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Abstra
t

A new formal se
urity model for session key ex
hange proto
ols is proposed, and several

eÆ
ient proto
ols are analyzed in this model. Our new model is in the style of multi-party

simulatability: it spe
i�es the servi
e and se
urity guarantees that a key ex
hange proto
ol

should provide to higher-level proto
ols as a simple, natural, and intuitive interfa
e to whi
h

a high-level proto
ol designer 
an program. The relationship between this new model and

previously proposed models is explored, and in parti
ular, several 
aws and short
omings in

previously proposed models are dis
ussed. The model also deals with anonymous users|that is,

users who do not have publi
 keys, but perhaps have passwords that 
an be used to authenti
ate

themselves within a se
ure session.

�

First version (IBM Resear
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1 Introdu
tion

In this paper, we investigate formal models of se
urity for session key ex
hange proto
ols. A

session key proto
ol allows two users to ex
hange a se
ret key. The most important|and perhaps

the only signi�
ant|appli
ation of a session key ex
hange proto
ol is to implement a se
ure session

proto
ol, whi
h in e�e
t provides a se
ure (private, authenti
ated), bi-dire
tional 
hannel between

the two users. A user may establish session keys with many other users, possibly in a 
on
urrent

fashion. The main se
urity goals, intuitively speaking, are that session keys should be random and

independent of one another, and that a user really establishes a key with the user he \thinks" he

is, and not with some other user.

There are two basi
 settings in whi
h key ex
hange proto
ols are usually 
onsidered. In both

settings, there is a trusted third party (TTP). The only di�eren
e is whether the TTP is \on line,"

i.e., involved in every key ex
hange, or \o� line," is only needed to register users of the system,

but does not parti
ipate in the key ex
hange proto
ol itself. In the on-line TTP setting, one uses

symmetri
 key 
ryptography; Kerberos [SNS88℄ is an example of a session key ex
hange proto
ol

in the on-line setting; the TTP is usually 
alled a key distribution 
enter in this setting. In the

o�-line TTP setting, one uses publi
 key 
ryptography; the Se
ure So
ket Layer (SSL) provides

an example of a session key ex
hange proto
ol in the o�-line setting; the TTP is usually 
alled a


erti�
ate authority in this setting.

We propose a new model of se
urity for key ex
hange proto
ols, and analyze the se
urity of a

number of proto
ols in this model. Our model is general enough to be applied in either the on-line

or o�-line setting. However, all of the examples of proto
ols we 
onsider are in the o�-line setting.

Despite the super�
ial simpli
ity of session key ex
hange proto
ols, it is all too easy to design

proto
ols with se
urity weaknesses. Indeed, the history of this subje
t is littered with the 
arnage

of broken proto
ols. Typi
ally, design 
aws arise either by not 
arefully spe
ifying what an atta
ker

is able to do, or by not making the se
urity goals pre
ise, or by not making 
lear the requirements

of the 
ryptographi
 primitives. Formal modeling, su
h as we do here, serves to prevent su
h design


aws.

Our work is inspired by the work of Bellare, Canetti, and Kraw
zyk [BCK98℄, whi
h is grounded

in the multi-party simulatability tradition (see, e.g., [Bea91, Can95℄). This approa
h seems very

attra
tive, be
ause it spe
i�es the servi
e a session key proto
ol should provide to a higher-level pro-

to
ol, rather than getting mired in the implementation details of session key proto
ols themselves,

many of whi
h are irrelevant. This type of de�nition yields a simple, natural, abstra
t interfa
e to

whi
h a high-level proto
ol designer 
an program, without worrying about implementation details.

Also, be
ause of the simpli
ity and naturalness of the interfa
e, it is easy to reason about the se-


urity properties of high-level proto
ols. Moreover, se
urity in this model implies se
urity against

a whole range of spe
i�
 atta
ks.

1.1 Our 
ontributions

We summarize our main 
ontributions:

� We present a detailed se
urity model that addresses some te
hni
al short
omings in [BCK98℄,

and that extends and enri
hes their model.

� Our model takes into a

ount the role of the 
erti�
ate authority, making our trust assump-

tions expli
it; this is essential in order to model a 
lass of atta
ks whi
h we 
all Publi
 Key

Infrastru
ture (PKI) atta
ks (see x2).

1



� Our model takes into a

ount the ordinary usage of session keys in arbitrary higher-layer

proto
ols, and how this usage is interleaved with the ongoing exe
ution of the key ex
hange

proto
ol, possibly interfering with the 
orre
t fun
tioning of the key ex
hange proto
ol. That

is, our de�nition of se
urity has a built-in \proto
ol 
omposition" theorem that a priori rules

out subtle problems that 
an arise when 
omposing a key ex
hange proto
ol with an arbitrary

higher-level proto
ol. In parti
ular, our model allows us to represent a 
lass of atta
ks whi
h

we 
all proto
ol interferen
e atta
ks (see x2).

� We 
lassify and study in detail three di�erent modes of 
orruption:

stati
 
orruptions the adversary may operate under a number of aliases, but 
annot 
orrupt

honest users;

adaptive 
orruptions the adversary 
an 
hoose to 
orrupt an honest user, obtaining that

user's long-term se
ret only;

strong adaptive 
orruptions the adversary 
an 
hoose to 
orrupt an honest user, obtain-

ing all of that user's internal data that has not been expli
itly erased.

We give what we think are natural and useful de�nitions of se
urity against these three

di�erent 
orruption modes. Our models for adaptive and strong adaptive 
orruptions 
apture

the notion of forward se
urity (a.k.a., perfe
t forward se
re
y).

� We study the relationship between our de�nitions of se
urity and those of Bellare and Rogaway

[BR95℄ (see also [BJM97, BM97℄). In parti
ular, we show that their notion of se
urity (with

one essential �x) is equivalent to our notion of se
urity against an adversary that makes stati



orruptions only, despite the fa
t that in their model the adversary may make strong adaptive


orruptions.

� In addition to de�nitions, we give many examples of key ex
hange proto
ols and proofs of

their se
urity. These examples serve to highlight some of the subtle di�eren
es between modes

of 
orruptions.

� We brie
y sket
h formal de�nitions and implementations of se
ure sessions, whi
h 
an be

built on top session key proto
ols. Arguably, the notion of a se
ure session proto
ol is more

fundamental than that of a key ex
hange proto
ol, i.e., that the latter is merely one tool

(among others) that one needs to build the former. Nevertheless, it appears that most of the

subtlety in designing a se
ure session proto
ol already o

urs in the design of the underlying

key ex
hange proto
ol, so it seems worthwhile to study key ex
hange in isolation. However, in

formulating de�nitions of se
urity for key ex
hange, our main motivation is to get a de�nition

that is useful in building a se
ure session proto
ol.

� We propose a formal model for session key ex
hange involving anonymous users, i.e., users

who do not have a 
erti�
ate or have otherwise registered with the TTP. On
e a se
ure

session is established in this setting, the anonymous user 
an authenti
ate his identity using

a password.

1.2 Relation to previous work

There is a vast literature on this subje
t, whi
h we shall not attempt to survey here. We refer the

reader to [MvOV97, Chapter 12℄ for a more extensive histori
al dis
ussion. We mention here just

a few of the arti
les that are most relevant to this paper.
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The seminal paper in this �eld is of 
ourse that of Needham and S
hroeder [NS78℄. This work

was in the on-line TTP setting. However, one of the proto
ols in their paper was subsequently

found to be 
awed (see, e.g., [DS81℄). Subsequent to [NS78℄, many other proto
ols have been

proposed, many of whi
h were also later found to be 
awed.

Be
ause of the subtlety of the 
aws that 
an arise in key ex
hange proto
ols, formal logi
s have

been developed (see, e.g., [BAN90℄) that 
an help in �nding proto
ol 
aws. These formal methods,

however, do not appear to give any meaningful se
urity guarantees that 
an be used in the analysis

of higher-level proto
ols that use the session key.

The paper of Bird, et al. [BGH

+

91℄ broke new ground by pointing out a 
lass of subtle atta
ks


alled interleaving atta
ks whi
h 
an arise when users are running several instan
es of a proto
ol

in parallel. This work was in the on-line TTP setting.

The station-to-station (STS) proto
ol was introdu
ed in the paper of DiÆe, et al. [DvOW92℄.

This paper presents a session key ex
hange proto
ol based on the 
lassi
al DiÆe-Hellman key

ex
hange proto
ol [DH76℄ (whi
h establishes a long-term pair key, rather than a session key). The

authors 
arry out a rather informal se
urity analysis, and point out numerous pitfalls and atta
ks

one should worry about. As we point out in x2, STS is vulnerable to PKI, proto
ol interferen
e, as

well as interleaving atta
ks.

Bellare and Rogaway [BR95℄ proposed a formal model of se
urity for authenti
ated key ex
hange

proto
ols, again in the on-line TTP setting. Their work represents the �rst attempt to lay a �rm

foundation for the analysis of key ex
hange proto
ols. Their formal model was subsequently adapted

to the publi
 key setting by Blake-Wilson, et al. [BJM97, BM97℄. The de�nitions of se
urity here

seem fairly 
ompelling, but yet, they also seem a bit te
hni
al and low level, and it is not at all


lear what impli
ations these de�nitions have for higher-level proto
ols that use the session keys.

In fa
t, the de�nition of se
urity in the Bellare-Rogaway model is 
awed, in that it does not allow

one to model proto
ol interferen
e atta
ks. We dis
uss this point in x15.

More re
ently, Bellare, Canetti, and Kraw
zyk [BCK98℄ have proposed a quite di�erent approa
h

to formal se
urity models for key ex
hange in the o�-line TTP setting. This approa
h is similar

to the simulation-based approa
h taken in the area of multi-party 
omputation. One �rst de�nes

an idealized version of a session key proto
ol, in whi
h pairs of users 
an \magi
ally" generate a

shared random session key. Then to prove a real world proto
ol is se
ure, one shows that any real

world adversary is 
onstrained to behave essentially like an adversary operating in the ideal world.

The paper [BCK98℄ only 
onsiders adversaries that make what we have 
alled strong adaptive


orruptions. As already mentioned, we also study stati
 
orruptions and adaptive 
orruptions.

Certainly, the stati
 
orruption 
ase is the simplest, most basi
 
ase, and deserves to be studied

by itself.

Arguably, long-term se
rets are in pra
ti
e the most vulnerable se
rets in the system; in a

typi
al setting, they are stored on disk, perhaps prote
ted by a password. Ephemeral data is mu
h

more diÆ
ult for an atta
ker to obtain. Therefore, it seems worthwhile to study the 
ase of adaptive


orruptions by itself, and to see what type of se
urity guarantee we 
an a
hieve when the adversary

is limited in this natural way. Also, this type of 
orruption model is more in line with the traditional

study of key ex
hange proto
ols.

One 
riti
ism we have of [BCK98℄ is that, like [BR95℄, it is still a somewhat te
hni
al, low-level

de�nition, and it is not at all 
lear what se
urity properties higher-level proto
ols enjoy. Indeed,

like [BR95℄, it appears to us that their de�nition does not properly model ordinary key usage

and proto
ol interferen
e atta
ks. We dis
uss this in more detail in x16. Aside from this, it is

not at all 
lear what form a \proto
ol 
omposition" theorem would take in their model. This is

3



more a philosophi
al 
riti
ism than a te
hni
al one; however, we would argue that the whole point

of making su
h a simulation-based de�nition is that su
h impli
ations should be built in to the

de�nition. In 
ontrast, our de�nition 
omes with a \proto
ol 
omposition" theorem literally built

in.

Another short
oming of the de�nition in [BCK98℄ that we dis
uss in x16 is that it o�ers no

guarantee of forward se
urity for established keys in the fa
e of strong adaptive 
orruptions. Or

at least, that appears to be the intention|as we dis
uss in x16, the intention is not really 
lear.

Although their is nothing wrong with su
h a de�nition, it unfortunately rules out the possibil-

ity of building a se
ure session proto
ol (with private 
hannels) that withstands strong adaptive


orruptions on top of a proto
ol that only satis�es su
h a de�nition.

Further, their model does not give any a

ount of the behavior of the 
erti�
ate authority and

of the distribution of publi
 keys. Rather, all publi
 keys for all users are generated and distributed

to all users in an idealized initial set-up phase. In 
ontrast, we expli
itly model the role of the


erti�
ate authority. We believe this to be important, for three reasons. First, without this, one


annot represent PKI atta
ks. Se
ond, in pra
ti
e, 
erti�
ates are typi
ally delivered within the

proto
ol itself, whi
h 
ould add to the round 
omplexity of a proto
ol; be
ause of this, the idealized

initial set-up phase 
an obs
ure the true round 
omplexity of a proto
ol. Third, it turns out

that one 
an design quite eÆ
ient proto
ols based on the weakest possible trust assumption for

the 
erti�
ate authority|indeed, it seems that there is no point in assuming anything about the


erti�
ate authority beyond its ability to properly 
he
k the identity of a user.

The paper [BCK98℄ also advo
ates a \modular" approa
h to session key proto
ol design in whi
h

one implements a session key proto
ol on top of a 
ommuni
ation network with ideal \authenti
ated

links," and then implements an authenti
ated link network on top of a \raw" network without

authenti
ated links. In 
ontrast, we work ex
lusively in the \raw" network model. Our reason for

this is that the \authenti
ated links" model somewhat obs
ures the true round and 
omputational


omplexity of session key proto
ols, and more importantly, it also rules out 
ertain very eÆ
ient

proto
ols that do not arise from su
h a modular design approa
h. Although [BCK98℄ de�ne se
urity

in the \raw" model as well as the \authenti
ated links" model, they do not 
onsider any examples

of proto
ols designed dire
tly in the \raw" model. In 
ontrast, we present several quite interesting

proto
ols that exist only in the \raw" model.

Finally, another problem with [BCK98℄ is that both of the proto
ols presented and 
laimed to

be se
ure (in the authenti
ated links model) a
tually are not, and apparently 
annot be se
ure

under any reasonable simulation-based de�nition of se
urity.

As already mentioned, we propose a formal model for session key ex
hange involving anonymous

users. In many situations, one of the two users in a key ex
hange proto
ol may not have a 
erti�
ate.

This already happens in SSL, and in fa
t, at the time of this writing, the vast majority of se
ure

sessions established on the Internet are between a server, who has a 
erti�
ate, and a 
lient (the

anonymous user), who does not. We show how our formal model 
an be easily adapted to deal

with this situation, and present and analyze several proto
ols that work in this setting.

A server who establishes a se
ure session with an anonymous 
lient has no idea who he is talking

to. It may therefore be ne
essary for the 
lient to authenti
ate himself to the server by means of a

password. This is trivial to do in our model: having established a se
ure session, the 
lient simply

passes his password through the se
ure 
hannel to the server. Our de�nition of se
urity essentially

guarantees everything one 
ould possibly hope for in this setting, in parti
ular, prote
tion against

o�-line password guessing atta
ks, and against session \hija
king."

The problem of password-based authenti
ation and key ex
hange itself has a long history; see,

e.g, [BM92, GLNS93, HK98, Boy99℄. To a large degree, our work generalizes and extends all of

4



the previous work on this topi
. Moreover, our work provides a formal model in whi
h one 
an

analyze proto
ols, like SSL, that yield a more 
exible and modular approa
h to designing proto
ols

between servers and anonymous 
lients: �rst establish a se
ure session between anonymous 
lient

and server, and then simply run other proto
ols like \telnet" or \FTP"|that may or may not

require a password (or passwords)|on top of this se
ure session.

The 
urrent paper is a signi�
antly revised version of [Sho99℄. There are many fairly minor,

te
hni
al 
hanges. Most of the 
hanges made here both simplify and \loosen" the de�nition of

se
urity, in an attempt to get at the \
ore" se
urity issues. The most signi�
ant 
hange is the

treatment of strong adaptive 
orruptions. The paper [Sho99℄ already deals with su
h 
orruptions,

but in a somewhat di�erent way. Although the de�nitional approa
h in [Sho99℄ is workable, it is

somewhat more 
umbersome (and more restri
tive) than the approa
h taken here.

1.3 Outline

Here is a guide to the rest of the paper.

� In x2, we dis
uss proto
ol interferen
e and PKI atta
ks.

� In x3, we present our formal se
urity model, restri
ted to the 
ase of adversaries who stati
ally


orrupt users.

� In x4, we dis
uss in some detail the prin
iple appli
ation of a key ex
hange proto
ol, namely,

a se
ure session proto
ol. In parti
ular, we sket
h a formal simulation-based de�nition of

se
urity for a se
ure session proto
ol.

� In x5, we dis
uss the 
ryptographi
 primitives we need: se
ure signatures, non-malleable

publi
-key en
ryption, and the De
isional DiÆe-Hellman assumption. Readers already famil-

iar with these 
an safely skip this se
tion.

� In x6, we des
ribe the pre
ise role of the 
erti�
ate authority in the proto
ols we present.

� In x7, we present and prove the se
urity of a DiÆe-Hellman based key ex
hange proto
ol

DHKE.

� In x8, we present and prove the se
urity of a publi
 key en
ryption based key ex
hange

proto
ol EKE.

� In x9, we dis
uss an extension to our se
urity model that a

ommodates anonymous users,

in
luding a dis
ussion of appli
ations to se
ure sessions and password-based authenti
ation in

this setting. In parti
ular, we present proto
ol A-DHKE, whi
h extends proto
ol DHKE

to anonymous users, and proto
ols A-EKE-1 and A-EKE-2, whi
h extend proto
ol EKE.

� In x10, we present a formal se
urity model for key ex
hange that deals with adaptive 
or-

ruptions, in
luding a dis
ussion of se
ure sessions and anonymous users in this 
orruption

s
enario.

� In x11, we re-examine proto
olsDHKE andEKE in the fa
e of adaptive 
orruptions, showing

that they are inse
ure in this s
enario.

� In x12, we present several variants (DHKE-1, DHKE-3, DHKE-3) of proto
ol DHKE

that are se
ure against adaptive 
orruptions, in
luding variants (A-DHKE-1, A-DHKE-3)

that deal with anonymous users.
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� In x13, we present a variant EKE-1 of proto
ol EKE that is se
ure against adaptive 
orrup-

tions.

� In x14, we present a formal se
urity model for key ex
hange that deals with strong adaptive


orruptions, in
luding a dis
ussion of se
ure sessions and anonymous users in this 
orruption

s
enario.

� In x15, we 
ompare our model of se
urity with that of Bellare and Rogaway [BR95℄.

� In x16, we give a te
hni
al 
ritique of the se
urity model of Bellare, Canetti, and Kraw
zyk

[BCK98℄.

� In x17, we make some 
on
luding remarks.

2 Proto
ol Interferen
e and PKI atta
ks

To motivate 
ertain aspe
ts of our new formal model, we will dis
uss two 
lasses of subtle atta
ks:

proto
ol interferen
e atta
ks, and PKI atta
ks.

Proto
ol interferen
e atta
ks are those where the seemingly benign use of a session key in a

higher level proto
ol 
an interfere with the proper working of the session key proto
ol itself. This

generalizes the interleaving atta
k of Bird, et al. [BGH

+

91℄.

PKI atta
ks involve adversaries who \hija
k" honest users' publi
 keys, obtaining 
erti�
ates

on an honest user's publi
 key but with an identity determined by an adversary.

We will illustrate these atta
ks on the 
lassi
 STS proto
ol.

The basi
 STS proto
ol uses a group G of order q and with generator g.

A! B : g

x

,

where x 2 Z

q

is random.

B ! A : g

y

; E

K

(sig

B

(g

x

; g

y

)),

where y 2 Z

q

is random.

A! B : E

K

(sig

A

(g

x

; g

y

)):

Here, K = g

xy

, and E is a symmetri
 key 
ryptosystem. Before a

epting, both A and B

validate all the signatures. The key K is the session key.

Let us assume that the 
erti�
ates of A and B are publi
ly available, and that the group G is

des
ribed in, say, A's 
erti�
ate.

As pointed out in [DvOW92℄, if we remove the en
ryptions on the signatures, then the pro-

to
ol be
omes inse
ure. We re
all here the atta
k. Consider an adversary 
ontrolling a di�erent

identity

~

A. Without the en
ryption on the last message,

~

A 
ould generate for himself a signature

sig

~

A

(g

x

; g

y

). This would result in the una

eptable situation where B \thinks" he is talking to

~

A,

but in fa
t shares a key with A, who \thinks" he is talking to B.

One 
riti
ism of STS is that it uses the resulting session key within the proto
ol itself. Not

only does this leak partial information about the session key prematurely, but 
an lead to the phe-

nomenon we 
alled proto
ol interferen
e above. In fa
t, the adversary 
an still 
arry out the same

atta
k above, even with the en
ryptions. Suppose A has terminated the proto
ol and generated its

last message. Now suppose that before A's response is ever delivered to B, the adversary intera
ts

with the higher-level proto
ol using A's session key. Just suppose that in this higher level proto
ol,
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the adversary 
ould 
onvin
e A to 
ompute an en
ryption E

K

(msg) of a message msg of the ad-

versary's 
hoi
e, and say that msg = sig

~

A

(g

x

; g

y

). Having obtained this en
ryption, the adversary

forwards it to B, and we have su

essfully 
arried out the atta
k.

We 
an a
hieve the same result with a PKI atta
k. Suppose that the adversary 
an 
onvin
e

a relevant 
erti�
ate authority to bind A's publi
 key to

~

A's identity. Now,

~

A may have all the

relevant do
uments to prove to the 
erti�
ate authority's satisfa
tion that he \really is"

~

A. If


erti�
ates are ex
hanged as part of the proto
ol, then the adversary 
an repla
e A's 
erti�
ate

with

~

A's.

The reader might obje
t: do not 
erti�
ate authorities verify not only the person is who he says

he is, but that he \knows" the 
orresponding private key|by demanding, for example, a signature

on a test message? Well, who knows what 
erti�
ate authorities really do. So it seems better not

to depend on this. Moreover, even if the authority makes su
h a 
he
k, it is not entirely 
lear

how to analyze exa
tly what this buys us in terms of provable se
urity properties using standard

de�nitions. Anyway, by appropriately modifying the proto
ol, it is easy enough to defend against

su
h PKI atta
ks, without making spe
ial assumptions about the 
erti�
ate authority.

Besides proto
ol interferen
e and PKI atta
ks, this proto
ol 
an also be atta
ked by a standard

interleaving atta
k, as follows. The atta
ker 
an take the en
rypted signature output by B in the

se
ond 
ow, and feed this ba
k to B in the third 
ow. Thus, A will think he is talking to B, while

B will think he is talking to another instan
e of himself. Note that for this atta
k to work, A and

B must work with the same group parameters G and g.

3 Formal Se
urity Model|The Stati
 Corruption Case

We present our formal notion of se
urity, beginning with stati
 
orruptions, i.e., adversaries that

make their de
ision as to whom to 
orrupt independently of the network traÆ
 (but otherwise

are fully adaptive in everything else they do). In this 
ase, su
h stati
ally 
orrupted users do not

expli
itly exist in the model: they are all just absorbed into the adversary.

Sin
e we want to let the adversary have arbitrary 
ontrol over the network, we also eliminate

the network: the adversary is the network. Moreover, it is the adversary that drives everything

forward|all other players (the users and the TTP) are 
ompletely passive, and perform only the

a
tions that the adversary instru
ts them to.

Se
urity is de�ned via simulation, as follows.

We �rst de�ne an ideal world model in whi
h all the adversary 
an do is 
reate and \
onne
t"

instan
es of users a

ording to some intuitive and natural rules, whereby these user instan
es obtain

random session keys that are hidden from the adversary. User instan
es that are \
onne
ted" share

a 
ommon key, but keys are otherwise un
orrelated. As soon as a user instan
e obtains a key,

he may begin to use it. For example, the user instan
e might en
rypt messages with the key

using a very good 
ipher or a very bad 
ipher or it might simply divulge the key. We pla
e

absolutely no restri
tions on the use of a key; however, the adversary learns no more information

about the key other than what is leaked through its use, and this information does not a�e
t the

orderly establishment of 
onne
tions. In the ideal world, there is no TTP, nor are there 
erti�
ates,

signatures, en
ryptions, or even proto
ol message 
ows. This is all abstra
ted away, so that all

that remains is the abstra
tion of the servi
e a session key proto
ol is supposed to provide to a

higher-lever proto
ol.

We then de�ne a real world model that des
ribes what adversaries 
an and 
annot do in real

life. This in
ludes all the messy details of the TTP, 
erti�
ates, et
.,

7



For both real-world and ideal-world adversaries, a trans
ript is generated that logs all impor-

tant events as they happen. Se
urity means that for every real-world adversary, there exists a


orresponding ideal-world adversary, su
h that the trans
ripts that these two adversaries generate

are 
omputationally indistinguishable.

Simulatability is this sense is a very powerful notion. It implies that a high-level proto
ol

designer 
an design and analyze his proto
ols as if they were running in the ideal world. As a

general prin
iple, whatever se
urity properties one 
an prove about a high-level proto
ol running

in the ideal world immediately transfer to the real world.

3.1 The ideal system

We now des
ribe the workings of the ideal system. The basi
 idea is fairly natural and intuitive;

however, it is important to spe
ify all the rules of the game quite pre
isely, and so unfortunately,

the details may at �rst sight seem somewhat legalisti
.

We have a set of (honest) users U

i

, indexed i = 1; 2; : : : : Ea
h user U

i

may have several user

instan
es I

ij

, for j = 1; 2; : : : :

Remark 1 One might think of i as an IP address, and j as a port number. A session key 
an be

thought of as se
uring a 
onne
tion between two IP address/port number pairs.

There is also an adversary. The adversary plays a game. Con
eptually, it is 
onvenient to

think of the adversary's opponent as the ring master

1

whose job it is to generate 
ertain random

variables, and to enfor
e 
ertain global 
onsisten
y 
onstraints. The adversary plays this game by

issuing a sequen
e of operations to the ring master. There are six types of operations: initialize

user, initialize user instan
e, abort session, start session, appli
ation, and implementation. We

explain in turn how ea
h of these operations work. As we shall see, the appli
ation operation is the

only operation in whi
h the ring master gives the adversary any information. Note that it is the

adversary that drives the game forward|the un
orrupted parties and the ring master are purely

passive, and simply rea
t to the adversary's operations. Also note that all operations are performed

sequentially and atomi
ally.

3.1.1 Initialize user

This operation takes the form

(initialize user; i; ID

i

):

This operation assigns the identity ID

i

to user U

i

. ID

i

may be any bit string, subje
t to the

restri
tion that this identity has not already been assigned to another user. Also, the initialize user

operation may only be applied to users that have not already been previously initialized.

3.1.2 Initialize user instan
e

This operation takes the form

(initialize user instan
e; i; j; role

ij

;PID

ij

):

A user instan
e I

ij

is spe
i�ed, along with a value role

ij

2 f0; 1g, as well as a partner identity PID

ij

.

User U

i

must have been previously initialized, but I

ij

should not have been previously initialized.

1

Following 
ir
us terminology.
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After exe
ution of this operation, we say that user instan
e I

ij

is a
tive, and remains a
tive until

the exe
ution of either an abort session or start session operation on I

ij

.

Remark 2 Intuitively, PID

ij

represents the identity of the user that I

ij

wants to talk to. The value

role

ij

identi�es whi
h of two roles the user instan
e is to have in establishing a 
onne
tion. We

do not assign any meaning to this role|it is only a te
hni
al, symmetry breaking devi
e. See also

points (11) and (12) in x3.4.

3.1.3 Abort session

This operation takes the form

(abort session; i; j):

An a
tive user instan
e I

ij

is spe
i�ed.

Remark 3 Intuitively, this represents a failed attempt to establish a 
onne
tion.

3.1.4 Start session

This operation takes the form

(start session; i; j; 
onne
tion assignment [ ; key ℄ ):

An a
tive user instan
e I

ij

is spe
i�ed.

The 
onne
tion assignment spe
i�es how the session key K

ij

for user instan
e I

ij

is generated.

This 
onne
tion assignment is one of the following:

� 
reate,

� (
onne
t; i

0

; j

0

), or

� 
ompromise.

The optional key �eld is present in the start session operation only if the 
onne
tion assignment

is 
ompromise.

Session keys are bit strings all of some agreed upon length. The session key K

ij

is determined

a

ording to the 
onne
tion assignment as follows.


reate: the ring master 
reates K

ij

as a random bit string.

(
onne
t; i

0

; j

0

): In this 
ase, the ring master sets K

ij

equal to K

i

0

j

0

.


ompromise: The ring master sets K

ij

to key, the optional optional �eld in the start session oper-

ation.

There are rules governing the legality of these assignments. To des
ribe these rules su

in
tly, we

make the following de�nition. We say that two initialized user instan
es I

ij

and I

i

0

j

0

are 
ompatible

if

� PID

ij

= ID

i

0

,

� PID

i

0

j

0

= ID

i

, and
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� role

ij

6= role

i

0

j

0

.

Now we present the rules governing the 
hoi
e of 
onne
tion assignments.

C1 The 
onne
tion assignment 
reate is always legal. When this start session operation 
ompletes,

we say that I

ij

is isolated (see rule C2 below).

C2 The 
onne
tion assignment (
onne
t; i

0

; j

0

) is legal if I

i

0

j

0

is a user instan
e that is still isolated

(see rule C1 above), and is 
ompatible with I

ij

. When this start session operation 
ompletes,

I

i

0

j

0

is no longer isolated.

C3 The 
onne
tion assignment 
ompromise is legal provided PID

ij

is not assigned to a user.

The following de�nition will be useful later. If the 
onne
tion assignment is (
onne
t; i

0

; j

0

), then

we say that user instan
es I

ij

and I

i

0

j

0

are partners. Note that this partner relation is symmetri
,

and that every user instan
e has at most one partner.

We shall make a restri
tion on how the adversary 
omputes 
onne
tion assignments|see x3.1.8

below.

We will often abuse terminology, and say things like \we 
reate I

ij

," or \we 
onne
t I

ij

to

I

i

0

j

0

," or \we 
ompromise I

ij

," to mean that user instan
e I

ij

is pres
ribed the indi
ated 
onne
tion

assignment, i.e., 
reate, (
onne
t; i

0

; j

0

), or 
ompromise.

3.1.5 Appli
ation

Of 
ourse, the point of establishing a session key is then to run a higher-level appli
ation proto
ol

using the session key. Any use of a session key will potentially leak information about the key to

the adversary, whi
h may a�e
t his behavior. We do not want to restri
t in any way the types of

appli
ation proto
ols. Therefore, we let the adversary obtain any partial information about the

session keys that he wishes. In addition to the session keys fK

ij

g, we also suppose there is a random

bit string R of some agreed upon length 
hosen at the beginning of the game (and not revealed to

the adversary). We 
all R the random input.

More spe
i�
ally, the appli
ation operation takes the form

(appli
ation; f);

where f is a fun
tion|spe
i�ed as a straight-line program or 
ir
uit (in some 
anoni
al notation)|

on the random input and the set of session keys that have been de�ned so far. Upon exe
uting this

operation, the ring master gives the adversary f(R; fK

ij

g).

If we want to, we 
an allow appli
ation operations to have side e�e
ts, i.e., to write to variables

that may then be read by subsequent appli
ation operations. This would not have any e�e
t (modulo

polynomial-time 
omputation), but would yield a model in whi
h one 
ould express higher level

proto
ols more naturally and eÆ
iently.

Remark 4 As an example, in an appli
ation proto
ol using the session key, a user instan
e may

en
rypt a message using a symmetri
 key en
ryption fun
tion. The key to the en
ryption fun
tion

might be derived from that user instan
e's session key. The message itself being en
rypted may


ome from some distribution, so a sub-sequen
e of bits in the random input 
an be used to generate

the message. Also, the en
ryption algorithm itself may use further random bits that also 
ome from

the random input. The bit string a
tually output by this user instan
e 
an be easily expressed by an

appropriate fun
tion f of R and fK

ij

g. This example is dis
ussed at greater length in x4.
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Table 1: Operations and their re
ords in the ideal world trans
ript

initialize user (initialize user; i; ID

i

)

initialize user instan
e (initialize user instan
e; i; j; role

ij

;PID

ij

)

abort session (abort session; i; j)

start session (start session; i; j)

appli
ation (appli
ation; f; f(R; fK

ij

g))

implementation (implementation, 
omment)

Remark 5 One may 
on
eptually partition R into segments so that individual user instan
es have

a sour
e of independent random bits. However, having one global bit string R allows us to model

situations where users may share se
ret information (e.g., passwords) through some me
hanism

other than network 
ommuni
ation.

3.1.6 Implementation

An implementation operation is a \no op" or \
omment 
ard" that otherwise has no e�e
t on the

game, ex
ept that the adversary simply makes a 
omment, whi
h is an arbitrary bit string. This

may seem strange, but is an essential te
hni
al point in formulating se
urity, whi
h will hopefully

be
ome 
learer later.

The form of this operation is

(implementation; 
omment):

3.1.7 Trans
ripts

We des
ribe how a trans
ript is generated.

As the adversary exe
utes operations in the ideal system, a trans
ript 
ompletely logging his

a
tivities is 
onstru
ted. This trans
ript 
onsists of a sequen
e of re
ords.

Ea
h operation adds a re
ord to the trans
ript, as des
ribed in Table 1. Note that no 
onne
tion

assignment information is logged in a start session operation (but see x3.1.8).

For an adversary A

�

we let IdealWorld(A

�

) denote the trans
ript.

Remark 6 IdealWorld(A

�

) is of 
ourse a random variable, determined by the random bits of the

adversary, the random input, and the values of the session keys. More pre
isely, IdealWorld(A

�

) is

a
tually a ve
tor, or \ensemble" of distributions, indexed by a \se
urity parameter."

3.1.8 Trans
ripts and 
onne
tion assignments

Having de�ned the trans
ript, we now return to one te
hni
al point left unexplained in x3.1.4 
on-


erning the 
al
ulation of 
onne
tion assignments. We shall require that the 
onne
tion assignment

made in a start session operation be eÆ
iently 
omputable as a fun
tion of the trans
ript up to,

and in
luding, the relevant start session operation. The motivation for this will be dis
ussed in

x3.4, point (8).
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3.2 The real system

We now des
ribe a formal model for \real world" session key proto
ols.

As in the ideal system, we have users U

i

and user instan
es I

ij

. Also as in the ideal system there

is an adversary. In addition, there is a spe
ial player T , representing a trusted third party. The

third party T might be on line, as in the private-key setting, or o� line, as in the publi
-key setting.

We shall assume that T is initialized with a publi
 key/private key pair PK

T

/SK

T

, although in the

on-line TTP setting, this may be trivial.

Unlike in the ideal system, users and user instan
es are not just pla
e holders.

When a user U

i

is initialized with identity ID

i

, a proto
ol-spe
i�
, probabilisti
 initialization

routine registers user U

i

's identity with T , and initializes user U

i

's internal state, as follows. First,

the initialization routine 
omputes a registration request. Se
ond, the pair (ID

i

; registration request)

is sent to T to register the identity ID

i

. Upon re
eiving this request, using a proto
ol-spe
i�
 rou-

tine, T updates its internal state, and 
omputes a registration re
eipt. Finally, U

i

's initialization

routine is given this registration re
eipt, and it then 
omputes and stores its long-term state infor-

mation in the variable LTS

i

.

Note that for simpli
ity, we have opted for a simple, two-pass registration proto
ol between a

user and T . While proto
ols allowing more intera
tion would be possible, we shall not need them.

A user instan
e I

ij

is a probabilisti
 state ma
hine. It impli
itly has a

ess to PK

T

, ID

i

, and

LTS

i

, and upon initialization, it is also assigned a value role

ij

2 f0; 1g and a partner identity PID

ij

.

After starting in some initial state, its state may be updated by delivering a message, in response

to whi
h the user instan
e updates its state, generates a response message, and reports its status,

whi
h is one of 
ontinue, a

ept, or reje
t. The meaning of the status value is as follows:


ontinue: user instan
e prepared to re
eive another message.

a

ept: user instan
e is �nished and has generated a session key; we denote by K

ij

the session key

generated by user instan
e I

ij

.

reje
t: user instan
e is �nished, but refuses to generate a session key.

When I

ij

pro
esses a message, we allow it to update LTS

i

. None of the proto
ols we examine

in this paper expli
itly require this fa
ility. However, some digital signature s
hemes require su
h

a fa
ility. One 
ould also use su
h a fa
ility to implement a pseudo-random bit generator to supply

user instan
es with pseudo-random bits, instead of making user instan
es generate their own random

bits.

Just as in the ideal system, the adversary plays a game against a ring master, and it is the

adversary that drives the game forward by issuing a sequen
e of operations. In the very �rst step

in this game, the trusted third party T generates a publi
 key/private key pair. The publi
 key is

made available to the adversary.

Now we explain pre
isely the operations that 
an be performed by the adversary: initialize user,

register, initialize user instan
e, deliver message, and appli
ation.

3.2.1 Initialize user

This operation has the form

(initialize user; i; ID

i

):

The adversary assigns an identity ID

i

to user U

i

, where user U

i

was not previously initialized and

ID

i

has not been assigned to other users, nor has been used in a register operation (see below).
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User U

i

registers its identity with T and initializes its long-term internal state LTS

i

, as des
ribed

above. The adversary is not given any information.

3.2.2 Register

This operation has the form

(register; ID; registration request):

The adversary runs T 's registration proto
ol dire
tly with the given identity ID and the given

registration request, and obtains the resulting registration re
eipt.

There is only one rule restri
ting the legality of this operation: the set of identities used in

initialize user operations and the set of identities used in register operations must be disjoint. How

this rule is enfor
ed lies outside the model (but see x6).

Remark 7 This operation allows the adversary to operate under various aliases. Alternatively,

one 
an think of these as being the identities of stati
ally 
orrupted users.

3.2.3 Initialize user instan
e

This operation takes the form

(initialize user instan
e; i; j; role

ij

;PID

ij

):

In this operation, the adversary 
hooses a user instan
e I

ij

that has not been previously initialized,

and also spe
i�es role

ij

2 f0; 1g, and an identity PID

ij

. User U

i

must have been previously

initialized. The adversary is not given any information. After exe
ution of this operation, we say

that I

ij

is a
tive.

3.2.4 Deliver message

This operation takes the form

(deliver message; i; j; InMsg):

In this operation, the adversary delivers a message InMsg to an a
tive user instan
e I

ij

. As des
ribed

above, the user instan
e updates its state, outputs a response message OutMsg, and reports its

status. Also, as mentioned above, I

ij

might also update LTS

i

. The response message and status

information are given to the adversary. If the status is not 
ontinue, then user instan
e I

ij

is no

longer a
tive.

In the o�-line TTP setting, messages are sent only between user instan
es, but in the on-line

TTP setting, messages sometimes need to be sent between user instan
es and T . In the latter


ase, we assume that messages are appropriately tagged to indi
ate if the sender/re
eiver is a user

instan
e or T . Also, we assume that users intera
t with T in a stri
tly 
lient/server fashion. The

details of how this tagging is done are not important. Additionally, we need to add an operation

(deliver message to TTP; InMsg)

that delivers a message to T ; upon re
eipt of this message, T updates its internal state, and returns

a response message OutMsg to the adversary.

Note that in an a
tual implementation, a user instan
e might \time out" after some time if it

is waiting for a message. Although there is no notion of absolute time in our model, the adversary


an deliver a spe
ial \time out" message to a user instan
e to a
hieve the same e�e
t.
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Table 2: Operations and their re
ords in the real world trans
ript

initialize user (initialize user; i; ID

i

)

register (implementation; register; registration request; ID; registration re
eipt)

initialize user instan
e (initialize user instan
e; i; j; role

ij

;PID

ij

)

deliver message (implementation; deliver message; i; j; InMsg;OutMsg; status), and

(start session; i; j) if status = a

ept, and

(abort session; i; j) if status = reje
t

deliver message to TTP (implementation; deliver message to TTP; InMsg;OutMsg)

appli
ation (appli
ation; f; f(R; fK

ij

g))

3.2.5 Appli
ation

This operation takes the form

(appli
ation; f):

This is exa
tly the same as the appli
ation operation in the ideal system, ex
ept that the fun
tion

now 
omputed is a fun
tion of the a
tual session keys fK

ij

g generated by user instan
es, as well as

a random input R. Note that R is independent of any random bits used by users or user instan
es

during initialization and the during the exe
ution of session key proto
ols.

3.2.6 Trans
ripts

We now des
ribe the trans
ript generated by the adversary's game. This is a sequen
e of re
ords

that des
ribes all the a
tivities of the adversary and all the information available to it.

The �rst re
ord in the trans
ript is

(implementation; initalize system;PK

T

):

Ea
h operation adds one or two re
ords to the trans
ript, as detailed in Table 2.

For an adversary A, we let RealWorld(A) denote the trans
ript.

3.3 De�nition of se
urity

We are �nally ready to formulate the de�nition of se
urity of a session key ex
hange proto
ol.

There are three basi
 requirements.

Termination. Any (real world) user instan
e must terminate after a polynomially bounded num-

ber of messages are delivered to it (the bound must be independent of the adversary). In

fa
t, we shall only 
onsider here proto
ols that terminate after a 
onstant number of rounds.

Liveness. For every eÆ
ient real world adversary A, whenever the adversary faithfully delivers

messages between two 
ompatible user instan
es (and T , in the on-line TTP setting), both

user instan
es a

ept and share the same session key.

Simulatability. For every eÆ
ient real world adversary A, there exists an eÆ
ient ideal world

adversary A

�

su
h that RealWorld(A) and IdealWorld(A

�

) are 
omputationally indistinguish-

able.

14



3.4 Dis
ussion

1. The liveness requirement rules out, for example, \do nothing" proto
ols that would trivially

satisfy the simulatability requirement.

2. The simulatability requirement 
aptures the intuition that any real world adversary does no

more \damage" than an ideal world adversary, and by de�nition, an ideal world adversary is

essentially benign.

3. We do not expli
itly pla
e any internal random bits used by the real-world adversary in the

trans
ript. However, a real-world adversary 
an always for
e any information it wants into

the trans
ript using an appli
ation operation. To see how this 
an be done, note that the

fun
tion f spe
i�ed in the appli
ation operation 
ould very well be a \
onstant" fun
tion of

the adversary's 
hoi
e, and this \
onstant" 
an be an arbitrary bit string 
omputed by the

adversary. Admittedly, this is perhaps a bit arti�
ial; alternatively, one 
ould simply add a

spe
ial operation that allows the real-world adversary to pla
e \
omments" in the trans
ript.

4. Also using appli
ation operations, the real-world adversary 
an arrange that the session keys

K

ij

along with the random input R are \dumped" into the trans
ript at the very end of

the game. This will allow a statisti
al test attempting to distinguish the real-world and

ideal-world trans
ripts a

ess to otherwise hidden variables.

5. It may be useful to illustrate the de�nition of se
urity with a simple example. Suppose that

a real world adversary A has the power to simply output a session key just after it has been

established (but not used). We 
an arrange that A for
es its \guess" of the session key into the

trans
ript, as des
ribed in point (3). We 
an also arrange that A for
es the a
tual value of the

session key into the trans
ript at the end of the game, as des
ribed in (4). In the real world,

the guessed value of the key and the a
tual value would be equal, at least with non-negligible

probability, assuming A 
ould really break the s
heme as des
ribed. In the ideal world, these

two values would be equal with only negligible probability (at least for suÆ
iently long session

keys). But this would immediately give us a statisti
al test to distinguish real-world from

ideal-world trans
ripts. So either there is no su
h A, or the session key proto
ol is inse
ure.

6. Our de�nition of se
urity implies mu
h more than just the inability of an adversary to guess

a session key. It has a sort of \built in" 
omposition theorem, sin
e the appli
ation operation

allows session keys to be used in an arbitrary way by higher-level proto
ols. We believe that

our de�nition is general enough so that any high-level proto
ol 
an be dire
tly and naturally

represented using appropriate appli
ation operations. The simulatability requirement implies

that any event that happens in the real world must happen in the ideal world with essentially

the same probability, as long as this event 
an be expressed as a fun
tion on the trans
ript (as

augmented above in points (3) and (4)). It is in this sense that a high-level proto
ol designer


an \pretend" he is working in the ideal world, rather than the real world.

There is, however, one dire
tion in whi
h our de�nition 
ould be extended. As it is, the fun
-

tion 
omputed by an appli
ation operation depends on the session keys and on some hidden

random variables. One might also want these fun
tions to depend on some hidden values that


annot e�e
tively be modeled as random variables. To deal with this, one 
ould introdu
e an

auxiliary input S to be used in both the ideal world and the real world, and the simulatability

requirement would have to hold for all values of S. To prove the se
urity of a proto
ol in

this setting, one would have to make non-uniform intra
tability assumptions. Although one
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an extend the de�nition in this way, it is not 
lear to us that this is a parti
ularly useful

extension.

7. We emphasize that the appli
ation operation is mainly intended to model the normal use of

a session key in a higher-level proto
ol (e.g., to implement a se
ure session, see x4), although

it 
an also be used to model unintended information leakage as well (see x14.1).

8. There is no 
onne
tion assignment information expli
itly available in either the real-world

or ideal-world trans
ripts. This is 
learly inevitable, as the real-world trans
ript 
an not be

expe
ted to 
ontain this information, and of 
ourse the ideal-world trans
ript is supposed to

look just like the real-world trans
ript. However, this information is impli
itly available to any

statisti
al test attempting to distinguish the trans
ripts, sin
e the ideal-world adversary im-

pli
itly de�nes an eÆ
iently 
omputable fun
tion from trans
ripts to 
onne
tion assignments.

This was the main point of the restri
tion in x3.1.8 on how 
onne
tion assignments are 
om-

puted. Indeed, it only seems fair that this information is available to the statisti
al test. Our

de�nition of se
urity essentially implies that any real-world adversary 
ould be repla
ed by

an equivalent adversary that expli
itly announ
es its intended 
onne
tion assignments.

9. Although we give the ideal-world adversary 
omplete freedom in determining 
onne
tion

assignments, this freedom is quite super�
ial. Indeed, sin
e all the session keys may be

eventually dumped into the trans
ript, the adversary really has no freedom at all, if the

proto
ol is a
tually se
ure. That is, for a se
ure proto
ol, 
onne
tion assignments are unique.

We 
ould have restri
ted the way in whi
h A

�


omputes 
onne
tion assignments, but this

would only 
ompli
ate the de�nitions without any 
lear advantage.

10. Admittedly, the whole business of 
onne
tion assignments is rather messy, even though we

have tried to simplify it as mu
h as possible. An alternative approa
h to handling 
onne
-

tion assignments would be to de�ne them via a \session ID." This is the approa
h taken by

[BCK98℄. In the real world, one would require that a user instan
e 
ompute and output a

session ID when it a

epted. In the ideal world, the session ID would be spe
i�ed by the ad-

versary in a start session operation. One would then formulate rules to 
al
ulate 
onne
tion

assignments from session IDs. While this approa
h may have some appeal, it only seems to

yield a more 
ompli
ated de�nition of se
urity, with additional, arguably unne
essary syn-

ta
ti
 
onstraints. Moreover, it would require that proto
ols a
tually 
ompute these session

IDs. For many proto
ols, this would entail only a trivial modi�
ation, but for others, su
h as

the one analyzed in [BR95℄, it would require a de
idedly non-trivial modi�
ation.

11. The value role

ij

2 f0; 1g assigned to a user instan
e may be a bit 
onfusing at �rst. Session

key ex
hange proto
ols are typi
ally asymmetri
 in nature; moreover, higher-level proto
ols

making use of a session key typi
ally 
an bene�t from this asymmetry as well. See x4 for an

example of this.

12. Our de�nition of se
urity does not imply any notion of expli
it key 
on�rmation (a.k.a. \ex-

pli
it key authenti
ation," see, e.g., [MvOV97, p. 492℄). The notion of expli
it key 
on�r-

mation is usually rather vaguely de�ned, but in our terminology it 
ould be phrased as the

requirement that a user instan
e is guaranteed that a 
ompatible user instan
e has a

epted

the same key.

Some resear
hers distinguish between unilateral and mutual expli
it key 
on�rmation (provid-

ing the above guarantee to one or both user instan
es, respe
tively). We point out, however,
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that mutual expli
it key 
on�rmation is impossible to a
hieve. This is essentially a 
onsensus

problem, and is in general unsolvable in the presen
e of faulty 
ommuni
ation links: the user

instan
e that sends the last message 
an never \know" if this message will be delivered, and

therefore 
an never \know" whether it really has established a 
onne
tion with anyone. Al-

though there may be a 
ompatible instan
e of the key establishment proto
ol that holds the

session key, that proto
ol instan
e may not terminate su

essfully, and so may not pass the

key up to a higher-level proto
ol, whi
h for all pra
ti
al purposes is equivalent to not holding

the session key in the �rst pla
e. This is a rather subtle point that some resear
hers in the �eld

have failed to appre
iate, and in fa
t, some resear
hers have 
laimed that 
ertain proto
ols

a
tually provide mutual expli
it key 
on�rmation, e.g., this is 
laimed in [MvOV97, p. 516℄

for STS. At best, the notion of mutual expli
it key 
on�rmation is meaningless (this mean-

inglessness is simply obs
ured by the la
k of pre
ise de�nitions); at worst, it gives high-level

proto
ol designers an unjusti�ed sense of se
urity.

As it happens, all of the proto
ols we examine in this paper, ex
ept proto
ol A-EKE-2 in

x9.3, do indeed provide unilateral expli
it key 
on�rmation. One 
ould modify our de�nition

of se
urity so as to guarantee unilateral expli
it key 
on�rmation, by requiring that a user

instan
e's role be 
orrelated with its 
onne
tion assignment. That is, one role would allow

only the 
onne
tion assignment 
reate, and the other only 
onne
t. This is done, for example,

in [BCK98℄. One should note, however, that su
h a requirement would rule out otherwise

perfe
tly good proto
ols, su
h as the one in [BR95℄; moreover, it is not at all 
lear that

higher-level proto
ols 
an truly pro�t from su
h a requirement.

13. In our de�nition of se
urity, we make no attempt to isolate or formulate the notion of \entity

authenti
ation." Roughly speaking, this notion tries to 
apture the goal that two parties 
an

engage in a proto
ol so that at the end of the proto
ol, they are sure that they were really

talking to ea
h other. This is sometimes pursued as an end in itself [DvOW92, BR93a, BM97℄,

but it is not 
lear if this is very useful. Su
h a proto
ol only establishes that two entities were

talking to ea
h other in the past, but implies nothing about messages sent in the future|it

is simply a se
ure, mutual \ping."

14. One te
hni
al point in our de�nition of se
urity is: what happens when a user instan
e I

ij

runs the session key proto
ol when its partner identity PID

ij

has neither been assigned to

the user nor has it been registered by the adversary? In typi
al proto
ols in the o�-line TTP

setting, I

ij

will 
ertainly not a

ept any session key, sin
e it will expe
t to see a 
erti�
ate


ontaining the identity PID

ij

, but will not. However, it is possible to 
on
o
t proto
ols in

the on-line TTP for whi
h I

ij

will a

ept a session key, and this session key may not be

known to the adversary, but may be
ome known to the adversary at a later time if it registers

the identity PID

ij

; nevertheless, the proto
ol would satisfy our de�nition of se
urity, as our

de�nition makes no se
urity guarantees when PID

ij

is not assigned to a user (it may be given

a 
onne
tion assignment of 
ompromise). It seems to be a debatable point as to whether this

is a

eptable. One 
ould strengthen our de�nition by requiring that a user instan
e reje
ts

if PID

ij

has neither been assigned nor registered by the adversary. This would be a simple

modi�
ation of the de�nition, and at any rate, would not a�e
t the se
urity of any of the

proto
ols we dis
uss in this paper.

15. Our formal real-world model impli
itly forbids higher level proto
ols from making use of the

long-term private keys used in the session key proto
ol. The only \se
ret" information used

in higher level proto
ols is 
ontained in the random input R, whi
h is independent of these
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private keys. This signi�
antly simpli�es our model, and is anyway good se
urity pra
ti
e.

If one did allow the same private keys to be used in the session key proto
ol and the higher

level proto
ol, one would have to be very 
areful to prevent proto
ol interferen
e.

4 The Prin
iple Appli
ation: Se
ure Sessions

Perhaps the main reason for ex
hanging session keys is to establish se
ure sessions, so it is perhaps

worthwhile to dis
uss this point in some detail.

Having established a shared key K, two user instan
es 
an then pro
eed as follows. Applying a

pseudo-random bit generator to K, they 
an derive sub-keys K

(0)

and K

(1)

. The two user instan
es


an identify themselves a

ording to their roles, so for the purposes of this session, the user instan
e

with role 0 
an be \player 0," and the user instan
e with role 1 
an be \player 1." The key K

(0)


an then be used to implement a se
ure|i.e., private and authenti
ated|uni-dire
tional 
hannel

from player 0 to player 1. This 
an be done using standard symmetri
 key en
ryption (semanti
ally

se
ure against 
hosen message atta
k) and a message authenti
ation 
ode. We assume that messages

are transmitted as �xed-size blo
ks (the size may depend on a se
urity parameter), and that ea
h

blo
k is individually en
rypted and authenti
ated, so that not only the integrity of the data in

ea
h blo
k is preserved, but also the relative ordering of the blo
ks. Similarly, the key K

(1)


an be

used to implement a se
ure uni-dire
tional 
hannel from player 1 to player 0. The two players 
an

interleave the sending of message blo
ks on the two 
hannels in an arbitrary way.

All of the fun
tions for en
ryption and generating message authenti
ation 
odes 
an be expressed

in our formal model as appropriate appli
ation operations that are performed by the adversary. This

would be the only a

ess to session keys|and the bits in the random input used to implement the

se
ure 
hannel|that we would allow our adversary, but in general, we might allow the adversary

a

ess to other bits in the random input.

Our de�nition of se
ure key ex
hange then allows one to establish all of the properties one would

expe
t if the shared key K were truly random.

In fa
t, one 
ould 
arry our formal modeling one step further by giving a simulation-based

de�nition for a se
ure session proto
ol. Although we do not pursue this in detail here, we sket
h

an approa
h for whi
h it should be easy to �ll in the details.

As usual, one would de�ne an \ideal world" and the \real world." In the ideal world, the

adversary would initialize users and user instan
es, as well as start sessions spe
ifying 
onne
tion

assignments just as in the key ex
hange setting, ex
ept that in the se
ure session setting, there

would be no mention of session keys|at this level of abstra
tion, that is an implementation detail,

and not a part of the spe
i�
ation.

We say that the session for a user instan
e is 
ompromised if the user instan
e has a 
onne
tion

assignment of 
ompromise. We begin by des
ribing the ideal workings of a 
hannel asso
iated with

an un
ompromised session.

On
e a user instan
e has established a session, it has a

ess to one input 
hannel and one output


hannel. The basi
 operations are to write a message blo
k to the output 
hannel and to read a

message blo
k from the input 
hannel. As usual, all a
tivities are dire
ted by the adversary.

Whenever the adversary requests a user instan
e to write a message blo
k, this de�nes a mes-

sage blo
k variable. Asso
iated with the output 
hannel is a sequen
e of message blo
k variables

X

1

;X

2

; : : : : The value of a message blo
k variable X

r

is 
omputed as a fun
tion of the random

input, and any previously de�ned message blo
k variables in the system. This fun
tion is spe
i-

�ed by the adversary. This is very similar to the appli
ation operation in the 
ontext of session
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key proto
ols, ex
ept that in this setting, all that happens is that variable X

r

is de�ned, and the

adversary is given no information about its value.

Whenever the adversary requests a user instan
e to read a message blo
k, this also de�nes a

message blo
k variable. Asso
iated with the input 
hannel is a sequen
e of message blo
k variables

X

0

1

;X

0

2

; : : : : For the rth read operation to be legal (for r = 1; 2; : : :), the user instan
e must have

a partner, and that partner must have performed at least r write operations. The value of the

variable X

0

r

asso
iated with this user instan
e's input 
hannel is assigned the value of the variable

X

r

asso
iated with its partner's output 
hannel. The adversary 
an also expli
itly 
lose a user

instan
e's input or output 
hannel, after whi
h it does not read or write any more messages.

The priva
y of these 
hannels is guaranteed by the fa
t that when a user instan
e writes to its

output 
hannel, the ideal-world adversary obtains no information beyond whi
h it already knows;

namely, that the message blo
k is the value of the fun
tion it spe
i�ed. The authenti
ity of these


hannels is guaranteed by the fa
t that the values of the message blo
ks re
eived are equal to the

values of the message blo
ks a
tually sent.

That deals with the 
ase when a session is un
ompromised. If it is 
ompromised, all of the

above guarantees are eliminated|spe
i�
ally, when sending a message, the ideal-world adversary

is simply given the message blo
k dire
tly, and when re
eiving a message, the adversary expli
itly

delivers a message blo
k of its 
hoi
e.

In addition to the above, the adversary may make arbitrary requests to obtain the values

of spe
i�
 fun
tions on the random input and on de�ned message blo
k variables, just like the

appli
ation operation in the 
ontext of session key proto
ols. This allows us to model yet higher-

level proto
ols that run on top of the se
ure session.

The main reason for using �xed-size blo
ks is that in general, we 
annot hope to prevent the

adversary from learning something about the lengths of transmitted messages, so we just �x these

lengths in advan
e.

It should be straightforward to �ll in the details of the ideal world spe
i�
ation, as well as to

des
ribe an appropriate formal model of the real world, and to show how to implement and prove

the se
urity of a se
ure session proto
ol on top of a se
ure session key proto
ol, using 
ompletely

standard symmetri
-key 
ryptographi
 te
hniques. Note that in the real world, user instan
es

would also have message blo
k variables asso
iated with (virtual) input and output 
hannels. Also,

in formulating the de�nition of se
urity, one would also have to formulate appropriate notions

of termination and liveness, whi
h should be straightforward. The liveness requirement would

simply say that in the real world, to the extent an adversary faithfully delivers messages between

two 
ompatible user instan
es, these user instan
es e�e
tively behave as partners with 
onne
ted

input/output 
hannels, and all message blo
ks are e�e
tively delivered without modi�
ation.

One important point to note, however, is that using standard implementation te
hniques, we

will not be able to maintain simulatability if we allow the adversary to arbitrarily expose session

keys. The problem is not that we 
annot model su
h atta
ks in our formalization|in fa
t, we


an quite easily. The problem is that a standard symmetri
-key en
ryption of a message is a


ommitment to that message|if the key is later exposed, the simulator 
annot make it look like

something else was en
rypted (but see x14.6).

5 Cryptographi
 Primitives

In this se
tion, we dis
uss the 
ryptographi
 primitives that we will be using throughout the rest

of this paper.

19



5.1 Digital signatures

We will make use of digital signature s
hemes, and the notion of se
urity we will use is that of

se
urity against existential forgery against adaptive 
hosen message atta
k, as de�ned in [GMR88℄.

This is the strongest, and most useful notion of se
urity.

Brie
y, se
urity in this sense means that it is infeasible for an adversary to win the following

game. A publi
 key/private key for the s
heme is generated, and the adversary is given the publi


key. The adversary then makes a sequen
e of signing requests. The messages for whi
h the adversary

requests signatures 
an be adaptively 
hosen, i.e., they may depend on previous signatures. The

adversary wins the game if he 
an forge a signature, i.e., 
an output a message other than one for

whi
h he requested a signature, along with a valid signature on that message.

Se
ure and fairly pra
ti
al signature s
hemes 
an be 
onstru
ted based on various intra
tability

assumptions [DN94, CD96, GHR99, CS99℄. Even more pra
ti
al s
hemes 
an be 
onstru
ted based

on heuristi
 arguments (i.e., the \random ora
le" model) [BR96, PS96℄.

5.2 Publi
 key en
ryption

The notion of semanti
 se
urity for a publi
-key en
ryption s
heme was formalized by [GM84℄.

Brie
y, se
urity in this sense means that it is infeasible for an adversary to gain a non-negligible

advantage in the following game. A publi
 key/private key pair for the s
heme is generated, and

the adversary is given the publi
 key. Then the adversary generates two equal length messages

m

0

;m

1

, and gives these to an en
ryption ora
le. The en
ryption ora
le 
hooses a bit b 2 f0; 1g at

random, en
rypts m

b

, and gives the adversary the 
orresponding target 
iphertext  

0

. Finally, the

adversary outputs his guess at b. The adversary's advantage is de�ned to be the distan
e from 1=2

of the probability that his guess is 
orre
t.

The formal de�nition of semanti
 se
urity 
aptures the intuitive notion that no information

about an en
rypted message is leaked to a passive adversary that only eavesdrops. In proto
ol

design and analysis, a mu
h more robust de�nition is often required that 
aptures the intuitive

notion of se
urity against an a
tive atta
k, in whi
h the adversary not only 
an eavesdrop, but


an inje
t his own messages into the network. The type of se
urity one needs in this setting is

non-malleability, also 
alled se
urity against 
hosen 
iphertext atta
k, a notion that was formalized

in the sequen
e of papers [NY90, RS91, DDN91℄.

The de�nition of non-malleability is the same as for semanti
 se
urity, but with the following

essential di�eren
e. The adversary is given a

ess to a de
ryption ora
le throughout the entire

game; the adversary may request the de
ryption of 
iphertexts  of his 
hoosing, subje
t only to

the restri
tion that after the target 
iphertext  

0

has been generated, the adversary may not request

the de
ryption of  

0

itself.

Another intuitive way to understand non-malleability (and the motivation for its name) is that a

non-malleable en
ryption s
heme essentially provides a se
ure envelope, that is, an envelope whose


ontents 
an neither be seen nor modi�ed by an adversary.

Fairly pra
ti
al non-malleable en
ryption s
hemes 
an be 
onstru
ted based on the De
isional

DiÆe-Hellman assumption (see below) [CS98℄. Even more pra
ti
al s
hemes 
an be 
onstru
ted

based on heuristi
 arguments (i.e., the \random ora
le" model) [BR93b, BR94, FO99℄.

5.3 The De
isional DiÆe-Hellman assumption

Let G be a group of large prime order q and let g 2 G be a generator. The Computational DiÆe-

Hellman (CDH) assumption, introdu
ed by [DH76℄, is the assumption that 
omputing g

xy

from
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g

x

and g

y

is hard. It is a widely held belief that the se
urity proto
ols su
h as STS is implied by

the CDH assumption. This is simply false|under any reasonable de�nition of se
urity|ex
ept

in a heuristi
 sense that we dis
uss below in x5.3.3. What is almost always needed, but often not

expli
itly stated, is the De
isional DiÆe-Hellman (DDH) assumption.

For g

1

; g

2

; u

1

; u

2

2 G, de�ne DHP(g

1

; g

2

; u

1

; u

2

) to be 1 if there exists x 2 Z

q

su
h that u

1

= g

x

1

and u

2

= g

x

2

, and 0 otherwise. A \good" algorithm for DHP is an eÆ
ient, probabilisti
 algorithm

that 
omputes DHP 
orre
tly with negligible error probability on all inputs. The DDH assumption

is the assumption that there is no good algorithm for DHP.

This formulation is equivalent to the more usual one where

g

1

= g; g

2

= g

x

; u

1

= g

y

; u

2

= g

xy

:

5.3.1 DDH random self-redu
tion

There are a few useful random self-redu
tions that allow us to transform arbitrary inputs to DHP

into random inputs on whi
h DHP evaluates to the same value.

Let g

1

; g

2

; u

1

; u

2

be given su
h that g

1

6= 1 and g

2

6= 1. We 
an randomize u

1

and u

2

as follows:

~u

1

= u

a

1

g

b

1

; ~u

2

= u

a

2

g

b

2

;

where a; b 2 Z

q

are 
hosen at random. Suppose that u

1

= g

x

and u

2

= g

y

2

. If x = y, then (~u

1

; ~u

2

)

is a random pair of group elements, subje
t to log

g

1

(~u

1

) = log

g

2

(~u

2

): If x 6= y, then (~u

1

; ~u

2

) is a

pair of random, independent group elements.

Next, we 
an randomize g

2

as follows:

~g

2

= g




2

; ~u

1

= u

a

1

g

b

1

; ~u

2

= u

a


2

g

b


2

;

where 
 2 Z

q

is 
hosen at random.

Additionally, we 
an randomize g

1

as follows:

~g

1

= g

d

1

; ~g

2

= g




2

; ~u

1

= u

ad

1

g

bd

1

; ~u

2

= u

a


2

g

b


2

;

where d 2 Z

q

is 
hosen at random.

With this transformation, we see that we 
an transform an arbitrary input to DHP to an

equivalent, random input. From this, it follows that the two distributions

(g

1

; g

2

; g

x

1

; g

y

2

); random g

1

; g

2

2 G; x; y 2 Z

q

;

and

(g

1

; g

2

; g

x

1

; g

x

2

); random g

1

; g

2

2 G; x 2 Z

q

are 
omputationally indistinguishable under the DDH assumption. This random self-redu
ibility

property was �rst observed by Stadler [Sta96℄ (and also independently in [NR97℄).

5.3.2 Applying the DDH assumption

In the sequel, we will need to use a super�
ially stronger version of the DDH assumption, whi
h in

fa
t is implied by the DDH assumption.

First, it follows from the DDH assumption, using a hybrid argument (see [NR97℄), that the two

distributions

(g; (g

x

i

: 1 � i � n); (g

y

j

: 1 � j � m); (g

x

i

y

j

: 1 � i � n; 1 � j � m)
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and

(g; (g

x

i

: 1 � i � n); (g

y

j

: 1 � j � m); (g

z

ij

: 1 � i � n; 1 � j � m))

are 
omputationally indistinguishable. Here, the base g is random, as are the exponents.

By a slightly more involved hybrid argument, it follows that an adversary's advantage in the

following intera
tive version of the above distinguishing problem is negligible. In this game, a b is


hosen at random, hidden from the view of the adversary. Next, the adversary is given

(g; (g

x

i

: 1 � i � n); (g

y

j

: 1 � j � m)):

For all i; j, we de�ne h

ij

= g

x

i

y

j

if b = 0, and h

ij

= g

z

ij

if b = 1. Now the adversary adaptively

makes a sequen
e of requests. For any i he 
an ask to see x

i

, for any j, he 
an ask to see y

j

, and

for any i; j he 
an ask to see h

ij

. These requests are subje
t to the obvious restri
tion that if he

asks for h

ij

, he 
annot also ask, or have asked, for x

i

or y

j

. At the end of the game, the adversary

outputs his guess at b. The adversary's advantage is de�ned to be the distan
e from 1=2 of the

probability that his guess is 
orre
t.

We will use the above observations in the analysis of DiÆe-Hellman based key ex
hange pro-

to
ols. Additionally, we will also use the Entropy Smoothing Theorem (a.k.a., the Leftover Hash

Lemma) to transform random group elements into random bit strings using a pair-wise independent

hash fun
tion. See [Lub96, Chapter 8℄ for an exposition on the Entropy Smoothing Theorem. We

will use this theorem as follows. Having 
omputed a DiÆe-Hellman key g

xy

, we will derive a session

key as H

k

(g

xy

), where H is a family of pair-wise independent hash fun
tions, and k is a random

index into this family of fun
tions. Under an appropriate 
hoi
e of parameters, the DDH assump-

tion and the Entropy Smoothing Theorem imply that the distributions (g; g

x

; g

y

; k;H

k

(g

xy

)) and

(g; g

x

; g

y

; k;K)|where K is a random bit string whose length equals the output length of H|are


omputationally indistinguishable.

5.3.3 Using random ora
les

Instead of the DDH assumption, one 
an use the CDH assumption in 
ombination with the random

ora
le model of se
urity analysis (see [BR93b℄). This is a heuristi
 model of analysis in whi
h

a 
ryptographi
 hash fun
tion F is treated as if it were a bla
k box that 
ontained a random

fun
tion. This model has been used to analyze numerous 
ryptographi
 systems (see, e.g., [BR94℄

and [PS96℄). In all of the DiÆe-Hellman based key ex
hange proto
ols we analyze, if we 
ompute

the session key as K = F (g

xy

), then the proto
ols 
an be proven se
ure in the random ora
le model

under the CDH assumption.

We 
an also 
ombine the two approa
hes, obtaining the \best of both worlds." If we 
ompute

the session key asK = H

k

(g

xy

)�F (g

xy

), then we get a proof of se
urity under the DDH assumption

(without resorting to random ora
les), and under the CDH assumption with random ora
les.

5.3.4 Dis
ussion

To make all of the above de�nitions and arguments pre
ise, one should view the group G not as

�xed, but as being generated by some probabilisti
 algorithm taking as input a suÆ
iently large

se
urity parameter. The above hybrid arguments 
an be readily adapted to the 
ase where we have

a heterogeneous system of groups G, ea
h of whi
h is generated in this way.

The DDH assumption appears to have �rst surfa
ed in the 
ryptographi
 literature in a paper

by S. Brands [Bra93℄. See [Bon98, CS98, NR97, Sta96℄ for further appli
ations of and dis
ussions

about the DDH assumption. A potentially stronger version of the DDH assumption|whi
h we
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shall not need in this paper|allows the adversary to 
hoose one of the two bases g

1

or g

2

in the

above distinguishability problem. Interestingly, it appears that allowing the adversary to 
hoose

one of the bases may give him more power than he would have if both bases were random. This

is in 
ontrast to the CDH and Dis
rete Logarithm assumptions, where it does not matter if the

adversary 
hooses the base. It remains to be seen whether su
h a stronger version of the DDH

assumption has useful 
ryptographi
 appli
ations. We mention this here only be
ause it seems that

previous works involving the DDH did not make this distin
tion.

6 The Certi�
ate Authority

In this se
tion, we des
ribe pre
isely the role of the trusted third party T as a 
erti�
ate authority

in this and all the other proto
ols in this paper.

We assume that when a user U

i

is initialized (see x3.2), he generates a publi
 key/private

key pair PK

i

/SK

i

, and the registration request is PK

i

. The trusted third party T , a
ting as a


erti�
ate authority, generates a 
erti�
ate 
ert

i

, whi
h 
onsists of a signature on (ID

i

;PK

i

) under

PK

T

. The registration re
eipt is simply 
ert

i

. The long-term state information LTS

i

of user U

i

is

(SK

i

;PK

i

; 
ert

i

).

Re
all that the rules for registration (x3.2.1-x3.2.2) prevent two honest users from registering

the same name, and prevent the adversary from registering an honest user's name. Of 
ourse,

the enfor
ement of these rules lies outside our formal model. For example, in real life, the 
erti�-


ate authority might be able to reasonably enfor
e these rules by requiring the use of suÆ
iently

des
riptive names and by demanding adequate \proofs" of identity (passport, driver's li
ense, et
.).

Note, however, that we will not require anything more of the 
erti�
ate authority. In parti
ular,

we shall not require that a user proves that he \knows" the se
ret key 
orresponding to a publi


key when he gets a 
erti�
ate|a pra
ti
e that is sometimes advo
ated. So, for example, there is

nothing stopping an adversary from obtaining a 
erti�
ate that binds the name of a \
orrupted

user" (i.e., an alias under whi
h the adversary is operating) to the publi
 key of an honest user.

There are three reasons for not doing this. First, both from a trust and an eÆ
ien
y point of

view, it seems best to require as little of T as possible. Se
ond, it is easy to design quite eÆ
ient

key ex
hange proto
ols that are se
ure under our minimalisti
 trust assumption. Third, it is not


lear how one would really exploit a \proof of knowledge" to get rigorous se
urity proofs|from

a te
hni
al point of view, \proofs of knowledge" are quite tri
ky to work with, sin
e they often

involve \rewinding," whi
h 
an 
ause real problems when trying to build a simulator.

Note that as we have set things up, user 
erti�
ates are not available in any \publi
 dire
tory."

Instead, we shall require that user 
erti�
ates are transmitted as a part of the session key proto
ol

itself. This 
losely models what happens in pra
ti
e. By impli
ation, the adversary also does not

get dire
t a

ess to user 
erti�
ates: the adversary must obtain user 
erti�
ates by intera
ting with

users, just like an honest user must. This is not at all a serious restri
tion, and we 
ould easily add

a 
erti�
ate request 
ommand in the real system without 
hanging any of the theorems we later

prove.

7 A DiÆe-Hellman Based Proto
ol

In this se
tion we des
ribe and analyze a proto
ol based on the 
lassi
al DiÆe-Hellman proto
ol

key ex
hange [DH76℄. We 
all our proposed proto
ol DHKE.
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7.1 Proto
ol DHKE

Ea
h user generates a publi
 key/private key pair as follows. First, he 
hooses a publi
 key/private

key pair for a digital signature s
heme. Se
ond, he 
onstru
ts a group G of prime order q, and

sele
ts a random generator g for this group. The user's publi
 key 
onsists of the publi
 key for

the signature s
heme, and a des
ription of G and g. The user's private key 
onsists of the private

key of the signature s
heme. We denote by sig

i

(msg) the output of user U

i

's signature algorithm

on msg. Note that in this paper, signatures do not in
lude the message being signed. We remind

the reader that 
ert

i

denotes the 
erti�
ate that binds user U

i

's publi
 key with his identity, as

des
ribed in x6.

We des
ribe the proto
ol in terms of two users U

i

and U

i

0

. User U

i

initiates the proto
ol, and

in the des
ription of the proto
ol, G, g, and q refer to the group information re
orded in the publi


key of user U

i

. We also assume a family of pair-wise independent hash fun
tions H

k

, indexed by a

randomly 
hosen bit string k of some spe
i�ed length.

U

i

! U

i

0

: g

x

; sig

i

(g

x

; ID

i

0

); 
ert

i

,

where x 2 Z

q

is 
hosen at random.

U

i

0

! U

i

: g

y

; k; sig

i

0

(g

x

; g

y

; k; ID

i

); 
ert

i

0

,

where y 2 Z

q

is 
hosen at random, and k is a random hash fun
tion index.

The agreed upon session key is H

k

(g

xy

), 
omputed in the usual way. Additionally, ea
h player

validates all 
erti�
ates and signatures in the usual way, reje
ting the proto
ol and refusing to

generate a session key if any of these tests fail.

Our des
ription is not entirely pre
ise. Some user instan
e I

ij

is running the proto
ol on behalf

of user U

i

, and likewise some user instan
e I

i

0

j

0

is running the proto
ol on behalf of user U

i

0

. The

identity ID

i

0

written in the �rst 
ow is a
tually 
omputed by I

ij

as PID

ij

, and by I

i

0

j

0

as ID

i

0

j

0

.

Similar remarks apply to other 
omputations in the proto
ol. Also, we arbitrarily let the roles of

the two user instan
es in this and other proto
ols in this paper be determined by who goes �rst.

Remark 8 The reader may already have a funny feeling about this proto
ol, as it 
onsists of only

two 
ows, as opposed to the three 
ows used in STS. Indeed, the �rst message generated by U

i


ould

be sent to several instan
es of U

i

0

, at most one of whi
h 
an a
tually end up sharing a key with U

i

.

At worst, this will lead to user instan
es I

i

0

j

0

that are permanently isolated. However, any session

key proto
ol ultimately su�ers from this problem: whoever sends the last message in the proto
ol

does not \know" if it was ultimately delivered. As was pointed out in x3.4, point (12), we should

not expe
t a key ex
hange proto
ol to solve the 
onsensus problem, whi
h is anyway unsolvable in

general. Moreover, even if all messages in the session key proto
ol are delivered, there is in general

no guarantee that any messages in higher-level appli
ation proto
ols will be delivered.

7.2 Se
urity analysis of DHKE

Theorem 1 Proto
ol DHKE is a se
ure key ex
hange proto
ol, under the DDH assumption, and

assuming all the digital signatures s
hemes employed are se
ure.

We now prove this theorem.

We are given a real world adversary A. Our approa
h will be to transform A into an ideal

world adversary A

�

, and to simultaneously transform the real world ring master into an ideal world

ring master, doing this without 
hanging the trans
ript in any (
omputationally) dis
ernible way.

Basi
ally, this will simply amount to having A

�

run the adversary A just as in the real world, ex
ept

as follows:
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� A

�


omputes appropriate 
onne
tion assignments, and the ring master in the ideal world

substitutes real-world session keys with idealized session keys;

� whenever A

�


hooses to 
ompromise a user instan
e, it supplies a session key as part of the

start session operation by extra
ting the key from the real-world user instan
e;

� for any implementation re
ord that A's a
tions 
ause to be pla
ed in the real-world trans
ript,

A

�


opies this re
ord into the ideal-world trans
ript using a 
orresponding implementation

operation;

� any appli
ation operations are evaluated by the ring master using the idealized session keys.

What we end up with, then, is an adversary A

�

that is a system of intera
ting algorithms


onsisting of A, the real world users, and T . The main thing is to argue that these 
onne
tion

assignments are legal, and that the key substitutions are not dete
table.

We make one more notational 
onvention that will also be used in our other proofs of se
urity.

We will always write I

ij

for a user instan
e that is an originator, i.e., sends the �rst message in

the proto
ol, and I

i

0

j

0

for a user instan
e that is a responder, i.e., a user instan
e that sends the

se
ond message in the proto
ol. For any two su
h user instan
es, the values role

ij

and role

i

0

j

0

are


omplimentary.

Case 1. Suppose a user instan
e I

i

0

j

0

has re
eived the �rst message in the proto
ol and has

a

epted.

Case 1a. If PID

i

0

j

0

is not assigned to a user, then we 
ompromise I

i

0

j

0

in the ideal world. To do

this, we need to spe
ify the session key, whi
h we simply extra
t from I

i

0

j

0

in the real world.

Case 1b. Now suppose PID

i

0

j

0

is assigned to a user U

i

. We assert that at this point there is

a unique user instan
e I

ij

su
h that PID

ij

= ID

i

0

and that I

ij

sent g

x

in its outgoing message.

This follows easily from the logi
 of the proto
ol and the se
urity of the signatures. So we 
reate

I

i

0

j

0

, and the ring master substitutes the a
tual session key with a random session key. We have

to argue that this substitution is unnoti
able (
omputationally, that is). But this will follow using

the argument in x5.3.2, provided the user instan
e I

ij

mentioned above has not been or ever will

be 
ompromised. But this is so, be
ause PID

ij

= ID

i

0

, and so su
h a 
ompromise 
onne
tion

assignment is not allowed in the rules. The only possible out
omes for I

ij

are that it never a

epts,

it 
onne
ts to I

i

0

j

0

, or it 
onne
ts to another instan
e of user U

i

0

.

Case 2. Suppose that user instan
e I

ij

has just re
eived an in
oming message in the proto
ol

and has a

epted.

Case 2a. If PID

ij

is not assigned to a user, then we 
ompromise I

ij

, extra
ting the needed

session key from I

ij

itself.

Case 2b. Now suppose PID

ij

is assigned to a user U

i

0

. We assert that there is a unique isolated

user instan
e I

i

0

j

0

su
h that PID

i

0

j

0

= ID

i

and the values g

x

, g

y

and k mat
h. This follows easily

from the logi
 of the proto
ol and the se
urity of the signatures. This allows us to 
onne
t I

ij

to I

i

0

j

0

, and the ring master substitutes the a
tual session key of I

ij

with the session key of I

i

0

j

0

previously generated by the ring master. This substitution will be unnoti
able be
ause the session

keys were the same in the real world.

That 
ompletes the proof of the simulatability requirement in the de�nition of a se
ure key

ex
hange proto
ol. It is trivial to see that the termination and liveness requirements are satis�ed.
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8 An En
ryption Based Proto
ol

8.1 Proto
ol EKE

Ea
h user generates publi
 key/private key pairs as follows. He 
hooses a publi
 key/private key

pair for a signature s
heme, as well as a publi
 key/private key pair for a publi
 key en
ryption

s
heme.

As in x7, we let sig

i

(msg) denote user U

i

's signature on msg. Also, we let E

i

(msg) denote an

en
ryption of msg under user U

i

's publi
 key.

We des
ribe the proto
ol in terms of two user's U

i

and U

i

0

.

U

i

! U

i

0

: r; 
ert

i

,

where r is a (suÆ
iently long) random bit string.

U

i

0

! U

i

: � = E

i

(K; ID

i

0

); sig

i

0

(�; r; ID

i

); 
ert

i

0

,

where K is a random bit string.

The agreed upon session key is K. As usual, both users 
he
k the relevant signatures. Ad-

ditional, user U

i


he
ks that the de
ryption of � is of the right form, 
ontaining the expe
ted

identity.

8.2 Se
urity analysis of EKE

Theorem 2 Proto
ol EKE is a se
ure key ex
hange proto
ol, assuming se
ure signatures, and

assuming the en
ryption s
heme is non-malleable.

We now prove this theorem. The basi
 stru
ture of the proof is the same as that of Theorem 1

in x7.

Case 1. Suppose a user instan
e I

i

0

j

0

has just re
eived the �rst message in the proto
ol, and

has a

epted.

Case 1a. If PID

i

0

j

0

is not assigned to a user, then we 
ompromise I

i

0

j

0

in the ideal world,

extra
ting the key K from I

i

0

j

0

.

Case 1b. Otherwise, suppose PID

i

0

j

0

is assigned to a user U

i

. Then we 
reate I

i

0

j

0

in the ideal

world, and the ring master substitutes the session key held by I

i

0

j

0

with a random key. Be
ause

we are assuming the en
ryptions are non-malleable, this substitution will be undete
table, provided

the 
iphertext � is never a
tually de
rypted. We justify this 
laim below.

Case 2. Now suppose a user instan
e I

ij

has just re
eived a message.

Case 2a. Suppose that PID

ij

is not assigned to a user.

If the 
iphertext � re
eived was generated by any user instan
e I

i

0

j

0

with PID

i

0

j

0

= ID

i

, then

we 
an safely make I

ij

reje
t, as the identity embedded in � (ID

i

0

) is not what I

ij

expe
ts (PID

ij

).

This is done without ever de
rypting �.

Otherwise, if the 
iphertext � was not generated by any su
h user instan
e, we let I

ij

run to


ompletion. If it a

epts, we 
ompromise I

ij

, extra
ting the session key from I

ij

. This of 
ourse

makes impli
it use of the de
ryption fun
tion of user U

i

, but we have taken 
are not to de
rypt

anything that was en
rypted by a user instan
e I

i

0

j

0

with PID

i

0

j

0

= ID

i

. As we will see, this is the

only pla
e in the game where we de
rypt anything. This justi�es the 
laim made above in 
ase (1b)

that we never de
rypt 
iphertexts 
reated by user instan
es with 
onne
tion assignment 
reate.

Case 2b. If PID

ij

is assigned to a user U

i

0

, we pro
eed as follows. If the signature veri�
ation

su

eeds, then the 
iphertext �must have been 
reated by a unique user instan
e I

i

0

j

0

with PID

i

0

j

0

=
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ID

i

, and the the identity embedded in the 
iphertext must be ID

i

0

, so there is no need to a
tually

de
rypt it. Moreover, it is easy to see that 
onne
ting I

ij

to I

i

0

j

0

is valid at this moment, be
ause

the r values are all unique (at least with overwhelming probability). So we 
onne
t I

ij

to I

i

0

j

0

, and

the ring master sets the session key of I

ij

to the key that it generated for I

i

0

j

0

. This substitution is

undete
table, sin
e the two session keys were the same in the real world.

It is 
lear from the arguments already made that the real world and ideal world trans
ripts

are indistinguishable. That proves the simulatability requirement. The termination and liveness

requirements are trivial.

Remark 9 One of the main attra
tions of proto
ol EKE is that it 
an be implemented so as to

minimize the 
omputational e�orts of one of the two users|user U

i

0

in this 
ase. First, one 
ould

use a low-exponent RSA signature s
heme [BR96℄ for the 
erti�
ates, so that 
erti�
ate veri�
ation

is 
heap. Se
ond, one 
ould use a low-exponent RSA [BR93b, BR94℄ for the en
ryption s
heme.

Third, for the signature s
heme that user U

i

0

uses to sign messages in the proto
ol, one 
ould use

S
hnorr's signature s
heme [S
h91℄. In this s
heme, one 
an perform some \o� line" 
omputations

so that the \on line" 
ost of signing is extremely 
heap. Thus, if user U

i

0

is a server that is heavily

loaded at some times, but not at others, the server 
an perform the \o� line" 
omputations during

non-peak hours, and thereby provide a fast response time during peak hours.

9 Anonymous Users

In this se
tion, we extend our formal model of se
urity for session key proto
ols to model the setting

where one of the two users establishing a session key is anonymous. By an anonymous user, we

simply mean one without a 
erti�
ate, so perhaps a better term would be unauthenti
ated.

Of 
ourse, to the non-anonymous user, the session key proto
ol itself 
an o�er little prote
tion,

sin
e the anonymous user 
ould be the adversary, or an honest user, and the non-anonymous user


annot tell the di�eren
e. Typi
ally, however, an anonymous user will authenti
ate himself within

the se
ure session using a password. We dis
uss this in more detail in x9.4.

9.1 De�nitions

Adding anonymous users is simple. We 
reate a spe
ial user U

0

with the spe
ial identity ID

0

=

anonymous. An entity that wants to run the proto
ol as an anonymous user will simply utilize a

user instan
e I

0j

for this purpose. Note that user U

0

has no asso
iated se
ret key or long-term

state, and is 
onsidered to be pre-initialized.

Beyond the introdu
tion of this spe
ial user U

0

, the rest of the model stays exa
tly the same

as before, with one ex
eption. The 
ompromise rule C3 (see x3.1.4) regulating the 
onne
tion

assignment for a user instan
e I

ij

is repla
ed by:

C3

�

The 
onne
tion assignment 
ompromise is legal provided PID

ij

is not assigned to a user, or

PID

ij

= anonymous:

That is, the ideal-world adversary A

�

is always free to make a 
onne
tion assignment of 
ompromise

for a user instan
e I

ij

if PID

ij

= anonymous:

Remark 10 Intuitively, this relaxation of the 
ompromise rule is ne
essary, sin
e as we remarked

above, an anonymous user may really be the adversary himself. Note, however, that for any proto
ol

that satis�es our de�nition of se
urity, A

�


annot always 
hoose to 
ompromise su
h a user instan
e.
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Remark 11 The fa
t that we group together all anonymous user instan
es under a single user U

0

is simply a te
hni
al 
onvenien
e. In pra
ti
e, su
h user instan
es will not typi
ally be running on

the same ma
hine, and may indeed be running on the same ma
hine on whi
h a non-anonymous

user is running.

Remark 12 There is nothing in our de�nition that rules out a proto
ol that attempts to establish

a key between two anonymous user instan
es. However, our de�nition would provide no se
urity

guarantees for su
h a key, so we shall not 
onsider su
h proto
ols here.

9.2 A DiÆe-Hellman based proto
ol

We 
an extend proto
ol DHKE to obtain the following proto
ol A-DHKE.

U

0

! U

i

0

: g

x

,

where x 2 Z

q

is 
hosen at random.

U

i

0

! U

0

: g

y

; k; sig

i

0

(g

x

; g

y

; k; anonymous); 
ert

i

0

;

where y 2 Z

q

is 
hosen at random, and k is a random hash fun
tion index.

As usual, the anonymous user 
he
ks all the relevant signatures. Both users 
ompute the session

key as H

k

(g

xy

). Also, we assume here that the group used for the 
omputations is shared by all

anonymous users. It 
an wither be \hardwired" into all users, or 
an be part of the publi
 key

PK

T

.

Note that we 
onsider proto
ol A-DHKE to be an extension of proto
ol DHKE, meaning that

both anonymous and non-anonymous key ex
hanges may take pla
e in any 
ombination.

Theorem 3 Proto
ol A-DHKE is se
ure, under the DDH assumption, and assuming se
ure sig-

natures.

The proof is just a slight modi�
ation of the proof of Theorem 1. The only thing that 
hanges

is the 
al
ulation of the 
onne
tion assignment in 
ase (1a) of that proof. In this 
ase, we shall


ompromise I

i

0

j

0

if either

� PID

i

0

j

0

is not assigned to a user, or

� PID

i

0

j

0

= anonymous and there does not exist an anonymous user instan
e I

0j

with PID

0j

=

ID

i

0

that sent g

x

as its �rst message in the proto
ol.

The rest of the proof goes through without 
hange.

Remark 13 The reader may have noti
ed that proto
ol A-DHKE is vulnerable to the following

PKI \atta
k." An adversary 
ould take the publi
 key of an honest user B, and register a name

^

B with the same publi
 key. Then by repla
ing B's 
erti�
ate in the proto
ol with

^

B's 
erti�
ate,

the adversary 
ould make the anonymous user think he has a key established with

^

B, whereas he

really shares a key with B. Our de�nition of se
urity does not rule out this \atta
k," and it is

easy to 
arry out this \atta
k" on proto
ol A-DHKE. However, we argue that this \atta
k" is

spurious. Indeed, if the session key is used for the purpose of establishing a se
ure session, then

the adversary 
an always a
hieve the same e�e
t mu
h more easily, as follows. He 
ould separately

establish session keys with the anonymous user and with B, and then just a
t as a \bridge" between

these two users, de
rypting and re-en
rypting messages as ne
essary. Also note that one 
ould try

to prevent the above \atta
k" on A-DHKE by having U

i

0

in
lude his identity ID

i

0

in the message

that it signs in the se
ond 
ow; however, although this would make the \atta
k" more diÆ
ult to

mount, one 
ould not rule it out under the standard de�nition of se
ure signatures.
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9.3 Two en
ryption based proto
ols

We extend proto
ol EKE in two di�erent ways. The �rst proto
ol, A-EKE-1, runs as follows.

U

i

! U

0

: r; 
ert

i

,

where r is a (suÆ
iently long) random bit string.

U

0

! U

i

: E

i

(K; anonymous; r);

where K is a random bit string.

As usual, the agreed upon session key is K, and user U

i


he
ks that the values embedded in

en
rypted message are 
orre
t.

Theorem 4 Proto
ol A-EKE-1 is se
ure assuming se
ure signatures and non-malleable en
ryp-

tion.

The proof of this theorem is just a slight modi�
ation of the proof of Theorem 2. We need to

modify only 
ase (2b) of that proof when PID

ij

= anonymous.

� If � was not 
reated by an anonymous user instan
e, we let the proto
ol run to 
ompletion,

and 
ompromise I

ij

, should it a

ept. If I

ij

a

epts, this involves an impli
it de
ryption of �,

but by the logi
 of the proto
ol, � 
annot be one of the 
iphertexts from step (1b) that we

are not allowed to de
rypt.

� Otherwise, if � was 
reated by a (ne
essarily unique) user instan
e I

0j

0

, then there are two

sub-
ases.

{ If the value r re
eived by I

0j

0

mat
hes that sent by I

ij

, then we 
onne
t I

ij

to I

0j

0

.

{ Otherwise, we let I

ij

reje
t, sin
e that is what I

ij

would anyway do.

In both sub-
ases, we do not de
rypt �.

Remark 14 We have written proto
ol A-EKE with the non-anonymous user U

i

in the role of the

initiator, and the anonymous user U

0

in the role of the responder. In a typi
al setting, however,

the non-anonymous user is a \server," and the anonymous user is a \
lient." In su
h a setting,

we would typi
ally expe
t the 
lient to initiate the proto
ol. If that is the 
ase, then the proto
ol

must 
ontain an initial 
ow from the 
lient to the server, just to get things started, so the proto
ol

would a
tually require three 
ows.

Remark 15 This proto
ol 
an be implemented so that the 
omputational burden on the 
lient is

very minimal, by using low-exponent RSA based en
ryptions and signatures. This might be useful

in some settings where the 
lient is 
omputationally limited; unfortunately, in many settings, is

turns out to be the server who is already 
omputationally overburdened.

Here is an alternative, rather amusing proto
ol A-EKE-2. Let f be a pseudo-random fun
tion

family, indexed by a key K.

U

i

! U

0

: 
ert

i

.

U

0

! U

i

: E

i

(K; anonymous);

where K is a random bit string.
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U

i

! U

0

: r,

where r is a random bit string.

In this proto
ol, the agreed upon session key is 
omputed as f

K

(r).

Theorem 5 Proto
ol A-EKE-2 is se
ure assuming se
ure signatures, non-malleable en
ryption,

and a se
ure pseudo-random fun
tion.

We leave this proof as an exer
ise for the reader.

Remark 16 Sin
e the last 
ow from U

i

to U

0

is not authenti
ated, if the adversary modi�es the

value r while it is in transit, then both user instan
es will simply be permanently isolated. Thus,

while the proto
ol satis�es our de�nition of se
urity, it does not guarantee expli
it key 
on�rmation

for either originator or responder (see x3.4, point (12)).

Remark 17 The point of this proto
ol is to address the issue raised in Remark 14. In the


lient/server setting des
ribed there, proto
ol A-EKE-2 would in the worst 
ase require four 
ows.

However, if the 
lient happens to already have the 
erti�
ate of the server stored lo
ally, only two


ows are ne
essary. Indeed, proto
ols A-EKE-1 and A-EKE-2 
ould be 
ombined so that the


lient uses the former if it does not already have the server's 
erti�
ate, and the latter if it does.

9.4 The prin
iple appli
ation: se
ure sessions

We 
an extend the formal se
urity model and implementation sket
hed in x4 for a se
ure session

proto
ol to in
lude anonymous users. A
tually, nothing 
hanges, ex
ept that we let the adversary

make 
onne
tion assignments using the modi�ed rule C3

�

, des
ribed above.

We 
an go one step further, if we wish, and 
onsider the situation where the anonymous user

authenti
ates himself to the non-anonymous user by means of a password. Now, on
e an anonymous

user has an established a se
ure session, he 
an simply send his password through the se
ure 
hannel.

Sometimes this message 
an even be piggy-ba
ked on the last message of the key ex
hange proto
ol,

in whi
h 
ase there is no extra 
ommuni
ations 
ost. There is really nothing more to it. It is easy

to see that given the properties of a se
ure session, su
h a password-based s
heme will have all the

properties one 
ould possibly hope for; in parti
ular,

� an adversary trying to guess a password 
annot do any better than an \on line" password

guessing atta
k, and

� if an anonymous user establishes a session and then authenti
ates himself within the session

using a password, an adversary 
annot afterwards \hija
k" the session.

As already mentioned in x1, our approa
h to this problem is perhaps an attra
tive alternative to

the approa
h taken by many other authors. By appropriately de�ning se
ure key ex
hange in the

anonymous user setting, we 
an easily analyze su
h proto
ols without worrying about passwords.

Then using a standard implementation for se
ure sessions on top of the key ex
hange proto
ol, and

passing the password through the se
ure 
hannel, we get a password-authenti
ated se
ure session

essentially \for free." Moreover, one 
an implement a single \low layer" 
ommuni
ation proto
ol

that implements se
ure sessions with anonymous users, without any passwords; on top of this, one


an implement arbitrary proto
ols that may or may not require passwords: \telnet," \FTP," et
.
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10 A Formal Model for Se
urity Against Adaptive Corruptions

We now extend our formal se
urity model to deal with adaptive 
orruptions. In an adaptive


orruption, the adversary obtains a user's long-term se
ret, but nothing else.

In x14, we shall 
onsider strong adaptive 
orruptions, in whi
h the adversary obtains ephemeral

data as well as long-term se
rets.

Note that our formal model already allows one to model the exposure of session keys (using

appropriate appli
ation operations), but as was pointed out in x4, a typi
al implementation of a

se
ure session proto
ol built on top of a se
ure key ex
hange proto
ol will not be se
ure (in the

sense of simulatability) if we allow the exposure of session keys.

Additionally, we allow a 
orruption to en
ompass the possibility of a fault in the 
erti�
ate

authority, whereby the adversary obtains a 
erti�
ate of his 
hoi
e on a user's identity.

Our approa
h will be that when a user is 
orrupted, that user 
ontinues to play along in all

intera
tions as usual, following its proto
ol 
orre
tly. Of 
ourse, the adversary, having obtained the

se
ret key, 
an intera
t with other users, \pretending" to be this user.

We need to modify both the real system model and the ideal system model. The de�nition of

se
urity, de�ned in terms of termination, liveness, and simulatability, will remain exa
tly the same.

10.1 The real system

The adversary may exe
ute a 
orrupt user operation, whi
h takes the form

(
orrupt user; i):

The adversary spe
i�es a user U

i

that has been previously initialized, and obtains the user's long-

term state LTS

i

.

The following two re
ords are added to the trans
ript:

(
orrupt user; i);

and

(implementation; 
orrupt user;LTS

i

):

Additionally, at any point in time after a 
orrupt user operation, we allow the adversary to

perform register operations using the identity ID

i

Note that sin
e LTS

i

may 
hange over time, we allow a 
orrupt user operation to be applied to

an already 
orrupted user.

10.2 The ideal system

The adversary may exe
ute a 
orrupt user operation,

(
orrupt user; i);

spe
ifying a previously initialized user U

i

. The re
ord

(
orrupt user; i)

is added to the trans
ript.

No information is given to the adversary in the ideal world when a user is 
orrupted.
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The only other 
hange to the model is that we have to modify the rules in x3.1.4 governing the

legality of the 
onne
tion assignments made during during a start session operation applied to a

user instan
e I

ij

.

The 
hange here is minimal. We 
hange rule C3 as follows:

C3

0

The 
onne
tion assignment 
ompromise is legal if either

{ PID

ij

is not assigned to a user,

{ PID

ij

is assigned to a 
orrupted user, or

{ user U

i

is 
orrupted.

Remark 18 It is important to noti
e what does not 
hange. In parti
ular, the ideal-world ad-

versary is free to make the 
onne
tion assignments 
reate and 
onne
t, regardless of whether any

of the relevant users have been 
orrupted|he is never for
ed to make the 
onne
tion assignment


ompromise. This keeps our de�nitions simple and natural: if Ali
e thinks she is talking to a user

Bob, but Bob has had his long-term se
ret key exposed, then Ali
e may indeed be talking to Bob or

to the adversary. This gives our simulators the 
exibility they need to deal with situations where a

user is 
orrupted while it is in the middle of an on-going proto
ol.

10.3 A more 
onservative 
ompromise rule

Noti
e that we allow a 
onne
tion assignment of 
ompromise for I

ij

if user U

i

itself has been


orrupted. While this may seem fairly natural, one 
ould make a more 
onservative 
ompromise

rule that required that PID

ij

is not assigned to an un
orrupted user|
orruption of U

i

would not

be suÆ
ient by itself.

Su
h a 
onservative 
ompromise rule makes a di�eren
e.

First, it would make a di�eren
e in the inferen
es one 
ould make in higher-level proto
ols.

For example, Ali
e 
ould infer that a supposed message from Bob in a se
ure session was indeed

from Bob unless Bob was 
orrupted|it would not matter if Ali
e's long-term se
ret key had been

exposed or not. This is pre
isely the same inferen
e that Ali
e 
ould draw if the message were

authenti
ated dire
tly with a digital signature. This inferen
e 
ould not be drawn under the liberal


ompromise rule.

Se
ond, it would make a di�eren
e in whi
h proto
ols would be 
onsidered se
ure. In x12 we

will see examples of proto
ols that are se
ure under the liberal 
ompromise rule but not se
ure

under the 
onservative 
ompromise rule.

In the sequel, we will adopt the liberal 
ompromise rule as our \default" rule, but will point

out those situations where imposing the 
onservative rule would make a di�eren
e.

10.4 The prin
iple appli
ation: se
ure sessions

We 
ontinue our dis
ussion about the prin
iple appli
ation of session key ex
hange proto
ols,

namely, to build a se
ure session proto
ol. We 
an adapt the formal model and implementa-

tion of a se
ure session proto
ol sket
hed in x4 to deal with adaptive 
orruptions. In fa
t, nothing

really 
hanges, ex
ept the rules for 
onne
tion assignments. The important thing to note, however,

is that if a user instan
e starts a session, and that session is initially un
ompromised, then it will

never be 
ompromised, even if one of the relevant parties is 
orrupted while the session is ongoing.
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10.5 Non-forward se
urity against adaptive 
orruptions

Our de�nition of se
urity against adaptive 
orruptions 
aptures the intuitive notion of forward

se
urity. One 
an easily formulate a notion of non-forward se
urity against adaptive 
orruptions,

wherein the adversary in the ideal world would also obtain all the relevant session keys, whi
h

means, all the session keys established by instan
es of the 
orrupted user U

i

, as well as all session

keys K

i

0

j

0

with PID

i

0

j

0

= ID

i

. Absolutely nothing else would 
hange: in parti
ular, none of this

extra information would be logged in the ideal world or real world trans
ripts.

This notion of non-forward se
urity does not seem to be very attra
tive, for two reasons. First,

it does not seem to be any easier to a
hieve non-forward se
urity than to a
hieve forward se
urity.

Se
ond, it would be very diÆ
ult to build a pra
ti
al se
ure session proto
ol that was se
ure against

adaptive 
orruptions on top of su
h a key ex
hange proto
ol.

10.6 Anonymous users

It is trivial to adapt the de�nition of se
urity with respe
t to anonymous users (see x9) to in
orporate

adaptive 
orruptions. All that 
hanges is rule C3

0

is x10.2, so that the the 
onne
tion assignment


ompromise is also legal when PID

ij

= anonymous (as in rule C3

�

in x9.1). As the anonymous user

U

0

does not have any long-term state, it 
annot be 
orrupted.

11 Interlude: On the inse
urity of proto
ols DHKE and EKE

against adaptive 
orruptions

In this se
tion, we argue that proto
olsDHKE and EKE are inse
ure against adaptive 
orruptions.

11.1 Proto
ol DHKE against adaptive 
orruptions

Consider a user instan
e I

ij

who is engaging in the proto
ol (as an initiator) with a 
ompatible user

instan
e I

i

0

j

0

(as a responder). Suppose that the �rst message in the proto
ol is delivered to I

i

0

j

0

,

so that I

i

0

j

0


omputes a session key K

i

0

j

0

= H

k

(g

xy

), along with a response message to be sent to

ba
k to I

ij

. At this point, the adversary reveals K

i

0

j

0

using an appropriate appli
ation operation.

Next, the adversary 
orrupts user U

i

0

before the response message is delivered to I

ij

, so that the

adversary obtains the signing key of U

i

0

. If I

i

0

j

0

's response message was

(g

y

; k; sig

i

0

(g

x

; g

y

; k; ID

i

));

the adversary instead delivers the message

(h; k; sig

i

0

(g

x

; h; k; ID

i

))

to I

ij

, where h is a group element 
hosen in some mysterious way by the adversary. The adversary


an do this, sin
e it has the signing key of user U

i

0

. Now, I

ij

will a

ept and 
ompute its session

key K

ij

= H

k

(h

x

), and we also reveal this session key using an appropriate appli
ation operation.

Now, at the point in time when I

i

0

j

0

generated its session key, it was not 
orrupted, so the only

possible 
onne
tion assignment for I

i

0

j

0

is 
reate. This means that K

i

0

j

0

should be indistinguishable

from a random key. But we 
annot hope to prove this under the standard DDH assumption, sin
e

the additional information H

k

(h

x

) is available to any statisti
al test.

We believe that the problem is a fundamental one, having more to do with the inherent mal-

leability of DiÆe-Hellman based en
ryption, than with the parti
ulars of our formal model.
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11.2 Proto
ol EKE against adaptive 
orruptions

At best, it is 
lear that all we 
ould hope for is that proto
ol EKE is se
ure against adaptive


orruptions in the non-forward sense des
ribed in x10.5. This is be
ause if we 
orrupt a user U

i

and obtain his private de
ryption key, we 
an easily 
ompute all of the session keys that were ever

sent en
rypted to it in the proto
ol.

But things are mu
h worse than that. Consider the following s
enario. Say we have n pairs

of users U

i

and U

i

0

, with all users distin
t. Now we let all n pairs run the session key proto
ol,

and start using their session keys in appli
ation proto
ols. Now the adversary 
orrupts a random

subset of the U

i

users, obtaining their long-term de
ryption keys.

How 
ould we simulate this? When the session key proto
ols terminate, we want to substitute

all of the a
tual session keys with random keys before the users start using them in an appli
ation

proto
ol. We have to, be
ause we have no idea whi
h subset the adversary will 
orrupt. But

when we obtain the de
ryption keys, we will have an in
onsistent trans
ript: the a
tual 
iphertexts

de
rypt to values di�erent from the substituted session keys.

12 DiÆe-Hellman Based Proto
ols for Adaptive Corruptions

In this se
tion, we examine three DiÆe-Hellman based proto
ols that are se
ure against adaptive


orruptions. We 
all these DHKE-n for n 2 f1; 2; 3g:

12.1 Proto
ol DHKE-1

We now show how to modify proto
ol DHKE to obtain a proto
ol that is se
ure against adaptive


orruptions. We 
all this proto
ol DHKE-1. It is essentially the same as DHKE, but with an

additional \key 
on�rmation" 
ow.

The system set up is the same as before. Additionally, we need a pseudo-random bit generator

BitGen.

The proto
ol runs as follows.

U

i

! U

i

0

: g

x

; sig

i

(g

x

; ID

i

0

); 
ert

i

,

where x 2 Z

q

is 
hosen at random.

U

i

0

! U

i

: g

y

; k; sig

i

0

(g

x

; g

y

; k; ID

i

); 
ert

i

0

,

where y 2 Z

q

is 
hosen at random, and k is a random hash fun
tion index.

U

i

! U

i

0

: k

1

,

where (k

1

; k

2

) = BitGen(H

k

(g

xy

)).

The agreed upon session key is k

2

, where (k

1

; k

2

) = BitGen(H

k

(g

xy

)) as above. In addition to

all the usual signature 
he
ks, user U

i

0


he
ks the value k

1

is as expe
ted. We assume that k

1

is a

suÆ
iently long bit string (of length, e.g., linear in the se
urity parameter).

Theorem 6 Proto
ol DHKE-1 is se
ure against adaptive 
orruptions, under the DDH assump-

tion, and assuming se
ure signatures and that BitGen is a se
ure pseudo-random bit generator.

We now prove this theorem, whi
h follows the general outline of all our other proofs so far.

That is, we show how to transform a real world A into an equivalent ideal world A

�

.

Let G

i

denote the des
ription of the group that is 
ontained in 
ert

i

.

34



Case 1. Suppose a user instan
e I

ij

has just re
eived its last message, and all the signatures

are valid.

Case 1a. Suppose PID

ij

is assigned to user U

i

0

, and some instan
e I

i

0

j

0

with PID

i

0

j

0

= ID

i

re
eived the g

x

; G

i

values sent by I

ij

and sent the g

y

; k values re
eived by I

ij

. In this 
ase, we make

I

ij

a

ept in the ideal world, and we give it the 
onne
tion assignment 
reate, whereby the ring

master 
hooses a random string for the session key. Additionally, we will generate a random string

k

1

, whi
h we will 
all the 
on�rmation key of I

ij

for future referen
e. Note that we do all of this,

even if user U

i

0

has been 
orrupted.

Case 1b. Suppose the 
ondition in 
ase (1a) does not hold. By the logi
 of the proto
ol, the

only way this 
ould happen is if PID

ij

is not assigned to an un
orrupted user, or user U

i

is itself


orrupted. We extra
t the 
omputed session key and 
on�rmation key from I

ij

in the real world,

and 
ompromise I

ij

using the 
omputed session key.

Case 2. Suppose that I

ij

has re
eived its last message, and the signatures do not 
he
k. Then

we let I

ij

reje
t in the ideal world, whi
h is what it would do anyway in the real world.

Case 3. Suppose a player instan
e I

i

0

j

0

has just re
eived its last message, and all the signatures


he
k.

Case 3a. Suppose PID

i

0

j

0

is assigned to user U

i

, and some instan
e I

ij

with PID

ij

= ID

i

0

sent the g

x

; G

i

values re
eived by I

i

0

j

0

and re
eived the g

y

; k values sent by I

i

0

j

0

. Let k

1

be the


on�rmation key of I

ij

(see 
ase (1a)). We then test if the last message re
eived by I

i

0

j

0

is equal to

k

1

. If not, we let I

i

0

j

0

reje
t. Otherwise, we 
onne
t I

i

0

j

0

to I

ij

. As this our only rule for 
onne
ting

two user instan
es, it is easy to see that no other user instan
e has 
onne
ted to I

ij

, and hen
e it

is still isolated. Note that we do all of this, even if user U

i

has been 
orrupted.

This last point is 
ru
ial. User U

i

may have been 
orrupted after I

ij

a

epted and sent its

last message, and in the meantime, I

ij

may very well have started to use its session key. In the

simulation we have already substituted K

ij

with an idealized random key, and so we 
annot a�ord

to 
ompromise I

i

0

j

0

at this point. This is is the situation referred to in Remark 18.

Case 3b. Suppose the 
ondition in 
ase (3a) does not hold. There two further sub-
ases to


onsider.

Case 3b

0

. Suppose that at this point in the game, user U

i

0

is not 
orrupted, and that g

x

; G

i


ame from a user instan
e I

ij

with PID

ij

= ID

i

0

. Then in the ideal world, we simply make I

i

0

j

0

reje
t. See below for a dis
ussion of why this is valid.

Case 3b

00

. If we rea
h this sub-
ase, by the logi
 of the proto
ol, the only way this 
ould happen

is if PID

i

0

j

0

is not assigned to an un
orrupted user, or user U

i

0

itself is 
orrupted. We then extra
t

both the session key and the 
on�rmation key from I

i

0

j

0

. We then test the if the re
eived message is

equal to the 
omputed 
on�rmation key. If this test fails, we let I

i

0

j

0

reje
t, just as it would in the

real world. Otherwise, we let it a

ept, and 
ompromise I

i

0

j

0

in the ideal world using the 
omputed

session key.

Case 4. Suppose that I

i

0

j

0

has re
eived its last message, and the signatures do not 
he
k. Then

we let I

i

0

j

0

reje
t in the ideal world, whi
h is what it would do anyway in the real world.

Clearly, we have not broken any of the rules governing the ideal world simulation. But we also

have to show that the resulting simulation is faithful to the real world. Noti
e that the only time we

make two user instan
es partners, the 
orresponding values of G

i

; g

x

; g

y

and k mat
h. Be
ause this


ondition is symmetri
, we will never 
ompromise one key, while substituting the other instan
e's

key with a random key.

The faithfulness of the simulation now follows from the DDH assumption, but there is one

subtle point that requires further 
omment: the \for
ed" reje
tion by user instan
e I

i

0

j

0

in 
ase
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(3b

0

). We have to argue that this is what would have happened in the real world, sin
e we never

asked I

i

0

j

0

what he really wanted to do. But 
onsider the user instan
e I

ij

referred to in that sub-


ase. Sin
e user U

i

0

has not been 
orrupted at this point, the adversary 
ould not have forged any

messages on behalf of user U

i

0

. Therefore, either I

ij

has not a

epted (either it reje
ted or has not

yet re
eived the se
ond message in the proto
ol), or it has a

epted using some value g

y

0

generated

independently by another instan
e of user U

i

0

. So at this point, under the DDH assumption, the

value k

1

that I

i

0

j

0

is expe
ting is (
omputationally) independent from the adversary's view in the

real world. Thus, letting I

i

0

j

0

reje
t is the right a
tion.

That 
ompletes the proof of the theorem.

Remark 19 Key 
on�rmation is a mysterious and an
ient tradition pra
ti
ed by proto
ol design-

ers, as was already alluded to in x3.4, point (12). There has never been a satisfying explanation of

why they did this. Now we know: to allow a proof of simulatability against adaptive 
orruptions.

We 
an extend proto
ol DHKE-1 to deal with anonymous users, obtaining the following pro-

to
ol A-DHKE-1. As in proto
ol A-DHKE (see x9.2), we assume that all anonymous users work

with a shared group.

U

0

! U

i

0

: g

x

;

where x 2 Z

q

is 
hosen at random.

U

i

0

! U

0

: g

y

; k; sig

i

0

(g

x

; g

y

; k; anonymous); 
ert

i

0

,

where y 2 Z

q

is 
hosen at random, and k is a random hash fun
tion index.

U

0

! U

i

0

: k

1

,

where (k

1

; k

2

) = BitGen(H

k

(g

xy

)).

We leave it to the reader to verify that this proto
ol is se
ure with respe
t to our de�nitions of

anonymous users (x9) and adaptive 
orruptions (x10.6).

12.2 Proto
ol DHKE-2

We presented proto
ol DHKE-1 as we did be
ause it is a minimal modi�
ation of DHKE and has

an interesting proof of se
urity. An alternative is the following DHKE-2, whi
h is 
losely related

to STS.

The set up is just as in DHKE.

U

i

! U

i

0

: g

x

; 
ert

i

,

where x 2 Z

q

is random.

U

i

0

! U

i

: g

y

; k; sig

i

0

(g

x

; g

y

; k; ID

i

); 
ert

i

0

,

where y 2 Z

q

is random and k is random.

U

i

! U

i

0

: sig

i

(g

x

; g

y

; k; ID

i

0

).

Theorem 7 Proto
ol DHKE-2 is se
ure against adaptive 
orruptions, under the DDH assump-

tion, and assuming se
ure signatures.

The proof of se
urity for DHKE-2 is a
tually more straightforward than for DHKE-1.
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Case 1. Suppose I

ij

has just a

epted.

Case 1a. Suppose PID

ij

is assigned to user U

i

0

and some instan
e I

i

0

j

0

with PID

i

0

j

0

= ID

i

re
eived the g

x

; G

i

values sent by I

ij

and sent the g

y

; k values re
eived by I

ij

. Then we 
reate

I

ij

, and K

ij

is repla
ed with a random key. We will see below that I

i

0

j

0

is not 
ompromised, it

either reje
ts or 
onne
ts to I

ij

. It follows from the DDH assumption that the substitution will go

unnoti
ed.

Case 1b. If the 
ondition in 
ase (1a) does not hold, then by the logi
 of the proto
ol, either U

i

is 
orrupted, or PID

ij

is not assigned to an un
orrupted user. So we 
ompromise I

ij

.

Case 2. Suppose I

i

0

j

0

has just a

epted.

Case 2a. Suppose PID

i

0

j

0

is assigned to user U

i

and some instan
e I

ij

with PID

ij

= ID

i

0

sent

the g

x

; G

i

value sent by I

ij

and re
eived the g

y

; k value sent by I

i

0

j

0

. Then we make I

i

0

j

0


onne
t to

I

ij

. From the arguments above, I

ij

has not been 
ompromised, and it is thus 
lear that I

ij

is still

isolated.

Case 2b. Suppose the 
ondition in 
ase (2a) does not hold. Then by the logi
 of the proto
ol,

PID

i

0

j

0

is not assigned to an un
orrupted user, so we 
ompromise I

ij

.

12.3 Proto
ol DHKE-3

Although proto
ols DHKE-1 and DHKE-2 are se
ure against adaptive 
orruptions using the

liberal 
ompromise rule, it is perhaps interesting to note that they are apparently not se
ure under

the 
onservative 
ompromise rule (x10.3). To a
hieve se
urity in this stri
ter sense, there seems to

be no easy way to repair DHKE-1, but DHKE-2 
an be relatively easily repaired as follows. We


all this proto
ol DHKE-3.

Before des
ribing DHKE-3, let us see where things go wrong for DHKE-1 and DHKE-2

with the 
onservative 
ompromise rule.

In the proof of Theorem 6, 
onsider 
ase (1b). The 
onversations may not have mat
hed be
ause

the des
ription of the group G

i

may not have mat
hed, whi
h may have happened be
ause user

U

i

was 
orrupted, not be
ause U

i

0

was 
orrupted. Under the 
onservative 
ompromise rule, we are

not allowed to 
ompromise here. The problem is even worse in 
ase (3b

00

). There, we really need

to 
ompromise if U

i

0

is 
orrupted, but again, the 
onservative 
ompromise rule forbids this. The

same problem that arose with G

i

in the proof of Theorem 6 also arises in the proof of Theorem 7,

but that is the only problem that arises.

Now we des
ribe DHKE-3. The set up is the same as above. Re
all that G

i

is the des
ription

of the group used by user U

i

. In the previously dis
ussed DiÆe-Hellman based proto
ols, this

information was in the 
erti�
ate of user U

i

. In this proto
ol, we do not require this|under the


onservative 
ompromise rule, it does not help.

U

i

! U

i

0

: G

i

; g

x

; 
ert

i

,

where x 2 Z

q

is random.

U

i

0

! U

i

: g

y

; k; sig

i

0

(G

i

; g

x

; g

y

; k; ID

i

); 
ert

i

0

,

where y 2 Z

q

is random and k is random.

U

i

! U

i

0

: sig

i

(G

i

; g

x

; g

y

; k; ID

i

0

).

Theorem 8 Proto
ol DHKE-3 is se
ure against adaptive 
orruptions, using the 
onservative 
om-

promise rule, under the DDH assumption, and assuming se
ure signatures.
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The proof is almost identi
al to that of Theorem 7. The only di�eren
e is 
ase (1b). Here we


an 
on
lude that if there was no mat
hing I

i

0

j

0

, then it must be the 
ase that PID

ij

is not assigned

to an un
orrupted user. We omit further details.

We 
an also extend proto
ol DHKE-3 to handle anonymous users, obtaining the following

proto
ol A-DHKE-3.

U

i

! U

0

: G

i

; g

x

; 
ert

i

,

where x 2 Z

q

is random.

U

0

! U

i

: g

y

; k,

where y 2 Z

q

is random and k is random.

U

i

! U

0

: sig

i

(G

i

; g

x

; g

y

; k; anonymous).

We leave it to the reader to verify that this proto
ol is se
ure with respe
t to our de�nitions of

anonymous users (x9) and adaptive 
orruptions (x10.6). Like proto
ol DHKE-3, this proto
ol is

se
ure using the 
onservative 
ompromise rule.

13 An En
ryption Based Proto
ol for Adaptive Corruptions

We now present a simple two pass key ex
hange proto
ol using publi
 key en
ryption. It is very

similar to our proto
ol EKE, ex
ept that here we use ephemeral publi
 keys, instead of a �xed,

long-term publi
 key. Alternatively, one 
an view it as a modi�
ation of proto
ol DHKE, where

we repla
e malleable DiÆe-Hellman en
ryption by a non-malleable en
ryption s
heme. We 
all this

proto
ol EKE-1.

In this s
heme, ea
h user generates a publi
 key/private key pair for a signature s
heme. This

publi
 key is what goes in his 
erti�
ate. Ea
h user also uses a key generation algorithm KeyGen()

for a non-malleable publi
 key 
ryptosystem. The output of KeyGen() is a publi
 key/private key

pair (E;D).

The proto
ol runs as follows.

U

i

! U

i

0

: E; sig

i

(E; ID

i

0

); 
ert

i

,

where (E;D) = KeyGen().

U

i

0

! U

i

: � = E(K); sig

i

0

(�;E; ID

i

); 
ert

i

0

,

where K is a random bit string.

The agreed upon session key is K, whi
h user U

i

obtains by 
omputing D(�). As usual, both

users 
he
k the relevant signatures.

Note that unlike proto
ol EKE, user U

i

0

does not need to in
lude his identity ID

i

0

in the

en
rypted message.

Theorem 9 Proto
ol EKE-1 is se
ure against adaptive 
orruptions, assuming se
ure signatures,

and assuming the en
ryption s
heme is non-malleable.

We now prove this theorem, following the outline of all the previous proofs.

Case 1. Suppose I

i

0

j

0

has just terminated su

essfully.

Case 1a. Suppose the value E re
eived by I

i

0

j

0


ame from some I

ij

su
h that PID

i

0

j

0

= ID

i

and

PID

ij

= ID

i

0

. Then we 
reate I

i

0

j

0

, and repla
e the session key K

i

0

j

0

with a random string.

Case 1b. Suppose the 
ondition in 
ase (1a) does not hold. Then by the logi
 of the proto
ol

and the se
urity of the signatures, it must be the 
ase that PID

i

0

j

0

is not assigned to an un
orrupted

user. So we 
ompromise I

i

0

j

0

.
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Case 2. Suppose I

ij

has just terminated the proto
ol su

essfully.

Case 2a. Suppose that there is a user instan
e I

i

0

j

0

su
h that PID

i

0

j

0

= ID

i

and PID

ij

= ID

i

0

,

and I

i

0

j

0

re
eived the value E sent by I

ij

and sent the value � re
eived by I

ij

. Then we 
onne
t I

ij

to I

i

0

j

0

. Sin
e the values E generated by di�erent instan
es of user U

i

are (almost surely) unique,

this 
onne
tion assignment will (almost surely) be valid. In 
onne
ting I

ij

to I

i

0

j

0

, we set the session

key K

ij

equal to K

i

0

j

0

, and thus we do not bother to de
rypt �.

Case 2b. Suppose the 
ondition in (2b) does not hold. Then by the logi
 of the proto
ol and the

se
urity of the signatures, it must be the 
ase that PID

ij

is not assigned to an un
orrupted user.

So we 
ompromise I

ij

. As usual, we extra
t the a
tual session key from I

ij

. This makes impli
it

use of the de
ryption fun
tion of user instan
e I

ij

. It is easily veri�ed that this de
ryption does

not a�e
t the indistinguishability of the substitution made in 
ase (1a), sin
e if we de
rypted the


iphertext from 
ase (1a) under the de
ryption key from (1a), we would be in 
ase (2a), and not


ase (2b).

That 
ompletes the proof of the theorem.

Remark 20 It is easy to see that proto
ol EKE-1 remains se
ure even under the 
onservative


ompromise rule (x10.3).

Remark 21 The di�eren
es between the DiÆe-Hellman based proto
ols and EKE-1 illustrate an

interesting phenomenon. The real problem with proto
ol DHKE in the fa
e of adaptive 
orruptions

is the malleability of DiÆe-Hellman based en
ryption. This problem 
an be �xed either by using a

non-malleable 
ryptosystem, or by adding extra intera
tion.

Remark 22 We have to generate a new publi
 key/private key for en
ryption with every run of

the proto
ol. For RSA-based s
hemes, this 
an be impra
ti
al, as prime number generation 
an

be quite slow. A more pra
ti
al approa
h would be to use a DiÆe-Hellman based s
heme, su
h as

Cramer-Shoup [CS98℄ or Fujisaki-Okamoto [FO99℄, but to generate the group just on
e, and to use

the same group with ea
h run of the key ex
hange proto
ol (whi
h does not a�e
t the se
urity).

14 Strong Adaptive Corruptions

In this se
tion, we 
onsider even more powerful real-world adversaries; namely, adversaries whi
h


an adaptively 
orrupt users, and when a user is 
orrupted, not only does the adversary obtain

the user's long-term se
ret, but he also obtains any internal, ephemeral data that has not been

expli
itly erased. We 
all su
h a 
orruption a strong 
orruption to distinguish it from the notion of


orruption we have already studied in whi
h the adversary obtains only the long-term se
ret of a

user.

One 
ould 
onsider a model that allows a mix of 
orruptions and strong 
orruptions, but we

shall not do that here, if only for the sake of simpli
ity. Instead, we will assume that there are only

strong 
orruptions in this se
tion.

In de�ning se
urity against strong adaptive 
orruptions, in in
reasing the power of the adversary,

we have to relax the se
urity guarantees. Therefore, under our de�nitions, se
urity against strong

adaptive 
orruptions does not imply se
urity against adaptive 
orruptions. The two notions of

se
urity are in
omparable.

In x14.1, we give a pre
ise de�nition of strong 
orruptions for a real-world adversary; in x14.2,

we identify those session keys that are inherently vulnerable when a user is strongly 
orrupted,

whi
h motivates our de�nition of strong 
orruptions in the ideal world in x14.3.
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In x14.4 we present a key ex
hange proto
ol that is se
ure under our de�nition.

In x14.5 we shall sket
h a formal de�nition of a se
ure session proto
ol in the 
ontext of strong

adaptive 
orruptions.

In x14.6 we shall show how to eÆ
iently implement su
h a se
ure session proto
ol on top of a

key ex
hange proto
ol satisfying our de�nition of se
urity.

None of the above applies to the anonymous user setting, whi
h requires spe
ial treatment. We

dis
uss this in x14.7.

14.1 Strong 
orruptions in the real world

When a user is strongly 
orrupted, we assume the real-world adversary obtains that user's long-

term se
ret, as well as all the unerased data of ea
h of that user's instan
es that is still a
tive, i.e.,

still running the key ex
hange proto
ol. We 
an assume that when an instan
e of the key ex
hange

proto
ol terminates, all internal data is erased. Let us emphasize that the adversary does not obtain

any session keys. The reason for this is that session keys belong to higher-level proto
ols that use

the session keys, and they have the right to erase these keys. Whatever appli
ation-spe
i�
 data we

wish to make a

essible to the adversary when a user is 
orrupted we 
an model by an appropriate

use of appli
ation operations, in 
onjun
tion with the strong 
orruption operation. This may or

may not in
lude session keys.

So the only 
hange to the real-world adversary is that he may exe
ute the operation

(strong 
orrupt user; i);

where U

i

is an initialized user. Upon exe
ution of this operation, the adversary obtains that U

i

's

long-term se
ret, as well as all the unerased data of ea
h I

ij

that is still a
tive. Additionally, as for

ordinary 
orruptions (see x10.1), the adversary may subsequently register the identity ID

i

without

any of the usual restri
tions.

Upon exe
ution of this operation, the following re
ords are added to the trans
ript:

(strong 
orrupt user; i);

and

(implementation; strong 
orrupt user; exposed data);

where exposed data 
onsists of the long-term se
ret and unerased ephemeral data of U

i

, as des
ribed

above.

As for ordinary 
orruptions, the user instan
es belonging to the 
orrupted user 
ontinue to play

along, and we allow a user to be 
orrupted multiple times.

14.2 Inherently vulnerable keys

Note that when a user U

i

is strongly 
orrupted in the real world, some session keys held by other

users may be vulnerable. For example, suppose a user instan
e I

i

0

j

0

with PID

i

0

j

0

= ID

i

has 
om-

pleted the key ex
hange proto
ol and is 
urrently isolated, that is, it has 
onne
tion assignment


reate, and no user instan
e has 
onne
ted to it. This implies that there may be some a
tive user

instan
e I

ij

that would eventually 
onne
t to I

i

0

j

0

, and the internal state of su
h an I

ij


ontains

enough information to 
ompute K

i

0

j

0

. If U

i

is 
orrupted at this moment, then the real-world adver-

sary 
an 
ompute K

i

0

j

0

. The inherent vulnerability of su
h keys is the motivation for our de�nition

of strong 
orruptions in the ideal world: in the ideal world, the adversary is given all su
h inherently

vulnerable keys, but nothing more.
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14.3 Strong 
orruptions in the ideal world

The 
hanges to the ideal system are quite minimal.

The ideal-world adversary may exe
ute the operation

(strong 
orrupt user; i)

to 
orrupt U

i

. The �rst time U

i

is 
orrupted, the ideal-world adversary is given all session keys of

the form K

i

0

j

0

, where I

i

0

j

0

is a user instan
e su
h that PID

i

0

j

0

= ID

i

and I

i

0

j

0

is 
urrently isolated.

This operation is logged in the trans
ript as

(strong 
orrupt user; i):

Note that no information about the keys given to the adversary is logged in the trans
ript.

Those are the only 
hanges. We will use only the default, i.e., liberal, 
ompromise rule in


onjun
tion with strong 
orruptions.

Remark 23 In making 
onne
tion assignments in this model, we do not really need the 
exibility

dis
ussed in Remark 18. Indeed, without loss of generality, we 
ould require that the ideal-world

adversary make the 
onne
tion assignment 
ompromise whenever this was legal.

14.4 A se
ure key ex
hange proto
ol

It turns out that proto
ol DHKE-1 in x12.1 satis�es our de�nition of se
urity against strong

adaptive 
orruptions, assuming internal data is appropriately erased. In parti
ular, this means

that before a responder I

i

0

j

0

has sent the se
ond 
ow, it has erased all internal data ex
ept for k

1

and k

2

. Of 
ourse, we assume that when the proto
ol terminates, all internal data is erased.

Theorem 10 Proto
ol DHKE-1 is se
ure against strong adaptive 
orruptions, under the DDH

assumption, and assuming se
ure signatures and a se
ure pseudo-random bit generator.

The proof follows the same lines as all of our other proofs. We begin by des
ribing the 
onne
tion

assignments.

Case 1. Suppose (originator) I

ij

has just a

epted.

Case 1a. If it is legal to 
ompromise I

ij

, we do so, extra
ting the key K

ij

from the real-world

I

ij

.

Case 1b. Otherwise, we 
reate I

ij

, and let the ring master substitute the real-world key K

ij

with an ideal, random key.

Case 2. Now suppose (responder) I

i

0

j

0

has just a

epted.

Case 2a. If it is legal to 
ompromise I

i

0

j

0

, we do so, extra
ting the key K

i

0

j

0

from the real-world

I

i

0

j

0

.

Case 2b. Otherwise, there must be a unique, 
ompatible, isolated user instan
e I

ij

, and we


onne
t I

i

0

j

0

to I

ij

.

We next have to show how the ideal-world adversary simulates the the exposed data of user

instan
es when a user is strongly 
orrupted. This will be done simply by extra
ting the ne
essary

information from the 
orresponding real-world user instan
e, but with the following, essential ex-


eption. Suppose U

i

0

is the user being 
orrupted. Consider a responder user instan
e I

i

0

j

0

su
h

that

� I

i

0

j

0

has sent the se
ond 
ow in the proto
ol, but not yet re
eived the third, and
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� there exists a 
ompatible, isolated user instan
e I

ij

that sent the value g

x

re
eived by I

i

0

j

0

and

re
eived the values g

y

, k sent by I

i

0

j

0

.

In this 
ase, the ideal-world adversary is given the ideal key K

ij

, and he repla
es the value of the

variable k

2

in the internal state of I

i

0

j

0

with K

ij

.

The reader 
an now easily verify that the resulting ideal-world trans
ript is 
omputationally

indistinguishable from the real-world trans
ript.

Remark 24 Proto
ol DHKE is inse
ure against strong adaptive 
orruptions for the same reason

that it was inse
ure against ordinary adaptive 
orruptions (see x11.1). Moreover, it 
an also be

atta
ked in another way. Suppose an originator instan
e I

ij

is waiting for the response message

from its partner-to-be I

i

0

j

0

, who has a

epted a session key, and that U

i

is strongly 
orrupted at

this time. Then the real-world adversary obtains the exponent x held by I

ij

|this 
annot be erased,

sin
e I

ij

needs this to 
ompute the session key. Thus, the key K

i

0

j

0

, given g

y

and x, will 
ertainly

not look like a random key.

Remark 25 Proto
ol EKE is inse
ure against strong adaptive 
orruptions for the same reason

that it was inse
ure against ordinary adaptive 
orruptions (see x11.2). Also, proto
ol EKE-1 is

subje
t to the atta
k in the previous Remark. One 
ould �x proto
ol EKE-1 by adding an extra \key


on�rmation" 
ow like in proto
ol DHKE-1. However, if one makes this �x, then the en
ryption

s
heme need no longer be non-malleable|ordinary semanti
 se
urity suÆ
es. Indeed, proto
ol

DHKE-1 
an be seen as a spe
ial 
ase of su
h a s
heme using DiÆe-Hellman based en
ryption.

14.5 De�ning se
ure sessions with strong adaptive 
orruptions

We now 
ontinue the dis
ussion of se
ure session proto
ol started in x4, and dis
uss aspe
ts of the

formal se
urity model and implementation whi
h must be 
hanged to a

ommodate strong adaptive


orruptions.

In the real world model, a se
ure session proto
ol will itself have some internal, unerased data

that a real-world adversary will obtain when the 
orresponding user is strongly 
orrupted. There

is a fundamental limitation as to what we 
an expe
t a se
ure session proto
ol to a
hieve in the

fa
e of su
h 
orruptions: between the time that a message blo
k is sent and re
eived, the re
eiver

must have some se
ret information that will allow it to de
rypt the message blo
k; therefore, if the

re
eiver is 
orrupted while the message blo
k is in transit, the adversary will learn the 
ontents

of that message blo
k. Furthermore, when either sender or re
eiver are 
orrupted, all subsequent

message blo
ks that are sent are also vulnerable. It would appear that we 
ould not expe
t to avoid

this, and a

ordingly, this is pre
isely what our de�nition of se
urity guarantees.

To take the above dis
ussion into a

ount, we modify the ideal world atta
k s
enario for se
ure

sessions in x4 as follows.

The ideal world adversary initializes users and user instan
es, and starts sessions, as usual.

The adversary makes 
onne
tion assignments subje
t to the usual rules in x3.1.4 and x10.2. As in

x4 there is no notion of a session key|that is an implementation detail. Rather, the 
onne
tion

assignments indi
ate how input/output 
hannels are inter
onne
ted.

The sender and re
eiver on a se
ure 
hannel shall syn
hronize the delivery of message blo
ks. To

do this, there are four operations: send ready signal, re
eive ready signal, send message blo
k, and

re
eive message blo
k. The re
eiver on the 
hannel exe
utes an alternating sequen
e of operations:

send ready signal, re
eive message blo
k, send ready signal, et
. Likewise, the sender on the 
hannel

exe
utes an alternating sequen
e of operations: re
eive ready signal, send message blo
k, re
eive
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ready signal, et
. As usual, the adversary s
hedules everything, but when neither of the two users

involved is 
orrupted, the adversary is 
onstrained as follows: 
orresponding ready signals and

message blo
ks 
annot be re
eived before they are sent. This ensures that the sender never gets

ahead of the re
eiver, so that at most one message blo
k is in transit, i.e., sent but not yet re
eived.

As su
h messages are inherently vulnerable, it is important that the sender and re
eiver have

expli
it 
ontrol over this, even in the ideal world. We shall also allow an input or output 
hannel

to be expli
itly 
losed. A message blo
k is no longer 
onsidered to be in transit if the message was

sent, but the re
eiver 
losed its input 
hannel. If a user instan
e has no partner, then by de�nition

it 
annot re
eive a ready signal, and so it will never send a message blo
k, nor will it re
eive one.

As in x4, the adversary spe
i�es that the message blo
k sent is 
omputed a

ording to some

spe
i�
 fun
tion, but otherwise learns no additional information about the message blo
k; in ad-

dition, the message blo
k re
eived by the re
eiver is equal to the one sent, thus maintaining the

integrity of the 
hannel.

That is the normal operation of a se
ure 
hannel, when the session is not 
ompromised. Con-

sider a user instan
e I

ij

. If I

ij

's 
onne
tion assignment is initially 
ompromise, then its session is


ompromised from the very start. Otherwise, it be
omes 
ompromised when either U

i

or the user

assigned to PID

ij

(if any) is 
orrupted.

So long as I

ij

's session is un
ompromised, everything works as des
ribed above. More pre
isely,

if I

ij

re
eives the rth ready signal, then it must have a partner, and that party sent r ready signals.

If I

ij

re
eives the rth message blo
k, then it must have a partner, and that partner must have sent

r message blo
ks, and the message blo
k re
eived will be equal to the message blo
k sent.

On
e I

ij

's session be
omes 
ompromised, all bets are o�. More pre
isely, the adversary may

make I

ij

re
eive a ready signal whenever it wants. The adversary may make I

ij

re
eive a message

blo
k whenever it wants, and moreover, the value of the message blo
k is spe
i�ed by the adversary,

and may be 
hosen however the adversary wishes. When I

ij

sends a message blo
k, the adversary

dire
tly obtains the value of the message blo
k.

Also, whenever a user U

i

is 
orrupted, the values of any message blo
ks that are in transit at

that moment, and are to be re
eived by some user instan
es I

ij

belonging to U

i

, are given to the

adversary.

That 
ompletes our sket
h of the ideal world. We believe that we have given enough details so

that the reader 
ould rather unambiguously �ll in the rest of the details of a 
omplete de�nition

of a se
ure session. Note that in the real world, when a user is strongly 
orrupted, any unerased

data in higher-level proto
ols that is supposed to be
ome available to the adversary upon a strong


orruption 
an be made available through the usual me
hanism of allowing the adversary to 
ompute

spe
i�
 fun
tions on the random input and message blo
k variables.

14.6 Implementing se
ure sessions with strong adaptive 
orruptions

Let us assume that a user instan
e has just a

epted a session key K obtained from a session key

proto
ol.

Using a se
ure pseudo-random bit generator, it derives sub-keys for its input and output 
hannel,

and then erases the session keys. For 
larity, we will des
ribe the operation of a single uni-dire
tional


hannel in terms of a sender and re
eiver.

Both sender and re
eiver have lo
al variables auth, seed, and pad, whi
h are initially derived

from the session key using a pseudo-random bit generator. The value auth will be used as a key

to a message authenti
ation 
ode MAC. This value is never erased or 
hanged for the life of the

session. The value seed will be used as input to a pseudo-random bit generator PRG. The value
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pad will be used to en
rypt message blo
ks as a one time pad. Both the values seed and pad will be

updated with ea
h message blo
k sent/re
eived, e�e
tively erasing the old values. We shall write

\set (seed; pad) = PRG(seed)" to denote the a
tion of applying the pseudo-random bit generator to

seed, and overwriting the old values of seed and pad. Both sender and re
eiver have lo
al 
ounters

r that are initially set to 0.

send ready signal In
rement r, and send the message

� = (ready signal; r);MAC

auth

(�):

re
eive ready signal In
rement r, and re
eive the message

� = (ready signal; r);MAC

auth

(�);

validating the MAC and 
he
king the value of r re
eived is equal to the value of lo
al variable

r.

send message blo
k First, let X be the value of the message blo
k to be sent, and set Y =

X � pad. Now, set (seed; pad) = PRG(seed): Third, send the message

� = (message blo
k; r; Y );MAC

auth

(�):

re
eive message blo
k First, re
eive the message

� = (message blo
k; r; Y );MAC

auth

(�);

validating the MAC and 
he
king the value of r re
eived is equal to the value of lo
al variable

r. Se
ond, 
ompute the message blo
k X = Y � pad. Third, set (seed; pad) = PRG(seed):

That 
ompletes the des
ription of the implementation, ex
ept to say that when one of the MACs

fails, a user instan
e 
loses the 
hannel. A user instan
e 
ould also 
hoose to unilaterally 
lose a


hannel, perhaps re
e
ting a \time out" 
ondition. When a 
hannel is 
losed, all the internal data

asso
iated with that 
hannel are erased.

It is not diÆ
ult to show that if the session key is established using a key ex
hange proto
ol

that is se
ure against strong adaptive 
orruptions, and if we implement the 
hannels as des
ribed

here, we get a se
ure session proto
ol that is se
ure in the sense de�ned in x14.5. We do not state

this as a theorem, sin
e our de�nition of a se
ure 
hannel is not quite formal enough to justify the

use of the term \theorem"; nevertheless, on
e all the details in the de�nition of a se
ure 
hannel

were �lled in in a reasonable way, one would indeed obtain something worthy of being 
alled a

\theorem."

We sket
h how su
h a theorem would be proved. Suppose that a user instan
e wanted to send its

�rst message blo
k. Before it would send the en
ryption of this blo
k, it awaits the �rst ready signal

from its partner. Now if either of the two relevant users are 
orrupted, the simulation is trivial,

sin
e the simulator (i.e., ideal-world adversary) has the right to obtain the value of the relevant

message blo
ks. Otherwise, if neither user is 
orrupted, then the de�nition of se
ure key ex
hange

(as well as the se
urity of the pseudo-random bit generators and the MAC) implies that the sender

must have partner, and that this partner indeed sent the ready signal. Now, so long as neither

sender nor re
eiver are 
orrupted, whenever a message blo
k is sent, our simulator just generates

the en
ryption Y as a random bit string. If the re
eiver be
omes 
orrupted while a message is
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in transit, then the simulator 
omputes the re
eiver's pad as pad = X � Y , where X is the value

of the a
tual message blo
k, whi
h the simulator obtains. In this way, the simulator 
onstru
ts

a 
onsistent-looking internal state for the re
eiver's pad value. The reason this works is that the

syn
hronization of sender and re
eiver guarantees that the re
eiver has erased all data that was

used to 
ompute its 
urrent value of pad. Therefore, the 
urrent value of pad is indistinguishable

from a random bit string. That is the tri
kiest bit of the simulation, sin
e after the 
orruption, the

simulator's task is mu
h easier|it obtains all subsequent message blo
ks generated by the sender,

and does not need to respe
t any of the syn
hronization or integrity 
onstraints.

We leave the rest of the details to the reader. The main idea of this proof essentially appears

in Beaver and Haber [BH92℄, although their setting and the details of their solution are slightly

di�erent.

We note that our de�nition of se
urity for key ex
hange proto
ols with respe
t to strong adaptive


orruptions is a
tually stronger than ne
essary for the purpose of 
onstru
ting a se
ure session with

respe
t to strong adaptive 
orruptions. Indeed, one 
an show that the above implementation of

a se
ure session, together with proto
ol DHKE in x7 is already a se
ure session with respe
t to

strong adaptive 
orruptions.

This may seem a bit strange at �rst, but is really not so surprising. Our de�nition of se
urity

of a session key proto
ol de�nes a natural, robust, and intuitive interfa
e, but it is a bit stronger

than ne
essary for the parti
ular appli
ation of building a se
ure session. This is analogous to

the design of a software library routine interfa
e: for a parti
ular appli
ation, the library routine

provides more fun
tionality than ne
essary, and therefore, the implementation may not be the

most eÆ
ient possible. In x15.6 we present an alternative de�nition for key ex
hange se
ure against

strong adaptive 
orruptions. This de�nition is less natural and weaker than the de�nition presented

in this se
tion, but is just strong enough to build a se
ure session.

14.7 Anonymous users

One 
an adapt the de�nition of se
urity with respe
t to anonymous users (see x9) to in
orporate

strong adaptive 
orruptions. There are some te
hni
al issues that need to be addressed, however.

14.7.1 Strong 
orruptions in the real world

Although there is no long-term se
ret asso
iated with an anonymous user, a
tive anonymous user

instan
es may have unerased data that 
ould be obtained by an adversary. In dis
ussing strong

adaptive 
orruptions for ordinary (non-anonymous) users in x14.1, we grouped together all user

instan
es asso
iated with that user, so that the adversary obtains all the unerased data asso
iated

with the user instan
es belonging to that user. This models the natural situation where all the user

instan
es belonging to that user run on the same ma
hine, and so a 
orruption of a user 
orresponds

to a 
orruption of that ma
hine. We do not want to group all anonymous user instan
es together

in this way. Therefore, our real world adversary strongly 
orrupts individual anonymous user

instan
es.

14.7.2 Strong 
orruptions in the ideal world

We have to modify the de�nition in x14.3 a

ommodate anonymous users.

When an anonymous user instan
e is 
orrupted, we allow the ideal-world adversary to spe
ify a

set S of 
ompatible, isolated user instan
es. The adversary is given all the session keys held by the

user instan
es in S. Moreover, the 
onne
tion assignment of all the user instan
es in S is 
hanged
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from 
reate to 
ompromise. This means, in parti
ular, that no user instan
e may in the future


onne
t to one of the user instan
es in the set S. None of the information about S or the keys they

hold is expli
itly logged in the trans
ript, but like 
onne
tion assignments in general, we assume

that the set S 
an be 
omputed as a fun
tion of the trans
ript.

14.7.3 A se
ure key ex
hange proto
ol

We leave it to the reader to verify that proto
ol A-DHKE-1 (see x12.1) is se
ure against strong

adaptive 
orruptions in the sense we have just de�ned.

14.7.4 De�ning se
ure sessions with strong adaptive 
orruptions

We now dis
uss the 
hanges ne
essary to the de�nition of se
ure sessions presented in x14.5 to

a

ommodate anonymous users.

First, the ideal-world adversary makes 
onne
tion assignments just as in x14.7.2.

Se
ond, the de�nition in x14.5 of when a session is 
ompromised has to be modi�ed as well:

� Suppose I

ij

is a user instan
e with PID

ij

= anonymous. If I

ij

's initial 
onne
tion assignment

is 
ompromise, then its session is 
ompromised from the very start. Otherwise, the session

be
omes 
ompromised when its 
onne
tion assignment is 
hanged from 
reate to 
ompromise

(as in x14.7.2), or U

i

is 
orrupted, or I

ij

's partner (if any) is 
orrupted.

� Suppose I

0j

is an anonymous user instan
e. If I

0j

's initial 
onne
tion assignment is


ompromise, then its session is 
ompromised from the very start. Otherwise, the session

be
omes 
ompromised when I

0j

is itself 
orrupted, or if the user to whi
h PID

0j

is assigned

is 
orrupted.

2

Third, when an anonymous user instan
e is 
orrupted, any message blo
k that is in transit to

this user instan
e at that moment is given to the ideal-world adversary.

Otherwise, everything works just as in x14.5.

It may be worthwhile to spell out some of the impli
ations of this de�nition. The impli
ation

for a user instan
e I

ij

with PID

ij

= anonymous is as follows. Suppose it has just started its session

and has re
eived a ready signal or message blo
k. Then either

� the session is already 
ompromised, and all bets are o�, or

� the session is not 
ompromised, I

ij

has a partner, the ready signal or message blo
k 
ame

from that partner, and the usual guarantees for the session will be in for
e so long as neither

U

i

nor I

ij

's partner are 
orrupted.

In the �rst 
ase, when the session is already 
ompromised, then either

� U

i

has been 
orrupted,

� I

ij

has a partner who has been 
orrupted, or

� I

ij

has no partner and never will.

2

If PID

0j

= anonymous, then the session would also be 
onsidered 
ompromised if I

0j

's 
onne
tion assignment

is 
hanged from 
reate to 
ompromise; however, as pointed out in Remark 12, this is not an interesting situation to


onsider.
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The impli
ation for an anonymous user instan
e I

0j

is as follows (we assume PID

0j

6=

anonymous). Suppose it has just started its session and has re
eived a ready signal or message

blo
k. Then either

� the session is already 
orrupted, and all bets are o�, or

� the session is not 
ompromised, I

0j

has a partner, the ready signal or message blo
k 
ame

from that partner, and the usual guarantees for the session will be in for
e so long as neither

I

0j

nor the user to whi
h PID

0j

is assigned is 
orrupted.

In the �rst 
ase, when the session is already 
ompromised, then either

� I

0j

has been 
orrupted, or

� the user to whi
h PID

0j

is assigned is 
orrupted.

14.7.5 Implementing se
ure sessions with strong adaptive 
orruptions

Nothing 
hanges here at all. The implementation in x14.6 
an be used without 
hange. As in x14.6,

we mention that proto
ol A-DHKE in x9.2 is a
tually suÆ
ient.

15 Comparison with the Bellare-Rogaway Model

Bellare and Rogaway [BR95℄ have presented a formal model for se
ure key ex
hange proto
ols.

Te
hni
ally speaking, their model applies only to the on-line TTP setting. However, it is relatively

straightforward to adapt this model to the o�-line TTP setting. This program has been 
arried out

by Blake-Wilson, et al. [BJM97, BM97℄. For la
k of a better name, let us 
all this the BR model.

We want to 
ompare our model of se
urity, whi
h we might 
all the simulation model, to the

BR model.

15.1 The BR model

Instead of re
alling all the notation of [BR95, BJM97, BM97℄, we show what the BR model essen-

tially is in in terms of our notation.

In the BR model, the atta
k s
enario is the same as the \real system" in the simulation model,

ex
ept that the appli
ation operations are restri
ted to be of a spe
ial type whi
h we des
ribe

below. Their model allows strong adaptive 
orruptions, but of 
ourse, one 
ould 
onsider restri
ted

adversaries that make only stati
 
orruptions or (ordinary) adaptive 
orruptions.

The de�nition of se
urity in the BR model 
onsists of three parts. The �rst two are termination

and liveness, whi
h are exa
tly the same as in the simulation model. For la
k of a better name, we


all the third part the BR se
urity property.

Although there is no notion of an \ideal system" in the BR model, there is a notion of a 
on-

ne
tion assignment. To establish the BR se
urity property of a parti
ular key ex
hange proto
ol,

one must exhibit a 
onne
tion assignment fun
tion. Conne
tion assignment fun
tions in the BR

model are the same as in the simulation model; in parti
ular, they are subje
t to the usual rules

in x3.1.4 and x10.2; however, there are some additional, te
hni
al restri
tions. Namely, the 
on-

ne
tion assignment fun
tion must be universal, i.e., there is one that works for all adversaries, and

furthermore, it must be appli
ation independent, a te
hni
al restri
tion that we des
ribe in the next

paragraph.
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An appli
ation independent 
onne
tion assignment fun
tion is one whi
h 
an be 
omputed as a

fun
tion of the partial trans
ript obtained from the full trans
ript by deleting all re
ords pertaining

to appli
ation operations.

This is a natural restri
tion, and it does not a�e
t the analysis of any proto
ols that we know

of. This restri
tion will be needed in the proof of Theorems 12 and 13, whi
h relate se
urity in the

BR model with se
urity in the simulation model.

Just to be expli
it, we are assuming here the default, i.e., liberal, 
ompromise rule (x10.3).

The BR se
urity property is the following: there exists a 
onne
tion assignment fun
tion su
h

that for all adversaries A, the advantage that A has in the following game is negligible.

The game played by A runs as follows. The adversary exe
utes any of the usual 
ommands

ex
ept that the appli
ation 
ommands are one of two types, whi
h we 
all reveal and test. In a

reveal operation, the adversary obtains any session key of its 
hoi
e belonging to a user instan
e

whose 
onne
tion assignment is 
reate or 
ompromise. The adversary may exe
ute any number of

reveal operations. In a test operation, the adversary spe
i�es a user instan
e whose 
onne
tion

assignment is 
reate; at this point, a 
oin is 
ipped, and the adversary is either given the user

instan
e's session key or a random string, depending on the out
ome of the 
oin 
ip (whi
h is not

in the adversary's view). The test operation may only be exe
uted on
e.

There is an additional restri
tion on the test operation, whi
h we shall 
all the test restri
tion:

if I

ij

is subje
t to a test operation, then at no time before or after the test operation

may the adversary 
orrupt U

i

or the user (if any) to whi
h PID

ij

is assigned.

The adversary's advantage is de�ned to be the maximum of

� the distan
e from 1=2 of the probability of guessing the out
ome of the 
oin toss in the test

operation, and

� the probability that two user instan
es that are partners (as determined by the 
onne
tion

assignment fun
tion) do not share the same session key.

Remark 26 Note that sin
e the adversary already wins the game if he 
an make two partners

a

ept di�erent session keys, there is no need to allow reveal or test operations to be applied to user

instan
es that 
onne
t to other user instan
es.

15.2 Corre
ting a 
aw in the original BR model

There are a few small, te
hni
al di�eren
es between our presentation here and in [BR95, BJM97,

BM97℄ that are not so important. However, we have taken the opportunity here to 
orre
t a

serious 
aw that appears in [BR95, BJM97, BM97℄ that was pointed out to the authors of [BR95℄

by Charles Ra
ko�. In the formulation in [BR95, BJM97, BM97℄, the test operation is only allowed

to be performed at the very end of the adversary's exe
ution, whereas we have allowed it to o

ur

at any time. This is important, be
ause without this, the de�nition does not dete
t \proto
ol

interferen
e" as was dis
ussed in x2.

We 
an illustrate this point with an example derived from one suggested by Charles Ra
k-

o�. Consider the following modi�
ation of proto
ol DHKE-1 (see x12.1), whi
h we 
all proto
ol

DHKE-1

0

. This proto
ol works just like DHKE-1, ex
ept as follows. Suppose a user instan
e be-

longing to U

i

0

in the role of responder is waiting for the third 
ow of the proto
ol, whi
h 
onsists of

the 
on�rmation key k

1

; if instead of k

1

it re
eives a message of the form (
ore dump;BitGen(k

2

)),
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then it terminates the proto
ol with a status of reje
t, and generates a �nal outgoing message 
on-

sisting of k

2

. Re
all that k

2

is (what would have been) the session key, and that BitGen is assumed

to be a se
ure pseudo-random bit generator. We assume here that k

2

has the right length so that

it may be used as an input to BitGen.

We hope the reader would agree that proto
ol DHKE-1

0

should be 
onsidered inse
ure under

any reasonable de�nition of se
urity. Indeed, if user a user instan
e I

ij

in the role of originator

establishes a session key K, and just happens to output BitGen(K) in a higher-level proto
ol

before its last message is delivered to its would-be partner I

i

0

j

0

, the adversary 
an 
ause I

i

0

j

0

to

\
ore dump," handing K to the adversary on a silver platter.

If the test operation is allowed in the middle of the game, it is easy to see that an adversary 
an

obtain signi�
ant advantage, and so this proto
ol is not se
ure under our de�nition. However, if the

test operation is allowed only at the end of the game, the adversary has only a negligible advantage

(sin
e the adversary 
ould not hope to 
ompute BitGen(k

2

) on its own), and the proto
ol would

be se
ure under that de�nition of se
urity.

Admittedly, this example is a bit 
ontrived, but nevertheless illustrates the point. Another,

perhaps more 
onvin
ing reason for allowing the test operation to o

ur at any time is to get an

equivalen
e theorem between se
urity in the BR model and se
urity in the simulation model (see

Theorem 12 below), whi
h suggests that this is a robust notion of se
urity.

This 
aw in [BR95℄ illustrates the danger of making a te
hni
al, low-level de�nition without


arefully exploring its relationship with a more natural, higher-level notion of se
urity.

15.3 The equivalen
e of strong adaptive and stati
 
orruptions in the BR model

In the BR model, one 
ould distinguish between se
urity against stati
, adaptive, and strong

adaptive 
orruptions. However, it turns out that these notions are equivalent, provided we make

an additional, quite natural restri
tion on the 
onne
tion assignment fun
tion whi
h we 
all lo
al


omputability.

Intuitively speaking, a lo
ally 
omputable 
onne
tion assignment fun
tion is one that determines

the 
onne
tion assignment for a parti
ular user instan
e I

ij

using only those parts of the trans
ript

that might have something to do with user U

i

or PID

ij

. More pre
isely, this means that the


onne
tion assignment should be 
omputable by a fun
tion applied to the subsequen
e of re
ords

in the trans
ript obtained by deleting re
ords 
orresponding to these operations:

� all appli
ation operations,

� all initialize user, initialize user instan
e, deliver message, and 
orrupt user operations whi
h

refer to a user other than U

i

or the user (if any) to whi
h PID

ij

is assigned, and

� all register operations whi
h refer to an identity other than ID

i

and PID

ij

,

Note that in the on-line TTP setting, we do not delete any of the deliver message to TTP operations.

Lo
al 
omputability is a natural restri
tion, and we know of no proto
ols whose se
urity analysis

is a�e
ted by making this restri
tion.

In the following theorem, we assume that 
onne
tion assignment fun
tions are universal and

lo
ally 
omputable. Perhaps the same theorem 
ould be proven using a more 
lever argument

without requiring lo
al 
omputability.

Theorem 11 In the BR model, se
urity against stati
, adaptive, and strong adaptive 
orruptions

are equivalent.
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It is 
lear that in the BR model, se
urity against strong adaptive 
orruptions implies se
urity

against adaptive 
orruptions, and that se
urity against adaptive 
orruptions implies se
urity against

stati
 
orruptions.

Now, to show that se
urity against stati
 
orruptions implies se
urity against strong adaptive


orruptions. Suppose a key ex
hange proto
ol is se
ure against stati
 
orruptions. This implies

the existen
e of a 
onne
tion assignment fun
tion. However, one te
hni
al point we have to deal

with is that this 
onne
tion assignment fun
tion is not de�ned for trans
ripts 
ontaining 
orrupt

user operations. We therefore need to extend the domain of de�nition of the given 
onne
tion

assignment fun
tion, whi
h is easy to do by exploiting the lo
al 
omputability property of the

given 
onne
tion assignment fun
tion. To 
al
ulate the 
onne
tion assignment for a user instan
e

I

ij

, if either U

i

is 
orrupted, or PID

ij

is assigned to a 
orrupted user, then we 
ompromise I

ij

.

Otherwise, we 
ompute the 
onne
tion assignment using the given 
onne
tion assignment fun
tion,

using only the relevant lo
al information in the trans
ript, whi
h does not 
ontain any 
orrupt user

operations.

Now 
onsider an an adversary A that makes strong adaptive 
orruptions, and suppose that A

has non-negligible advantage in the game de�ning the BR se
urity property. Here is how we 
an


onvert A into an adversary A

0

that makes only stati
 
orruptions, and that has a smaller, but

still non-negligible advantage, using a standard \plug and pray" argument. At the beginning of

the game, A

0

randomly 
hooses two players U

i

and U

i

0

. A

0

never a
tually initializes any users other

than U

i

or U

i

0

, and A

0

never 
orrupts any users. All users besides U

i

and U

i

0

that A might initialize

and perhaps 
orrupt are simply under the dire
t 
ontrol of A

0

, and these are never initialized as

users. Instead, A

0

simulates the view of A, and does whatever A does. We pray that A does not


orrupt either U

i

or U

i

0

, and that A 
hooses to perform his test operation on an instan
e I

ij

with

PID

ij

= ID

i

0

. Our prayers will be answered with non-negligible probability, and if they are not, we

simply stop the game.

It is easy to see that if A has a non-negligible advantage, then so will A

0

. The theorem now

follows.

15.4 Relation between the BR model and the simulation model

Now, we want to formulate and prove that se
urity in the BR model and se
urity against stati



orruptions in the simulation model are equivalent. To do this, we have to restri
t the way the ideal-

world adversary A

�

in the simulation model 
omputes 
onne
tion assignments to the way 
onne
tion

assignments are 
omputed in the BR model. This means that the 
onne
tion assignment fun
tion

must be universal and appli
ation independent, as des
ribed in x15.1. For the remainder of this

se
tion, this restri
tion on the adversary A

�

in the ideal world model is impli
itly in for
e.

Theorem 12 Se
urity against stati
 
orruptions in the simulation model is equivalent to se
urity

against stati
 
orruptions in the BR model.

To prove that se
urity against stati
 
orruptions in the simulation model implies se
urity in

the BR model, one only need observe that the game de�ning the BR se
urity property is just a

parti
ular game that 
an be easily represented in the simulation model.

Now, to prove that se
urity in the BR model implies se
urity against stati
 
orruptions in the

simulation model. Assume a given proto
ol is se
ure in the BR model, so there exists an appropriate


onne
tion assignment fun
tion.

Let A be a real-world adversary in the simulation model. We 
onstru
t the 
orresponding ideal-

world adversary A

�

as follows. Generally, A

�

does whatever A does. Whenever a user instan
e
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a

epts, A

�

makes the 
onne
tion assignment using the 
onne
tion assignment fun
tion mentioned

in the previous paragraph. For a 
ompromise 
onne
tion assignment, A

�

extra
ts the user instan
e's

a
tual session key to obtain the session key required for the start session operation in the ideal

world game. Otherwise, for any other 
onne
tion assignment, the ring master 
hooses the keys

a

ording to the rules in the ideal world game. Of 
ourse, appli
ation operations are evaluated by

the ring master using the idealized session keys.

Now to show indistinguishability of ideal-world and real-world trans
ripts. If there were a

good statisti
al test, then we 
ould easily apply a hybrid argument to 
onstru
t an adversary with

signi�
ant advantage in the BR game, using reveal operations as ne
essary, and using a single test

operation to distinguish two adja
ent hybrid distributions where there is signi�
ant gap in the

expe
tation of the statisti
al test's output. The details of this are straightforward, but bear in

mind that it is the ring master in a hybrid ideal world/real world game who uses the operations

reveal and test to generate some keys, and generates other keys as random bit strings. The ideal

world adversary only has indire
t a

ess to these keys through appli
ation operations, ex
ept that

he performs reveal operations on user instan
es that are 
ompromised|he needs to get these keys

from somewhere, sin
e they need to be spe
i�ed by the ideal world adversary during the start

session operations for user instan
es that are 
ompromised.

The 
ompletes the proof of the theorem.

Noti
e that in making the above hybrid argument, we needed the ability to perform the test

operation at an arbitrary point.

Theorem 12, together with Theorem 11, imply that se
urity against stati
 
orruptions in the

simulation model is equivalent to se
urity against strong adaptive 
orruptions in the BR model,

provided we restri
t to universal, lo
ally 
omputable 
onne
tion assignment fun
tions.

15.5 Forward se
urity in the BR model

It is instru
tive to see where the proof of Theorem 12 breaks down in the fa
e of adaptive 
orrup-

tions. It is in the hybrid argument. We need to be able to \plant" a test operation at an appropriate

pla
e in the exe
ution, where the statisti
al test will noti
e a di�eren
e. But it may very well be

the 
ase that all the pla
es that would be useful are \o� limits" due to the rules of the BR game.

This is be
ause the test restri
tion in the game de�ning the BR se
urity property prohibits a test

operation on anybody who is at any time 
orrupted or is partnered with someone who is. If we

think ba
k to the dis
ussion of proto
ol DHKE in x11.1, we 
an see that the only useful keys to

test are o� limits due to this restri
tion.

But this observation also tells us how to strengthen the BR model. We 
all this forward se
urity

against adaptive 
orruptions in the BR model. The only 
hange is that we drop the test restri
tion.

Noti
e the di�eren
e: instead of a \blanket" ban on test operations, we instead rely on the mu
h

more \pre
ise" 
ompromise 
onne
tion assignment to sele
tively prevent test operations where we

do not want them|namely, after a 
orruption. This 
learly 
aptures the notion of forward se
urity.

Theorem 13 Se
urity against adaptive 
orruptions in the simulation model is equivalent to forward

se
urity against adaptive 
orruptions in the BR model.

The proof is straightforward. We omit the details. Note that the theorem holds using either

the liberal or 
onservative 
ompromise rule (x10.3).
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15.6 An alternative de�nition of se
urity against strong adaptive 
orruptions

We know of no de�nition in the \BR style" that is equivalent to the notion of se
urity against

strong adaptive 
orruptions as we have de�ned it in the simulation model (see x14). Moreover, as

we have seen in x14.6, our de�nition of se
urity in x14, while natural, was stronger than ne
essary

for the purpose of building a se
ure session proto
ol. It turns out that we 
an easily modify the

de�nition of se
urity in the BR model to obtain a de�nition of se
urity against strong adaptive


orruptions that is weaker and mu
h less natural than that in x14, but is just strong enough to

build a se
ure session proto
ol.

This alternative de�nition of se
urity is a modi�
ation of the de�nition of se
urity in the BR

model in x15.1. As in that se
tion, we make use of 
onne
tion assignment fun
tions that are

universal and appli
ation independent, and we use the default, i.e., liberal, 
ompromise rule. All


orruptions are strong adaptive 
orruptions.

Here are the 
hanges we need to make:

(1) We allow the 
onne
tion assignment of a user instan
e to 
hange from 
reate to 
ompromise,

as follows. If a user instan
e I

ij

has a 
onne
tion assignment of 
reate and is still isolated at

the point in time in whi
h either user U

i

or the user (if any) to whi
h PID

ij

is assigned is

strongly 
orrupted, then I

ij

's 
onne
tion assignment is 
hanged to 
ompromise.

(2) As in x15.5, we drop the test restri
tion. However, if the test operation is applied to I

ij

,

the adversary may not perform a 
orruption that would 
ause I

ij

's 
onne
tion assignment to

be
ome 
ompromise.

(3) A user instan
e whose 
onne
tion assignment is 
hanged to 
ompromise is no longer 
onsidered

isolated, and no user may 
onne
t to it.

Dis
ussion

Note that without loss of generality, we 
an assume that a 
onne
tion assignment fun
tion always


ompromises a user instan
e whenever that is legal.

We leave it to the reader to verify the following:

� proto
ol DHKE in x7 is se
ure against strong adaptive 
orruptions under this alternative

de�nition, and

� any proto
ol that is se
ure under this alternative de�nition, together with the implementation

of a se
ure session in x14.6, yields a se
ure session proto
ol that is se
ure in the sense of x14.5.

16 Comparison with the Model of Bellare, Canetti, and Kraw
zyk

Bellare, Canetti, and Kraw
zyk [BCK98℄ de�ne se
urity against an adversary very similar to ours:

he has 
omplete 
ontrol of the network, and 
an make strong adaptive 
orruptions. In fa
t, this is

the only 
orruption mode they 
onsider. Their de�nition of se
urity is also based on simulation,

but there are several di�eren
es in both detail and substan
e between our de�nition and theirs.

One issue alluded to in x1 about the model in [BCK98℄ is its treatment of the ordinary use of

session keys, e.g., as en
ryption or authenti
ation keys. There is no analogue of our notion of an

appli
ation operation in their model. Rather, in their model, when a session key is established, its

value is silently written to a trans
ript whi
h may be input to a statisti
al test, but only after the

adversary has 
ompleted its atta
k. However, the value of the key, or any values derived from it,
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are not generally available to the adversary while the atta
k is ongoing. An ex
eption to this is that

the adversary may exe
ute an expli
it 
orrupt session operation, whereby the adversary obtains

the session key itself.

It is not at all 
lear what this 
orrupt session operation is supposed to represent. In order to

be able to properly model ordinary key usage and proto
ol interferen
e atta
ks, it would seem we

must assume that all sessions are 
orrupted|or at least those whose session keys are a
tually used.

At the very least, then, the term \
orrupt session" then has a somewhat misleading 
onnotation;

indeed, maybe a better name would be \use session key." Moreover, this de�nition of se
urity

su�ers from a more serious problem. Be
ause any use of a session key essentially implies that the

ideal-world adversary has the session key itself, it would seem that any key that is ever used is

potentially 
ompletely vulnerable. Indeed, what is to keep a key that is available to the ideal-world

adversary from popping up, say, in a proto
ol message 
ow? The ideal-world adversary 
an simulate

this, sin
e it knows the key. As a 
on
rete example, proto
ol DHKE-1

0

in x15.2 is se
ure under

the de�nition of se
urity in [BCK98℄. To see this, note that a user instan
e I

i

0

j

0

will not \
ore

dump," ex
ept with negligible probability, unless the 
orresponding session has been 
orrupted.

But if the session is 
orrupted, the ideal-world adversary has the session key and therefore 
an

easily simulate the \
ore dump." However, as we have already argued, proto
ol DHKE-1

0

should

not be 
onsidered se
ure under any reasonable de�nition of se
urity.

Another aspe
t of [BCK98℄ is how it models strong adaptive 
orruptions. A

ording to their

de�nition, when a user is 
orrupted in the ideal world, \the e�e
t is that all the keys known to

[that user℄ be
ome known to the adversary." It is a bit hard to understand the motivation for this.

First, as we have pointed out above, any session key that is a
tually used must already be available

to the adversary via a 
orrupt session operation, and so many of the keys given to the ideal-world

adversary upon the 
orruption of a user are redundant. Se
ond, it would appear that the intention

of this de�nition is to avoid any guarantee of forward se
urity|this point is not 
lear in the paper,

but the authors indi
ate that forward se
urity is an issue to be ta
kled in a subsequent (and as yet

to appear) version of the paper, and so it seems safe to assume that their de�nition is not meant

to imply forward se
urity. But as we have already remarked in x10.5, we 
annot build a se
ure

session proto
ol on top of a key ex
hange proto
ol that does not guarantee forward se
urity. Our

opinion is that it makes little sense to de�ne se
urity for a session key proto
ol that 
annot be used

as a building blo
k for se
ure sessions. Indeed, one of the underlying te
hni
al themes of our work

is that forward se
urity and simulatability with respe
t to adaptive 
orruptions are in many ways

two sides of the same 
oin.

Another aspe
t of the way 
orruptions are modeled in [BCK98℄ is the way in whi
h the inherently

vulnerable keys (see x14.2) are made available to the ideal-world adversary. This issue is not

expli
itly addressed in [BCK98℄, and it is not immediately 
lear that these keys are available to

the adversary. At one point, it is stated in a parentheti
al, and seemingly motivational remark,

that \we envision that the value [of a session key℄ is handed to [a user℄ by the trusted party." It is

only by interpreting this remark to have a spe
i�
 des
riptive meaning, rather than being purely

motivational, that one avoids an unsatis�able de�nition of se
urity.

Also as mentioned in x1, the two proto
ols presented and analyzed in [BCK98℄ in the \authenti-


ated links" model are a
tually inse
ure, under their de�nition of se
urity and under any reasonable

simulation-based de�nition of se
urity. One of the proto
ols is a two-pass DiÆe-Hellman proto
ol

that is inse
ure for the very same reasons that our proto
ol DHKE is inse
ure against strong adap-

tive 
orruptions (see x11.1 and Remark 24). However, we should point out that if the authenti
ated

links are implemented using one of the te
hniques des
ribed in [BCK98℄, the resulting proto
ol in

the \raw" (i.e., unauthenti
ated links) model apparently happens to be se
ure. The other proto
ol
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is based on publi
 key en
ryption, and is inse
ure for the very same reasons that our proto
ol EKE

is inse
ure against strong adaptive 
orruptions (see x11.2 and Remark 25).

17 Con
lusion

The methodology of modern theoreti
al 
ryptography is maturing to a point where it 
an take on

tasks that have traditionally belonged to the domain of \se
urity engineering." This seems useful,

as many se
urity problems are often viewed as \implementation errors" whi
h we believe 
ould be

more fruitfully viewed as 
ryptographi
 design errors. Probably the main reason for these di�ering

points of view is simply that the high-level 
ryptographi
 designers and implementors have usually

been more or less disjoint sets of people.

The a
tivity of designing a formal se
urity model for something as 
ompli
ated as a key ex
hange

proto
ol or a se
ure session proto
ol is similar in many ways to that of designing a software interfa
e.

In designing a software interfa
e, there is no \right" or \wrong." One wants an interfa
e that will

be easy to understand and to use in an intuitive way. One also wants an interfa
e that 
an be

e�e
tively implemented. Be
ause of the ri
hness of the environment in whi
h session key proto
ols

are used, there will always be room for debate on many of the details of su
h a se
urity model.

We hope that this paper has at least served to make expli
it most of the important 
hoi
es that

one en
ounters in designing su
h a se
urity model, even if the reader disagrees with some of the

parti
ular 
hoi
es that we have made.

Having a formal se
urity model and a \provably se
ure" proto
ol in that model is no pana
ea.

Indeed, it is possible that the model is 
awed somehow; in parti
ular, it may not be ri
h enough

to express a parti
ular type of realisti
 atta
k. And of 
ourse, the proofs may 
ontain errors or

the underlying intra
tability assumptions 
ould turn out to be false. Nevertheless, the a
tivity of

designing su
h models and analyzing proto
ols in these models is a worthwhile a
tivity: only by

doing so 
an we hope to in
rease our understanding of the proto
ols we use in pra
ti
e, and to

design better proto
ols (or even have a meaningful way to measure \better"). It is also an ongoing

a
tivity: when weaknesses in the model or errors in the proofs are un
overed, then these must be

repaired.

Although a healthy amount of skepti
ism is always appropriate, an irrational reje
tion of the

entire approa
h of formal modeling and proofs as nothing but \snake oil" does not seem helpful.

Su
h an anti-intelle
tual attitude is unfortunately not so rare in the se
urity resear
h 
ommunity.

It only serves to retard meaningful s
ienti�
 progress, and to perpetuate the mystique surrounding

the self-pro
laimed \high priests" of 
omputer se
urity.
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