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Abstract

A new formal security model for session key exchange protocols is proposed, and several
efficient protocols are analyzed in this model. Our new model is in the style of multi-party
simulatability: it specifies the service and security guarantees that a key exchange protocol
should provide to higher-level protocols as a simple, natural, and intuitive interface to which
a high-level protocol designer can program. The relationship between this new model and
previously proposed models is explored, and in particular, several flaws and shortcomings in
previously proposed models are discussed. The model also deals with anonymous users—that is,
users who do not have public keys, but perhaps have passwords that can be used to authenticate
themselves within a secure session.
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1 Introduction

In this paper, we investigate formal models of security for session key exchange protocols. A
session key protocol allows two users to exchange a secret key. The most important—and perhaps
the only significant—application of a session key exchange protocol is to implement a secure session
protocol, which in effect provides a secure (private, authenticated), bi-directional channel between
the two users. A user may establish session keys with many other users, possibly in a concurrent
fashion. The main security goals, intuitively speaking, are that session keys should be random and
independent of one another, and that a user really establishes a key with the user he “thinks” he
is, and not with some other user.

There are two basic settings in which key exchange protocols are usually considered. In both
settings, there is a trusted third party (TTP). The only difference is whether the TTP is “on line,”
i.e., involved in every key exchange, or “off line,” is only needed to register users of the system,
but does not participate in the key exchange protocol itself. In the on-line TTP setting, one uses
symmetric key cryptography; Kerberos [SNS88] is an example of a session key exchange protocol
in the on-line setting; the TTP is usually called a key distribution center in this setting. In the
off-line TTP setting, one uses public key cryptography; the Secure Socket Layer (SSL) provides
an example of a session key exchange protocol in the off-line setting; the TTP is usually called a
certificate authority in this setting.

We propose a new model of security for key exchange protocols, and analyze the security of a
number of protocols in this model. Our model is general enough to be applied in either the on-line
or off-line setting. However, all of the examples of protocols we consider are in the off-line setting.

Despite the superficial simplicity of session key exchange protocols, it is all too easy to design
protocols with security weaknesses. Indeed, the history of this subject is littered with the carnage
of broken protocols. Typically, design flaws arise either by not carefully specifying what an attacker
is able to do, or by not making the security goals precise, or by not making clear the requirements
of the cryptographic primitives. Formal modeling, such as we do here, serves to prevent such design
flaws.

Our work is inspired by the work of Bellare, Canetti, and Krawczyk [BCK98], which is grounded
in the multi-party simulatability tradition (see, e.g., [Bea91, Can95]). This approach seems very
attractive, because it specifies the service a session key protocol should provide to a higher-level pro-
tocol, rather than getting mired in the implementation details of session key protocols themselves,
many of which are irrelevant. This type of definition yields a simple, natural, abstract interface to
which a high-level protocol designer can program, without worrying about implementation details.
Also, because of the simplicity and naturalness of the interface, it is easy to reason about the se-
curity properties of high-level protocols. Moreover, security in this model implies security against
a whole range of specific attacks.

1.1 Our contributions

We summarize our main contributions:

e We present a detailed security model that addresses some technical shortcomings in [BCK98],
and that extends and enriches their model.

e Our model takes into account the role of the certificate authority, making our trust assump-
tions explicit; this is essential in order to model a class of attacks which we call Public Key
Infrastructure (PKI) attacks (see §2).



e Our model takes into account the ordinary usage of session keys in arbitrary higher-layer
protocols, and how this usage is interleaved with the ongoing execution of the key exchange
protocol, possibly interfering with the correct functioning of the key exchange protocol. That
is, our definition of security has a built-in “protocol composition” theorem that a priori rules
out subtle problems that can arise when composing a key exchange protocol with an arbitrary
higher-level protocol. In particular, our model allows us to represent a class of attacks which
we call protocol interference attacks (see §2).

e We classify and study in detail three different modes of corruption:

static corruptions the adversary may operate under a number of aliases, but cannot corrupt
honest users;

adaptive corruptions the adversary can choose to corrupt an honest user, obtaining that
user’s long-term secret only;

strong adaptive corruptions the adversary can choose to corrupt an honest user, obtain-
ing all of that user’s internal data that has not been explicitly erased.

We give what we think are natural and useful definitions of security against these three
different corruption modes. Our models for adaptive and strong adaptive corruptions capture
the notion of forward security (a.k.a., perfect forward secrecy).

e We study the relationship between our definitions of security and those of Bellare and Rogaway
[BR95] (see also [BIM97, BM97]). In particular, we show that their notion of security (with
one essential fix) is equivalent to our notion of security against an adversary that makes static
corruptions only, despite the fact that in their model the adversary may make strong adaptive
corruptions.

e In addition to definitions, we give many examples of key exchange protocols and proofs of
their security. These examples serve to highlight some of the subtle differences between modes
of corruptions.

e We briefly sketch formal definitions and implementations of secure sessions, which can be
built on top session key protocols. Arguably, the notion of a secure session protocol is more
fundamental than that of a key exchange protocol, i.e., that the latter is merely one tool
(among others) that one needs to build the former. Nevertheless, it appears that most of the
subtlety in designing a secure session protocol already occurs in the design of the underlying
key exchange protocol, so it seems worthwhile to study key exchange in isolation. However, in
formulating definitions of security for key exchange, our main motivation is to get a definition
that is useful in building a secure session protocol.

e We propose a formal model for session key exchange involving anonymous users, i.e., users
who do not have a certificate or have otherwise registered with the TTP. Once a secure
session is established in this setting, the anonymous user can authenticate his identity using
a password.

1.2 Relation to previous work

There is a vast literature on this subject, which we shall not attempt to survey here. We refer the
reader to [MvOV97, Chapter 12] for a more extensive historical discussion. We mention here just
a few of the articles that are most relevant to this paper.



The seminal paper in this field is of course that of Needham and Schroeder [NS78]. This work
was in the on-line TTP setting. However, one of the protocols in their paper was subsequently
found to be flawed (see, e.g., [DS81]). Subsequent to [NS78], many other protocols have been
proposed, many of which were also later found to be flawed.

Because of the subtlety of the flaws that can arise in key exchange protocols, formal logics have
been developed (see, e.g., [BAN90]) that can help in finding protocol flaws. These formal methods,
however, do not appear to give any meaningful security guarantees that can be used in the analysis
of higher-level protocols that use the session key.

The paper of Bird, et al. [BGH'91] broke new ground by pointing out a class of subtle attacks
called interleaving attacks which can arise when users are running several instances of a protocol
in parallel. This work was in the on-line T'TP setting.

The station-to-station (STS) protocol was introduced in the paper of Diffie, et al. [DvOW92].
This paper presents a session key exchange protocol based on the classical Diffie-Hellman key
exchange protocol [DH76] (which establishes a long-term pair key, rather than a session key). The
authors carry out a rather informal security analysis, and point out numerous pitfalls and attacks
one should worry about. As we point out in §2, STS is vulnerable to PKI, protocol interference, as
well as interleaving attacks.

Bellare and Rogaway [BR95] proposed a formal model of security for authenticated key exchange
protocols, again in the on-line TTP setting. Their work represents the first attempt to lay a firm
foundation for the analysis of key exchange protocols. Their formal model was subsequently adapted
to the public key setting by Blake-Wilson, et al. [BJM97, BM97]. The definitions of security here
seem fairly compelling, but yet, they also seem a bit technical and low level, and it is not at all
clear what implications these definitions have for higher-level protocols that use the session keys.
In fact, the definition of security in the Bellare-Rogaway model is flawed, in that it does not allow
one to model protocol interference attacks. We discuss this point in §15.

More recently, Bellare, Canetti, and Krawczyk [BCK98] have proposed a quite different approach
to formal security models for key exchange in the off-line TTP setting. This approach is similar
to the simulation-based approach taken in the area of multi-party computation. One first defines
an idealized version of a session key protocol, in which pairs of users can “magically” generate a
shared random session key. Then to prove a real world protocol is secure, one shows that any real
world adversary is constrained to behave essentially like an adversary operating in the ideal world.

The paper [BCK98] only considers adversaries that make what we have called strong adaptive
corruptions. As already mentioned, we also study static corruptions and adaptive corruptions.

Certainly, the static corruption case is the simplest, most basic case, and deserves to be studied
by itself.

Arguably, long-term secrets are in practice the most vulnerable secrets in the system; in a
typical setting, they are stored on disk, perhaps protected by a password. Ephemeral data is much
more difficult for an attacker to obtain. Therefore, it seems worthwhile to study the case of adaptive
corruptions by itself, and to see what type of security guarantee we can achieve when the adversary
is limited in this natural way. Also, this type of corruption model is more in line with the traditional
study of key exchange protocols.

One criticism we have of [BCK98] is that, like [BR95], it is still a somewhat technical, low-level
definition, and it is not at all clear what security properties higher-level protocols enjoy. Indeed,
like [BRO5], it appears to us that their definition does not properly model ordinary key usage
and protocol interference attacks. We discuss this in more detail in §16. Aside from this, it is
not at all clear what form a “protocol composition” theorem would take in their model. This is



more a philosophical criticism than a technical one; however, we would argue that the whole point
of making such a simulation-based definition is that such implications should be built in to the
definition. In contrast, our definition comes with a “protocol composition” theorem literally built
in.

Another shortcoming of the definition in [BCK98] that we discuss in §16 is that it offers no
guarantee of forward security for established keys in the face of strong adaptive corruptions. Or
at least, that appears to be the intention—as we discuss in §16, the intention is not really clear.
Although their is nothing wrong with such a definition, it unfortunately rules out the possibil-
ity of building a secure session protocol (with private channels) that withstands strong adaptive
corruptions on top of a protocol that only satisfies such a definition.

Further, their model does not give any account of the behavior of the certificate authority and
of the distribution of public keys. Rather, all public keys for all users are generated and distributed
to all users in an idealized initial set-up phase. In contrast, we explicitly model the role of the
certificate authority. We believe this to be important, for three reasons. First, without this, one
cannot represent PKI attacks. Second, in practice, certificates are typically delivered within the
protocol itself, which could add to the round complexity of a protocol; because of this, the idealized
initial set-up phase can obscure the true round complexity of a protocol. Third, it turns out
that one can design quite efficient protocols based on the weakest possible trust assumption for
the certificate authority—indeed, it seems that there is no point in assuming anything about the
certificate authority beyond its ability to properly check the identity of a user.

The paper [BCK98] also advocates a “modular” approach to session key protocol design in which
one implements a session key protocol on top of a communication network with ideal “authenticated
links,” and then implements an authenticated link network on top of a “raw” network without
authenticated links. In contrast, we work exclusively in the “raw” network model. Our reason for
this is that the “authenticated links” model somewhat obscures the true round and computational
complexity of session key protocols, and more importantly, it also rules out certain very efficient
protocols that do not arise from such a modular design approach. Although [BCK98] define security
in the “raw” model as well as the “authenticated links” model, they do not consider any examples
of protocols designed directly in the “raw” model. In contrast, we present several quite interesting
protocols that exist only in the “raw” model.

Finally, another problem with [BCK98] is that both of the protocols presented and claimed to
be secure (in the authenticated links model) actually are not, and apparently cannot be secure
under any reasonable simulation-based definition of security.

As already mentioned, we propose a formal model for session key exchange involving anonymous
users. In many situations, one of the two users in a key exchange protocol may not have a certificate.
This already happens in SSL, and in fact, at the time of this writing, the vast majority of secure
sessions established on the Internet are between a server, who has a certificate, and a client (the
anonymous user), who does not. We show how our formal model can be easily adapted to deal
with this situation, and present and analyze several protocols that work in this setting.

A server who establishes a secure session with an anonymous client has no idea who he is talking
to. It may therefore be necessary for the client to authenticate himself to the server by means of a
password. This is trivial to do in our model: having established a secure session, the client simply
passes his password through the secure channel to the server. Our definition of security essentially
guarantees everything one could possibly hope for in this setting, in particular, protection against
off-line password guessing attacks, and against session “hijacking.”

The problem of password-based authentication and key exchange itself has a long history; see,
e.g, [BM92, GLNS93, HK98, Boy99]. To a large degree, our work generalizes and extends all of



the previous work on this topic. Moreover, our work provides a formal model in which one can
analyze protocols, like SSL, that yield a more flexible and modular approach to designing protocols
between servers and anonymous clients: first establish a secure session between anonymous client
and server, and then simply run other protocols like “telnet” or “FTP”—that may or may not
require a password (or passwords)—on top of this secure session.

The current paper is a significantly revised version of [Sho99]. There are many fairly minor,
technical changes. Most of the changes made here both simplify and “loosen” the definition of
security, in an attempt to get at the “core” security issues. The most significant change is the
treatment of strong adaptive corruptions. The paper [Sho99] already deals with such corruptions,
but in a somewhat different way. Although the definitional approach in [Sho99] is workable, it is
somewhat more cumbersome (and more restrictive) than the approach taken here.

1.3 Outline
Here is a guide to the rest of the paper.

e In §2, we discuss protocol interference and PKI attacks.

e In §3, we present our formal security model, restricted to the case of adversaries who statically
corrupt users.

e In §4, we discuss in some detail the principle application of a key exchange protocol, namely,
a secure session protocol. In particular, we sketch a formal simulation-based definition of
security for a secure session protocol.

e In §5, we discuss the cryptographic primitives we need: secure signatures, non-malleable
public-key encryption, and the Decisional Diffie-Hellman assumption. Readers already famil-
iar with these can safely skip this section.

e In §6, we describe the precise role of the certificate authority in the protocols we present.

e In §7, we present and prove the security of a Diffie-Hellman based key exchange protocol
DHKE.

e In §8, we present and prove the security of a public key encryption based key exchange
protocol EKE.

e In §9, we discuss an extension to our security model that accommodates anonymous users,
including a discussion of applications to secure sessions and password-based authentication in
this setting. In particular, we present protocol A-DHKE, which extends protocol DHKE
to anonymous users, and protocols A-EKE-1 and A-EKE-2, which extend protocol EKE.

e In §10, we present a formal security model for key exchange that deals with adaptive cor-
ruptions, including a discussion of secure sessions and anonymous users in this corruption
scenario.

e In §11, we re-examine protocols DHKE and EKE in the face of adaptive corruptions, showing
that they are insecure in this scenario.

e In §12, we present several variants (DHKE-1, DHKE-3, DHKE-3) of protocol DHKE
that are secure against adaptive corruptions, including variants (A-DHKE-1, A-DHKE-3)
that deal with anonymous users.



e In §13, we present a variant EKE-1 of protocol EKE that is secure against adaptive corrup-
tions.

e In §14, we present a formal security model for key exchange that deals with strong adaptive
corruptions, including a discussion of secure sessions and anonymous users in this corruption
scenario.

e In §15, we compare our model of security with that of Bellare and Rogaway [BR95].

e In §16, we give a technical critique of the security model of Bellare, Canetti, and Krawczyk
[BCK98].

e In §17, we make some concluding remarks.

2 Protocol Interference and PKI attacks

To motivate certain aspects of our new formal model, we will discuss two classes of subtle attacks:
protocol interference attacks, and PKI attacks.

Protocol interference attacks are those where the seemingly benign use of a session key in a
higher level protocol can interfere with the proper working of the session key protocol itself. This
generalizes the interleaving attack of Bird, et al. [BGH'91].

PKI attacks involve adversaries who “hijack” honest users’ public keys, obtaining certificates
on an honest user’s public key but with an identity determined by an adversary.

We will illustrate these attacks on the classic STS protocol.

The basic STS protocol uses a group G of order ¢ and with generator g.

A— B: g*,
where x € Z, is random.

B — A: g%, Ex(sigp(g”,9Y)),
where y € Z, is random.

A — B: Eg(sigy(g°,g¥)).

Here, K = ¢*¥, and F is a symmetric key cryptosystem. Before accepting, both A and B
validate all the signatures. The key K is the session key.

Let us assume that the certificates of A and B are publicly available, and that the group G is
described in, say, A’s certificate.

As pointed out in [DvOW92], if we remove the encryptions on the signatures, then the pro-
tocol becomes insecure. We recall here the attack. Consider an adversary controlling a different
identity A. Without the encryption on the last message, A could generate for himself a signature
519 (9", ¢¥). This would result in the unacceptable situation where B “thinks” he is talking to A,
but in fact shares a key with A, who “thinks” he is talking to B.

One criticism of STS is that it uses the resulting session key within the protocol itself. Not
only does this leak partial information about the session key prematurely, but can lead to the phe-
nomenon we called protocol interference above. In fact, the adversary can still carry out the same
attack above, even with the encryptions. Suppose A has terminated the protocol and generated its
last message. Now suppose that before A’s response is ever delivered to B, the adversary interacts
with the higher-level protocol using A’s session key. Just suppose that in this higher level protocol,



the adversary could convince A to compute an encryption Ex(msg) of a message msg of the ad-
versary’s choice, and say that msg = sig;(g”,¢g¥). Having obtained this encryption, the adversary
forwards it to B, and we have successfully carried out the attack.

We can achieve the same result with a PKI attack. Suppose that the adversary can convince
a relevant certificate authority to bind A’s public key to A’s identity. Now, A may have all the
relevant documents to prove to the certificate authority’s satisfaction that he “really is” A. If
certificates are exchanged as part of the protocol, then the adversary can replace A’s certificate
with A’s.

The reader might object: do not certificate authorities verify not only the person is who he says
he is, but that he “knows” the corresponding private key—by demanding, for example, a signature
on a test message? Well, who knows what certificate authorities really do. So it seems better not
to depend on this. Moreover, even if the authority makes such a check, it is not entirely clear
how to analyze exactly what this buys us in terms of provable security properties using standard
definitions. Anyway, by appropriately modifying the protocol, it is easy enough to defend against
such PKI attacks, without making special assumptions about the certificate authority.

Besides protocol interference and PKI attacks, this protocol can also be attacked by a standard
interleaving attack, as follows. The attacker can take the encrypted signature output by B in the
second flow, and feed this back to B in the third flow. Thus, A will think he is talking to B, while
B will think he is talking to another instance of himself. Note that for this attack to work, A and
B must work with the same group parameters G and g.

3 Formal Security Model—The Static Corruption Case

We present our formal notion of security, beginning with static corruptions, i.e., adversaries that
make their decision as to whom to corrupt independently of the network traffic (but otherwise
are fully adaptive in everything else they do). In this case, such statically corrupted users do not
explicitly exist in the model: they are all just absorbed into the adversary.

Since we want to let the adversary have arbitrary control over the network, we also eliminate
the network: the adversary is the network. Moreover, it is the adversary that drives everything
forward—all other players (the users and the TTP) are completely passive, and perform only the
actions that the adversary instructs them to.

Security is defined via simulation, as follows.

We first define an ideal world model in which all the adversary can do is create and “connect”
instances of users according to some intuitive and natural rules, whereby these user instances obtain
random session keys that are hidden from the adversary. User instances that are “connected” share
a common key, but keys are otherwise uncorrelated. As soon as a user instance obtains a key,
he may begin to use it. For example, the user instance might encrypt messages with the key
using a very good cipher or a very bad cipher or it might simply divulge the key. We place
absolutely no restrictions on the use of a key; however, the adversary learns no more information
about the key other than what is leaked through its use, and this information does not affect the
orderly establishment of connections. In the ideal world, there is no TTP, nor are there certificates,
signatures, encryptions, or even protocol message flows. This is all abstracted away, so that all
that remains is the abstraction of the service a session key protocol is supposed to provide to a
higher-lever protocol.

We then define a real world model that describes what adversaries can and cannot do in real
life. This includes all the messy details of the TTP, certificates, etc.,



For both real-world and ideal-world adversaries, a transcript is generated that logs all impor-
tant events as they happen. Security means that for every real-world adversary, there exists a
corresponding ideal-world adversary, such that the transcripts that these two adversaries generate
are computationally indistinguishable.

Simulatability is this sense is a very powerful notion. It implies that a high-level protocol
designer can design and analyze his protocols as if they were running in the ideal world. As a
general principle, whatever security properties one can prove about a high-level protocol running
in the ideal world immediately transfer to the real world.

3.1 The ideal system

We now describe the workings of the ideal system. The basic idea is fairly natural and intuitive;
however, it is important to specify all the rules of the game quite precisely, and so unfortunately,
the details may at first sight seem somewhat legalistic.

We have a set of (honest) users U;, indexed i = 1,2,.... Each user U; may have several user
instances I;j, for j =1,2,....

Remark 1 One might think of © as an IP address, and j as a port number. A session key can be
thought of as securing a connection between two IP address/port number pairs.

There is also an adversary. The adversary plays a game. Conceptually, it is convenient to
think of the adversary’s opponent as the ring master' whose job it is to generate certain random
variables, and to enforce certain global consistency constraints. The adversary plays this game by
issuing a sequence of operations to the ring master. There are six types of operations: initialize
user, initialize user instance, abort session, start session, application, and implementation. We
explain in turn how each of these operations work. As we shall see, the application operation is the
only operation in which the ring master gives the adversary any information. Note that it is the
adversary that drives the game forward—the uncorrupted parties and the ring master are purely
passive, and simply react to the adversary’s operations. Also note that all operations are performed
sequentially and atomically.

3.1.1 Initialize user

This operation takes the form
(initialize user, i, ID;).

This operation assigns the identity ID; to user U;. ID; may be any bit string, subject to the
restriction that this identity has not already been assigned to another user. Also, the initialize user
operation may only be applied to users that have not already been previously initialized.

3.1.2 Initialize user instance

This operation takes the form
(initialize user instance, 7, j, role;j, PID;;).

A user instance I;; is specified, along with a value role;; € {0,1}, as well as a partner identity PID;;.
User U; must have been previously initialized, but I;; should not have been previously initialized.

!Following circus terminology.



After execution of this operation, we say that user instance I;; is active, and remains active until
the execution of either an abort session or start session operation on I;;.

Remark 2 Intuitively, PID;; represents the identity of the user that I;; wants to talk to. The value
role;; identifies which of two roles the user instance is to have in establishing a connection. We
do not assign any meaning to this role—it is only a technical, symmetry breaking device. See also
points (11) and (12) in §3.4.

3.1.3 Abort session

This operation takes the form
(abort session, i, 7).

An active user instance I;; is specified.

Remark 3 Intuitively, this represents a failed attempt to establish a connection.

3.1.4 Start session

This operation takes the form
(start session, i, j, connection assignment | ,key | ).

An active user instance I;; is specified.
The connection assignment specifies how the session key Kj; for user instance I;; is generated.
This connection assignment is one of the following:

e create,
e (connect,i’,j'), or
e compromise.

The optional key field is present in the start session operation only if the connection assignment
is compromise.

Session keys are bit strings all of some agreed upon length. The session key Kj;; is determined
according to the connection assignment as follows.

create: the ring master creates Kj; as a random bit string.
(connect, i, j'): In this case, the ring master sets Kj; equal to Ky .

compromise: The ring master sets K;; to key, the optional optional field in the start session oper-
ation.

There are rules governing the legality of these assignments. To describe these rules succinctly, we
make the following definition. We say that two initialized user instances I;; and Iy ;» are compatible
if

e PID;j = IDy,

[ PIDZ/]I = ID“ and



e role;j # roley .
Now we present the rules governing the choice of connection assignments.

C1 The connection assignment create is always legal. When this start session operation completes,
we say that I;; is isolated (see rule C2 below).

C2 The connection assignment (connect,i’, ;') is legal if ;s is a user instance that is still isolated
(see rule C1 above), and is compatible with I;;. When this start session operation completes,
I;j+ is no longer isolated.

C3 The connection assignment compromise is legal provided PID;; is not assigned to a user.

The following definition will be useful later. If the connection assignment is (connect, ', j'), then
we say that user instances I;; and Iy; are partners. Note that this partner relation is symmetric,
and that every user instance has at most one partner.

We shall make a restriction on how the adversary computes connection assignments—see §3.1.8
below.

We will often abuse terminology, and say things like “we create I;;,” or “we connect I;; to
I;1j1,” or “we compromise I;;,” to mean that user instance I;; is prescribed the indicated connection
assignment, i.e., create, (connect,i’,j’), or compromise.

3.1.5 Application

Of course, the point of establishing a session key is then to run a higher-level application protocol
using the session key. Any use of a session key will potentially leak information about the key to
the adversary, which may affect his behavior. We do not want to restrict in any way the types of
application protocols. Therefore, we let the adversary obtain any partial information about the
session keys that he wishes. In addition to the session keys {Kj;}, we also suppose there is a random
bit string R of some agreed upon length chosen at the beginning of the game (and not revealed to
the adversary). We call R the random input.
More specifically, the application operation takes the form

(application, f),

where f is a function—specified as a straight-line program or circuit (in some canonical notation)—
on the random input and the set of session keys that have been defined so far. Upon executing this
operation, the ring master gives the adversary f(R, {Kj;}).

If we want to, we can allow application operations to have side effects, i.e., to write to variables
that may then be read by subsequent application operations. This would not have any effect (modulo
polynomial-time computation), but would yield a model in which one could express higher level
protocols more naturally and efficiently.

Remark 4 As an example, in an application protocol using the session key, a user instance may
encrypt a message using a symmetric key encryption function. The key to the encryption function
might be derived from that user instance’s session key. The message itself being encrypted may
come from some distribution, so a sub-sequence of bits in the random input can be used to generate
the message. Also, the encryption algorithm itself may use further random bits that also come from
the random input. The bit string actually output by this user instance can be easily expressed by an
appropriate function f of R and {K;j}. This example is discussed at greater length in §4.
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Table 1: Operations and their records in the ideal world transcript

initialize user initialize user, i, ID;)
initialize user instance | (initialize user instance, i, , role;;, PID;;)
abort session abort session, i, j)

(
(
(
start session (start session, 1, 5)
(
(

application application, f, f(R, {Ki;}))
implementation implementation, comment)

Remark 5 One may conceptually partition R into segments so that individual user instances have
a source of independent random bits. However, having one global bit string R allows us to model
situations where users may share secret information (e.g., passwords) through some mechanism
other than network communication.

3.1.6 Implementation

An implementation operation is a “no op” or “comment card” that otherwise has no effect on the
game, except that the adversary simply makes a comment, which is an arbitrary bit string. This
may seem strange, but is an essential technical point in formulating security, which will hopefully
become clearer later.

The form of this operation is

(implementation, comment).

3.1.7 Transcripts

We describe how a transcript is generated.

As the adversary executes operations in the ideal system, a transcript completely logging his
activities is constructed. This transcript consists of a sequence of records.

Each operation adds a record to the transcript, as described in Table 1. Note that no connection
assignment information is logged in a start session operation (but see §3.1.8).

For an adversary A* we let Ideal World(A*) denote the transcript.

Remark 6 IdealWorld(A*) is of course a random wvariable, determined by the random bits of the
adversary, the random input, and the values of the session keys. More precisely, IdealWorld(A*) is
actually a vector, or “ensemble” of distributions, indexed by a “security parameter.”

3.1.8 Transcripts and connection assignments

Having defined the transcript, we now return to one technical point left unexplained in §3.1.4 con-
cerning the calculation of connection assignments. We shall require that the connection assignment
made in a start session operation be efficiently computable as a function of the transcript up to,
and including, the relevant start session operation. The motivation for this will be discussed in
§3.4, point (8).
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3.2 The real system

We now describe a formal model for “real world” session key protocols.

As in the ideal system, we have users U; and user instances I;;. Also as in the ideal system there
is an adversary. In addition, there is a special player T', representing a trusted third party. The
third party T" might be on line, as in the private-key setting, or off line, as in the public-key setting.
We shall assume that T is initialized with a public key/private key pair PKp/SKr, although in the
on-line TTP setting, this may be trivial.

Unlike in the ideal system, users and user instances are not just place holders.

When a user Uj; is initialized with identity ID;, a protocol-specific, probabilistic initialization
routine registers user U;’s identity with 7', and initializes user U;’s internal state, as follows. First,
the initialization routine computes a registration request. Second, the pair (ID;, registration request)
is sent to T to register the identity ID;. Upon receiving this request, using a protocol-specific rou-
tine, T' updates its internal state, and computes a registration receipt. Finally, U;’s initialization
routine is given this registration receipt, and it then computes and stores its long-term state infor-
mation in the variable LTS;.

Note that for simplicity, we have opted for a simple, two-pass registration protocol between a
user and 7. While protocols allowing more interaction would be possible, we shall not need them.

A user instance I;; is a probabilistic state machine. It implicitly has access to PKr, ID;, and
LTS;, and upon initialization, it is also assigned a value role;; € {0,1} and a partner identity PID;;.
After starting in some initial state, its state may be updated by delivering a message, in response
to which the user instance updates its state, generates a response message, and reports its status,
which is one of continue, accept, or reject. The meaning of the status value is as follows:

continue: user instance prepared to receive another message.

accept: user instance is finished and has generated a session key; we denote by K;; the session key
generated by user instance I;;.

reject: user instance is finished, but refuses to generate a session key.

When I;; processes a message, we allow it to update LTS;. None of the protocols we examine
in this paper explicitly require this facility. However, some digital signature schemes require such
a facility. One could also use such a facility to implement a pseudo-random bit generator to supply
user instances with pseudo-random bits, instead of making user instances generate their own random
bits.

Just as in the ideal system, the adversary plays a game against a ring master, and it is the
adversary that drives the game forward by issuing a sequence of operations. In the very first step
in this game, the trusted third party T generates a public key/private key pair. The public key is
made available to the adversary.

Now we explain precisely the operations that can be performed by the adversary: initialize user,
register, initialize user instance, deliver message, and application.

3.2.1 Initialize user

This operation has the form
(initialize user, i, ID;).

The adversary assigns an identity ID; to user U;, where user U; was not previously initialized and
ID; has not been assigned to other users, nor has been used in a register operation (see below).
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User U; registers its identity with 7" and initializes its long-term internal state LTS;, as described
above. The adversary is not given any information.

3.2.2 Register

This operation has the form
(register, ID, registration request).

The adversary runs 7T’s registration protocol directly with the given identity ID and the given
registration request, and obtains the resulting registration receipt.

There is only one rule restricting the legality of this operation: the set of identities used in
initialize user operations and the set of identities used in register operations must be disjoint. How
this rule is enforced lies outside the model (but see §6).

Remark 7 This operation allows the adversary to operate under various aliases. Alternatively,
one can think of these as being the identities of statically corrupted users.

3.2.3 Initialize user instance
This operation takes the form
(initialize user instance, i, j, role;j, PID;;).

In this operation, the adversary chooses a user instance I;; that has not been previously initialized,
and also specifies role;; € {0,1}, and an identity PID;;. User U; must have been previously
initialized. The adversary is not given any information. After execution of this operation, we say
that I;; is active.

3.2.4 Deliver message

This operation takes the form
(deliver message, i, j, InMsg).

In this operation, the adversary delivers a message InMsg to an active user instance I;;. As described
above, the user instance updates its state, outputs a response message OutMsg, and reports its
status. Also, as mentioned above, I;; might also update LTS;. The response message and status
information are given to the adversary. If the status is not continue, then user instance I;; is no
longer active.

In the off-line TTP setting, messages are sent only between user instances, but in the on-line
TTP setting, messages sometimes need to be sent between user instances and 7. In the latter
case, we assume that messages are appropriately tagged to indicate if the sender/receiver is a user
instance or T. Also, we assume that users interact with 7" in a strictly client/server fashion. The
details of how this tagging is done are not important. Additionally, we need to add an operation

(deliver message to TTP, InMsg)

that delivers a message to T'; upon receipt of this message, T updates its internal state, and returns
a response message OutMsg to the adversary.

Note that in an actual implementation, a user instance might “time out” after some time if it
is waiting for a message. Although there is no notion of absolute time in our model, the adversary
can deliver a special “time out” message to a user instance to achieve the same effect.
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Table 2: Operations and their records in the real world transcript

initialize user

register

initialize user instance
deliver message

initialize user, i, ID;)

implementation, register, registration request, ID, registration receipt)
initialize user instance, i, j, role;;, PID;;)

implementation, deliver message, i, 7, InMsg, OutMsg, status), and
start session, i, j) if status = accept, and

abort session, i, ) if status = reject

implementation, deliver message to TTP, InMsg, OutMsg)

application7 f7 f(R7 {Kz]}))

deliver message to TTP
application

||~ —~ —~|—~|—~|—~

3.2.5 Application

This operation takes the form
(application, f).

This is exactly the same as the application operation in the ideal system, except that the function
now computed is a function of the actual session keys {K;;} generated by user instances, as well as
a random input R. Note that R is independent of any random bits used by users or user instances
during initialization and the during the execution of session key protocols.

3.2.6 Transcripts

We now describe the transcript generated by the adversary’s game. This is a sequence of records
that describes all the activities of the adversary and all the information available to it.
The first record in the transcript is

(implementation, initalize system, PKr).

Each operation adds one or two records to the transcript, as detailed in Table 2.
For an adversary A, we let RealWorld(A) denote the transcript.

3.3 Definition of security

We are finally ready to formulate the definition of security of a session key exchange protocol.
There are three basic requirements.

Termination. Any (real world) user instance must terminate after a polynomially bounded num-
ber of messages are delivered to it (the bound must be independent of the adversary). In
fact, we shall only consider here protocols that terminate after a constant number of rounds.

Liveness. For every efficient real world adversary A, whenever the adversary faithfully delivers
messages between two compatible user instances (and T', in the on-line TTP setting), both
user instances accept and share the same session key.

Simulatability. For every efficient real world adversary A, there exists an efficient ideal world
adversary A* such that RealWorld(A) and IdealWorld(A*) are computationally indistinguish-
able.
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3.4

1.

Discussion

The liveness requirement rules out, for example, “do nothing” protocols that would trivially
satisfy the simulatability requirement.

. The simulatability requirement captures the intuition that any real world adversary does no

more “damage” than an ideal world adversary, and by definition, an ideal world adversary is
essentially benign.

. We do not explicitly place any internal random bits used by the real-world adversary in the

transcript. However, a real-world adversary can always force any information it wants into
the transcript using an application operation. To see how this can be done, note that the
function f specified in the application operation could very well be a “constant” function of
the adversary’s choice, and this “constant” can be an arbitrary bit string computed by the
adversary. Admittedly, this is perhaps a bit artificial; alternatively, one could simply add a
special operation that allows the real-world adversary to place “comments” in the transcript.

. Also using application operations, the real-world adversary can arrange that the session keys

K;; along with the random input R are “dumped” into the transcript at the very end of
the game. This will allow a statistical test attempting to distinguish the real-world and
ideal-world transcripts access to otherwise hidden variables.

. It may be useful to illustrate the definition of security with a simple example. Suppose that

a real world adversary A has the power to simply output a session key just after it has been
established (but not used). We can arrange that A forces its “guess” of the session key into the
transcript, as described in point (3). We can also arrange that A forces the actual value of the
session key into the transcript at the end of the game, as described in (4). In the real world,
the guessed value of the key and the actual value would be equal, at least with non-negligible
probability, assuming A could really break the scheme as described. In the ideal world, these
two values would be equal with only negligible probability (at least for sufficiently long session
keys). But this would immediately give us a statistical test to distinguish real-world from
ideal-world transcripts. So either there is no such A, or the session key protocol is insecure.

. Our definition of security implies much more than just the inability of an adversary to guess

a session key. It has a sort of “built in” composition theorem, since the application operation
allows session keys to be used in an arbitrary way by higher-level protocols. We believe that
our definition is general enough so that any high-level protocol can be directly and naturally
represented using appropriate application operations. The simulatability requirement implies
that any event that happens in the real world must happen in the ideal world with essentially
the same probability, as long as this event can be expressed as a function on the transcript (as
augmented above in points (3) and (4)). It is in this sense that a high-level protocol designer
can “pretend” he is working in the ideal world, rather than the real world.

There is, however, one direction in which our definition could be extended. As it is, the func-
tion computed by an application operation depends on the session keys and on some hidden
random variables. One might also want these functions to depend on some hidden values that
cannot effectively be modeled as random variables. To deal with this, one could introduce an
auxiliary input S to be used in both the ideal world and the real world, and the simulatability
requirement would have to hold for all values of S. To prove the security of a protocol in
this setting, one would have to make non-uniform intractability assumptions. Although one

15



10.

11.

12.

can extend the definition in this way, it is not clear to us that this is a particularly useful
extension.

. We emphasize that the application operation is mainly intended to model the normal use of

a session key in a higher-level protocol (e.g., to implement a secure session, see §4), although
it can also be used to model unintended information leakage as well (see §14.1).

. There is no connection assignment information explicitly available in either the real-world

or ideal-world transcripts. This is clearly inevitable, as the real-world transcript can not be
expected to contain this information, and of course the ideal-world transcript is supposed to
look just like the real-world transcript. However, this information is implicitly available to any
statistical test attempting to distinguish the transcripts, since the ideal-world adversary im-
plicitly defines an efficiently computable function from transcripts to connection assignments.
This was the main point of the restriction in §3.1.8 on how connection assignments are com-
puted. Indeed, it only seems fair that this information is available to the statistical test. Our
definition of security essentially implies that any real-world adversary could be replaced by
an equivalent adversary that explicitly announces its intended connection assignments.

. Although we give the ideal-world adversary complete freedom in determining connection

assignments, this freedom is quite superficial. Indeed, since all the session keys may be
eventually dumped into the transcript, the adversary really has no freedom at all, if the
protocol is actually secure. That is, for a secure protocol, connection assignments are unique.
We could have restricted the way in which A* computes connection assignments, but this
would only complicate the definitions without any clear advantage.

Admittedly, the whole business of connection assignments is rather messy, even though we
have tried to simplify it as much as possible. An alternative approach to handling connec-
tion assignments would be to define them via a “session ID.” This is the approach taken by
[BCK98]. In the real world, one would require that a user instance compute and output a
session ID when it accepted. In the ideal world, the session ID would be specified by the ad-
versary in a start session operation. One would then formulate rules to calculate connection
assignments from session IDs. While this approach may have some appeal, it only seems to
yield a more complicated definition of security, with additional, arguably unnecessary syn-
tactic constraints. Moreover, it would require that protocols actually compute these session
IDs. For many protocols, this would entail only a trivial modification, but for others, such as
the one analyzed in [BR95], it would require a decidedly non-trivial modification.

The value role;; € {0,1} assigned to a user instance may be a bit confusing at first. Session
key exchange protocols are typically asymmetric in nature; moreover, higher-level protocols
making use of a session key typically can benefit from this asymmetry as well. See §4 for an
example of this.

Our definition of security does not imply any notion of explicit key confirmation (a.k.a. “ex-
plicit key authentication,” see, e.g., [MvOV97, p. 492]). The notion of explicit key confir-
mation is usually rather vaguely defined, but in our terminology it could be phrased as the
requirement that a user instance is guaranteed that a compatible user instance has accepted
the same key.

Some researchers distinguish between unilateral and mutual explicit key confirmation (provid-
ing the above guarantee to one or both user instances, respectively). We point out, however,
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that mutual explicit key confirmation is impossible to achieve. This is essentially a consensus
problem, and is in general unsolvable in the presence of faulty communication links: the user
instance that sends the last message can never “know” if this message will be delivered, and
therefore can never “know” whether it really has established a connection with anyone. Al-
though there may be a compatible instance of the key establishment protocol that holds the
session key, that protocol instance may not terminate successfully, and so may not pass the
key up to a higher-level protocol, which for all practical purposes is equivalent to not holding
the session key in the first place. This is a rather subtle point that some researchers in the field
have failed to appreciate, and in fact, some researchers have claimed that certain protocols
actually provide mutual explicit key confirmation, e.g., this is claimed in [MvOV97, p. 516]
for STS. At best, the notion of mutual explicit key confirmation is meaningless (this mean-
inglessness is simply obscured by the lack of precise definitions); at worst, it gives high-level
protocol designers an unjustified sense of security.

As it happens, all of the protocols we examine in this paper, except protocol A-EKE-2 in
9.3, do indeed provide unilateral explicit key confirmation. One could modify our definition
of security so as to guarantee unilateral explicit key confirmation, by requiring that a user
instance’s role be correlated with its connection assignment. That is, one role would allow
only the connection assignment create, and the other only connect. This is done, for example,
in [BCK98]. One should note, however, that such a requirement would rule out otherwise
perfectly good protocols, such as the one in [BR95]; moreover, it is not at all clear that
higher-level protocols can truly profit from such a requirement.

In our definition of security, we make no attempt to isolate or formulate the notion of “entity
authentication.” Roughly speaking, this notion tries to capture the goal that two parties can
engage in a protocol so that at the end of the protocol, they are sure that they were really
talking to each other. This is sometimes pursued as an end in itself [DvOW92, BR93a, BM97],
but it is not clear if this is very useful. Such a protocol only establishes that two entities were
talking to each other in the past, but implies nothing about messages sent in the future—it
is simply a secure, mutual “ping.”

One technical point in our definition of security is: what happens when a user instance I;;
runs the session key protocol when its partner identity PID;; has neither been assigned to
the user nor has it been registered by the adversary? In typical protocols in the off-line TTP
setting, I;; will certainly not accept any session key, since it will expect to see a certificate
containing the identity PID;;, but will not. However, it is possible to concoct protocols in
the on-line TTP for which I;; will accept a session key, and this session key may not be
known to the adversary, but may become known to the adversary at a later time if it registers
the identity PID;;; nevertheless, the protocol would satisfy our definition of security, as our
definition makes no security guarantees when PID;; is not assigned to a user (it may be given
a connection assignment of compromise). It seems to be a debatable point as to whether this
is acceptable. One could strengthen our definition by requiring that a user instance rejects
if PID;; has neither been assigned nor registered by the adversary. This would be a simple
modification of the definition, and at any rate, would not affect the security of any of the
protocols we discuss in this paper.

Our formal real-world model implicitly forbids higher level protocols from making use of the
long-term private keys used in the session key protocol. The only “secret” information used
in higher level protocols is contained in the random input R, which is independent of these
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private keys. This significantly simplifies our model, and is anyway good security practice.
If one did allow the same private keys to be used in the session key protocol and the higher
level protocol, one would have to be very careful to prevent protocol interference.

4 The Principle Application: Secure Sessions

Perhaps the main reason for exchanging session keys is to establish secure sessions, so it is perhaps
worthwhile to discuss this point in some detail.

Having established a shared key K, two user instances can then proceed as follows. Applying a
pseudo-random bit generator to K, they can derive sub-keys K 0 and KM, The two user instances
can identify themselves according to their roles, so for the purposes of this session, the user instance
with role 0 can be “player 0,” and the user instance with role 1 can be “player 1.” The key K(©
can then be used to implement a secure—i.e., private and authenticated—uni-directional channel
from player 0 to player 1. This can be done using standard symmetric key encryption (semantically
secure against chosen message attack) and a message authentication code. We assume that messages
are transmitted as fixed-size blocks (the size may depend on a security parameter), and that each
block is individually encrypted and authenticated, so that not only the integrity of the data in
each block is preserved, but also the relative ordering of the blocks. Similarly, the key K (1) can be
used to implement a secure uni-directional channel from player 1 to player 0. The two players can
interleave the sending of message blocks on the two channels in an arbitrary way.

All of the functions for encryption and generating message authentication codes can be expressed
in our formal model as appropriate application operations that are performed by the adversary. This
would be the only access to session keys—and the bits in the random input used to implement the
secure channel—that we would allow our adversary, but in general, we might allow the adversary
access to other bits in the random input.

Our definition of secure key exchange then allows one to establish all of the properties one would
expect if the shared key K were truly random.

In fact, one could carry our formal modeling one step further by giving a simulation-based
definition for a secure session protocol. Although we do not pursue this in detail here, we sketch
an approach for which it should be easy to fill in the details.

As usual, one would define an “ideal world” and the “real world.” In the ideal world, the
adversary would initialize users and user instances, as well as start sessions specifying connection
assignments just as in the key exchange setting, except that in the secure session setting, there
would be no mention of session keys—at this level of abstraction, that is an implementation detail,
and not a part of the specification.

We say that the session for a user instance is compromised if the user instance has a connection
assignment of compromise. We begin by describing the ideal workings of a channel associated with
an uncompromised session.

Once a user instance has established a session, it has access to one input channel and one output
channel. The basic operations are to write a message block to the output channel and to read a
message block from the input channel. As usual, all activities are directed by the adversary.

Whenever the adversary requests a user instance to write a message block, this defines a mes-
sage block variable. Associated with the output channel is a sequence of message block variables
X1, Xs,.... The value of a message block variable X, is computed as a function of the random
input, and any previously defined message block variables in the system. This function is speci-
fied by the adversary. This is very similar to the application operation in the context of session
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key protocols, except that in this setting, all that happens is that variable X, is defined, and the
adversary is given no information about its value.

Whenever the adversary requests a user instance to read a message block, this also defines a
message block variable. Associated with the input channel is a sequence of message block variables
X1, X5, .... For the rth read operation to be legal (for » = 1,2,...), the user instance must have
a partner, and that partner must have performed at least r write operations. The value of the
variable X, associated with this user instance’s input channel is assigned the value of the variable
X, associated with its partner’s output channel. The adversary can also explicitly close a user
instance’s input or output channel, after which it does not read or write any more messages.

The privacy of these channels is guaranteed by the fact that when a user instance writes to its
output channel, the ideal-world adversary obtains no information beyond which it already knows;
namely, that the message block is the value of the function it specified. The authenticity of these
channels is guaranteed by the fact that the values of the message blocks received are equal to the
values of the message blocks actually sent.

That deals with the case when a session is uncompromised. If it is compromised, all of the
above guarantees are eliminated—specifically, when sending a message, the ideal-world adversary
is simply given the message block directly, and when receiving a message, the adversary explicitly
delivers a message block of its choice.

In addition to the above, the adversary may make arbitrary requests to obtain the values
of specific functions on the random input and on defined message block variables, just like the
application operation in the context of session key protocols. This allows us to model yet higher-
level protocols that run on top of the secure session.

The main reason for using fixed-size blocks is that in general, we cannot hope to prevent the
adversary from learning something about the lengths of transmitted messages, so we just fix these
lengths in advance.

It should be straightforward to fill in the details of the ideal world specification, as well as to
describe an appropriate formal model of the real world, and to show how to implement and prove
the security of a secure session protocol on top of a secure session key protocol, using completely
standard symmetric-key cryptographic techniques. Note that in the real world, user instances
would also have message block variables associated with (virtual) input and output channels. Also,
in formulating the definition of security, one would also have to formulate appropriate notions
of termination and liveness, which should be straightforward. The liveness requirement would
simply say that in the real world, to the extent an adversary faithfully delivers messages between
two compatible user instances, these user instances effectively behave as partners with connected
input/output channels, and all message blocks are effectively delivered without modification.

One important point to note, however, is that using standard implementation techniques, we
will not be able to maintain simulatability if we allow the adversary to arbitrarily expose session
keys. The problem is not that we cannot model such attacks in our formalization—in fact, we
can quite easily. The problem is that a standard symmetric-key encryption of a message is a
commitment to that message—if the key is later exposed, the simulator cannot make it look like
something else was encrypted (but see §14.6).

5 Cryptographic Primitives

In this section, we discuss the cryptographic primitives that we will be using throughout the rest
of this paper.
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5.1 Digital signatures

We will make use of digital signature schemes, and the notion of security we will use is that of
security against existential forgery against adaptive chosen message attack, as defined in [GMRSS].
This is the strongest, and most useful notion of security.

Briefly, security in this sense means that it is infeasible for an adversary to win the following
game. A public key/private key for the scheme is generated, and the adversary is given the public
key. The adversary then makes a sequence of signing requests. The messages for which the adversary
requests signatures can be adaptively chosen, i.e., they may depend on previous signatures. The
adversary wins the game if he can forge a signature, i.e., can output a message other than one for
which he requested a signature, along with a valid signature on that message.

Secure and fairly practical signature schemes can be constructed based on various intractability
assumptions [DN94, CD96, GHR99, CS99]. Even more practical schemes can be constructed based
on heuristic arguments (i.e., the “random oracle” model) [BR96, PS96].

5.2 Public key encryption

The notion of semantic security for a public-key encryption scheme was formalized by [GM84].

Briefly, security in this sense means that it is infeasible for an adversary to gain a non-negligible
advantage in the following game. A public key/private key pair for the scheme is generated, and
the adversary is given the public key. Then the adversary generates two equal length messages
mo, m1, and gives these to an encryption oracle. The encryption oracle chooses a bit b € {0,1} at
random, encrypts my, and gives the adversary the corresponding target ciphertext 1'. Finally, the
adversary outputs his guess at b. The adversary’s advantage is defined to be the distance from 1/2
of the probability that his guess is correct.

The formal definition of semantic security captures the intuitive notion that no information
about an encrypted message is leaked to a passive adversary that only eavesdrops. In protocol
design and analysis, a much more robust definition is often required that captures the intuitive
notion of security against an active attack, in which the adversary not only can eavesdrop, but
can inject his own messages into the network. The type of security one needs in this setting is
non-malleability, also called security against chosen ciphertezt attack, a notion that was formalized
in the sequence of papers [NY90, RS91, DDNO91].

The definition of non-malleability is the same as for semantic security, but with the following
essential difference. The adversary is given access to a decryption oracle throughout the entire
game; the adversary may request the decryption of ciphertexts ¢ of his choosing, subject only to
the restriction that after the target ciphertext ¢’ has been generated, the adversary may not request
the decryption of 1)/ itself.

Another intuitive way to understand non-malleability (and the motivation for its name) is that a
non-malleable encryption scheme essentially provides a secure envelope, that is, an envelope whose
contents can neither be seen nor modified by an adversary.

Fairly practical non-malleable encryption schemes can be constructed based on the Decisional
Diffie-Hellman assumption (see below) [CS98]. Even more practical schemes can be constructed
based on heuristic arguments (i.e., the “random oracle” model) [BR93b, BR94, FO99].

5.3 The Decisional Diffie-Hellman assumption

Let G be a group of large prime order ¢ and let g € G be a generator. The Computational Diffie-
Hellman (CDH) assumption, introduced by [DH76], is the assumption that computing ¢*¥ from
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g® and ¢¥ is hard. It is a widely held belief that the security protocols such as STS is implied by
the CDH assumption. This is simply false—under any reasonable definition of security—except
in a heuristic sense that we discuss below in §5.3.3. What is almost always needed, but often not
explicitly stated, is the Decisional Diffie-Hellman (DDH) assumption.

For g1, g2,u1,u2 € G, define DHP(g1, g2, u1,u2) to be 1 if there exists € Z, such that u; = g
and uy = g5, and 0 otherwise. A “good” algorithm for DHP is an efficient, probabilistic algorithm
that computes DHP correctly with negligible error probability on all inputs. The DDH assumption
is the assumption that there is no good algorithm for DHP.

This formulation is equivalent to the more usual one where

91=9,92=g",u1 = g%, uz = g"¥.

5.3.1 DDH random self-reduction

There are a few useful random self-reductions that allow us to transform arbitrary inputs to DHP
into random inputs on which DHP evaluates to the same value.
Let g1, 92, u1,us be given such that g1 # 1 and go # 1. We can randomize u; and us as follows:

~ _a,b ~ _ _ab
Uy = U191, U2 = Uy9o,

where a,b € Z, are chosen at random. Suppose that u; = ¢” and uy = ¢§. If z =y, then (a,uUz)
is a random pair of group elements, subject to log, (@1) = log,, (t2). If  # y, then (1,12) is a
pair of random, independent group elements.

Next, we can randomize gy as follows:

~ _ c ~ _,a,b ~ __ _ac bc
g2 = gz, U1 = Ugy, U2 = Uy gz,

where ¢ € Z, is chosen at random.
Additionally, we can randomize ¢ as follows:

~ d =~ c ~ ad bd ~ ac be
g1 =91, 92 = gg, U1 = Uy g1, U2 = U G2,

where d € Z, is chosen at random.
With this transformation, we see that we can transform an arbitrary input to DHP to an
equivalent, random input. From this, it follows that the two distributions

(glagQag:fagg)a random g1,92 € Ga T,y € an

and
(917927.9%79%)7 random g1, 92 € Ga VS Zq

are computationally indistinguishable under the DDH assumption. This random self-reducibility
property was first observed by Stadler [Sta96] (and also independently in [NR97]).
5.3.2 Applying the DDH assumption

In the sequel, we will need to use a superficially stronger version of the DDH assumption, which in
fact is implied by the DDH assumption.

First, it follows from the DDH assumption, using a hybrid argument (see [NR97]), that the two
distributions

(9. (¢" :1<i<n), (¢ :1<j<m),(¢"% :1<i<n1<j<m)
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and
(9,(9" :1<i<n), (g% :1<j<m), (g7 :1<i<n,1<j<m))

are computationally indistinguishable. Here, the base ¢ is random, as are the exponents.

By a slightly more involved hybrid argument, it follows that an adversary’s advantage in the
following interactive version of the above distinguishing problem is negligible. In this game, a b is
chosen at random, hidden from the view of the adversary. Next, the adversary is given

(9, (9" : 1 <i<m), (g% :1 < j <m)).

For all 4,7, we define h;; = g% if b = 0, and h;; = g*J if b = 1. Now the adversary adaptively
makes a sequence of requests. For any ¢ he can ask to see z;, for any j, he can ask to see y;, and
for any 7,7 he can ask to see h;j. These requests are subject to the obvious restriction that if he
asks for h;;, he cannot also ask, or have asked, for x; or y;. At the end of the game, the adversary
outputs his guess at b. The adversary’s advantage is defined to be the distance from 1/2 of the
probability that his guess is correct.

We will use the above observations in the analysis of Diffie-Hellman based key exchange pro-
tocols. Additionally, we will also use the Entropy Smoothing Theorem (a.k.a., the Leftover Hash
Lemma) to transform random group elements into random bit strings using a pair-wise independent
hash function. See [Lub96, Chapter 8] for an exposition on the Entropy Smoothing Theorem. We
will use this theorem as follows. Having computed a Diffie-Hellman key ¢*¥, we will derive a session
key as Hy(g"¥), where H is a family of pair-wise independent hash functions, and k is a random
index into this family of functions. Under an appropriate choice of parameters, the DDH assump-
tion and the Entropy Smoothing Theorem imply that the distributions (g, g%, ¢¥, k, Hi(¢")) and
(9,9%,9Y,k, K)—where K is a random bit string whose length equals the output length of H—are
computationally indistinguishable.

5.3.3 Using random oracles

Instead of the DDH assumption, one can use the CDH assumption in combination with the random
oracle model of security analysis (see [BR93b]). This is a heuristic model of analysis in which
a cryptographic hash function F' is treated as if it were a black box that contained a random
function. This model has been used to analyze numerous cryptographic systems (see, e.g., [BR94]
and [PS96]). In all of the Diffie-Hellman based key exchange protocols we analyze, if we compute
the session key as K = F'(¢™), then the protocols can be proven secure in the random oracle model
under the CDH assumption.

We can also combine the two approaches, obtaining the “best of both worlds.” If we compute
the session key as K = Hy (g™ )® F(g™¥), then we get a proof of security under the DDH assumption
(without resorting to random oracles), and under the CDH assumption with random oracles.

5.3.4 Discussion

To make all of the above definitions and arguments precise, one should view the group G not as
fixed, but as being generated by some probabilistic algorithm taking as input a sufficiently large
security parameter. The above hybrid arguments can be readily adapted to the case where we have
a heterogeneous system of groups G, each of which is generated in this way.

The DDH assumption appears to have first surfaced in the cryptographic literature in a paper
by S. Brands [Bra93]. See [Bon98, CS98, NR97, Sta96] for further applications of and discussions
about the DDH assumption. A potentially stronger version of the DDH assumption—which we
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shall not need in this paper—allows the adversary to choose one of the two bases g1 or g» in the
above distinguishability problem. Interestingly, it appears that allowing the adversary to choose
one of the bases may give him more power than he would have if both bases were random. This
is in contrast to the CDH and Discrete Logarithm assumptions, where it does not matter if the
adversary chooses the base. It remains to be seen whether such a stronger version of the DDH
assumption has useful cryptographic applications. We mention this here only because it seems that
previous works involving the DDH did not make this distinction.

6 The Certificate Authority

In this section, we describe precisely the role of the trusted third party T' as a certificate authority
in this and all the other protocols in this paper.

We assume that when a user U; is initialized (see §3.2), he generates a public key/private
key pair PK;/SK;, and the registration request is PK;. The trusted third party T, acting as a
certificate authority, generates a certificate cert;, which consists of a signature on (ID;, PK;) under
PKp. The registration receipt is simply cert;. The long-term state information LT'S; of user U; is
(SK;, PK;, cert;).

Recall that the rules for registration (§3.2.1-§3.2.2) prevent two honest users from registering
the same name, and prevent the adversary from registering an honest user’s name. Of course,
the enforcement of these rules lies outside our formal model. For example, in real life, the certifi-
cate authority might be able to reasonably enforce these rules by requiring the use of sufficiently
descriptive names and by demanding adequate “proofs” of identity (passport, driver’s license, etc.).

Note, however, that we will not require anything more of the certificate authority. In particular,
we shall not require that a user proves that he “knows” the secret key corresponding to a public
key when he gets a certificate—a practice that is sometimes advocated. So, for example, there is
nothing stopping an adversary from obtaining a certificate that binds the name of a “corrupted
user” (i.e., an alias under which the adversary is operating) to the public key of an honest user.

There are three reasons for not doing this. First, both from a trust and an efficiency point of
view, it seems best to require as little of T" as possible. Second, it is easy to design quite efficient
key exchange protocols that are secure under our minimalistic trust assumption. Third, it is not
clear how one would really exploit a “proof of knowledge” to get rigorous security proofs—from
a technical point of view, “proofs of knowledge” are quite tricky to work with, since they often
involve “rewinding,” which can cause real problems when trying to build a simulator.

Note that as we have set things up, user certificates are not available in any “public directory.”
Instead, we shall require that user certificates are transmitted as a part of the session key protocol
itself. This closely models what happens in practice. By implication, the adversary also does not
get direct access to user certificates: the adversary must obtain user certificates by interacting with
users, just like an honest user must. This is not at all a serious restriction, and we could easily add
a certificate request command in the real system without changing any of the theorems we later
prove.

7 A Diffie-Hellman Based Protocol

In this section we describe and analyze a protocol based on the classical Diffie-Hellman protocol
key exchange [DH76]. We call our proposed protocol DHKE.
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7.1 Protocol DHKE

Each user generates a public key/private key pair as follows. First, he chooses a public key/private
key pair for a digital signature scheme. Second, he constructs a group G of prime order ¢, and
selects a random generator g for this group. The user’s public key consists of the public key for
the signature scheme, and a description of G and g. The user’s private key consists of the private
key of the signature scheme. We denote by sig;(msg) the output of user U;’s signature algorithm
on msg. Note that in this paper, signatures do not include the message being signed. We remind
the reader that cert; denotes the certificate that binds user U;’s public key with his identity, as
described in §6.

We describe the protocol in terms of two users U; and Uy. User U; initiates the protocol, and
in the description of the protocol, G, g, and ¢ refer to the group information recorded in the public
key of user U;. We also assume a family of pair-wise independent hash functions Hy, indexed by a
randomly chosen bit string k& of some specified length.

Ui — Uy = g%, sig;(g®, IDyr), cert;,
where x € Z, is chosen at random.
Upr = Ui g¥, k,sigy (g, gY, k, ID;), certy,
where y € Z, is chosen at random, and k is a random hash function index.

The agreed upon session key is Hy(g"¥), computed in the usual way. Additionally, each player
validates all certificates and signatures in the usual way, rejecting the protocol and refusing to
generate a session key if any of these tests fail.

Our description is not entirely precise. Some user instance I;; is running the protocol on behalf
of user U;, and likewise some user instance [y; is running the protocol on behalf of user U;. The
identity ID; written in the first flow is actually computed by I;; as PID;;, and by I as 1Dy .
Similar remarks apply to other computations in the protocol. Also, we arbitrarily let the roles of
the two user instances in this and other protocols in this paper be determined by who goes first.

Remark 8 The reader may already have a funny feeling about this protocol, as it consists of only
two flows, as opposed to the three flows used in STS. Indeed, the first message generated by U; could
be sent to several instances of Uy, at most one of which can actually end up sharing a key with Uj.
At worst, this will lead to user instances Iy that are permanently isolated. However, any session
key protocol ultimately suffers from this problem: whoever sends the last message in the protocol
does not “know” if it was ultimately delivered. As was pointed out in §3.4, point (12), we should
not expect a key exchange protocol to solve the consensus problem, which is anyway unsolvable in
general. Moreover, even if all messages in the session key protocol are delivered, there is in general
no guarantee that any messages in higher-level application protocols will be delivered.

7.2 Security analysis of DHKE

Theorem 1 Protocol DHKE is a secure key exchange protocol, under the DDH assumption, and
assuming all the digital signatures schemes employed are secure.

We now prove this theorem.

We are given a real world adversary A. Our approach will be to transform A into an ideal
world adversary A*, and to simultaneously transform the real world ring master into an ideal world
ring master, doing this without changing the transcript in any (computationally) discernible way.
Basically, this will simply amount to having A* run the adversary A just as in the real world, except
as follows:
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e A* computes appropriate connection assignments, and the ring master in the ideal world
substitutes real-world session keys with idealized session keys;

e whenever A* chooses to compromise a user instance, it supplies a session key as part of the
start session operation by extracting the key from the real-world user instance;

e for any implementation record that A’s actions cause to be placed in the real-world transcript,
A* copies this record into the ideal-world transcript using a corresponding implementation
operation;

e any application operations are evaluated by the ring master using the idealized session keys.

What we end up with, then, is an adversary A* that is a system of interacting algorithms
consisting of A, the real world users, and 7. The main thing is to argue that these connection
assignments are legal, and that the key substitutions are not detectable.

We make one more notational convention that will also be used in our other proofs of security.
We will always write I;; for a user instance that is an originator, i.e., sends the first message in
the protocol, and Iy; for a user instance that is a responder, i.e., a user instance that sends the
second message in the protocol. For any two such user instances, the values role;; and role; ; are
complimentary.

Case 1. Suppose a user instance [y; has received the first message in the protocol and has
accepted.

Case 1a. If PID;y; is not assigned to a user, then we compromise I in the ideal world. To do
this, we need to specify the session key, which we simply extract from I; in the real world.

Case 1b. Now suppose PID;;: is assigned to a user U;. We assert that at this point there is
a unique user instance I;; such that PID;; = IDy and that I;; sent g” in its outgoing message.
This follows easily from the logic of the protocol and the security of the signatures. So we create
I;jr, and the ring master substitutes the actual session key with a random session key. We have
to argue that this substitution is unnoticable (computationally, that is). But this will follow using
the argument in §5.3.2, provided the user instance I;; mentioned above has not been or ever will
be compromised. But this is so, because PID;; = IDy, and so such a compromise connection
assignment is not allowed in the rules. The only possible outcomes for I;; are that it never accepts,

it connects to I, or it connects to another instance of user Uy .

Case 2. Suppose that user instance I;; has just received an incoming message in the protocol
and has accepted.

Case 2a. If PID;; is not assigned to a user, then we compromise I;;, extracting the needed
session key from I;; itself.

Case 2b. Now suppose PID;; is assigned to a user Uy. We assert that there is a unique isolated
user instance I such that PID;; = ID; and the values g*, g¥ and k match. This follows easily
from the logic of the protocol and the security of the signatures. This allows us to connect I;;
to Iy, and the ring master substitutes the actual session key of I;; with the session key of Iy
previously generated by the ring master. This substitution will be unnoticable because the session
keys were the same in the real world.

That completes the proof of the simulatability requirement in the definition of a secure key
exchange protocol. It is trivial to see that the termination and liveness requirements are satisfied.
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8 An Encryption Based Protocol

8.1 Protocol EKE

Each user generates public key/private key pairs as follows. He chooses a public key/private key
pair for a signature scheme, as well as a public key/private key pair for a public key encryption
scheme.

As in §7, we let sig;(msg) denote user U;’s signature on msg. Also, we let F;(msg) denote an
encryption of msg under user U;’s public key.

We describe the protocol in terms of two user’s U; and Uy.

U; — Uy : r, cert;,
where r is a (sufficiently long) random bit string.
Up = U;: a= E;{(K,IDy), sigy (e, 1, ID;), cert;,
where K is a random bit string.

The agreed upon session key is K. As usual, both users check the relevant signatures. Ad-
ditional, user U; checks that the decryption of « is of the right form, containing the expected
identity.

8.2 Security analysis of EKE

Theorem 2 Protocol EKE is a secure key exchange protocol, assuming secure signatures, and
assuming the encryption scheme is non-malleable.

We now prove this theorem. The basic structure of the proof is the same as that of Theorem 1
in §7.

Case 1. Suppose a user instance Iy has just received the first message in the protocol, and
has accepted.

Case la. If PID;j is not assigned to a user, then we compromise I in the ideal world,
extracting the key K from I ;.

Case 1b. Otherwise, suppose PID; ;: is assigned to a user U;. Then we create I;; in the ideal
world, and the ring master substitutes the session key held by I;; with a random key. Because
we are assuming the encryptions are non-malleable, this substitution will be undetectable, provided
the ciphertext o is never actually decrypted. We justify this claim below.

Case 2. Now suppose a user instance [;; has just received a message.

Case 2a. Suppose that PID;; is not assigned to a user.

If the ciphertext a received was generated by any user instance Iy ; with PID;; = ID;, then
we can safely make I;; reject, as the identity embedded in a (ID;s) is not what I;; expects (PID;j).
This is done without ever decrypting a.

Otherwise, if the ciphertext o was not generated by any such user instance, we let I;; run to
completion. If it accepts, we compromise I;j, extracting the session key from I;;. This of course
makes implicit use of the decryption function of user U;, but we have taken care not to decrypt
anything that was encrypted by a user instance I;;; with PID;; = ID;. As we will see, this is the
only place in the game where we decrypt anything. This justifies the claim made above in case (1b)
that we never decrypt ciphertexts created by user instances with connection assignment create.

Case 2b. If PID;; is assigned to a user Uy, we proceed as follows. If the signature verification
succeeds, then the ciphertext o must have been created by a unique user instance I;j» with PID; ;i =
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ID;, and the the identity embedded in the ciphertext must be ID;/, so there is no need to actually
decrypt it. Moreover, it is easy to see that connecting I;; to I;; is valid at this moment, because
the 7 values are all unique (at least with overwhelming probability). So we connect I;; to Iy, and
the ring master sets the session key of I;; to the key that it generated for I;;. This substitution is
undetectable, since the two session keys were the same in the real world.

It is clear from the arguments already made that the real world and ideal world transcripts
are indistinguishable. That proves the simulatability requirement. The termination and liveness
requirements are trivial.

Remark 9 One of the main attractions of protocol EKE is that it can be implemented so as to
minimize the computational efforts of one of the two users—user Uy in this case. First, one could
use a low-exponent RSA signature scheme [BR96] for the certificates, so that certificate verification
is cheap. Second, one could use a low-exponent RSA [BR93b, BR9}] for the encryption scheme.
Third, for the signature scheme that user Uy uses to sign messages in the protocol, one could use
Schnorr’s signature scheme [Sch91]. In this scheme, one can perform some “off line” computations
so that the “on line” cost of signing 1s extremely cheap. Thus, if user Uy is a server that is heavily
loaded at some times, but not at others, the server can perform the “off line” computations during
non-peak hours, and thereby provide a fast response time during peak hours.

9 Anonymous Users

In this section, we extend our formal model of security for session key protocols to model the setting
where one of the two users establishing a session key is anonymous. By an anonymous user, we
simply mean one without a certificate, so perhaps a better term would be unauthenticated.

Of course, to the non-anonymous user, the session key protocol itself can offer little protection,
since the anonymous user could be the adversary, or an honest user, and the non-anonymous user
cannot tell the difference. Typically, however, an anonymous user will authenticate himself within
the secure session using a password. We discuss this in more detail in §9.4.

9.1 Definitions

Adding anonymous users is simple. We create a special user Uy with the special identity Dy =
anonymous. An entity that wants to run the protocol as an anonymous user will simply utilize a
user instance Ip; for this purpose. Note that user Up has no associated secret key or long-term
state, and is considered to be pre-initialized.

Beyond the introduction of this special user Uy, the rest of the model stays exactly the same
as before, with one exception. The compromise rule C3 (see §3.1.4) regulating the connection
assignment for a user instance I;; is replaced by:

C3* The connection assignment compromise is legal provided PID;; is not assigned to a user, or
PID;; = anonymous.

That is, the ideal-world adversary A* is always free to make a connection assignment of compromise
for a user instance I;; if PID;; = anonymous.

Remark 10 Intuitively, this relaxation of the compromise rule is necessary, since as we remarked
above, an anonymous user may really be the adversary himself. Note, however, that for any protocol
that satisfies our definition of security, A* cannot always choose to compromise such a user instance.
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Remark 11 The fact that we group together all anonymous user instances under a single user Uy
18 simply a technical convenience. In practice, such user instances will not typically be running on
the same machine, and may indeed be running on the same machine on which a non-anonymous
USEr 1S running.

Remark 12 There is nothing in our definition that rules out a protocol that attempts to establish
a key between two anonymous user instances. However, our definition would provide no security
guarantees for such a key, so we shall not consider such protocols here.

9.2 A Diffie-Hellman based protocol
We can extend protocol DHKE to obtain the following protocol A-DHKE.

UO — Ui’ : gxa
where x € Z, is chosen at random.
Up — Uy : ¢Y,k, sigy (9", gY, k,anonymous), cert;,
where y € Z, is chosen at random, and k is a random hash function index.

As usual, the anonymous user checks all the relevant signatures. Both users compute the session
key as Hy(g™). Also, we assume here that the group used for the computations is shared by all
anonymous users. [t can wither be “hardwired” into all users, or can be part of the public key
PKr.

Note that we consider protocol A-DHKE to be an extension of protocol DHKE, meaning that
both anonymous and non-anonymous key exchanges may take place in any combination.

Theorem 3 Protocol A-DHKE is secure, under the DDH assumption, and assuming secure sig-
natures.

The proof is just a slight modification of the proof of Theorem 1. The only thing that changes
is the calculation of the connection assignment in case (1a) of that proof. In this case, we shall
compromise Iy if either

e PID;; is not assigned to a user, or

e PID; ;i = anonymous and there does not exist an anonymous user instance Io; with PIDy; =
ID; that sent g% as its first message in the protocol.

The rest of the proof goes through without change.

Remark 13 The reader may have noticed that protocol A-DHKE is vulnerable to the following
PKI “attack.” An adversary could take the public key of an honest user B, and register a name
B with the same public key. Then by replacing B’s certificate in the protocol with B’s certificate,
the adversary could make the anonymous user think he has a key established with B, whereas he
really shares a key with B. Qur definition of security does not rule out this “attack,” and it is
easy to carry out this “attack” on protocol A-DHKE. However, we argue that this “attack” is
spurtous. Indeed, if the session key is used for the purpose of establishing a secure session, then
the adversary can always achieve the same effect much more easily, as follows. He could separately
establish session keys with the anonymous user and with B, and then just act as a “bridge” between
these two users, decrypting and re-encrypting messages as necessary. Also note that one could try
to prevent the above “attack” on A-DHKE by having Uy include his identity ID; in the message
that it signs in the second flow; however, although this would make the “attack” more difficult to
mount, one could not rule it out under the standard definition of secure signatures.

28



9.3 Two encryption based protocols

We extend protocol EKE in two different ways. The first protocol, A-EKE-1, runs as follows.

U; = Uy : r,cert;,

where r is a (sufficiently long) random bit string.
Uy — U; : E;(K,anonymous, ),

where K is a random bit string.

As usual, the agreed upon session key is K, and user U; checks that the values embedded in
encrypted message are correct.

Theorem 4 Protocol A-EKE-1 is secure assuming secure signatures and non-malleable encryp-
tion.

The proof of this theorem is just a slight modification of the proof of Theorem 2. We need to
modify only case (2b) of that proof when PID;; = anonymous.

e If o was not created by an anonymous user instance, we let the protocol run to completion,
and compromise I;;, should it accept. If I;; accepts, this involves an implicit decryption of «,
but by the logic of the protocol, o cannot be one of the ciphertexts from step (1b) that we
are not allowed to decrypt.

e Otherwise, if o was created by a (necessarily unique) user instance Iy;, then there are two
sub-cases.

— If the value r received by Iy, matches that sent by I;;, then we connect I;; to Iy;.

— Otherwise, we let I;; reject, since that is what I;; would anyway do.

In both sub-cases, we do not decrypt «.

Remark 14 We have written protocol A-EKE with the non-anonymous user U; in the role of the
witiator, and the anonymous user Uy in the role of the responder. In a typical setting, however,
the non-anonymous user s a “server,” and the anonymous user is a “client.” In such a setting,
we would typically expect the client to initiate the protocol. If that is the case, then the protocol
must contain an initial flow from the client to the server, just to get things started, so the protocol
would actually require three flows.

Remark 15 This protocol can be implemented so that the computational burden on the client is
very minimal, by using low-exponent RSA based encryptions and signatures. This might be useful
i some settings where the client is computationally limited; unfortunately, in many settings, is
turns out to be the server who s already computationally overburdened.

Here is an alternative, rather amusing protocol A-EKE-2. Let f be a pseudo-random function
family, indexed by a key K.

Ui — U() 1 cert;.

Uy — U; : E;(K,anonymous),
where K is a random bit string.
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U —Uy: r,

where r is a random bit string.
In this protocol, the agreed upon session key is computed as fx(r).

Theorem 5 Protocol A-EKE-2 is secure assuming secure signatures, non-malleable encryption,
and a secure pseudo-random function.

We leave this proof as an exercise for the reader.

Remark 16 Since the last flow from U; to Uy is not authenticated, if the adversary modifies the
value v while 1t is in transit, then both user instances will simply be permanently isolated. Thus,
while the protocol satisfies our definition of security, it does not guarantee explicit key confirmation
for either originator or responder (see §3.4, point (12)).

Remark 17 The point of this protocol is to address the issue raised in Remark 14. In the
client/server setting described there, protocol A-EKE-2 would in the worst case require four flows.
However, if the client happens to already have the certificate of the server stored locally, only two
flows are necessary. Indeed, protocols A-EKE-1 and A-EKE-2 could be combined so that the
client uses the former if it does not already have the server’s certificate, and the latter if it does.

9.4 The principle application: secure sessions

We can extend the formal security model and implementation sketched in §4 for a secure session
protocol to include anonymous users. Actually, nothing changes, except that we let the adversary
make connection assignments using the modified rule C3*, described above.

We can go one step further, if we wish, and consider the situation where the anonymous user
authenticates himself to the non-anonymous user by means of a password. Now, once an anonymous
user has an established a secure session, he can simply send his password through the secure channel.
Sometimes this message can even be piggy-backed on the last message of the key exchange protocol,
in which case there is no extra communications cost. There is really nothing more to it. It is easy
to see that given the properties of a secure session, such a password-based scheme will have all the
properties one could possibly hope for; in particular,

e an adversary trying to guess a password cannot do any better than an “on line” password
guessing attack, and

e if an anonymous user establishes a session and then authenticates himself within the session
using a password, an adversary cannot afterwards “hijack” the session.

As already mentioned in §1, our approach to this problem is perhaps an attractive alternative to
the approach taken by many other authors. By appropriately defining secure key exchange in the
anonymous user setting, we can easily analyze such protocols without worrying about passwords.
Then using a standard implementation for secure sessions on top of the key exchange protocol, and
passing the password through the secure channel, we get a password-authenticated secure session
essentially “for free.” Moreover, one can implement a single “low layer” communication protocol
that implements secure sessions with anonymous users, without any passwords; on top of this, one
can implement arbitrary protocols that may or may not require passwords: “telnet,” “FTP,” etc.

30



10 A Formal Model for Security Against Adaptive Corruptions

We now extend our formal security model to deal with adaptive corruptions. In an adaptive
corruption, the adversary obtains a user’s long-term secret, but nothing else.

In §14, we shall consider strong adaptive corruptions, in which the adversary obtains ephemeral
data as well as long-term secrets.

Note that our formal model already allows one to model the exposure of session keys (using
appropriate application operations), but as was pointed out in §4, a typical implementation of a
secure session protocol built on top of a secure key exchange protocol will not be secure (in the
sense of simulatability) if we allow the exposure of session keys.

Additionally, we allow a corruption to encompass the possibility of a fault in the certificate
authority, whereby the adversary obtains a certificate of his choice on a user’s identity.

Our approach will be that when a user is corrupted, that user continues to play along in all
interactions as usual, following its protocol correctly. Of course, the adversary, having obtained the
secret key, can interact with other users, “pretending” to be this user.

We need to modify both the real system model and the ideal system model. The definition of
security, defined in terms of termination, liveness, and simulatability, will remain exactly the same.

10.1 The real system
The adversary may execute a corrupt user operation, which takes the form
(corrupt user, 7).

The adversary specifies a user U; that has been previously initialized, and obtains the user’s long-
term state LTS;.
The following two records are added to the transcript:

(corrupt user, i),

and
(implementation, corrupt user, LTS;).

Additionally, at any point in time after a corrupt user operation, we allow the adversary to
perform register operations using the identity ID;

Note that since LT'S; may change over time, we allow a corrupt user operation to be applied to
an already corrupted user.

10.2 The ideal system

The adversary may execute a corrupt user operation,
(corrupt user, i),

specifying a previously initialized user U;. The record
(corrupt user, 1)

is added to the transcript.

No information is given to the adversary in the ideal world when a user is corrupted.
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The only other change to the model is that we have to modify the rules in §3.1.4 governing the
legality of the connection assignments made during during a start session operation applied to a
user instance I;;.

The change here is minimal. We change rule C3 as follows:

C3' The connection assignment compromise is legal if either

— PID;; is not assigned to a user,
— PID;; is assigned to a corrupted user, or

— user Uj; is corrupted.

Remark 18 It is important to notice what does not change. In particular, the ideal-world ad-
versary 1s free to make the connection assignments create and connect, regardless of whether any
of the relevant users have been corrupted—he is never forced to make the connection assignment
compromise. This keeps our definitions simple and natural: if Alice thinks she is talking to a user
Bob, but Bob has had his long-term secret key exposed, then Alice may indeed be talking to Bob or
to the adversary. This gives our simulators the flexibility they need to deal with situations where a
user s corrupted while it is in the middle of an on-going protocol.

10.3 A more conservative compromise rule

Notice that we allow a connection assignment of compromise for I;; if user U; itself has been
corrupted. While this may seem fairly natural, one could make a more conservative compromise
rule that required that PID;; is not assigned to an uncorrupted user—corruption of U; would not
be sufficient by itself.

Such a conservative compromise rule makes a difference.

First, it would make a difference in the inferences one could make in higher-level protocols.
For example, Alice could infer that a supposed message from Bob in a secure session was indeed
from Bob unless Bob was corrupted—it would not matter if Alice’s long-term secret key had been
exposed or not. This is precisely the same inference that Alice could draw if the message were
authenticated directly with a digital signature. This inference could not be drawn under the liberal
compromise rule.

Second, it would make a difference in which protocols would be considered secure. In §12 we
will see examples of protocols that are secure under the liberal compromise rule but not secure
under the conservative compromise rule.

In the sequel, we will adopt the liberal compromise rule as our “default” rule, but will point
out those situations where imposing the conservative rule would make a difference.

10.4 The principle application: secure sessions

We continue our discussion about the principle application of session key exchange protocols,
namely, to build a secure session protocol. We can adapt the formal model and implementa-
tion of a secure session protocol sketched in §4 to deal with adaptive corruptions. In fact, nothing
really changes, except the rules for connection assignments. The important thing to note, however,
is that if a user instance starts a session, and that session is initially uncompromised, then 4t will
never be compromised, even if one of the relevant parties is corrupted while the session is ongoing.
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10.5 Non-forward security against adaptive corruptions

Our definition of security against adaptive corruptions captures the intuitive notion of forward
security. One can easily formulate a notion of non-forward security against adaptive corruptions,
wherein the adversary in the ideal world would also obtain all the relevant session keys, which
means, all the session keys established by instances of the corrupted user U;, as well as all session
keys Ky with PID;yj = ID;. Absolutely nothing else would change: in particular, none of this
extra information would be logged in the ideal world or real world transcripts.

This notion of non-forward security does not seem to be very attractive, for two reasons. First,
it does not seem to be any easier to achieve non-forward security than to achieve forward security.
Second, it would be very difficult to build a practical secure session protocol that was secure against
adaptive corruptions on top of such a key exchange protocol.

10.6 Anonymous users

It is trivial to adapt the definition of security with respect to anonymous users (see §9) to incorporate
adaptive corruptions. All that changes is rule C3’ is §10.2, so that the the connection assignment
compromise is also legal when PID;; = anonymous (as in rule C3* in §9.1). As the anonymous user
Up does not have any long-term state, it cannot be corrupted.

11 Interlude: On the insecurity of protocols DHKE and EKE
against adaptive corruptions

In this section, we argue that protocols DHKE and EKE are insecure against adaptive corruptions.

11.1 Protocol DHKE against adaptive corruptions

Consider a user instance I;; who is engaging in the protocol (as an initiator) with a compatible user
instance Iy (as a responder). Suppose that the first message in the protocol is delivered to Iy,
so that Iy ; computes a session key Ky ;o = Hy(g"), along with a response message to be sent to
back to I;;. At this point, the adversary reveals Ky ; using an appropriate application operation.
Next, the adversary corrupts user Uy before the response message is delivered to I;;, so that the
adversary obtains the signing key of Uy. If I;;;i’s response message was

(gya ka Sigi’ (ng gy7 ka IDZ))?
the adversary instead delivers the message
(h, k, sigy (g%, h, k, ID;))

to I;j, where h is a group element chosen in some mysterious way by the adversary. The adversary
can do this, since it has the signing key of user Uy. Now, I;; will accept and compute its session
key K;; = Hy(h"), and we also reveal this session key using an appropriate application operation.

Now, at the point in time when I;;» generated its session key, it was not corrupted, so the only
possible connection assignment for I;s; is create. This means that K ; should be indistinguishable
from a random key. But we cannot hope to prove this under the standard DDH assumption, since
the additional information Hy(h”™) is available to any statistical test.

We believe that the problem is a fundamental one, having more to do with the inherent mal-
leability of Diffie-Hellman based encryption, than with the particulars of our formal model.
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11.2 Protocol EKE against adaptive corruptions

At best, it is clear that all we could hope for is that protocol EKE is secure against adaptive
corruptions in the non-forward sense described in §10.5. This is because if we corrupt a user U;
and obtain his private decryption key, we can easily compute all of the session keys that were ever
sent encrypted to it in the protocol.

But things are much worse than that. Consider the following scenario. Say we have n pairs
of users U; and Uy, with all users distinct. Now we let all n pairs run the session key protocol,
and start using their session keys in application protocols. Now the adversary corrupts a random
subset of the U; users, obtaining their long-term decryption keys.

How could we simulate this? When the session key protocols terminate, we want to substitute
all of the actual session keys with random keys before the users start using them in an application
protocol. We have to, because we have no idea which subset the adversary will corrupt. But
when we obtain the decryption keys, we will have an inconsistent transcript: the actual ciphertexts
decrypt to values different from the substituted session keys.

12 Diffie-Hellman Based Protocols for Adaptive Corruptions

In this section, we examine three Diffie-Hellman based protocols that are secure against adaptive
corruptions. We call these DHKE-n for n € {1,2,3}.

12.1 Protocol DHKE-1

We now show how to modify protocol DHKE to obtain a protocol that is secure against adaptive
corruptions. We call this protocol DHKE-1. It is essentially the same as DHKE, but with an
additional “key confirmation” flow.

The system set up is the same as before. Additionally, we need a pseudo-random bit generator
BitGen.

The protocol runs as follows.

Ui — Uy : g%, sig;(g", IDy), cert;,

where x € Z, is chosen at random.
Upr = Ui g¥,k,sigy(g*,g¥, k, ID;), certy,

where y € Z, is chosen at random, and k is a random hash function index.
Ui — Ui’ : kl,

where (k1, ko) = BitGen(H(g"™)).

The agreed upon session key is ko, where (k1, ko) = BitGen(H(g™¥)) as above. In addition to
all the usual signature checks, user U; checks the value k; is as expected. We assume that k; is a
sufficiently long bit string (of length, e.g., linear in the security parameter).

Theorem 6 Protocol DHKE-1 is secure against adaptive corruptions, under the DDH assump-
tion, and assuming secure signatures and that BitGen is a secure pseudo-random bit generator.

We now prove this theorem, which follows the general outline of all our other proofs so far.
That is, we show how to transform a real world A into an equivalent ideal world A*.
Let G; denote the description of the group that is contained in cert;.
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Case 1. Suppose a user instance I;; has just received its last message, and all the signatures
are valid.

Case la. Suppose PID;; is assigned to user Uy, and some instance Iy; with PID;; = ID;
received the g”, G; values sent by I;; and sent the g¥, k values received by I;;. In this case, we make
I;; accept in the ideal world, and we give it the connection assignment create, whereby the ring
master chooses a random string for the session key. Additionally, we will generate a random string
k1, which we will call the confirmation key of I;; for future reference. Note that we do all of this,
even if user Uy has been corrupted.

Case 1b. Suppose the condition in case (1a) does not hold. By the logic of the protocol, the
only way this could happen is if PID;; is not assigned to an uncorrupted user, or user U; is itself
corrupted. We extract the computed session key and confirmation key from I;; in the real world,
and compromise I;; using the computed session key.

Case 2. Suppose that I;; has received its last message, and the signatures do not check. Then
we let I;; reject in the ideal world, which is what it would do anyway in the real world.

Case 3. Suppose a player instance I;; has just received its last message, and all the signatures
check.

Case 3a. Suppose PID;j is assigned to user U;, and some instance I;; with PID;; = ID;
sent the ¢, G; values received by Iy and received the g¢Y,k values sent by I;;. Let k; be the
confirmation key of I;; (see case (1a)). We then test if the last message received by I;; is equal to
k1. If not, we let I;s; reject. Otherwise, we connect Iy to I;j. As this our only rule for connecting
two user instances, it is easy to see that no other user instance has connected to I;;, and hence it
is still 4solated. Note that we do all of this, even if user U; has been corrupted.

This last point is crucial. User U; may have been corrupted after I;; accepted and sent its
last message, and in the meantime, I;; may very well have started to use its session key. In the
simulation we have already substituted K;; with an idealized random key, and so we cannot afford
to compromise Iy j at this point. This is is the situation referred to in Remark 18.

Case 3b. Suppose the condition in case (3a) does not hold. There two further sub-cases to
consider.

Case 3. Suppose that at this point in the game, user Uy is not corrupted, and that g%, G;
came from a user instance I;; with PID;; = IDy. Then in the ideal world, we simply make I;
reject. See below for a discussion of why this is valid.

Case 3. If we reach this sub-case, by the logic of the protocol, the only way this could happen
is if PID;;r is not assigned to an uncorrupted user, or user Uy itself is corrupted. We then extract
both the session key and the confirmation key from I; ;. We then test the if the received message is
equal to the computed confirmation key. If this test fails, we let I;; reject, just as it would in the
real world. Otherwise, we let it accept, and compromise I j in the ideal world using the computed
session key.

Case 4. Suppose that I;j has received its last message, and the signatures do not check. Then
we let [y reject in the ideal world, which is what it would do anyway in the real world.

Clearly, we have not broken any of the rules governing the ideal world simulation. But we also
have to show that the resulting simulation is faithful to the real world. Notice that the only time we
make two user instances partners, the corresponding values of G;, g%, ¢¥ and k match. Because this
condition is symmetric, we will never compromise one key, while substituting the other instance’s
key with a random key.

The faithfulness of the simulation now follows from the DDH assumption, but there is one
subtle point that requires further comment: the “forced” rejection by user instance Iy in case
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(3b’). We have to argue that this is what would have happened in the real world, since we never
asked I what he really wanted to do. But consider the user instance I;; referred to in that sub-
case. Since user Uy has not been corrupted at this point, the adversary could not have forged any
messages on behalf of user Uy. Therefore, either I;; has not accepted (either it rejected or has not
yet received the second message in the protocol), or it has accepted using some value A generated
independently by another instance of user Uy. So at this point, under the DDH assumption, the
value k; that Iy; is expecting is (computationally) independent from the adversary’s view in the
real world. Thus, letting I;j» reject is the right action.
That completes the proof of the theorem.

Remark 19 Key confirmation is a mysterious and ancient tradition practiced by protocol design-
ers, as was already alluded to in §3.4, point (12). There has never been a satisfying explanation of
why they did this. Now we know: to allow a proof of simulatability against adaptive corruptions.

We can extend protocol DHKE-1 to deal with anonymous users, obtaining the following pro-
tocol A-DHKE-1. As in protocol A-DHKE (see §9.2), we assume that all anonymous users work
with a shared group.

Uy — Uy : gI,

where x € Z, is chosen at random.
Upr — Uy : ¢¥,k, sigy(9”, gY, k,anonymous), cert;,

where y € Z, is chosen at random, and k is a random hash function index.
Uy = Uy - ky,

where (k1, ko) = BitGen(H(g"™)).

We leave it to the reader to verify that this protocol is secure with respect to our definitions of
anonymous users (§9) and adaptive corruptions (§10.6).

12.2 Protocol DHKE-2

We presented protocol DHKE-1 as we did because it is a minimal modification of DHKE and has
an interesting proof of security. An alternative is the following DHKE-2, which is closely related
to STS.

The set up is just as in DHKE.

U; — Uy : g%, cert;,
where x € Z, is random.

Upr = U;: g¥, k,sigy(g*, gY, k, ID;), certy
where y € Z, is random and k is random.

Ui — Ui’ : Slgz(gxagyaka-[Dz’)

Theorem 7 Protocol DHKE-2 is secure against adaptive corruptions, under the DDH assump-
tion, and assuming secure signatures.

The proof of security for DHKE-2 is actually more straightforward than for DHKE-1.
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Case 1. Suppose I;; has just accepted.

Case la. Suppose PID;; is assigned to user Uy and some instance Iy with PIDyy = ID;
received the ¢g”, G; values sent by I;; and sent the ¢¥, k values received by I;;. Then we create
I;;, and Kj; is replaced with a random key. We will see below that I is not compromised, it
either rejects or connects to I;;. It follows from the DDH assumption that the substitution will go
unnoticed.

Case 1b. If the condition in case (1a) does not hold, then by the logic of the protocol, either U;
is corrupted, or PID;; is not assigned to an uncorrupted user. So we compromise I;;.

Case 2. Suppose I;j has just accepted.

Case 2a. Suppose PID;; is assigned to user U; and some instance I;; with PID;; = ID; sent
the g%, Gi; value sent by I;; and received the ¢¥, k value sent by I;r;. Then we make I;; connect to
I;;. From the arguments above, I;; has not been compromised, and it is thus clear that I;; is still
isolated.

Case 2b. Suppose the condition in case (2a) does not hold. Then by the logic of the protocol,
PID; ;i is not assigned to an uncorrupted user, so we compromise I;;.

12.3 Protocol DHKE-3

Although protocols DHKE-1 and DHKE-2 are secure against adaptive corruptions using the
liberal compromise rule, it is perhaps interesting to note that they are apparently not secure under
the conservative compromise rule (§10.3). To achieve security in this stricter sense, there seems to
be no easy way to repair DHKE-1, but DHKE-2 can be relatively easily repaired as follows. We
call this protocol DHKE-3.

Before describing DHKE-3, let us see where things go wrong for DHKE-1 and DHKE-2
with the conservative compromise rule.

In the proof of Theorem 6, consider case (1b). The conversations may not have matched because
the description of the group G; may not have matched, which may have happened because user
U, was corrupted, not because Uy was corrupted. Under the conservative compromise rule, we are
not allowed to compromise here. The problem is even worse in case (3b”). There, we really need
to compromise if Uy is corrupted, but again, the conservative compromise rule forbids this. The
same problem that arose with GG; in the proof of Theorem 6 also arises in the proof of Theorem 7,
but that is the only problem that arises.

Now we describe DHKE-3. The set up is the same as above. Recall that G; is the description
of the group used by user U;. In the previously discussed Diffie-Hellman based protocols, this
information was in the certificate of user U;. In this protocol, we do not require this—under the
conservative compromise rule, it does not help.

Ui = Uy : G;, g%, cert;,
where x € Z, is random.
Up — Ui : ¢¥, k,s19;:(Gs, 9%, 9Y, k, ID;), certy,
where y € Z, is random and k is random.
Ui — Ui’ . Sigi(Giagxagya ka IDZ')

Theorem 8 Protocol DHKE-3 is secure against adaptive corruptions, using the conservative com-
promise rule, under the DDH assumption, and assuming secure signatures.
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The proof is almost identical to that of Theorem 7. The only difference is case (1b). Here we
can conclude that if there was no matching I; -, then it must be the case that PID;; is not assigned
to an uncorrupted user. We omit further details.

We can also extend protocol DHKE-3 to handle anonymous users, obtaining the following
protocol A-DHKE-3.

U; — Uy : Gy, g%, cert;,

where x € Z, is random.
U() — Ui : gy, k,

where y € Z, is random and k is random.
Ui — Uy : sig;(Gi, g%, g¥, k,anonymous).

We leave it to the reader to verify that this protocol is secure with respect to our definitions of
anonymous users (§9) and adaptive corruptions (§10.6). Like protocol DHKE-3, this protocol is
secure using the conservative compromise rule.

13 An Encryption Based Protocol for Adaptive Corruptions

We now present a simple two pass key exchange protocol using public key encryption. It is very
similar to our protocol EKE, except that here we use ephemeral public keys, instead of a fixed,
long-term public key. Alternatively, one can view it as a modification of protocol DHKE, where
we replace malleable Diffie-Hellman encryption by a non-malleable encryption scheme. We call this
protocol EKE-1.

In this scheme, each user generates a public key/private key pair for a signature scheme. This
public key is what goes in his certificate. Each user also uses a key generation algorithm KeyGen)()
for a non-malleable public key cryptosystem. The output of KeyGen() is a public key/private key
pair (E, D).

The protocol runs as follows.

Ui — Uy : E,sig;(E, ID;), cert;,
where (FE, D) = KeyGen)().

Up — U : a= E(K),sigy(a, E, ID;), cert;,
where K is a random bit string.

The agreed upon session key is K, which user U; obtains by computing D(«). As usual, both
users check the relevant signatures.

Note that unlike protocol EKE, user U; does not need to include his identity IDy in the
encrypted message.

Theorem 9 Protocol EKE-1 s secure against adaptive corruptions, assuming secure signatures,
and assuming the encryption scheme is non-malleable.

We now prove this theorem, following the outline of all the previous proofs.

Case 1. Suppose Iy has just terminated successfully.

Case 1a. Suppose the value E received by I;/; came from some I;; such that PID;; = ID; and
PID;; = ID;y. Then we create Iy, and replace the session key K;; with a random string.

Case 1b. Suppose the condition in case (1a) does not hold. Then by the logic of the protocol
and the security of the signatures, it must be the case that PID; ; is not assigned to an uncorrupted
user. So we compromise Iy .
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Case 2. Suppose I;; has just terminated the protocol successfully.

Case 2a. Suppose that there is a user instance I;; such that PIDy; = ID; and PID;; = IDy,
and I received the value E sent by I;; and sent the value « received by I;;. Then we connect I;;
to Ijj. Since the values E generated by different instances of user U; are (almost surely) unique,
this connection assignment will (almost surely) be valid. In connecting I;; to Iy j/, we set the session
key K;j equal to K; j, and thus we do not bother to decrypt a.

Case 2b. Suppose the condition in (2b) does not hold. Then by the logic of the protocol and the
security of the signatures, it must be the case that PID;; is not assigned to an uncorrupted user.
So we compromise I;j. As usual, we extract the actual session key from I;;. This makes implicit
use of the decryption function of user instance I;;. It is easily verified that this decryption does
not affect the indistinguishability of the substitution made in case (la), since if we decrypted the
ciphertext from case (la) under the decryption key from (la), we would be in case (2a), and not
case (2b).

That completes the proof of the theorem.

Remark 20 It is easy to see that protocol EKE-1 remains secure even under the conservative
compromise rule (§10.3).

Remark 21 The differences between the Diffie-Hellman based protocols and EKE-1 illustrate an
interesting phenomenon. The real problem with protocol DHKE in the face of adaptive corruptions
15 the malleability of Diffie-Hellman based encryption. This problem can be fized either by using a
non-malleable cryptosystem, or by adding extra interaction.

Remark 22 We have to generate a new public key/private key for encryption with every run of
the protocol. For RSA-based schemes, this can be impractical, as prime number generation can
be quite slow. A more practical approach would be to use a Diffie-Hellman based scheme, such as
Cramer-Shoup [CS98] or Fujisaki-Okamoto [FO99], but to generate the group just once, and to use
the same group with each run of the key exchange protocol (which does not affect the security).

14 Strong Adaptive Corruptions

In this section, we consider even more powerful real-world adversaries; namely, adversaries which
can adaptively corrupt users, and when a user is corrupted, not only does the adversary obtain
the user’s long-term secret, but he also obtains any internal, ephemeral data that has not been
explicitly erased. We call such a corruption a strong corruption to distinguish it from the notion of
corruption we have already studied in which the adversary obtains only the long-term secret of a
user.

One could consider a model that allows a mix of corruptions and strong corruptions, but we
shall not do that here, if only for the sake of simplicity. Instead, we will assume that there are only
strong corruptions in this section.

In defining security against strong adaptive corruptions, in increasing the power of the adversary,
we have to relax the security guarantees. Therefore, under our definitions, security against strong
adaptive corruptions does not imply security against adaptive corruptions. The two notions of
security are incomparable.

In §14.1, we give a precise definition of strong corruptions for a real-world adversary; in §14.2,
we identify those session keys that are inherently vulnerable when a user is strongly corrupted,
which motivates our definition of strong corruptions in the ideal world in §14.3.
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In §14.4 we present a key exchange protocol that is secure under our definition.

In §14.5 we shall sketch a formal definition of a secure session protocol in the context of strong
adaptive corruptions.

In §14.6 we shall show how to efficiently implement such a secure session protocol on top of a
key exchange protocol satisfying our definition of security.

None of the above applies to the anonymous user setting, which requires special treatment. We
discuss this in §14.7.

14.1 Strong corruptions in the real world

When a user is strongly corrupted, we assume the real-world adversary obtains that user’s long-
term secret, as well as all the unerased data of each of that user’s instances that is still active, i.e.,
still running the key exchange protocol. We can assume that when an instance of the key exchange
protocol terminates, all internal data is erased. Let us emphasize that the adversary does not obtain
any session keys. The reason for this is that session keys belong to higher-level protocols that use
the session keys, and they have the right to erase these keys. Whatever application-specific data we
wish to make accessible to the adversary when a user is corrupted we can model by an appropriate
use of application operations, in conjunction with the strong corruption operation. This may or
may not include session keys.
So the only change to the real-world adversary is that he may execute the operation

(strong corrupt user, 1),

where Uj; is an initialized user. Upon execution of this operation, the adversary obtains that U;’s
long-term secret, as well as all the unerased data of each I;; that is still active. Additionally, as for
ordinary corruptions (see §10.1), the adversary may subsequently register the identity ID; without
any of the usual restrictions.

Upon execution of this operation, the following records are added to the transcript:

(strong corrupt user, 1),

and
(implementation, strong corrupt user, exposed data),

where exposed data consists of the long-term secret and unerased ephemeral data of U;, as described
above.

As for ordinary corruptions, the user instances belonging to the corrupted user continue to play
along, and we allow a user to be corrupted multiple times.

14.2 Inherently vulnerable keys

Note that when a user U; is strongly corrupted in the real world, some session keys held by other
users may be vulnerable. For example, suppose a user instance I with PID;j = ID; has com-
pleted the key exchange protocol and is currently isolated, that is, it has connection assignment
create, and no user instance has connected to it. This implies that there may be some active user
instance I;; that would eventually connect to Ij;, and the internal state of such an I;; contains
enough information to compute Ky ;. If U; is corrupted at this moment, then the real-world adver-
sary can compute Ky ;. The inherent vulnerability of such keys is the motivation for our definition
of strong corruptions in the ideal world: in the ideal world, the adversary is given all such inherently
vulnerable keys, but nothing more.
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14.3 Strong corruptions in the ideal world

The changes to the ideal system are quite minimal.
The ideal-world adversary may execute the operation

(strong corrupt user, 1)

to corrupt U;. The first time U; is corrupted, the ideal-world adversary is given all session keys of
the form Ky ;, where I j is a user instance such that PID;; = ID; and I is currently isolated.
This operation is logged in the transcript as

(strong corrupt user, ).

Note that no information about the keys given to the adversary is logged in the transcript.
Those are the only changes. We will use only the default, i.e., liberal, compromise rule in
conjunction with strong corruptions.

Remark 23 In making connection assignments in this model, we do not really need the flexibility
discussed in Remark 18. Indeed, without loss of generality, we could require that the ideal-world
adversary make the connection assignment compromise whenever this was legal.

14.4 A secure key exchange protocol

It turns out that protocol DHKE-1 in §12.1 satisfies our definition of security against strong
adaptive corruptions, assuming internal data is appropriately erased. In particular, this means
that before a responder I;; has sent the second flow, it has erased all internal data except for k;
and ko. Of course, we assume that when the protocol terminates, all internal data is erased.

Theorem 10 Protocol DHKE-1 is secure against strong adaptive corruptions, under the DDH
assumption, and assuming secure signatures and a secure pseudo-random bit generator.

The proof follows the same lines as all of our other proofs. We begin by describing the connection
assignments.

Case 1. Suppose (originator) I;; has just accepted.

Case 1a. If it is legal to compromise I;;, we do so, extracting the key Kj; from the real-world
Iij-

Case 1b. Otherwise, we create I;j, and let the ring master substitute the real-world key K;;
with an ideal, random key.

Case 2. Now suppose (responder) I;; has just accepted.

Case 2a. If it is legal to compromise Iy j, we do so, extracting the key Ky ; from the real-world
Iz'lj/.

Case 2b. Otherwise, there must be a unique, compatible, isolated user instance I;;, and we
connect Iy to I;j.

We next have to show how the ideal-world adversary simulates the the exposed data of user
instances when a user is strongly corrupted. This will be done simply by extracting the necessary
information from the corresponding real-world user instance, but with the following, essential ex-
ception. Suppose Uy is the user being corrupted. Consider a responder user instance I;; such
that

e [ has sent the second flow in the protocol, but not yet received the third, and
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e there exists a compatible, isolated user instance I;; that sent the value g* received by I;; and
received the values ¢g¥, k sent by I;;.

In this case, the ideal-world adversary is given the ideal key Kj;;, and he replaces the value of the
variable ks in the internal state of Iy with Kj;.

The reader can now easily verify that the resulting ideal-world transcript is computationally
indistinguishable from the real-world transcript.

Remark 24 Protocol DHKE is insecure against strong adaptive corruptions for the same reason
that it was insecure against ordinary adaptive corruptions (see §11.1). Moreover, it can also be
attacked in another way. Suppose an originator instance I;; is waiting for the response message
from its partner-to-be Iy, who has accepted a session key, and that U; is strongly corrupted at
this time. Then the real-world adversary obtains the exponent x held by I;;—this cannot be erased,
since I;; needs this to compute the session key. Thus, the key Ky, given g% and x, will certainly
not look like a random key.

Remark 25 Protocol EKE is insecure against strong adaptive corruptions for the same reason
that it was insecure against ordinary adaptive corruptions (see §11.2). Also, protocol EKE-1 is
subject to the attack in the previous Remark. One could fix protocol EKE-1 by adding an extra “key
confirmation” flow like in protocol DHKE-1. However, if one makes this fix, then the encryption
scheme need no longer be non-malleable—ordinary semantic security suffices. Indeed, protocol
DHKE-1 can be seen as a special case of such a scheme using Diffie-Hellman based encryption.

14.5 Defining secure sessions with strong adaptive corruptions

We now continue the discussion of secure session protocol started in §4, and discuss aspects of the
formal security model and implementation which must be changed to accommodate strong adaptive
corruptions.

In the real world model, a secure session protocol will itself have some internal, unerased data
that a real-world adversary will obtain when the corresponding user is strongly corrupted. There
is a fundamental limitation as to what we can expect a secure session protocol to achieve in the
face of such corruptions: between the time that a message block is sent and received, the receiver
must have some secret information that will allow it to decrypt the message block; therefore, if the
receiver is corrupted while the message block is in transit, the adversary will learn the contents
of that message block. Furthermore, when either sender or receiver are corrupted, all subsequent
message blocks that are sent are also vulnerable. It would appear that we could not expect to avoid
this, and accordingly, this is precisely what our definition of security guarantees.

To take the above discussion into account, we modify the ideal world attack scenario for secure
sessions in §4 as follows.

The ideal world adversary initializes users and user instances, and starts sessions, as usual.
The adversary makes connection assignments subject to the usual rules in §3.1.4 and §10.2. As in
84 there is no notion of a session key—that is an implementation detail. Rather, the connection
assignments indicate how input/output channels are interconnected.

The sender and receiver on a secure channel shall synchronize the delivery of message blocks. To
do this, there are four operations: send ready signal, receive ready signal, send message block, and
recetve message block. The receiver on the channel executes an alternating sequence of operations:
send ready signal, receive message block, send ready signal, etc. Likewise, the sender on the channel
executes an alternating sequence of operations: receive ready signal, send message block, receive
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ready signal, etc. As usual, the adversary schedules everything, but when neither of the two users
involved is corrupted, the adversary is constrained as follows: corresponding ready signals and
message blocks cannot be received before they are sent. This ensures that the sender never gets
ahead of the receiver, so that at most one message block is in transit, i.e., sent but not yet received.
As such messages are inherently vulnerable, it is important that the sender and receiver have
explicit control over this, even in the ideal world. We shall also allow an input or output channel
to be explicitly closed. A message block is no longer considered to be in transit if the message was
sent, but the receiver closed its input channel. If a user instance has no partner, then by definition
it cannot receive a ready signal, and so it will never send a message block, nor will it receive one.

As in §4, the adversary specifies that the message block sent is computed according to some
specific function, but otherwise learns no additional information about the message block; in ad-
dition, the message block received by the receiver is equal to the one sent, thus maintaining the
integrity of the channel.

That is the normal operation of a secure channel, when the session is not compromised. Con-
sider a user instance I;;. If I;;’s connection assignment is initially compromise, then its session is
compromised from the very start. Otherwise, it becomes compromised when either U; or the user
assigned to PID;; (if any) is corrupted.

So long as I;;’s session is uncompromised, everything works as described above. More precisely,
if I;; receives the rth ready signal, then it must have a partner, and that party sent r ready signals.
If I;; receives the rth message block, then it must have a partner, and that partner must have sent
r message blocks, and the message block received will be equal to the message block sent.

Once I;;’s session becomes compromised, all bets are off. More precisely, the adversary may
make I[;; receive a ready signal whenever it wants. The adversary may make [;; receive a message
block whenever it wants, and moreover, the value of the message block is specified by the adversary,
and may be chosen however the adversary wishes. When I;; sends a message block, the adversary
directly obtains the value of the message block.

Also, whenever a user Uj; is corrupted, the values of any message blocks that are in transit at
that moment, and are to be received by some user instances I;; belonging to U;, are given to the
adversary.

That completes our sketch of the ideal world. We believe that we have given enough details so
that the reader could rather unambiguously fill in the rest of the details of a complete definition
of a secure session. Note that in the real world, when a user is strongly corrupted, any unerased
data in higher-level protocols that is supposed to become available to the adversary upon a strong
corruption can be made available through the usual mechanism of allowing the adversary to compute
specific functions on the random input and message block variables.

14.6 Implementing secure sessions with strong adaptive corruptions

Let us assume that a user instance has just accepted a session key K obtained from a session key
protocol.

Using a secure pseudo-random bit generator, it derives sub-keys for its input and output channel,
and then erases the session keys. For clarity, we will describe the operation of a single uni-directional
channel in terms of a sender and receiver.

Both sender and receiver have local variables auth, seed, and pad, which are initially derived
from the session key using a pseudo-random bit generator. The value auth will be used as a key
to a message authentication code MAC. This value is never erased or changed for the life of the
session. The value seed will be used as input to a pseudo-random bit generator PRG. The value
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pad will be used to encrypt message blocks as a one time pad. Both the values seed and pad will be
updated with each message block sent/received, effectively erasing the old values. We shall write
“set (seed, pad) = PRG(seed)” to denote the action of applying the pseudo-random bit generator to
seed, and overwriting the old values of seed and pad. Both sender and receiver have local counters
r that are initially set to 0.

send ready signal Increment r, and send the message

a = (ready signal, ), MAC ().

receive ready signal Increment r, and receive the message
a = (ready signal,r), MAC, (),

validating the MAC and checking the value of r received is equal to the value of local variable
T.

send message block First, let X be the value of the message block to be sent, and set ¥ =
X @ pad. Now, set (seed, pad) = PRG(seed). Third, send the message

8 = (message block,r,Y), MACu1(5)-

receive message block First, receive the message
B = (message block,r,Y), MACyum(53),

validating the MAC and checking the value of r received is equal to the value of local variable
r. Second, compute the message block X =Y @ pad. Third, set (seed, pad) = PRG(seed).

That completes the description of the implementation, except to say that when one of the MACs
fails, a user instance closes the channel. A user instance could also choose to unilaterally close a
channel, perhaps reflecting a “time out” condition. When a channel is closed, all the internal data
associated with that channel are erased.

It is not difficult to show that if the session key is established using a key exchange protocol
that is secure against strong adaptive corruptions, and if we implement the channels as described
here, we get a secure session protocol that is secure in the sense defined in §14.5. We do not state
this as a theorem, since our definition of a secure channel is not quite formal enough to justify the
use of the term “theorem”; nevertheless, once all the details in the definition of a secure channel
were filled in in a reasonable way, one would indeed obtain something worthy of being called a
“theorem.”

We sketch how such a theorem would be proved. Suppose that a user instance wanted to send its
first message block. Before it would send the encryption of this block, it awaits the first ready signal
from its partner. Now if either of the two relevant users are corrupted, the simulation is trivial,
since the simulator (i.e., ideal-world adversary) has the right to obtain the value of the relevant
message blocks. Otherwise, if neither user is corrupted, then the definition of secure key exchange
(as well as the security of the pseudo-random bit generators and the MAC) implies that the sender
must have partner, and that this partner indeed sent the ready signal. Now, so long as neither
sender nor receiver are corrupted, whenever a message block is sent, our simulator just generates
the encryption Y as a random bit string. If the receiver becomes corrupted while a message is
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in transit, then the simulator computes the receiver’s pad as pad = X @Y, where X is the value
of the actual message block, which the simulator obtains. In this way, the simulator constructs
a consistent-looking internal state for the receiver’s pad value. The reason this works is that the
synchronization of sender and receiver guarantees that the receiver has erased all data that was
used to compute its current value of pad. Therefore, the current value of pad is indistinguishable
from a random bit string. That is the trickiest bit of the simulation, since after the corruption, the
simulator’s task is much easier—it obtains all subsequent message blocks generated by the sender,
and does not need to respect any of the synchronization or integrity constraints.

We leave the rest of the details to the reader. The main idea of this proof essentially appears
in Beaver and Haber [BH92|, although their setting and the details of their solution are slightly
different.

We note that our definition of security for key exchange protocols with respect to strong adaptive
corruptions is actually stronger than necessary for the purpose of constructing a secure session with
respect to strong adaptive corruptions. Indeed, one can show that the above implementation of
a secure session, together with protocol DHKE in §7 is already a secure session with respect to
strong adaptive corruptions.

This may seem a bit strange at first, but is really not so surprising. Our definition of security
of a session key protocol defines a natural, robust, and intuitive interface, but it is a bit stronger
than necessary for the particular application of building a secure session. This is analogous to
the design of a software library routine interface: for a particular application, the library routine
provides more functionality than necessary, and therefore, the implementation may not be the
most efficient possible. In §15.6 we present an alternative definition for key exchange secure against
strong adaptive corruptions. This definition is less natural and weaker than the definition presented
in this section, but is just strong enough to build a secure session.

14.7 Anonymous users

One can adapt the definition of security with respect to anonymous users (see §9) to incorporate
strong adaptive corruptions. There are some technical issues that need to be addressed, however.

14.7.1 Strong corruptions in the real world

Although there is no long-term secret associated with an anonymous user, active anonymous user
instances may have unerased data that could be obtained by an adversary. In discussing strong
adaptive corruptions for ordinary (non-anonymous) users in §14.1, we grouped together all user
instances associated with that user, so that the adversary obtains all the unerased data associated
with the user instances belonging to that user. This models the natural situation where all the user
instances belonging to that user run on the same machine, and so a corruption of a user corresponds
to a corruption of that machine. We do not want to group all anonymous user instances together
in this way. Therefore, our real world adversary strongly corrupts individual anonymous user
instances.

14.7.2 Strong corruptions in the ideal world

We have to modify the definition in §14.3 accommodate anonymous users.

When an anonymous user instance is corrupted, we allow the ideal-world adversary to specify a
set S of compatible, isolated user instances. The adversary is given all the session keys held by the
user instances in S. Moreover, the connection assignment of all the user instances in S is changed
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from create to compromise. This means, in particular, that no user instance may in the future
connect to one of the user instances in the set S. None of the information about S or the keys they
hold is explicitly logged in the transcript, but like connection assignments in general, we assume
that the set S can be computed as a function of the transcript.

14.7.3 A secure key exchange protocol

We leave it to the reader to verify that protocol A-DHKE-1 (see §12.1) is secure against strong
adaptive corruptions in the sense we have just defined.

14.7.4 Defining secure sessions with strong adaptive corruptions

We now discuss the changes necessary to the definition of secure sessions presented in §14.5 to
accommodate anonymous users.

First, the ideal-world adversary makes connection assignments just as in §14.7.2.

Second, the definition in §14.5 of when a session is compromised has to be modified as well:

e Suppose I;; is a user instance with PID;; = anonymous. If I;;’s initial connection assignment
is compromise, then its session is compromised from the very start. Otherwise, the session
becomes compromised when its connection assignment is changed from create to compromise
(as in §14.7.2), or U; is corrupted, or I;;’s partner (if any) is corrupted.

e Suppose Ip; is an anonymous user instance. If Ip;’s initial connection assignment is
compromise, then its session is compromised from the very start. Otherwise, the session
becomes compromised when Iy; is itself corrupted, or if the user to which PIDy; is assigned
is corrupted.?

Third, when an anonymous user instance is corrupted, any message block that is in transit to
this user instance at that moment is given to the ideal-world adversary.
Otherwise, everything works just as in §14.5.

It may be worthwhile to spell out some of the implications of this definition. The implication
for a user instance I;; with PID;; = anonymous is as follows. Suppose it has just started its session
and has received a ready signal or message block. Then either

e the session is already compromised, and all bets are off, or

e the session is not compromised, I;; has a partner, the ready signal or message block came
from that partner, and the usual guarantees for the session will be in force so long as neither
U; nor I;;’s partner are corrupted.

In the first case, when the session is already compromised, then either
e U; has been corrupted,
e [;; has a partner who has been corrupted, or

e I;; has no partner and never will.

2If PIDy; = anonymous, then the session would also be considered compromised if Iy;’s connection assignment
is changed from create to compromise; however, as pointed out in Remark 12, this is not an interesting situation to
consider.
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The implication for an anonymous user instance Iy; is as follows (we assume PIDy; #
anonymous). Suppose it has just started its session and has received a ready signal or message
block. Then either

e the session is already corrupted, and all bets are off, or

e the session is not compromised, Ip; has a partner, the ready signal or message block came
from that partner, and the usual guarantees for the session will be in force so long as neither
Iy; nor the user to which PIDy; is assigned is corrupted.

In the first case, when the session is already compromised, then either
e Iy; has been corrupted, or

e the user to which PIDy; is assigned is corrupted.

14.7.5 Implementing secure sessions with strong adaptive corruptions

Nothing changes here at all. The implementation in §14.6 can be used without change. As in §14.6,
we mention that protocol A-DHKE in §9.2 is actually sufficient.

15 Comparison with the Bellare-Rogaway Model

Bellare and Rogaway [BR95] have presented a formal model for secure key exchange protocols.
Technically speaking, their model applies only to the on-line TTP setting. However, it is relatively
straightforward to adapt this model to the off-line TTP setting. This program has been carried out
by Blake-Wilson, et al. [BJM97, BM97]. For lack of a better name, let us call this the BR model.

We want to compare our model of security, which we might call the simulation model, to the
BR model.

15.1 The BR model

Instead of recalling all the notation of [BR95, BJM97, BM97], we show what the BR model essen-
tially is in in terms of our notation.

In the BR model, the attack scenario is the same as the “real system” in the simulation model,
except that the application operations are restricted to be of a special type which we describe
below. Their model allows strong adaptive corruptions, but of course, one could consider restricted
adversaries that make only static corruptions or (ordinary) adaptive corruptions.

The definition of security in the BR model consists of three parts. The first two are termination
and liveness, which are exactly the same as in the simulation model. For lack of a better name, we
call the third part the BR security property.

Although there is no notion of an “ideal system” in the BR model, there is a notion of a con-
nection assignment. To establish the BR security property of a particular key exchange protocol,
one must exhibit a connection assignment function. Connection assignment functions in the BR
model are the same as in the simulation model; in particular, they are subject to the usual rules
in §3.1.4 and §10.2; however, there are some additional, technical restrictions. Namely, the con-
nection assignment function must be universal, i.e., there is one that works for all adversaries, and
furthermore, it must be application independent, a technical restriction that we describe in the next
paragraph.
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An application independent connection assignment function is one which can be computed as a
function of the partial transcript obtained from the full transcript by deleting all records pertaining
to application operations.

This is a natural restriction, and it does not affect the analysis of any protocols that we know
of. This restriction will be needed in the proof of Theorems 12 and 13, which relate security in the
BR model with security in the simulation model.

Just to be explicit, we are assuming here the default, i.e., liberal, compromise rule (§10.3).

The BR security property is the following: there exists a connection assignment function such
that for all adversaries A, the advantage that A has in the following game is negligible.

The game played by A runs as follows. The adversary executes any of the usual commands
except that the application commands are one of two types, which we call reveal and test. In a
reveal operation, the adversary obtains any session key of its choice belonging to a user instance
whose connection assignment is create or compromise. The adversary may execute any number of
reveal operations. In a test operation, the adversary specifies a user instance whose connection
assignment is create; at this point, a coin is flipped, and the adversary is either given the user
instance’s session key or a random string, depending on the outcome of the coin flip (which is not
in the adversary’s view). The test operation may only be executed once.

There is an additional restriction on the test operation, which we shall call the test restriction:

if I;; is subject to a test operation, then at no time before or after the test operation
may the adversary corrupt U; or the user (if any) to which PID;; is assigned.

The adversary’s advantage is defined to be the maximum of

e the distance from 1/2 of the probability of guessing the outcome of the coin toss in the test
operation, and

e the probability that two user instances that are partners (as determined by the connection
assignment function) do not share the same session key.

Remark 26 Note that since the adversary already wins the game if he can make two partners
accept different session keys, there is no need to allow reveal or test operations to be applied to user
instances that connect to other user instances.

15.2 Correcting a flaw in the original BR model

There are a few small, technical differences between our presentation here and in [BR95, BJM97,
BM97] that are not so important. However, we have taken the opportunity here to correct a
serious flaw that appears in [BR95, BJM97, BM97] that was pointed out to the authors of [BR95]
by Charles Rackoff. In the formulation in [BR95, BJM97, BM97], the test operation is only allowed
to be performed at the very end of the adversary’s execution, whereas we have allowed it to occur
at any time. This is important, because without this, the definition does not detect “protocol
interference” as was discussed in §2.

We can illustrate this point with an example derived from one suggested by Charles Rack-
off. Consider the following modification of protocol DHKE-1 (see §12.1), which we call protocol
DHKE-1'. This protocol works just like DHKE-1, except as follows. Suppose a user instance be-
longing to Uy in the role of responder is waiting for the third flow of the protocol, which consists of
the confirmation key k;; if instead of k; it receives a message of the form (core dump, BitGen(ks)),
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then it terminates the protocol with a status of reject, and generates a final outgoing message con-
sisting of ky. Recall that ks is (what would have been) the session key, and that BitGen is assumed
to be a secure pseudo-random bit generator. We assume here that ko has the right length so that
it may be used as an input to BitGen.

We hope the reader would agree that protocol DHKE-1’ should be considered insecure under
any reasonable definition of security. Indeed, if user a user instance I;; in the role of originator
establishes a session key K, and just happens to output BitGen(K) in a higher-level protocol
before its last message is delivered to its would-be partner I;;, the adversary can cause Iy to
“core dump,” handing K to the adversary on a silver platter.

If the test operation is allowed in the middle of the game, it is easy to see that an adversary can
obtain significant advantage, and so this protocol is not secure under our definition. However, if the
test operation is allowed only at the end of the game, the adversary has only a negligible advantage
(since the adversary could not hope to compute BitGen(ks) on its own), and the protocol would
be secure under that definition of security.

Admittedly, this example is a bit contrived, but nevertheless illustrates the point. Another,
perhaps more convincing reason for allowing the test operation to occur at any time is to get an
equivalence theorem between security in the BR model and security in the simulation model (see
Theorem 12 below), which suggests that this is a robust notion of security.

This flaw in [BR95] illustrates the danger of making a technical, low-level definition without
carefully exploring its relationship with a more natural, higher-level notion of security.

15.3 The equivalence of strong adaptive and static corruptions in the BR model

In the BR model, one could distinguish between security against static, adaptive, and strong
adaptive corruptions. However, it turns out that these notions are equivalent, provided we make
an additional, quite natural restriction on the connection assignment function which we call local
computability.

Intuitively speaking, a locally computable connection assignment function is one that determines
the connection assignment for a particular user instance I;; using only those parts of the transcript
that might have something to do with user U; or PID;;. More precisely, this means that the
connection assignment should be computable by a function applied to the subsequence of records
in the transcript obtained by deleting records corresponding to these operations:

e all application operations,

o all snitialize user, initialize user instance, deliver message, and corrupt user operations which
refer to a user other than U; or the user (if any) to which PID;; is assigned, and

e all register operations which refer to an identity other than ID; and PID;;,

Note that in the on-line T'TP setting, we do not delete any of the deliver message to T'TP operations.
Local computability is a natural restriction, and we know of no protocols whose security analysis
is affected by making this restriction.
In the following theorem, we assume that connection assignment functions are universal and
locally computable. Perhaps the same theorem could be proven using a more clever argument
without requiring local computability.

Theorem 11 In the BR model, security against static, adaptive, and strong adaptive corruptions
are equivalent.
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It is clear that in the BR model, security against strong adaptive corruptions implies security
against adaptive corruptions, and that security against adaptive corruptions implies security against
static corruptions.

Now, to show that security against static corruptions implies security against strong adaptive
corruptions. Suppose a key exchange protocol is secure against static corruptions. This implies
the existence of a connection assignment function. However, one technical point we have to deal
with is that this connection assignment function is not defined for transcripts containing corrupt
user operations. We therefore need to extend the domain of definition of the given connection
assignment function, which is easy to do by exploiting the local computability property of the
given connection assignment function. To calculate the connection assignment for a user instance
I;;, if either U; is corrupted, or PID;; is assigned to a corrupted user, then we compromise I;;.
Otherwise, we compute the connection assignment using the given connection assignment function,
using only the relevant local information in the transcript, which does not contain any corrupt user
operations.

Now consider an an adversary A that makes strong adaptive corruptions, and suppose that A
has non-negligible advantage in the game defining the BR security property. Here is how we can
convert A into an adversary A’ that makes only static corruptions, and that has a smaller, but
still non-negligible advantage, using a standard “plug and pray” argument. At the beginning of
the game, A’ randomly chooses two players U; and Uy. A’ never actually initializes any users other
than U; or Uy, and A’ never corrupts any users. All users besides U; and Uy that A might initialize
and perhaps corrupt are simply under the direct control of A’, and these are never initialized as
users. Instead, A’ simulates the view of A, and does whatever A does. We pray that A does not
corrupt either U; or Uy, and that A chooses to perform his fest operation on an instance I;; with
PID;; = ID;. Our prayers will be answered with non-negligible probability, and if they are not, we
simply stop the game.

It is easy to see that if A has a non-negligible advantage, then so will A’. The theorem now
follows.

15.4 Relation between the BR model and the simulation model

Now, we want to formulate and prove that security in the BR model and security against static
corruptions in the simulation model are equivalent. To do this, we have to restrict the way the ideal-
world adversary A* in the simulation model computes connection assignments to the way connection
assignments are computed in the BR model. This means that the connection assignment function
must be universal and application independent, as described in §15.1. For the remainder of this
section, this restriction on the adversary A* in the ideal world model is implicitly in force.

Theorem 12 Security against static corruptions in the simulation model is equivalent to security
against static corruptions in the BR model.

To prove that security against static corruptions in the simulation model implies security in
the BR model, one only need observe that the game defining the BR security property is just a
particular game that can be easily represented in the simulation model.

Now, to prove that security in the BR model implies security against static corruptions in the
simulation model. Assume a given protocol is secure in the BR model, so there exists an appropriate
connection assignment function.

Let A be a real-world adversary in the simulation model. We construct the corresponding ideal-
world adversary A* as follows. Generally, A* does whatever A does. Whenever a user instance
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accepts, A* makes the connection assignment using the connection assignment function mentioned
in the previous paragraph. For a compromise connection assignment, A* extracts the user instance’s
actual session key to obtain the session key required for the start session operation in the ideal
world game. Otherwise, for any other connection assignment, the ring master chooses the keys
according to the rules in the ideal world game. Of course, application operations are evaluated by
the ring master using the idealized session keys.

Now to show indistinguishability of ideal-world and real-world transcripts. If there were a
good statistical test, then we could easily apply a hybrid argument to construct an adversary with
significant advantage in the BR game, using reveal operations as necessary, and using a single test
operation to distinguish two adjacent hybrid distributions where there is significant gap in the
expectation of the statistical test’s output. The details of this are straightforward, but bear in
mind that it is the ring master in a hybrid ideal world/real world game who uses the operations
reveal and test to generate some keys, and generates other keys as random bit strings. The ideal
world adversary only has indirect access to these keys through application operations, except that
he performs reveal operations on user instances that are compromised—he needs to get these keys
from somewhere, since they need to be specified by the ideal world adversary during the start
sesston operations for user instances that are compromised.

The completes the proof of the theorem.

Notice that in making the above hybrid argument, we needed the ability to perform the test
operation at an arbitrary point.

Theorem 12, together with Theorem 11, imply that security against static corruptions in the
simulation model is equivalent to security against strong adaptive corruptions in the BR model,
provided we restrict to universal, locally computable connection assignment functions.

15.5 Forward security in the BR model

It is instructive to see where the proof of Theorem 12 breaks down in the face of adaptive corrup-
tions. It is in the hybrid argument. We need to be able to “plant” a test operation at an appropriate
place in the execution, where the statistical test will notice a difference. But it may very well be
the case that all the places that would be useful are “off limits” due to the rules of the BR game.
This is because the test restriction in the game defining the BR security property prohibits a test
operation on anybody who is at any time corrupted or is partnered with someone who is. If we
think back to the discussion of protocol DHKE in §11.1, we can see that the only useful keys to
test are off limits due to this restriction.

But this observation also tells us how to strengthen the BR model. We call this forward security
against adaptive corruptions in the BR model. The only change is that we drop the test restriction.
Notice the difference: instead of a “blanket” ban on test operations, we instead rely on the much
more “precise” compromise connection assignment to selectively prevent test operations where we
do not want them—mnamely, after a corruption. This clearly captures the notion of forward security.

Theorem 13 Security against adaptive corruptions in the simulation model is equivalent to forward
security against adaptive corruptions in the BR model.

The proof is straightforward. We omit the details. Note that the theorem holds using either
the liberal or conservative compromise rule (§10.3).

ol



15.6 An alternative definition of security against strong adaptive corruptions

We know of no definition in the “BR style” that is equivalent to the notion of security against
strong adaptive corruptions as we have defined it in the simulation model (see §14). Moreover, as
we have seen in §14.6, our definition of security in §14, while natural, was stronger than necessary
for the purpose of building a secure session protocol. It turns out that we can easily modify the
definition of security in the BR model to obtain a definition of security against strong adaptive
corruptions that is weaker and much less natural than that in §14, but is just strong enough to
build a secure session protocol.

This alternative definition of security is a modification of the definition of security in the BR
model in §15.1. As in that section, we make use of connection assignment functions that are
universal and application independent, and we use the default, i.e., liberal, compromise rule. All
corruptions are strong adaptive corruptions.

Here are the changes we need to make:

(1) We allow the connection assignment of a user instance to change from create to compromise,
as follows. If a user instance I;; has a connection assignment of create and is still ssolated at
the point in time in which either user U; or the user (if any) to which PID;; is assigned is
strongly corrupted, then I;;’s connection assignment is changed to compromise.

(2) As in §15.5, we drop the test restriction. However, if the test operation is applied to I;j,
the adversary may not perform a corruption that would cause I;;’s connection assignment to
become compromise.

(3) A user instance whose connection assignment is changed to compromise is no longer considered
1solated, and no user may connect to it.

Discussion

Note that without loss of generality, we can assume that a connection assignment function always
compromises a user instance whenever that is legal.
We leave it to the reader to verify the following:

e protocol DHKE in §7 is secure against strong adaptive corruptions under this alternative
definition, and

e any protocol that is secure under this alternative definition, together with the implementation
of a secure session in §14.6, yields a secure session protocol that is secure in the sense of §14.5.

16 Comparison with the Model of Bellare, Canetti, and Krawczyk

Bellare, Canetti, and Krawczyk [BCK98] define security against an adversary very similar to ours:
he has complete control of the network, and can make strong adaptive corruptions. In fact, this is
the only corruption mode they consider. Their definition of security is also based on simulation,
but there are several differences in both detail and substance between our definition and theirs.
One issue alluded to in §1 about the model in [BCK98] is its treatment of the ordinary use of
session keys, e.g., as encryption or authentication keys. There is no analogue of our notion of an
application operation in their model. Rather, in their model, when a session key is established, its
value is silently written to a transcript which may be input to a statistical test, but only after the
adversary has completed its attack. However, the value of the key, or any values derived from it,
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are not generally available to the adversary while the attack is ongoing. An exception to this is that
the adversary may execute an explicit corrupt session operation, whereby the adversary obtains
the session key itself.

It is not at all clear what this corrupt session operation is supposed to represent. In order to
be able to properly model ordinary key usage and protocol interference attacks, it would seem we
must assume that all sessions are corrupted—or at least those whose session keys are actually used.
At the very least, then, the term “corrupt session” then has a somewhat misleading connotation;
indeed, maybe a better name would be “use session key.” Moreover, this definition of security
suffers from a more serious problem. Because any use of a session key essentially implies that the
ideal-world adversary has the session key itself, it would seem that any key that is ever used is
potentially completely vulnerable. Indeed, what is to keep a key that is available to the ideal-world
adversary from popping up, say, in a protocol message flow? The ideal-world adversary can simulate
this, since it knows the key. As a concrete example, protocol DHKE-1' in §15.2 is secure under
the definition of security in [BCK98]. To see this, note that a user instance I;; will not “core
dump,” except with negligible probability, unless the corresponding session has been corrupted.
But if the session is corrupted, the ideal-world adversary has the session key and therefore can
easily simulate the “core dump.” However, as we have already argued, protocol DHKE-1" should
not be considered secure under any reasonable definition of security.

Another aspect of [BCK98] is how it models strong adaptive corruptions. According to their
definition, when a user is corrupted in the ideal world, “the effect is that all the keys known to
[that user] become known to the adversary.” It is a bit hard to understand the motivation for this.
First, as we have pointed out above, any session key that is actually used must already be available
to the adversary via a corrupt session operation, and so many of the keys given to the ideal-world
adversary upon the corruption of a user are redundant. Second, it would appear that the intention
of this definition is to avoid any guarantee of forward security—this point is not clear in the paper,
but the authors indicate that forward security is an issue to be tackled in a subsequent (and as yet
to appear) version of the paper, and so it seems safe to assume that their definition is not meant
to imply forward security. But as we have already remarked in §10.5, we cannot build a secure
session protocol on top of a key exchange protocol that does not guarantee forward security. Our
opinion is that it makes little sense to define security for a session key protocol that cannot be used
as a building block for secure sessions. Indeed, one of the underlying technical themes of our work
is that forward security and simulatability with respect to adaptive corruptions are in many ways
two sides of the same coin.

Another aspect of the way corruptions are modeled in [BCK98] is the way in which the inherently
vulnerable keys (see §14.2) are made available to the ideal-world adversary. This issue is not
explicitly addressed in [BCK98], and it is not immediately clear that these keys are available to
the adversary. At one point, it is stated in a parenthetical, and seemingly motivational remark,
that “we envision that the value [of a session key] is handed to [a user| by the trusted party.” It is
only by interpreting this remark to have a specific descriptive meaning, rather than being purely
motivational, that one avoids an unsatisfiable definition of security.

Also as mentioned in §1, the two protocols presented and analyzed in [BCK98] in the “authenti-
cated links” model are actually insecure, under their definition of security and under any reasonable
simulation-based definition of security. One of the protocols is a two-pass Diffie-Hellman protocol
that is insecure for the very same reasons that our protocol DHKE is insecure against strong adap-
tive corruptions (see §11.1 and Remark 24). However, we should point out that if the authenticated
links are implemented using one of the techniques described in [BCK98], the resulting protocol in
the “raw” (i.e., unauthenticated links) model apparently happens to be secure. The other protocol
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is based on public key encryption, and is insecure for the very same reasons that our protocol EKE
is insecure against strong adaptive corruptions (see §11.2 and Remark 25).

17 Conclusion

The methodology of modern theoretical cryptography is maturing to a point where it can take on
tasks that have traditionally belonged to the domain of “security engineering.” This seems useful,
as many security problems are often viewed as “implementation errors” which we believe could be
more fruitfully viewed as cryptographic design errors. Probably the main reason for these differing
points of view is simply that the high-level cryptographic designers and implementors have usually
been more or less disjoint sets of people.

The activity of designing a formal security model for something as complicated as a key exchange
protocol or a secure session protocol is similar in many ways to that of designing a software interface.
In designing a software interface, there is no “right” or “wrong.” One wants an interface that will
be easy to understand and to use in an intuitive way. One also wants an interface that can be
effectively implemented. Because of the richness of the environment in which session key protocols
are used, there will always be room for debate on many of the details of such a security model.
We hope that this paper has at least served to make explicit most of the important choices that
one encounters in designing such a security model, even if the reader disagrees with some of the
particular choices that we have made.

Having a formal security model and a “provably secure” protocol in that model is no panacea.
Indeed, it is possible that the model is flawed somehow; in particular, it may not be rich enough
to express a particular type of realistic attack. And of course, the proofs may contain errors or
the underlying intractability assumptions could turn out to be false. Nevertheless, the activity of
designing such models and analyzing protocols in these models is a worthwhile activity: only by
doing so can we hope to increase our understanding of the protocols we use in practice, and to
design better protocols (or even have a meaningful way to measure “better”). It is also an ongoing
activity: when weaknesses in the model or errors in the proofs are uncovered, then these must be
repaired.

Although a healthy amount of skepticism is always appropriate, an irrational rejection of the
entire approach of formal modeling and proofs as nothing but “snake 0il” does not seem helpful.
Such an anti-intellectual attitude is unfortunately not so rare in the security research community.
It only serves to retard meaningful scientific progress, and to perpetuate the mystique surrounding
the self-proclaimed “high priests” of computer security.
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