is one

subtle point that requires further omment: the \fored" rejetion by user instane I

i

0

j

0

in ase
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(3b

0

). We have to argue that this is what would have happened in the real world, sine we never

asked I

i

0

j

0

what he really wanted to do. But onsider the user instane I

ij

referred to in that sub-

ase. Sine user U

i

0

has not been orrupted at this point, the adversary ould not have forged any

messages on behalf of user U

i

0

. Therefore, either I

ij

has not aepted (either it rejeted or has not

yet reeived the seond message in the protool), or it has aepted using some value g

y

0

generated

independently by another instane of user U

i

0

. So at this point, under the DDH assumption, the

value k

1

that I

i

0

j

0

is expeting is (omputationally) independent from the adversary's view in the

real world. Thus, letting I

i

0

j

0

rejet is the right ation.

That ompletes the proof of the theorem.

Remark 19 Key on�rmation is a mysterious and anient tradition pratied by protool design-

ers, as was already alluded to in x3.4, point (12). There has never been a satisfying explanation of

why they did this. Now we know: to allow a proof of simulatability against adaptive orruptions.

We an extend protool DHKE-1 to deal with anonymous users, obtaining the following pro-

tool A-DHKE-1. As in protool A-DHKE (see x9.2), we assume that all anonymous users work

with a shared group.

U

0

! U

i

0

: g

x

;

where x 2 Z

q

is hosen at random.

U

i

0

! U

0

: g

y

; k; sig

i

0

(g

x

; g

y

; k; anonymous); ert

i

0

,

where y 2 Z

q

is hosen at random, and k is a random hash funtion index.

U

0

! U

i

0

: k

1

,

where (k

1

; k

2

) = BitGen(H

k

(g

xy

)).

We leave it to the reader to verify that this protool is seure with respet to our de�nitions of

anonymous users (x9) and adaptive orruptions (x10.6).

12.2 Protool DHKE-2

We presented protool DHKE-1 as we did beause it is a minimal modi�ation of DHKE and has

an interesting proof of seurity. An alternative is the following DHKE-2, whih is losely related

to STS.

The set up is just as in DHKE.

U

i

! U

i

0

: g

x

; ert

i

,

where x 2 Z

q

is random.

U

i

0

! U

i

: g

y

; k; sig

i

0

(g

x

; g

y

; k; ID

i

); ert

i

0

,

where y 2 Z

q

is random and k is random.

U

i

! U

i

0

: sig

i

(g

x

; g

y

; k; ID

i

0

).

Theorem 7 Protool DHKE-2 is seure against adaptive orruptions, under the DDH assump-

tion, and assuming seure signatures.

The proof of seurity for DHKE-2 is atually more straightforward than for DHKE-1.
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Case 1. Suppose I

ij

has just aepted.

Case 1a. Suppose PID

ij

is assigned to user U

i

0

and some instane I

i

0

j

0

with PID

i

0

j

0

= ID

i

reeived the g

x

; G

i

values sent by I

ij

and sent the g

y

; k values reeived by I

ij

. Then we reate

I

ij

, and K

ij

is replaed with a random key. We will see below that I

i

0

j

0

is not ompromised, it

either rejets or onnets to I

ij

. It follows from the DDH assumption that the substitution will go

unnotied.

Case 1b. If the ondition in ase (1a) does not hold, then by the logi of the protool, either U

i

is orrupted, or PID

ij

is not assigned to an unorrupted user. So we ompromise I

ij

.

Case 2. Suppose I

i

0

j

0

has just aepted.

Case 2a. Suppose PID

i

0

j

0

is assigned to user U

i

and some instane I

ij

with PID

ij

= ID

i

0

sent

the g

x

; G

i

value sent by I

ij

and reeived the g

y

; k value sent by I

i

0

j

0

. Then we make I

i

0

j

0

onnet to

I

ij

. From the arguments above, I

ij

has not been ompromised, and it is thus lear that I

ij

is still

isolated.

Case 2b. Suppose the ondition in ase (2a) does not hold. Then by the logi of the protool,

PID

i

0

j

0

is not assigned to an unorrupted user, so we ompromise I

ij

.

12.3 Protool DHKE-3

Although protools DHKE-1 and DHKE-2 are seure against adaptive orruptions using the

liberal ompromise rule, it is perhaps interesting to note that they are apparently not seure under

the onservative ompromise rule (x10.3). To ahieve seurity in this striter sense, there seems to

be no easy way to repair DHKE-1, but DHKE-2 an be relatively easily repaired as follows. We

all this protool DHKE-3.

Before desribing DHKE-3, let us see where things go wrong for DHKE-1 and DHKE-2

with the onservative ompromise rule.

In the proof of Theorem 6, onsider ase (1b). The onversations may not have mathed beause

the desription of the group G

i

may not have mathed, whih may have happened beause user

U

i

was orrupted, not beause U

i

0

was orrupted. Under the onservative ompromise rule, we are

not allowed to ompromise here. The problem is even worse in ase (3b

00

). There, we really need

to ompromise if U

i

0

is orrupted, but again, the onservative ompromise rule forbids this. The

same problem that arose with G

i

in the proof of Theorem 6 also arises in the proof of Theorem 7,

but that is the only problem that arises.

Now we desribe DHKE-3. The set up is the same as above. Reall that G

i

is the desription

of the group used by user U

i

. In the previously disussed DiÆe-Hellman based protools, this

information was in the erti�ate of user U

i

. In this protool, we do not require this|under the

onservative ompromise rule, it does not help.

U

i

! U

i

0

: G

i

; g

x

; ert

i

,

where x 2 Z

q

is random.

U

i

0

! U

i

: g

y

; k; sig

i

0

(G

i

; g

x

; g

y

; k; ID

i

); ert

i

0

,

where y 2 Z

q

is random and k is random.

U

i

! U

i

0

: sig

i

(G

i

; g

x

; g

y

; k; ID

i

0

).

Theorem 8 Protool DHKE-3 is seure against adaptive orruptions, using the onservative om-

promise rule, under the DDH assumption, and assuming seure signatures.
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The proof is almost idential to that of Theorem 7. The only di�erene is ase (1b). Here we

an onlude that if there was no mathing I

i

0

j

0

, then it must be the ase that PID

ij

is not assigned

to an unorrupted user. We omit further details.

We an also extend protool DHKE-3 to handle anonymous users, obtaining the following

protool A-DHKE-3.

U

i

! U

0

: G

i

; g

x

; ert

i

,

where x 2 Z

q

is random.

U

0

! U

i

: g

y

; k,

where y 2 Z

q

is random and k is random.

U

i

! U

0

: sig

i

(G

i

; g

x

; g

y

; k; anonymous).

We leave it to the reader to verify that this protool is seure with respet to our de�nitions of

anonymous users (x9) and adaptive orruptions (x10.6). Like protool DHKE-3, this protool is

seure using the onservative ompromise rule.

13 An Enryption Based Protool for Adaptive Corruptions

We now present a simple two pass key exhange protool using publi key enryption. It is very

similar to our protool EKE, exept that here we use ephemeral publi keys, instead of a �xed,

long-term publi key. Alternatively, one an view it as a modi�ation of protool DHKE, where

we replae malleable DiÆe-Hellman enryption by a non-malleable enryption sheme. We all this

protool EKE-1.

In this sheme, eah user generates a publi key/private key pair for a signature sheme. This

publi key is what goes in his erti�ate. Eah user also uses a key generation algorithm KeyGen()

for a non-malleable publi key ryptosystem. The output of KeyGen() is a publi key/private key

pair (E;D).

The protool runs as follows.

U

i

! U

i

0

: E; sig

i

(E; ID

i

0

); ert

i

,

where (E;D) = KeyGen().

U

i

0

! U

i

: � = E(K); sig

i

0

(�;E; ID

i

); ert

i

0

,

where K is a random bit string.

The agreed upon session key is K, whih user U

i

obtains by omputing D(�). As usual, both

users hek the relevant signatures.

Note that unlike protool EKE, user U

i

0

does not need to inlude his identity ID

i

0

in the

enrypted message.

Theorem 9 Protool EKE-1 is seure against adaptive orruptions, assuming seure signatures,

and assuming the enryption sheme is non-malleable.

We now prove this theorem, following the outline of all the previous proofs.

Case 1. Suppose I

i

0

j

0

has just terminated suessfully.

Case 1a. Suppose the value E reeived by I

i

0

j

0

ame from some I

ij

suh that PID

i

0

j

0

= ID

i

and

PID

ij

= ID

i

0

. Then we reate I

i

0

j

0

, and replae the session key K

i

0

j

0

with a random string.

Case 1b. Suppose the ondition in ase (1a) does not hold. Then by the logi of the protool

and the seurity of the signatures, it must be the ase that PID

i

0

j

0

is not assigned to an unorrupted

user. So we ompromise I

i

0

j

0

.
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Case 2. Suppose I

ij

has just terminated the protool suessfully.

Case 2a. Suppose that there is a user instane I

i

0

j

0

suh that PID

i

0

j

0

= ID

i

and PID

ij

= ID

i

0

,

and I

i

0

j

0

reeived the value E sent by I

ij

and sent the value � reeived by I

ij

. Then we onnet I

ij

to I

i

0

j

0

. Sine the values E generated by di�erent instanes of user U

i

are (almost surely) unique,

this onnetion assignment will (almost surely) be valid. In onneting I

ij

to I

i

0

j

0

, we set the session

key K

ij

equal to K

i

0

j

0

, and thus we do not bother to derypt �.

Case 2b. Suppose the ondition in (2b) does not hold. Then by the logi of the protool and the

seurity of the signatures, it must be the ase that PID

ij

is not assigned to an unorrupted user.

So we ompromise I

ij

. As usual, we extrat the atual session key from I

ij

. This makes impliit

use of the deryption funtion of user instane I

ij

. It is easily veri�ed that this deryption does

not a�et the indistinguishability of the substitution made in ase (1a), sine if we derypted the

iphertext from ase (1a) under the deryption key from (1a), we would be in ase (2a), and not

ase (2b).

That ompletes the proof of the theorem.

Remark 20 It is easy to see that protool EKE-1 remains seure even under the onservative

ompromise rule (x10.3).

Remark 21 The di�erenes between the DiÆe-Hellman based protools and EKE-1 illustrate an

interesting phenomenon. The real problem with protool DHKE in the fae of adaptive orruptions

is the malleability of DiÆe-Hellman based enryption. This problem an be �xed either by using a

non-malleable ryptosystem, or by adding extra interation.

Remark 22 We have to generate a new publi key/private key for enryption with every run of

the protool. For RSA-based shemes, this an be impratial, as prime number generation an

be quite slow. A more pratial approah would be to use a DiÆe-Hellman based sheme, suh as

Cramer-Shoup [CS98℄ or Fujisaki-Okamoto [FO99℄, but to generate the group just one, and to use

the same group with eah run of the key exhange protool (whih does not a�et the seurity).

14 Strong Adaptive Corruptions

In this setion, we onsider even more powerful real-world adversaries; namely, adversaries whih

an adaptively orrupt users, and when a user is orrupted, not only does the adversary obtain

the user's long-term seret, but he also obtains any internal, ephemeral data that has not been

expliitly erased. We all suh a orruption a strong orruption to distinguish it from the notion of

orruption we have already studied in whih the adversary obtains only the long-term seret of a

user.

One ould onsider a model that allows a mix of orruptions and strong orruptions, but we

shall not do that here, if only for the sake of simpliity. Instead, we will assume that there are only

strong orruptions in this setion.

In de�ning seurity against strong adaptive orruptions, in inreasing the power of the adversary,

we have to relax the seurity guarantees. Therefore, under our de�nitions, seurity against strong

adaptive orruptions does not imply seurity against adaptive orruptions. The two notions of

seurity are inomparable.

In x14.1, we give a preise de�nition of strong orruptions for a real-world adversary; in x14.2,

we identify those session keys that are inherently vulnerable when a user is strongly orrupted,

whih motivates our de�nition of strong orruptions in the ideal world in x14.3.
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In x14.4 we present a key exhange protool that is seure under our de�nition.

In x14.5 we shall sketh a formal de�nition of a seure session protool in the ontext of strong

adaptive orruptions.

In x14.6 we shall show how to eÆiently implement suh a seure session protool on top of a

key exhange protool satisfying our de�nition of seurity.

None of the above applies to the anonymous user setting, whih requires speial treatment. We

disuss this in x14.7.

14.1 Strong orruptions in the real world

When a user is strongly orrupted, we assume the real-world adversary obtains that user's long-

term seret, as well as all the unerased data of eah of that user's instanes that is still ative, i.e.,

still running the key exhange protool. We an assume that when an instane of the key exhange

protool terminates, all internal data is erased. Let us emphasize that the adversary does not obtain

any session keys. The reason for this is that session keys belong to higher-level protools that use

the session keys, and they have the right to erase these keys. Whatever appliation-spei� data we

wish to make aessible to the adversary when a user is orrupted we an model by an appropriate

use of appliation operations, in onjuntion with the strong orruption operation. This may or

may not inlude session keys.

So the only hange to the real-world adversary is that he may exeute the operation

(strong orrupt user; i);

where U

i

is an initialized user. Upon exeution of this operation, the adversary obtains that U

i

's

long-term seret, as well as all the unerased data of eah I

ij

that is still ative. Additionally, as for

ordinary orruptions (see x10.1), the adversary may subsequently register the identity ID

i

without

any of the usual restritions.

Upon exeution of this operation, the following reords are added to the transript:

(strong orrupt user; i);

and

(implementation; strong orrupt user; exposed data);

where exposed data onsists of the long-term seret and unerased ephemeral data of U

i

, as desribed

above.

As for ordinary orruptions, the user instanes belonging to the orrupted user ontinue to play

along, and we allow a user to be orrupted multiple times.

14.2 Inherently vulnerable keys

Note that when a user U

i

is strongly orrupted in the real world, some session keys held by other

users may be vulnerable. For example, suppose a user instane I

i

0

j

0

with PID

i

0

j

0

= ID

i

has om-

pleted the key exhange protool and is urrently isolated, that is, it has onnetion assignment

reate, and no user instane has onneted to it. This implies that there may be some ative user

instane I

ij

that would eventually onnet to I

i

0

j

0

, and the internal state of suh an I

ij

ontains

enough information to ompute K

i

0

j

0

. If U

i

is orrupted at this moment, then the real-world adver-

sary an ompute K

i

0

j

0

. The inherent vulnerability of suh keys is the motivation for our de�nition

of strong orruptions in the ideal world: in the ideal world, the adversary is given all suh inherently

vulnerable keys, but nothing more.
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14.3 Strong orruptions in the ideal world

The hanges to the ideal system are quite minimal.

The ideal-world adversary may exeute the operation

(strong orrupt user; i)

to orrupt U

i

. The �rst time U

i

is orrupted, the ideal-world adversary is given all session keys of

the form K

i

0

j

0

, where I

i

0

j

0

is a user instane suh that PID

i

0

j

0

= ID

i

and I

i

0

j

0

is urrently isolated.

This operation is logged in the transript as

(strong orrupt user; i):

Note that no information about the keys given to the adversary is logged in the transript.

Those are the only hanges. We will use only the default, i.e., liberal, ompromise rule in

onjuntion with strong orruptions.

Remark 23 In making onnetion assignments in this model, we do not really need the exibility

disussed in Remark 18. Indeed, without loss of generality, we ould require that the ideal-world

adversary make the onnetion assignment ompromise whenever this was legal.

14.4 A seure key exhange protool

It turns out that protool DHKE-1 in x12.1 satis�es our de�nition of seurity against strong

adaptive orruptions, assuming internal data is appropriately erased. In partiular, this means

that before a responder I

i

0

j

0

has sent the seond ow, it has erased all internal data exept for k

1

and k

2

. Of ourse, we assume that when the protool terminates, all internal data is erased.

Theorem 10 Protool DHKE-1 is seure against strong adaptive orruptions, under the DDH

assumption, and assuming seure signatures and a seure pseudo-random bit generator.

The proof follows the same lines as all of our other proofs. We begin by desribing the onnetion

assignments.

Case 1. Suppose (originator) I

ij

has just aepted.

Case 1a. If it is legal to ompromise I

ij

, we do so, extrating the key K

ij

from the real-world

I

ij

.

Case 1b. Otherwise, we reate I

ij

, and let the ring master substitute the real-world key K

ij

with an ideal, random key.

Case 2. Now suppose (responder) I

i

0

j

0

has just aepted.

Case 2a. If it is legal to ompromise I

i

0

j

0

, we do so, extrating the key K

i

0

j

0

from the real-world

I

i

0

j

0

.

Case 2b. Otherwise, there must be a unique, ompatible, isolated user instane I

ij

, and we

onnet I

i

0

j

0

to I

ij

.

We next have to show how the ideal-world adversary simulates the the exposed data of user

instanes when a user is strongly orrupted. This will be done simply by extrating the neessary

information from the orresponding real-world user instane, but with the following, essential ex-

eption. Suppose U

i

0

is the user being orrupted. Consider a responder user instane I

i

0

j

0

suh

that

� I

i

0

j

0

has sent the seond ow in the protool, but not yet reeived the third, and

41



� there exists a ompatible, isolated user instane I

ij

that sent the value g

x

reeived by I

i

0

j

0

and

reeived the values g

y

, k sent by I

i

0

j

0

.

In this ase, the ideal-world adversary is given the ideal key K

ij

, and he replaes the value of the

variable k

2

in the internal state of I

i

0

j

0

with K

ij

.

The reader an now easily verify that the resulting ideal-world transript is omputationally

indistinguishable from the real-world transript.

Remark 24 Protool DHKE is inseure against strong adaptive orruptions for the same reason

that it was inseure against ordinary adaptive orruptions (see x11.1). Moreover, it an also be

attaked in another way. Suppose an originator instane I

ij

is waiting for the response message

from its partner-to-be I

i

0

j

0

, who has aepted a session key, and that U

i

is strongly orrupted at

this time. Then the real-world adversary obtains the exponent x held by I

ij

|this annot be erased,

sine I

ij

needs this to ompute the session key. Thus, the key K

i

0

j

0

, given g

y

and x, will ertainly

not look like a random key.

Remark 25 Protool EKE is inseure against strong adaptive orruptions for the same reason

that it was inseure against ordinary adaptive orruptions (see x11.2). Also, protool EKE-1 is

subjet to the attak in the previous Remark. One ould �x protool EKE-1 by adding an extra \key

on�rmation" ow like in protool DHKE-1. However, if one makes this �x, then the enryption

sheme need no longer be non-malleable|ordinary semanti seurity suÆes. Indeed, protool

DHKE-1 an be seen as a speial ase of suh a sheme using DiÆe-Hellman based enryption.

14.5 De�ning seure sessions with strong adaptive orruptions

We now ontinue the disussion of seure session protool started in x4, and disuss aspets of the

formal seurity model and implementation whih must be hanged to aommodate strong adaptive

orruptions.

In the real world model, a seure session protool will itself have some internal, unerased data

that a real-world adversary will obtain when the orresponding user is strongly orrupted. There

is a fundamental limitation as to what we an expet a seure session protool to ahieve in the

fae of suh orruptions: between the time that a message blok is sent and reeived, the reeiver

must have some seret information that will allow it to derypt the message blok; therefore, if the

reeiver is orrupted while the message blok is in transit, the adversary will learn the ontents

of that message blok. Furthermore, when either sender or reeiver are orrupted, all subsequent

message bloks that are sent are also vulnerable. It would appear that we ould not expet to avoid

this, and aordingly, this is preisely what our de�nition of seurity guarantees.

To take the above disussion into aount, we modify the ideal world attak senario for seure

sessions in x4 as follows.

The ideal world adversary initializes users and user instanes, and starts sessions, as usual.

The adversary makes onnetion assignments subjet to the usual rules in x3.1.4 and x10.2. As in

x4 there is no notion of a session key|that is an implementation detail. Rather, the onnetion

assignments indiate how input/output hannels are interonneted.

The sender and reeiver on a seure hannel shall synhronize the delivery of message bloks. To

do this, there are four operations: send ready signal, reeive ready signal, send message blok, and

reeive message blok. The reeiver on the hannel exeutes an alternating sequene of operations:

send ready signal, reeive message blok, send ready signal, et. Likewise, the sender on the hannel

exeutes an alternating sequene of operations: reeive ready signal, send message blok, reeive
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ready signal, et. As usual, the adversary shedules everything, but when neither of the two users

involved is orrupted, the adversary is onstrained as follows: orresponding ready signals and

message bloks annot be reeived before they are sent. This ensures that the sender never gets

ahead of the reeiver, so that at most one message blok is in transit, i.e., sent but not yet reeived.

As suh messages are inherently vulnerable, it is important that the sender and reeiver have

expliit ontrol over this, even in the ideal world. We shall also allow an input or output hannel

to be expliitly losed. A message blok is no longer onsidered to be in transit if the message was

sent, but the reeiver losed its input hannel. If a user instane has no partner, then by de�nition

it annot reeive a ready signal, and so it will never send a message blok, nor will it reeive one.

As in x4, the adversary spei�es that the message blok sent is omputed aording to some

spei� funtion, but otherwise learns no additional information about the message blok; in ad-

dition, the message blok reeived by the reeiver is equal to the one sent, thus maintaining the

integrity of the hannel.

That is the normal operation of a seure hannel, when the session is not ompromised. Con-

sider a user instane I

ij

. If I

ij

's onnetion assignment is initially ompromise, then its session is

ompromised from the very start. Otherwise, it beomes ompromised when either U

i

or the user

assigned to PID

ij

(if any) is orrupted.

So long as I

ij

's session is unompromised, everything works as desribed above. More preisely,

if I

ij

reeives the rth ready signal, then it must have a partner, and that party sent r ready signals.

If I

ij

reeives the rth message blok, then it must have a partner, and that partner must have sent

r message bloks, and the message blok reeived will be equal to the message blok sent.

One I

ij

's session beomes ompromised, all bets are o�. More preisely, the adversary may

make I

ij

reeive a ready signal whenever it wants. The adversary may make I

ij

reeive a message

blok whenever it wants, and moreover, the value of the message blok is spei�ed by the adversary,

and may be hosen however the adversary wishes. When I

ij

sends a message blok, the adversary

diretly obtains the value of the message blok.

Also, whenever a user U

i

is orrupted, the values of any message bloks that are in transit at

that moment, and are to be reeived by some user instanes I

ij

belonging to U

i

, are given to the

adversary.

That ompletes our sketh of the ideal world. We believe that we have given enough details so

that the reader ould rather unambiguously �ll in the rest of the details of a omplete de�nition

of a seure session. Note that in the real world, when a user is strongly orrupted, any unerased

data in higher-level protools that is supposed to beome available to the adversary upon a strong

orruption an be made available through the usual mehanism of allowing the adversary to ompute

spei� funtions on the random input and message blok variables.

14.6 Implementing seure sessions with strong adaptive orruptions

Let us assume that a user instane has just aepted a session key K obtained from a session key

protool.

Using a seure pseudo-random bit generator, it derives sub-keys for its input and output hannel,

and then erases the session keys. For larity, we will desribe the operation of a single uni-diretional

hannel in terms of a sender and reeiver.

Both sender and reeiver have loal variables auth, seed, and pad, whih are initially derived

from the session key using a pseudo-random bit generator. The value auth will be used as a key

to a message authentiation ode MAC. This value is never erased or hanged for the life of the

session. The value seed will be used as input to a pseudo-random bit generator PRG. The value
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pad will be used to enrypt message bloks as a one time pad. Both the values seed and pad will be

updated with eah message blok sent/reeived, e�etively erasing the old values. We shall write

\set (seed; pad) = PRG(seed)" to denote the ation of applying the pseudo-random bit generator to

seed, and overwriting the old values of seed and pad. Both sender and reeiver have loal ounters

r that are initially set to 0.

send ready signal Inrement r, and send the message

� = (ready signal; r);MAC

auth

(�):

reeive ready signal Inrement r, and reeive the message

� = (ready signal; r);MAC

auth

(�);

validating the MAC and heking the value of r reeived is equal to the value of loal variable

r.

send message blok First, let X be the value of the message blok to be sent, and set Y =

X � pad. Now, set (seed; pad) = PRG(seed): Third, send the message

� = (message blok; r; Y );MAC

auth

(�):

reeive message blok First, reeive the message

� = (message blok; r; Y );MAC

auth

(�);

validating the MAC and heking the value of r reeived is equal to the value of loal variable

r. Seond, ompute the message blok X = Y � pad. Third, set (seed; pad) = PRG(seed):

That ompletes the desription of the implementation, exept to say that when one of the MACs

fails, a user instane loses the hannel. A user instane ould also hoose to unilaterally lose a

hannel, perhaps reeting a \time out" ondition. When a hannel is losed, all the internal data

assoiated with that hannel are erased.

It is not diÆult to show that if the session key is established using a key exhange protool

that is seure against strong adaptive orruptions, and if we implement the hannels as desribed

here, we get a seure session protool that is seure in the sense de�ned in x14.5. We do not state

this as a theorem, sine our de�nition of a seure hannel is not quite formal enough to justify the

use of the term \theorem"; nevertheless, one all the details in the de�nition of a seure hannel

were �lled in in a reasonable way, one would indeed obtain something worthy of being alled a

\theorem."

We sketh how suh a theorem would be proved. Suppose that a user instane wanted to send its

�rst message blok. Before it would send the enryption of this blok, it awaits the �rst ready signal

from its partner. Now if either of the two relevant users are orrupted, the simulation is trivial,

sine the simulator (i.e., ideal-world adversary) has the right to obtain the value of the relevant

message bloks. Otherwise, if neither user is orrupted, then the de�nition of seure key exhange

(as well as the seurity of the pseudo-random bit generators and the MAC) implies that the sender

must have partner, and that this partner indeed sent the ready signal. Now, so long as neither

sender nor reeiver are orrupted, whenever a message blok is sent, our simulator just generates

the enryption Y as a random bit string. If the reeiver beomes orrupted while a message is
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in transit, then the simulator omputes the reeiver's pad as pad = X � Y , where X is the value

of the atual message blok, whih the simulator obtains. In this way, the simulator onstruts

a onsistent-looking internal state for the reeiver's pad value. The reason this works is that the

synhronization of sender and reeiver guarantees that the reeiver has erased all data that was

used to ompute its urrent value of pad. Therefore, the urrent value of pad is indistinguishable

from a random bit string. That is the trikiest bit of the simulation, sine after the orruption, the

simulator's task is muh easier|it obtains all subsequent message bloks generated by the sender,

and does not need to respet any of the synhronization or integrity onstraints.

We leave the rest of the details to the reader. The main idea of this proof essentially appears

in Beaver and Haber [BH92℄, although their setting and the details of their solution are slightly

di�erent.

We note that our de�nition of seurity for key exhange protools with respet to strong adaptive

orruptions is atually stronger than neessary for the purpose of onstruting a seure session with

respet to strong adaptive orruptions. Indeed, one an show that the above implementation of

a seure session, together with protool DHKE in x7 is already a seure session with respet to

strong adaptive orruptions.

This may seem a bit strange at �rst, but is really not so surprising. Our de�nition of seurity

of a session key protool de�nes a natural, robust, and intuitive interfae, but it is a bit stronger

than neessary for the partiular appliation of building a seure session. This is analogous to

the design of a software library routine interfae: for a partiular appliation, the library routine

provides more funtionality than neessary, and therefore, the implementation may not be the

most eÆient possible. In x15.6 we present an alternative de�nition for key exhange seure against

strong adaptive orruptions. This de�nition is less natural and weaker than the de�nition presented

in this setion, but is just strong enough to build a seure session.

14.7 Anonymous users

One an adapt the de�nition of seurity with respet to anonymous users (see x9) to inorporate

strong adaptive orruptions. There are some tehnial issues that need to be addressed, however.

14.7.1 Strong orruptions in the real world

Although there is no long-term seret assoiated with an anonymous user, ative anonymous user

instanes may have unerased data that ould be obtained by an adversary. In disussing strong

adaptive orruptions for ordinary (non-anonymous) users in x14.1, we grouped together all user

instanes assoiated with that user, so that the adversary obtains all the unerased data assoiated

with the user instanes belonging to that user. This models the natural situation where all the user

instanes belonging to that user run on the same mahine, and so a orruption of a user orresponds

to a orruption of that mahine. We do not want to group all anonymous user instanes together

in this way. Therefore, our real world adversary strongly orrupts individual anonymous user

instanes.

14.7.2 Strong orruptions in the ideal world

We have to modify the de�nition in x14.3 aommodate anonymous users.

When an anonymous user instane is orrupted, we allow the ideal-world adversary to speify a

set S of ompatible, isolated user instanes. The adversary is given all the session keys held by the

user instanes in S. Moreover, the onnetion assignment of all the user instanes in S is hanged

45



from reate to ompromise. This means, in partiular, that no user instane may in the future

onnet to one of the user instanes in the set S. None of the information about S or the keys they

hold is expliitly logged in the transript, but like onnetion assignments in general, we assume

that the set S an be omputed as a funtion of the transript.

14.7.3 A seure key exhange protool

We leave it to the reader to verify that protool A-DHKE-1 (see x12.1) is seure against strong

adaptive orruptions in the sense we have just de�ned.

14.7.4 De�ning seure sessions with strong adaptive orruptions

We now disuss the hanges neessary to the de�nition of seure sessions presented in x14.5 to

aommodate anonymous users.

First, the ideal-world adversary makes onnetion assignments just as in x14.7.2.

Seond, the de�nition in x14.5 of when a session is ompromised has to be modi�ed as well:

� Suppose I

ij

is a user instane with PID

ij

= anonymous. If I

ij

's initial onnetion assignment

is ompromise, then its session is ompromised from the very start. Otherwise, the session

beomes ompromised when its onnetion assignment is hanged from reate to ompromise

(as in x14.7.2), or U

i

is orrupted, or I

ij

's partner (if any) is orrupted.

� Suppose I

0j

is an anonymous user instane. If I

0j

's initial onnetion assignment is

ompromise, then its session is ompromised from the very start. Otherwise, the session

beomes ompromised when I

0j

is itself orrupted, or if the user to whih PID

0j

is assigned

is orrupted.

2

Third, when an anonymous user instane is orrupted, any message blok that is in transit to

this user instane at that moment is given to the ideal-world adversary.

Otherwise, everything works just as in x14.5.

It may be worthwhile to spell out some of the impliations of this de�nition. The impliation

for a user instane I

ij

with PID

ij

= anonymous is as follows. Suppose it has just started its session

and has reeived a ready signal or message blok. Then either

� the session is already ompromised, and all bets are o�, or

� the session is not ompromised, I

ij

has a partner, the ready signal or message blok ame

from that partner, and the usual guarantees for the session will be in fore so long as neither

U

i

nor I

ij

's partner are orrupted.

In the �rst ase, when the session is already ompromised, then either

� U

i

has been orrupted,

� I

ij

has a partner who has been orrupted, or

� I

ij

has no partner and never will.

2

If PID

0j

= anonymous, then the session would also be onsidered ompromised if I

0j

's onnetion assignment

is hanged from reate to ompromise; however, as pointed out in Remark 12, this is not an interesting situation to

onsider.
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The impliation for an anonymous user instane I

0j

is as follows (we assume PID

0j

6=

anonymous). Suppose it has just started its session and has reeived a ready signal or message

blok. Then either

� the session is already orrupted, and all bets are o�, or

� the session is not ompromised, I

0j

has a partner, the ready signal or message blok ame

from that partner, and the usual guarantees for the session will be in fore so long as neither

I

0j

nor the user to whih PID

0j

is assigned is orrupted.

In the �rst ase, when the session is already ompromised, then either

� I

0j

has been orrupted, or

� the user to whih PID

0j

is assigned is orrupted.

14.7.5 Implementing seure sessions with strong adaptive orruptions

Nothing hanges here at all. The implementation in x14.6 an be used without hange. As in x14.6,

we mention that protool A-DHKE in x9.2 is atually suÆient.

15 Comparison with the Bellare-Rogaway Model

Bellare and Rogaway [BR95℄ have presented a formal model for seure key exhange protools.

Tehnially speaking, their model applies only to the on-line TTP setting. However, it is relatively

straightforward to adapt this model to the o�-line TTP setting. This program has been arried out

by Blake-Wilson, et al. [BJM97, BM97℄. For lak of a better name, let us all this the BR model.

We want to ompare our model of seurity, whih we might all the simulation model, to the

BR model.

15.1 The BR model

Instead of realling all the notation of [BR95, BJM97, BM97℄, we show what the BR model essen-

tially is in in terms of our notation.

In the BR model, the attak senario is the same as the \real system" in the simulation model,

exept that the appliation operations are restrited to be of a speial type whih we desribe

below. Their model allows strong adaptive orruptions, but of ourse, one ould onsider restrited

adversaries that make only stati orruptions or (ordinary) adaptive orruptions.

The de�nition of seurity in the BR model onsists of three parts. The �rst two are termination

and liveness, whih are exatly the same as in the simulation model. For lak of a better name, we

all the third part the BR seurity property.

Although there is no notion of an \ideal system" in the BR model, there is a notion of a on-

netion assignment. To establish the BR seurity property of a partiular key exhange protool,

one must exhibit a onnetion assignment funtion. Connetion assignment funtions in the BR

model are the same as in the simulation model; in partiular, they are subjet to the usual rules

in x3.1.4 and x10.2; however, there are some additional, tehnial restritions. Namely, the on-

netion assignment funtion must be universal, i.e., there is one that works for all adversaries, and

furthermore, it must be appliation independent, a tehnial restrition that we desribe in the next

paragraph.
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An appliation independent onnetion assignment funtion is one whih an be omputed as a

funtion of the partial transript obtained from the full transript by deleting all reords pertaining

to appliation operations.

This is a natural restrition, and it does not a�et the analysis of any protools that we know

of. This restrition will be needed in the proof of Theorems 12 and 13, whih relate seurity in the

BR model with seurity in the simulation model.

Just to be expliit, we are assuming here the default, i.e., liberal, ompromise rule (x10.3).

The BR seurity property is the following: there exists a onnetion assignment funtion suh

that for all adversaries A, the advantage that A has in the following game is negligible.

The game played by A runs as follows. The adversary exeutes any of the usual ommands

exept that the appliation ommands are one of two types, whih we all reveal and test. In a

reveal operation, the adversary obtains any session key of its hoie belonging to a user instane

whose onnetion assignment is reate or ompromise. The adversary may exeute any number of

reveal operations. In a test operation, the adversary spei�es a user instane whose onnetion

assignment is reate; at this point, a oin is ipped, and the adversary is either given the user

instane's session key or a random string, depending on the outome of the oin ip (whih is not

in the adversary's view). The test operation may only be exeuted one.

There is an additional restrition on the test operation, whih we shall all the test restrition:

if I

ij

is subjet to a test operation, then at no time before or after the test operation

may the adversary orrupt U

i

or the user (if any) to whih PID

ij

is assigned.

The adversary's advantage is de�ned to be the maximum of

� the distane from 1=2 of the probability of guessing the outome of the oin toss in the test

operation, and

� the probability that two user instanes that are partners (as determined by the onnetion

assignment funtion) do not share the same session key.

Remark 26 Note that sine the adversary already wins the game if he an make two partners

aept di�erent session keys, there is no need to allow reveal or test operations to be applied to user

instanes that onnet to other user instanes.

15.2 Correting a aw in the original BR model

There are a few small, tehnial di�erenes between our presentation here and in [BR95, BJM97,

BM97℄ that are not so important. However, we have taken the opportunity here to orret a

serious aw that appears in [BR95, BJM97, BM97℄ that was pointed out to the authors of [BR95℄

by Charles Rako�. In the formulation in [BR95, BJM97, BM97℄, the test operation is only allowed

to be performed at the very end of the adversary's exeution, whereas we have allowed it to our

at any time. This is important, beause without this, the de�nition does not detet \protool

interferene" as was disussed in x2.

We an illustrate this point with an example derived from one suggested by Charles Rak-

o�. Consider the following modi�ation of protool DHKE-1 (see x12.1), whih we all protool

DHKE-1

0

. This protool works just like DHKE-1, exept as follows. Suppose a user instane be-

longing to U

i

0

in the role of responder is waiting for the third ow of the protool, whih onsists of

the on�rmation key k

1

; if instead of k

1

it reeives a message of the form (ore dump;BitGen(k

2

)),
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then it terminates the protool with a status of rejet, and generates a �nal outgoing message on-

sisting of k

2

. Reall that k

2

is (what would have been) the session key, and that BitGen is assumed

to be a seure pseudo-random bit generator. We assume here that k

2

has the right length so that

it may be used as an input to BitGen.

We hope the reader would agree that protool DHKE-1

0

should be onsidered inseure under

any reasonable de�nition of seurity. Indeed, if user a user instane I

ij

in the role of originator

establishes a session key K, and just happens to output BitGen(K) in a higher-level protool

before its last message is delivered to its would-be partner I

i

0

j

0

, the adversary an ause I

i

0

j

0

to

\ore dump," handing K to the adversary on a silver platter.

If the test operation is allowed in the middle of the game, it is easy to see that an adversary an

obtain signi�ant advantage, and so this protool is not seure under our de�nition. However, if the

test operation is allowed only at the end of the game, the adversary has only a negligible advantage

(sine the adversary ould not hope to ompute BitGen(k

2

) on its own), and the protool would

be seure under that de�nition of seurity.

Admittedly, this example is a bit ontrived, but nevertheless illustrates the point. Another,

perhaps more onvining reason for allowing the test operation to our at any time is to get an

equivalene theorem between seurity in the BR model and seurity in the simulation model (see

Theorem 12 below), whih suggests that this is a robust notion of seurity.

This aw in [BR95℄ illustrates the danger of making a tehnial, low-level de�nition without

arefully exploring its relationship with a more natural, higher-level notion of seurity.

15.3 The equivalene of strong adaptive and stati orruptions in the BR model

In the BR model, one ould distinguish between seurity against stati, adaptive, and strong

adaptive orruptions. However, it turns out that these notions are equivalent, provided we make

an additional, quite natural restrition on the onnetion assignment funtion whih we all loal

omputability.

Intuitively speaking, a loally omputable onnetion assignment funtion is one that determines

the onnetion assignment for a partiular user instane I

ij

using only those parts of the transript

that might have something to do with user U

i

or PID

ij

. More preisely, this means that the

onnetion assignment should be omputable by a funtion applied to the subsequene of reords

in the transript obtained by deleting reords orresponding to these operations:

� all appliation operations,

� all initialize user, initialize user instane, deliver message, and orrupt user operations whih

refer to a user other than U

i

or the user (if any) to whih PID

ij

is assigned, and

� all register operations whih refer to an identity other than ID

i

and PID

ij

,

Note that in the on-line TTP setting, we do not delete any of the deliver message to TTP operations.

Loal omputability is a natural restrition, and we know of no protools whose seurity analysis

is a�eted by making this restrition.

In the following theorem, we assume that onnetion assignment funtions are universal and

loally omputable. Perhaps the same theorem ould be proven using a more lever argument

without requiring loal omputability.

Theorem 11 In the BR model, seurity against stati, adaptive, and strong adaptive orruptions

are equivalent.
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It is lear that in the BR model, seurity against strong adaptive orruptions implies seurity

against adaptive orruptions, and that seurity against adaptive orruptions implies seurity against

stati orruptions.

Now, to show that seurity against stati orruptions implies seurity against strong adaptive

orruptions. Suppose a key exhange protool is seure against stati orruptions. This implies

the existene of a onnetion assignment funtion. However, one tehnial point we have to deal

with is that this onnetion assignment funtion is not de�ned for transripts ontaining orrupt

user operations. We therefore need to extend the domain of de�nition of the given onnetion

assignment funtion, whih is easy to do by exploiting the loal omputability property of the

given onnetion assignment funtion. To alulate the onnetion assignment for a user instane

I

ij

, if either U

i

is orrupted, or PID

ij

is assigned to a orrupted user, then we ompromise I

ij

.

Otherwise, we ompute the onnetion assignment using the given onnetion assignment funtion,

using only the relevant loal information in the transript, whih does not ontain any orrupt user

operations.

Now onsider an an adversary A that makes strong adaptive orruptions, and suppose that A

has non-negligible advantage in the game de�ning the BR seurity property. Here is how we an

onvert A into an adversary A

0

that makes only stati orruptions, and that has a smaller, but

still non-negligible advantage, using a standard \plug and pray" argument. At the beginning of

the game, A

0

randomly hooses two players U

i

and U

i

0

. A

0

never atually initializes any users other

than U

i

or U

i

0

, and A

0

never orrupts any users. All users besides U

i

and U

i

0

that A might initialize

and perhaps orrupt are simply under the diret ontrol of A

0

, and these are never initialized as

users. Instead, A

0

simulates the view of A, and does whatever A does. We pray that A does not

orrupt either U

i

or U

i

0

, and that A hooses to perform his test operation on an instane I

ij

with

PID

ij

= ID

i

0

. Our prayers will be answered with non-negligible probability, and if they are not, we

simply stop the game.

It is easy to see that if A has a non-negligible advantage, then so will A

0

. The theorem now

follows.

15.4 Relation between the BR model and the simulation model

Now, we want to formulate and prove that seurity in the BR model and seurity against stati

orruptions in the simulation model are equivalent. To do this, we have to restrit the way the ideal-

world adversary A

�

in the simulation model omputes onnetion assignments to the way onnetion

assignments are omputed in the BR model. This means that the onnetion assignment funtion

must be universal and appliation independent, as desribed in x15.1. For the remainder of this

setion, this restrition on the adversary A

�

in the ideal world model is impliitly in fore.

Theorem 12 Seurity against stati orruptions in the simulation model is equivalent to seurity

against stati orruptions in the BR model.

To prove that seurity against stati orruptions in the simulation model implies seurity in

the BR model, one only need observe that the game de�ning the BR seurity property is just a

partiular game that an be easily represented in the simulation model.

Now, to prove that seurity in the BR model implies seurity against stati orruptions in the

simulation model. Assume a given protool is seure in the BR model, so there exists an appropriate

onnetion assignment funtion.

Let A be a real-world adversary in the simulation model. We onstrut the orresponding ideal-

world adversary A

�

as follows. Generally, A

�

does whatever A does. Whenever a user instane
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aepts, A

�

makes the onnetion assignment using the onnetion assignment funtion mentioned

in the previous paragraph. For a ompromise onnetion assignment, A

�

extrats the user instane's

atual session key to obtain the session key required for the start session operation in the ideal

world game. Otherwise, for any other onnetion assignment, the ring master hooses the keys

aording to the rules in the ideal world game. Of ourse, appliation operations are evaluated by

the ring master using the idealized session keys.

Now to show indistinguishability of ideal-world and real-world transripts. If there were a

good statistial test, then we ould easily apply a hybrid argument to onstrut an adversary with

signi�ant advantage in the BR game, using reveal operations as neessary, and using a single test

operation to distinguish two adjaent hybrid distributions where there is signi�ant gap in the

expetation of the statistial test's output. The details of this are straightforward, but bear in

mind that it is the ring master in a hybrid ideal world/real world game who uses the operations

reveal and test to generate some keys, and generates other keys as random bit strings. The ideal

world adversary only has indiret aess to these keys through appliation operations, exept that

he performs reveal operations on user instanes that are ompromised|he needs to get these keys

from somewhere, sine they need to be spei�ed by the ideal world adversary during the start

session operations for user instanes that are ompromised.

The ompletes the proof of the theorem.

Notie that in making the above hybrid argument, we needed the ability to perform the test

operation at an arbitrary point.

Theorem 12, together with Theorem 11, imply that seurity against stati orruptions in the

simulation model is equivalent to seurity against strong adaptive orruptions in the BR model,

provided we restrit to universal, loally omputable onnetion assignment funtions.

15.5 Forward seurity in the BR model

It is instrutive to see where the proof of Theorem 12 breaks down in the fae of adaptive orrup-

tions. It is in the hybrid argument. We need to be able to \plant" a test operation at an appropriate

plae in the exeution, where the statistial test will notie a di�erene. But it may very well be

the ase that all the plaes that would be useful are \o� limits" due to the rules of the BR game.

This is beause the test restrition in the game de�ning the BR seurity property prohibits a test

operation on anybody who is at any time orrupted or is partnered with someone who is. If we

think bak to the disussion of protool DHKE in x11.1, we an see that the only useful keys to

test are o� limits due to this restrition.

But this observation also tells us how to strengthen the BR model. We all this forward seurity

against adaptive orruptions in the BR model. The only hange is that we drop the test restrition.

Notie the di�erene: instead of a \blanket" ban on test operations, we instead rely on the muh

more \preise" ompromise onnetion assignment to seletively prevent test operations where we

do not want them|namely, after a orruption. This learly aptures the notion of forward seurity.

Theorem 13 Seurity against adaptive orruptions in the simulation model is equivalent to forward

seurity against adaptive orruptions in the BR model.

The proof is straightforward. We omit the details. Note that the theorem holds using either

the liberal or onservative ompromise rule (x10.3).
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15.6 An alternative de�nition of seurity against strong adaptive orruptions

We know of no de�nition in the \BR style" that is equivalent to the notion of seurity against

strong adaptive orruptions as we have de�ned it in the simulation model (see x14). Moreover, as

we have seen in x14.6, our de�nition of seurity in x14, while natural, was stronger than neessary

for the purpose of building a seure session protool. It turns out that we an easily modify the

de�nition of seurity in the BR model to obtain a de�nition of seurity against strong adaptive

orruptions that is weaker and muh less natural than that in x14, but is just strong enough to

build a seure session protool.

This alternative de�nition of seurity is a modi�ation of the de�nition of seurity in the BR

model in x15.1. As in that setion, we make use of onnetion assignment funtions that are

universal and appliation independent, and we use the default, i.e., liberal, ompromise rule. All

orruptions are strong adaptive orruptions.

Here are the hanges we need to make:

(1) We allow the onnetion assignment of a user instane to hange from reate to ompromise,

as follows. If a user instane I

ij

has a onnetion assignment of reate and is still isolated at

the point in time in whih either user U

i

or the user (if any) to whih PID

ij

is assigned is

strongly orrupted, then I

ij

's onnetion assignment is hanged to ompromise.

(2) As in x15.5, we drop the test restrition. However, if the test operation is applied to I

ij

,

the adversary may not perform a orruption that would ause I

ij

's onnetion assignment to

beome ompromise.

(3) A user instane whose onnetion assignment is hanged to ompromise is no longer onsidered

isolated, and no user may onnet to it.

Disussion

Note that without loss of generality, we an assume that a onnetion assignment funtion always

ompromises a user instane whenever that is legal.

We leave it to the reader to verify the following:

� protool DHKE in x7 is seure against strong adaptive orruptions under this alternative

de�nition, and

� any protool that is seure under this alternative de�nition, together with the implementation

of a seure session in x14.6, yields a seure session protool that is seure in the sense of x14.5.

16 Comparison with the Model of Bellare, Canetti, and Krawzyk

Bellare, Canetti, and Krawzyk [BCK98℄ de�ne seurity against an adversary very similar to ours:

he has omplete ontrol of the network, and an make strong adaptive orruptions. In fat, this is

the only orruption mode they onsider. Their de�nition of seurity is also based on simulation,

but there are several di�erenes in both detail and substane between our de�nition and theirs.

One issue alluded to in x1 about the model in [BCK98℄ is its treatment of the ordinary use of

session keys, e.g., as enryption or authentiation keys. There is no analogue of our notion of an

appliation operation in their model. Rather, in their model, when a session key is established, its

value is silently written to a transript whih may be input to a statistial test, but only after the

adversary has ompleted its attak. However, the value of the key, or any values derived from it,
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are not generally available to the adversary while the attak is ongoing. An exeption to this is that

the adversary may exeute an expliit orrupt session operation, whereby the adversary obtains

the session key itself.

It is not at all lear what this orrupt session operation is supposed to represent. In order to

be able to properly model ordinary key usage and protool interferene attaks, it would seem we

must assume that all sessions are orrupted|or at least those whose session keys are atually used.

At the very least, then, the term \orrupt session" then has a somewhat misleading onnotation;

indeed, maybe a better name would be \use session key." Moreover, this de�nition of seurity

su�ers from a more serious problem. Beause any use of a session key essentially implies that the

ideal-world adversary has the session key itself, it would seem that any key that is ever used is

potentially ompletely vulnerable. Indeed, what is to keep a key that is available to the ideal-world

adversary from popping up, say, in a protool message ow? The ideal-world adversary an simulate

this, sine it knows the key. As a onrete example, protool DHKE-1

0

in x15.2 is seure under

the de�nition of seurity in [BCK98℄. To see this, note that a user instane I

i

0

j

0

will not \ore

dump," exept with negligible probability, unless the orresponding session has been orrupted.

But if the session is orrupted, the ideal-world adversary has the session key and therefore an

easily simulate the \ore dump." However, as we have already argued, protool DHKE-1

0

should

not be onsidered seure under any reasonable de�nition of seurity.

Another aspet of [BCK98℄ is how it models strong adaptive orruptions. Aording to their

de�nition, when a user is orrupted in the ideal world, \the e�et is that all the keys known to

[that user℄ beome known to the adversary." It is a bit hard to understand the motivation for this.

First, as we have pointed out above, any session key that is atually used must already be available

to the adversary via a orrupt session operation, and so many of the keys given to the ideal-world

adversary upon the orruption of a user are redundant. Seond, it would appear that the intention

of this de�nition is to avoid any guarantee of forward seurity|this point is not lear in the paper,

but the authors indiate that forward seurity is an issue to be takled in a subsequent (and as yet

to appear) version of the paper, and so it seems safe to assume that their de�nition is not meant

to imply forward seurity. But as we have already remarked in x10.5, we annot build a seure

session protool on top of a key exhange protool that does not guarantee forward seurity. Our

opinion is that it makes little sense to de�ne seurity for a session key protool that annot be used

as a building blok for seure sessions. Indeed, one of the underlying tehnial themes of our work

is that forward seurity and simulatability with respet to adaptive orruptions are in many ways

two sides of the same oin.

Another aspet of the way orruptions are modeled in [BCK98℄ is the way in whih the inherently

vulnerable keys (see x14.2) are made available to the ideal-world adversary. This issue is not

expliitly addressed in [BCK98℄, and it is not immediately lear that these keys are available to

the adversary. At one point, it is stated in a parenthetial, and seemingly motivational remark,

that \we envision that the value [of a session key℄ is handed to [a user℄ by the trusted party." It is

only by interpreting this remark to have a spei� desriptive meaning, rather than being purely

motivational, that one avoids an unsatis�able de�nition of seurity.

Also as mentioned in x1, the two protools presented and analyzed in [BCK98℄ in the \authenti-

ated links" model are atually inseure, under their de�nition of seurity and under any reasonable

simulation-based de�nition of seurity. One of the protools is a two-pass DiÆe-Hellman protool

that is inseure for the very same reasons that our protool DHKE is inseure against strong adap-

tive orruptions (see x11.1 and Remark 24). However, we should point out that if the authentiated

links are implemented using one of the tehniques desribed in [BCK98℄, the resulting protool in

the \raw" (i.e., unauthentiated links) model apparently happens to be seure. The other protool
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is based on publi key enryption, and is inseure for the very same reasons that our protool EKE

is inseure against strong adaptive orruptions (see x11.2 and Remark 25).

17 Conlusion

The methodology of modern theoretial ryptography is maturing to a point where it an take on

tasks that have traditionally belonged to the domain of \seurity engineering." This seems useful,

as many seurity problems are often viewed as \implementation errors" whih we believe ould be

more fruitfully viewed as ryptographi design errors. Probably the main reason for these di�ering

points of view is simply that the high-level ryptographi designers and implementors have usually

been more or less disjoint sets of people.

The ativity of designing a formal seurity model for something as ompliated as a key exhange

protool or a seure session protool is similar in many ways to that of designing a software interfae.

In designing a software interfae, there is no \right" or \wrong." One wants an interfae that will

be easy to understand and to use in an intuitive way. One also wants an interfae that an be

e�etively implemented. Beause of the rihness of the environment in whih session key protools

are used, there will always be room for debate on many of the details of suh a seurity model.

We hope that this paper has at least served to make expliit most of the important hoies that

one enounters in designing suh a seurity model, even if the reader disagrees with some of the

partiular hoies that we have made.

Having a formal seurity model and a \provably seure" protool in that model is no panaea.

Indeed, it is possible that the model is awed somehow; in partiular, it may not be rih enough

to express a partiular type of realisti attak. And of ourse, the proofs may ontain errors or

the underlying intratability assumptions ould turn out to be false. Nevertheless, the ativity of

designing suh models and analyzing protools in these models is a worthwhile ativity: only by

doing so an we hope to inrease our understanding of the protools we use in pratie, and to

design better protools (or even have a meaningful way to measure \better"). It is also an ongoing

ativity: when weaknesses in the model or errors in the proofs are unovered, then these must be

repaired.

Although a healthy amount of skeptiism is always appropriate, an irrational rejetion of the

entire approah of formal modeling and proofs as nothing but \snake oil" does not seem helpful.

Suh an anti-intelletual attitude is unfortunately not so rare in the seurity researh ommunity.

It only serves to retard meaningful sienti� progress, and to perpetuate the mystique surrounding

the self-prolaimed \high priests" of omputer seurity.
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