
Secure Hash-and-Sign Signatures without the Random Oracle

Rosario Gennaro Shai Halevi Tal Rabin

IBM T.J.Watson Research Center,

PO Box 704, Yorktown Heights, NY 10598, USA.

E-mail: frosario,shaih,talrg@watson.ibm.com

March 22, 1999

Abstract. We present a new signature scheme which is existentially unforgeable under chosen

message attacks, assuming some variant of the RSA conjecture. This scheme is not based on

\signature trees", and instead it uses the so called \hash-and-sign" paradigm. It is unique in that

the assumptions made on the cryptographic hash function in use are well de�ned and reasonable

(although non-standard). In particular, we do not model this function as a random oracle.

We construct our proof of security in steps. First we describe and prove a construction which

operates in the random oracle model. Then we show that the random oracle in this construction

can be replaced by a hash function which satis�es some strong (but well de�ned!) computational

assumptions. Finally, we demonstrate that these assumptions are reasonable, by proving that a

function satisfying them exists under standard intractability assumptions.

Keywords: Digital Signatures, RSA, Hash and Sign, The Random Oracle Paradigm, Smooth

Numbers, Chameleon Hashing.

1 Introduction

Digital signatures are a central cryptographic primitive, hence the question of their (proven) security

is of interest. In [13], Goldwasser, Micali and Rivest formally de�ned the strongest notion of security

for digital signatures, namely \existential unforgeability under an adaptive chosen message attack".

Since then, there have been many attempts to devise practical schemes which are secure even in

the presence of such attacks.

Goldwasser, Micali and Rivest presented a scheme in [13] which provably meets this de�nition

(under some standard computational assumption). Their scheme is based on signature trees, where

the messages to be signed are associated with the leaves of a binary tree, and each node in the tree

is authenticated with respect to its parent. Although this scheme is feasible, it is not very practical,

since a signature on a message involves many such authentication steps (one for each level of the

tree). This was improved by Dwork and Naor [10] and Cramer and Damg�ard [8], who use \
at

trees" with high degree and small depth, resulting in schemes where (for a reasonable setting of the

parameters) it only takes about four basic authentication steps to sign a message. Hence in these

schemes the time for generating a signature and its veri�cation (and the size of the signatures) is

1

about four times larger than in the RSA signature scheme, for which no such proof of security exist.

Besides e�ciency concerns, another drawback of these schemes is their \stateful" nature, i.e. the

signer has to store some information from previously signed messages.

Another line of research concentrates on hash-and-sign schemes, where the message to be signed is

hashed using a so called \cryptographic hash function" and the result is signed using a \standard

signature scheme" such as RSA or DSA. Although hash-and-sign schemes are very e�cient, they

only enjoy a heuristic level of security: the only known security proofs for hash-and-sign schemes

are carried out in a model where the hash function is replaced by a random oracle. It is hoped that

these schemes remain secure as long as the hash function used is \complicated enough" and \does

not interact badly" with the rest of the signature scheme. This \random oracle paradigm" was

introduced by Bellare and Rogaway in [2], where they show how it can be used to devise signature

schemes from any trapdoor permutation. They later described concrete implementations for the

RSA and Rabin functions (with some security improvements) in [3]. Also, Pointcheval and Stern

proved similar results with respect to ElGamal-like schemes in [18].

Security proofs in the random oracle model, however, can only be considered a heuristic. A recent

result by Canetti, Goldreich and Halevi [6] demonstrates that \behaving like a random oracle" is

not a property that can be realized in general, and that security proofs in the random-oracle model

do not always imply the security of the actual scheme in the \real world". Although this negative

result does not mean that the schemes in [2, 3, 18] cannot be proven secure in the standard model,

to this day nobody was able to formalize precisely the requirements on the cryptographic hash

functions in these schemes, or to construct functions that can provably replace the random oracle

in any of them.

Our result. We present a new construction of a hash-and-sign scheme (similar to the standard

hash-and-sign RSA), for which we can prove security in a standard model, without a random

oracle. Instead, the security proof is based on a stronger version of the RSA assumption and on

some speci�c constructible properties that we require from the hash function. At the same time,

our scheme enjoys the same level of e�ciency of typical hash-and-sign schemes. Compared to tree-

based schemes this new algorithm fares better in terms of e�ciency (typically 2.5 times faster), size

of keys and signatures and does not require the signer to keep state (other than the secret signature

key).

1.1 The New Construction

Our scheme resembles the standard RSA signature algorithm, except that instead of encoding the

message in the base of the exponent and keeping the public exponent �xed, we encode the message

in the exponent while keeping a �xed public base.

Set up. The public key is an RSA modulus n = pq and a random element s 2 Z

�

n

.

Signing. To sign a message M with respect to the public key (n; s), the signer �rst applies a hash

function to compute the value e = H(M), and then uses it as an exponent, i.e. he �nds the e

th

root of s mod n. Hence a signature on M is an integer � such that �

H(M)

= s mod n.

Assumptions and requirements. In our case, it is necessary to choose p; q as \safe" or \quasi-

safe" primes (i.e., such that (p� 1)=2; (q� 1)=2 are either primes or prime powers.) In particular,

this choice implies that p � 1; q � 1 do not have any small prime factors other than 2, and that

�nding an odd integer which is not co-prime with �(n) is as hard as factoring n. This guarantees

2

that extracting e

th

roots when e = H(M) is always possible (short of factoring n).

Intuitively, the reason that we can prove the security of our scheme without viewing H as a random

oracle, is that in RSA the base must be random, but the exponent can be arbitrary. Indeed, it is

widely believed that the RSA conjecture holds for any �xed exponent (greater than one). Moreover,

if e

1

; e

2

are two di�erent exponents, then learning the e

1

'th root of a random number s does not

help in computing the e

2

'th root of s, as long as e

2

does not divide e

1

. Hence, it turns out that the

property of H that is needed for this construction is that it is hard to �nd a sequence of messages

M

1

;M

2

; : : : such that for some i, H(M

i

) divides the other H(M

j

)'s. In the sequel, we call this

property of the hash function division intractability.

In our scheme, an attacker who on input (n; s) can �nd both an exponent e and the e

th

root of s,

may have the ability to forge messages. Thus our formal security proof is based on the assumption

that such a task is computationally infeasible. This stronger variant of the RSA assumption has

already appeared in the literature, in a recent work of Bari�c and P�tzmann for constructing fail-stop

signatures without trees [1].

The proof. We present our proof in three steps:

1. First, we prove the security of the scheme in the random oracle model. This step already

presents some technical di�culties. One of the main technical problems for this part is to

prove that a random oracle is division-intractable. We prove this using some facts about the

density of smooth numbers.

2. Next, we show that the random oracle in the proof of Step 1 can be replaced by a hash

function which satis�es some (well de�ned) computational assumptions. We believe that this

part is the main conceptual contribution of this work.

We introduce a new computational assumption which is quite common in complexity theory,

yet we are unaware of use of this type of assumptions in cryptography. Instead of assuming

that there is no e�cient algorithm that solves some problem, we assume that there is no

e�cient reduction between two problems. We elaborate on this issue in Subsection 5.2.

3. As we have introduced these non-standard assumptions, we need to justify that they are

\reasonable". (Surely, we should explain why they are more reasonable than assuming that

a hash function \behaves like a random oracle").

We do this by showing how to construct functions that satisfy these assumptions from any

collision-intractable hash function [9] and Chameleon commitment scheme [5]. It follows, for

example, that such functions exist if factoring is hard. As we explained above, this is in sharp

contrast to the hash functions that are needed in previous hash-and-sign schemes, for which

no provable construction is known.

1.2 Other Related Work

Back in '85, de Jonge and Chaum studied in [15] the security of a few RSA-based schemes where

the message is used potentially in both the base and the exponent. The main focus of that work,

however, was to avoid having to hash the message before applying the RSA function. Quite recently,

Boyd suggested in [4] a scheme which is very similar to ours, except that the public base has a

prime order, and the hash function is not division-intractable. The latter di�erence proved to be a

fatal one, when Michels et.al. showed in [17] how Shamir's method from [20] can be used to break

3

Boyd's scheme. In the same work, Michels et.al. also demonstrated that the schemes from [15] can

be broken when no hashing is done.

2 Preliminaries

Before discussing our scheme, let us brie
y present some notations and de�nitions which are used

throughout the paper. In the sequel we usually denote integers by lowercase English letters, and

strings by uppercase English letters. We often identify integers with their binary representation.

The set of positive integers is denoted by N .

Families of hash functions. We usually consider hash functions which map strings of arbitrary

length into strings of a �xed length. In some constructions we allow these functions to be random-

ized. Namely, we consider functions of the type h : $ � f0; 1g

�

! f0; 1g

k

for some set of coins $

and some integer k. We write either h(X) = Y or h(R;X) = Y , where R 2 $; X 2 f0; 1g

�

, and Y

is the output of h on the the input X (and the coins R, if they are speci�ed).

A family of hash function is a sequence H = fH

k

g

k2N

, where each H

k

is a collection of functions

as above, such that each function in H

k

maps arbitrary-length strings into strings of length k. The

properties of such hashing families that are of interest to us, are collision-intractability which was

de�ned by Damg�ard in [9], and division-intractability (which we de�ne below). For the latter, we

view the output of the hash function as the binary representation of an integer. For our scheme

we use hash functions with the special property that their output is always an odd integer. Such

a function can be easily obtained from an arbitrary hash function by setting h

0

(X) = h(X)j1 (or

just setting the lowest bit of h(X) to one).

De�nition 1 (Collision intractability [9]) A hashing family H is collision intractable if it is

infeasible to �nd two di�erent inputs that map to the same output. Formally, for every probabilistic

polynomial time algorithm A there exists a negligible function negl() such that

Pr

h2H

k

[A(h) = hX

1

; X

2

i s.t. X

1

6= X

2

and h(X

1

) = h(X

2

)] = negl(k)

If h is randomized, we let the adversary algorithm A choose both the input and the random-

ness. That is, A is given a randomly chosen function h from H

k

, and it needs to �nd two pairs

(R

1

; X

1

); (R

2

; X

2

) such that X

1

6= X

2

but h(R

1

;X

1

) = h(R

2

;X

2

).

De�nition 2 (Division intractability) A hashing family H is division intractable if it is infeasi-

ble to �nd distinct inputs X

1

; : : : ; X

n

; Y such that h(Y) divides the product of the h(X

i

)'s. Formally,

for every probabilistic polynomial time algorithm A there exists a negligible function negl() such that

Pr

h2H

k

2

6

4

A(h) = hX

1

; : : : ; X

n

; Y i

s.t. Y 6= X

i

for i = 1 : : :n;

and h(Y) divides the product

Q

n

i=1

h(X

i

)

3

7

5

= negl(k)

Again, if h is randomized then we let A choose the inputs and the randomness. It is easy to see

that a division intractable hashing family must also be collision intractable, but the converse does

not hold.

Signature schemes. Recall that a signature scheme consists of three algorithms: a randomized

key generation algorithm Gen, and (possibly randomized) signature and veri�cation algorithms, Sig

4

and Ver. The algorithm Gen is used to generate a pair of public and secret keys, Sig takes as input

a message, the public and secret key and produces a signature, and Ver checks if a signature on a

given message is valid with respect to a given public key. To be of any use, it must be the case

that signatures that are generated by the Sig algorithm are accepted by the Ver algorithm. The

strongest notion of security for signature schemes was de�ned by Goldwasser, Micali and Rivest as

follows:

De�nition 3 (Secure signatures [13]) A signature scheme S = hGen; Sig; Veri is existentially

unforgeable under an adaptive chosen message attack if it is infeasible for a forger who only knows

the public key to produce a valid (message, signature) pair, even after obtaining polynomially many

signatures on messages of its choice from the signer.

Formally, for every probabilistic polynomial time forger algorithm F , there exists a negligible func-

tion negl() such that

Pr

2

6

6

6

6

6

4

hpk; ski Gen(1

k

);

for i = 1 : : :n

M

i

 F (pk;M

1

; �

1

; : : : ;M

i�1

; �

i�1

); �

i

 Sig(sk;M

i

);

hM;�i F (pk;M

1

; �

1

; : : : ;M

n

; �

n

);

M 6= M

i

for i = 1 : : :n, and Ver(pk;M; �) = accept

3

7

7

7

7

7

5

= negl(k)

3 The Construction

Key generation. The key-generation algorithm in our construction resembles that of standard

RSA. First, two random primes p; q of the same length are chosen, and the RSA modulus is set

to n = p � q. In our case, we assume that p; q are chosen as \safe" or \quasi-safe" primes (i.e.,

that (p� 1)=2; (q� 1)=2 are either primes or prime-powers.) In particular, this choice implies that

p�1; q�1 do not have any small prime factors other than 2, and that �nding an odd integer which

is not co-prime with �(n) is as hard as factoring n. After the modulus n is set, an element s 2 Z

�

n

is chosen at random.

Finally, since we use a hash-and-sign scheme, a hash function has to be chosen from a hashing

family. The properties that we need from the hashing family are discussed in the security proof

(but recall that we use a hash function whose output is always an odd integer). Below we view the

hash function h as part of the public key, but it may also be a system parameter, so the same h

can be used by everyone. The public key consists of n; s; h. The secret key is the primes p and q.

Signature and veri�cation. To sign a message M , the signer �rst hashes M to get an odd

exponent e = h(M). Then, using its knowledge of p; q, the signer computes the signature � as the

e'th root of the public base s modulo n. If the hash function h is randomized, then the signature

consists also of the coins R which were used for computing e = h(R;M).

To verify a signature � (resp. h�;Ri) on message M with respect to the hash function h, RSA

modulus n and public base s, one needs to compute e = h(M) (resp. e = h(R;M)) and check that

indeed �

e

= s (mod n).

3.1 A Few Comments

1. Note that with overwhelming probability, the exponent e = h(M) will be co-prime with �(n).

5

This is since �nding an odd number e which is not co-prime with �(n) is as hard as factoring n,

for the class of moduli used in this scheme.

2. The output length of the hash function is relevant for the e�ciency of the scheme. If we let

the output of the hash function be jnj-bit long then signature generation will take roughly twice

as long as standard RSA (since the signer must �rst compute e

�1

mod �(n) and then a modular

exponentiation to compute �). Also signature veri�cation takes a full exponentiation modulo n.

The e�ciency can be improved by shortening the output length for h. However (as it will become

clear from the proof of security), in order for h to be division intractable, its output must be

su�ciently long. Our current experimental results suggest that to get equivalent security to a

1024-bit RSA, the output size of the hash should be about 512 bits. For this choice of hash output

length we have that computing a signature will be less than 1.5 times slower than for a standard

RSA signature.

3. When a key for our scheme is certi�ed, it is possible for the signer to prove that the modulus n

has been chosen correctly (i.e. the product of two quasi-safe primes) by using a result from [12].

4 Security in the Random-oracle Model

As we have stated, for the security of our scheme we must use the \strong RSA conjecture" which

was introduced recently by Bari�c and P�tzmann. The di�erence between this conjecture and the

standard RSA conjecture is that here the adversary is given the freedom to choose the exponent e.

Stated formally:

Conjecture 4 (Strong-RSA [1]) Given a randomly chosen RSA modulus n, and a random ele-

ment s 2 Z

�

n

, it is infeasible to �nd a pair he; ri with e > 1 such that r

e

= s (mod n).

The meaning of the \randomly chosen RSA modulus" in this conjecture depends on the way this

modulus is chosen in the key generation algorithm. In our case, this is a product of two randomly

chosen \safe" (or \quasi-safe") primes of the same length.

We start by analyzing the security of this construction in a model where the hash function h is

replaced by a random oracle.

1

Theorem 5 In the random oracle model, the above signature scheme is existentially unforgeable

under an adaptive chosen message attack, assuming the strong-RSA conjecture.

Proof: Let F be a forger algorithm. We assume w.l.o.g. that F always queries the oracle about a

message M before it either asks the signer to sign this message, or outputs (M;�) as a potential

forgery. Also, let v be some polynomial upper bound on the number of queries that F makes to

the random oracle.

Using the same method as in Shamir's pseudo-random generator [20], we now show an e�cient

algorithm A

1

(which we call the attacker), that uses F as a subroutine, such that if F has probability

� of forging a signature, then A

1

has probability �

0

� �=v of breaking the strong RSA conjecture.

The random-oracle attacker. The attacker A

1

is given an RSA modulus n (chosen as in the

key generation algorithm) and a random element t 2 Z

�

n

, and its goal is to �nd e; r (with e > 1)

such that r

e

= t (mod n).

1

Also here, we assume that the random oracle always return an odd integer as output. Namely, the answer of the

oracle on every given query is a randomly chosen odd k-bit integer.

6

First, A

1

prepares the answers for the oracle queries that F will ask. He does so by picking at

random v odd k-bit integers e

1

: : :e

v

and an index j 2 f1 : : :vg. Intuitively, A

1

bets on the chance

that F will use its j'th oracle query to generate the forgery.

2

Next, A

1

prepares the answers for signature queries that F will ask. A

1

computes E = (

Q

i

e

i

)=e

j

(i.e., E is the product of all the e

i

's except e

j

). If e

j

divides E, then A

1

outputs \failure" and

halts. Otherwise, it sets s = t

E

(mod n), and initializes the forger F , giving it the public key

(n; s). The attacker then runs the forger algorithm F , answering:

1. the i'th oracle query with the odd integer e

i

. Namely, if the forger makes oracle queries

M

1

: : :M

v

, then A

1

answers these queries by setting h(M

i

) = e

i

.

2. signature query for message M

i

for i 6= j with the answer �

i

= t

E=e

i

(mod n) (recall that E=e

i

is an integer for all i 6= j).

If F asks signature query for message M

j

, or halts with an output other than (M

j

; �) then A

1

outputs \failure" and halts. If F does output (M

j

; �) for which �

e

j

= s (mod n), then A

1

proceeds as follows. Using the extended Euclidean gcd algorithm, it computes g = GCD(e

j

; E),

and also two integers a; b such that ae

j

+bE = g. Then A

1

sets e = e

j

=g and r = t

a

��

b

(mod n);

and outputs (e; r) as its solution to this instance of the strong-RSA problem.

Analysis of A

1

. If A

1

does not output \failure", then it outputs a correct solution for the strong

RSA instance at hand (except with a negligible probability): First, since e

j

does not divide E, then

g < e

j

, which means that e = e

j

=g > 1. Moreover, we have

r

e

=

�

t

a

� �

b

�

e

j

=g

= t

ae

j

=g

� �

be

j

=g

�

= t

ae

j

=g

� t

bE=g

= t

(ae

j

+bE)=g

= t (mod n)

Equality (�) holds because: (a) �

e

j

= s = t

E

(mod n), which implies that also �

be

j

= t

bE

(mod n); and (b) e

j

is co-prime with �(n) (except with negligible probability), which means that

so is g. Therefore, there is a single element x 2 Z

�

n

satisfying x

g

= �

be

j

= t

bE

(mod n).

It is left to show, therefore, that the event in which A

1

does not output \failure" happens with

probability �

0

� �=v. Denote by DIV the event in which e

j

divides E. Conditioned on the

complement of DIV , F sees the same transcript when interacting with A

1

as when it interacts

with the real signer, and so it outputs a valid forgery for M

j

with probability �=v (since j is chosen

at random between 1 and v). It follows that the probability that A

1

does not output \failure" is

�

0

� �=v �Pr[DIV]. In Lemma 6 we prove that when the output length of the random oracle is k,

then Pr[DIV] � 2

�

p

k

, which completes the proof of Theorem 5. 2

Lemma 6 Let e

1

: : :e

v

be random odd k-bit integers, let j be any integer j 2 f1 : : :vg, and denote

E = (

Q

i

e

i

)=e

j

. Then, the probability that e

j

divides E is less than 2

�

p

k

.

Proof: As before, we denote the above event by DIV . To prove Lemma 6, we use some facts

about the density of smooth numbers. Recall that when x; y are integers, 0 < y � x, we say that x

is y-smooth if all the prime factors of x are no larger than y, and let 	(x; y) denote the number of

integers in the interval [0; x] which are y-smooth. The following fact can be found in several texts

on number-theory (e.g., [16]).

Proposition 7 Fix some real number � > 0, let x be an integer x � 10, let y be another integer such

2

This is where we get the 1=v factor in the success probability. Interestingly, this factor only shows up in the

random oracle model, so we get a tighter reduction in the standard model.

7

that log x > log y � (log x)

�

, and denote �

def

= log x= log y (namely, y = x

1=�

). Then 	(x; y)=x =

�

��(1�f(x;�))

, where f(x; �)! 0 as �!1, uniformly in x.

Below we write somewhat informally 	(x; x

1=�

) = �

��(1�o(1))

. Substituting 2

k

for x and

p

k=2 for

� in the expression above, we get

	(2

k

; 2

2

p

k

)=2

k

=

�

p

k=2

�

�

p

k(1�o(1))=2

< 2

�

p

k logk=16

< 2

�2

p

k

:

We comment that the same bound also holds when we talk about odd k-bit integers, (this can be

shown using the fact that an even k-bit integer x is smooth if and only if the (k � 1)-bit integer

x=2 is also smooth). If we denote by SMOOTH the event in which the integer e

j

is 2

2

p

k

-smooth,

then by the bound above, Pr[SMOOTH] � 2

�2

p

k

.

Assume, then, that the event SMOOTH does not happen. Then e

j

has at least one prime factor

p > 2

2

p

n

. In this case, the probability that e

j

divides the product of the other e

i

's is bounded

by the probability that at least one of these e

i

's is divisible by p. But since all the other e

i

's are

chosen at random, then the probability that any speci�c e

i

is divisible by p is at most 1=p < 2

�2

p

k

,

and the probability that there exists one which is divisible by k is at most v � 2

�2

p

k

. As v is

polynomial in k, we get v � 2

�2

p

k

< 2

�1:5

p

k

. Combining the two bounds, we get Pr[DIV] <

Pr[SMOOTH] + Pr[DIV j :SMOOTH] < 2

�2

p

k

+ 2

�1:5

p

k

< 2

�

p

k

: 2

4.1 The Value of k

The above bound on Pr[DIV] is very weak. For example, to get security level of 2

�80

, this bound

suggest a value of k � 6000. Although the equations above can be optimized, they still only give

a very crude bound. One reason for this is that we only bound the probability that p, the largest

prime factor of e

j

, divides the product of the e

i

's. If e

j

is rather smooth, then e

j

=p is still rather

large, so even if p divides one of the e

i

's, the probability that e

j

=p divides the product of the

e

i

's is still rather small. We therefore performed some experiments to get a practical estimate for

the value of k. Our experiments suggest that Pr[DIV] is in fact much smaller than the bound

2

�

p

k

. (In fact, for the values of k which we tested, we got Pr[DIV] � 2

�k=8

.) See more details in

Appendix A.

5 Eliminating the Random Oracle

Below we show that the random oracle in the above proof can be replaced by a randomized hash

function with certain properties. Clearly, this hash function should be division-intractable, since

violating division intractability immediately yields an attack on the signature scheme. However,

this property alone is not su�cient: even if we assume that the hash function is division intractable,

we still face problems carrying out the above security proof in the standard model. Speci�cally,

recall that in the previous proof, the attacker A

1

had to simulate the signer for F , and do it without

knowing the prime factorization of the modulus.

A

1

was able to carry out this task since it could choose the outputs of the oracle (the e

i

's) before

seeing the inputs, and so it was able to \tailor" the public base s to these speci�c e

i

's. In a

standard model this is no longer the case: Clearly, if h is deterministic, then the forger's choice of

M

i

's uniquely determines the e

i

's, and the attacker has no room to play with these values. But even

if h is randomized this does not help the attacker due to the fact that h is also division-intractable

8

which implies that it is one-way. Thus, if the attacker �rst chooses e and then sees M , it cannot

�nd randomness R for which e = h(R;M) (even if such R exists).

As a �rst step towards overcoming this di�culty, we note that the hardness of �nding such random-

ness R is in some sense \unrelated" to the hardness of solving the strong RSA problem. Namely,

our intuition is that being able to �nd R should not help anyone solving strong RSA.

3

We formal-

ize this intuition by replacing the strong RSA conjecture (which asserts that there is no e�cient

algorithm to solve strong RSA), with the \funny looking" conjecture which asserts that there is no

e�cient reduction between �nding the randomness R and solving strong RSA. Technically, this is

done by asserting that the strong RSA conjecture remains valid even in a relativized world where

there is an oracle that �nds this randomness.

5.1 The Hashing Family

To be able to carry the security proof in a standard world, we have to make the following assump-

tions on the hashing family H used in the scheme and its relation to the strong RSA conjecture.

We say that a hashing family H is suitable if

1. For any h 2 H, the outputs of h are always odd integers.

2. H is division-intractable.

3. For every h 2 H and every two messages M

1

;M

2

, the distributions h(R;M

1

), h(R;M

2

),

induced by the random choice of R, are statistically close.

4

4. The strong RSA conjecture also holds in a model where there exists an oracle that on input

h;M; e, returns a random R 2 $ subject to h(R;M) = e.

5

We discuss these assumptions further in Section 5.2 below. But �rst let us prove that our signature

scheme is secure when using a suitable hashing family H. We stress that although one of our

computational assumptions holds in a relativized world, we then prove the security of the scheme

in the \real world".

Theorem 8 If H is suitable, then the construction from Section 3 is existentially unforgeable under

an adaptive chosen message attack.

Proof: The proof proceeds similarly to the proof of Theorem 5, i.e. we construct an attacker A

2

which will use the forger F . The main di�erence is that the attacker A

2

operates in a relativized

model, given in addition access to the oracle from Condition 4 of the suitable hash function. We

show that if the forger F has probability � of breaking the scheme (in the \real world"!) then

the attacker has probability �

0

� � of solving strong RSA in the relativized world. (Note that this

reduction is tighter than the reduction in the random-oracle model.)

The oracle-assisted attacker. We again assume a bound of v on the number of signatures that

the forger F asks to see before it outputs its forgery. As before, A

2

is given an RSA modulus n and

a random element t 2 Z

�

n

(chosen as in the key generation algorithm), and its goal is to �nd e; r

3

For example, if one thinks of h as SHA-1, then we have a very strong intuition that �nding collisions in SHA-1

provides no help in violating the RSA conjecture.

4

Together with the collision-intractability, this implies that H is a statistically hiding string-commitment scheme.

5

Such R must exist because of Condition 3.

9

(with e > 1) such that r

e

= t (mod n). It starts by picking at random a hash function h 2 H to be

used for the forger. And v arbitrary values e

1

; :::; e

v

in the range of the function. This can be done

for example by picking v arbitrary \dummy messages" M

0

1

: : :M

0

v

and computing e

i

= h(R

0

i

;M

0

i

)

(for random R

0

i

's).

Then A

2

computes E =

Q

i

e

i

, sets s = t

E

(mod n) and initializes F with the public key (n; s; h).

Whenever F asks for a signature on a message M

i

, A

2

queries its randomness-�nding oracle for a

randomness R

i

for which h(R

i

;M

i

) = e

i

, and then computes the signature by setting �

i

= t

E=e

i

(mod n). A

2

returns the pair hR

i

; �

i

i to F .

It is important to note that because of Condition 3 on H, the distribution that F sees in this

simulation is statistically close to the distribution it sees when interacting with the real signer. In

particular, since H is division intractable, then F has only a negligible probability of �nding M

0

; R

0

such that e

0

= h(R

0

;M

0

) divides the product of the e

i

's.

It follows that with probability �

0

� ��negl, F outputs a forgeryM

0

; R

0

; � such that e

0

= h(R

0

;M

0

)

does not divide the product of the other e

i

's, and yet �

e

0

= s (mod n). When this happens,

the attacker A

2

uses the same gcd procedure as above to �nd (e; r) with e > 1 such that r

e

= t

(mod n). 2

5.2 Discussion

The proof in the previous section eliminates the random oracle, but substitutes it with a non-

standard assumption: the strong RSA assumption must still be true even in a relativized world

where �nding randomness for h is not hard. Is this a more reasonable assumption than just

assuming that h \behaves like a random oracle"? We strongly believe it is. The assumption we use

has a very concrete interpretation in the real world, meaning that there is no reduction from the

problem of randomness-�nding for h to the problem of solving the strong RSA problem. In other

words the di�culty of the two problems are somewhat \independent". Moreover we show later

that suitable families of hash functions are actually constructible. On the other hand the notion

of \behaving as a random oracle" has no concrete counterpart in the real world, and there are no

provable constructions of \good hash functions" for previously known schemes.

It is interesting to ask if our technique of substituting the random oracle in the security proof

with a relativized assumption can be used in other proofs that employ random oracles (such as

[2, 3, 18]). Unfortunately, it does not appear to be likely. The main reason our technique seems to

fail in those proofs, is that their requirement from h is that the forger cannot �nd a message M

for which he \knows" something about h(M). In our scheme instead we were able to pin down the

speci�c combinatorial property we require from h and
esh it out as a speci�c assumption.

In the next section we describe a construction of a suitable family of hash functions. The main

purpose of this construction is to prove that the assumptions we make can be realized. However

the construction requires the signer to search for a prime exponent in a large subset and thus

it might require a signi�cant amount of time. It is however plausible to conjecture that families

built from widely used collision-resistant hash functions such as SHA-1 [11] can be suitable. The

rationale is that such functions have been designed in a way that destroys any \structure" in the

input-output relationship. In particular it is very unlikely (although we don't know how to prove

it) that division intractability does not hold for such functions. A possible candidate would be to

de�ne h as following

h(R

1

;R

2

;R

3

;R

4

;M)

10

= 1 j SHA1(M j1jR

1

) j SHA1(M j2jR

2

) j SHA1(M j3jR

3

) j SHA1(M j4jR

4

) j 1

for a 642-bit exponent (this is the de�nition of a single h, a family could be constructed via any

standard method of extending SHA-1 to a family, for example by keying the IV).

6 Implementing the Hashing Family H

To argue that Conditions 1-4 are \reasonable" we at least need to show that they could be met.

Namely, that there exists a function family H satisfying these conditions (under some standard

assumptions). Below we show that such families exist, assuming that collision-intractable families

and Chameleon commitment families exist. In particular, it follows that such families exist under

the factoring conjecture (which is weaker than our \strong RSA" conjecture), or under the Discrete-

log conjecture.

6

We construct H in two steps: �rst we show how to transform any collision-intractable hashing

family into a (randomized) division-intractable family, and then we show how to take any division-

intractable hash function and transform it into one that satisfy Conditions 1 through 4.

6.1 From Collision-intractable to Division-intractable

The idea of this transformation is simply to force the output of the hash functions to be a prime

number. Then, the function is division-intractable if and only if it is collision intractable. A heuristic

for doing just that was suggested by Bari�c and P�tzmann in [1]: If h is collision intractable with

output length k, then de�ne a randomized function

~

h with output length of (say) 2k bits, by setting

for r = 0; : : : ; 2

k

� 1,

~

h(r;X) = 2

k

� h(X) + r, provided that h(X) + r is an odd prime (

~

h(r;X) is

unde�ned otherwise).

It is obvious that

~

h is still collision-intractable, and that it always outputs primes, so it is also

division-intractable. However, to argue that

~

h is e�ciently computable, we must assume that the

density of primes in the interval [2

k

h(X), 2

k

(h(X) + 1)] is high enough (say, 1=poly(k) fraction).

Hence, to use this heuristic, one must rely on some number-theoretic conjecture about the density

of primes in small intervals.

Below we show a simple technique that allows us to get rid of this extra conjecture: Just as in the

above heuristic, we let the output size of

~

h be larger than that of h (letting

~

h output 3k bits is

su�cient for our purposes), and partition the space of outputs in such a way that each output of

the original h is identi�ed with a di�erent subset of the possible outputs of

~

h. However, we choose

the partition in a randomized manner, so we can prove that (with high probability) each one of the

subsets is dense with primes.

The main tool that we use in this transformation is universal hashing families as de�ned by Carter

and Wegman in [7]. Recall that a universal family of hash functions from a domain D to a

range R is a collection U of such functions, such that for all X

1

6= X

2

2 D and all Y

1

; Y

2

2 R,

Pr

f

[f(X

1

) = Y

1

and f(X

2

) = Y

2

] = 1=jRj

2

(the probability is taken over the uniformly random

choice of f 2 U). Several constructions of such universal families were described in [7].

6

The way we set the de�nitions in this paper, Condition 4 on H implies the strong RSA conjecture, so formally

there is no point in using any other conjecture. This technicality can be dealt with in some ways, but we chose to

ignore it in this preliminary report.

11

In our case, we use universal hash functions which maps 3k bits to k bits, with the property that

given a function f 2 U and a k-bit string Y , it is possible to e�ciently sample uniformly from the

space fX 2 f0; 1g

3k

: f(X) = Y g. For any function f : f0; 1g

3k

! f0; 1g

k

, we associate a partition

of the set of outputs (f0; 1g

3k

) into 2

k

subsets according to the values assigned by f . Each output

value of the original h (which is a k-bit string Y) is then associated with the subset f

�1

(Y). The

modi�ed function

~

h, on input X , outputs a random odd prime from the set f

�1

(h(X)). Again, it

is clear that

~

h is collision-intractable if h is, and that it only outputs primes, hence it is division-

intractable. On the other hand, a standard hashing lemma shows that with high probability over

the random choice of f , the subset f

�1

(h(X)) � f0; 1g

3k

is dense with primes (for all X). Thus,

~

h

is also e�ciently computable.

Lemma 9 Let U be a universal family from f0; 1g

3k

to f0; 1g

k

. Then, for all but a 2

�k

fraction

of the functions f 2 U , for every Y 2 f0; 1g

k

a fraction of at least 1=ck of the elements in f

�1

(Y)

are primes, for some small constant c.

Proof omitted.

6.2 From Division-intractable to Suitable

Finally, we show how to take any division-intractable hashing family (that always output odd

integers) and transform it into a suitable one (i.e. one that satis�es Conditions 1 through 4 from

Subsection 5.1). To this end, we use Chameleon commitment schemes, as de�ned and constructed

by Brassard, Chaum and Crepeau [5]. In fact we use them as Chameleon Hashing exactly as de�ned

and required in [21].

The Chameleon Hashing is a function ch(�; �) which on input a random string R and a message M

is easily computed. Furthermore, it is associated with a value known as the \trapdoor". It satis�es

the following properties:

� Without knowledge of the trapdoor there is no e�cient algorithm that can �nd pairs M

1

; R

1

and M

2

; R

2

such that ch(M

1

; R

1

) = ch(M

2

; R

2

).

� There is an e�cient algorithm that given the trapdoor, a pair M

1

; R

1

and M

2

can compute

R

2

such that ch(M

1

; R

1

) = ch(M

2

; R

2

).

� For any pair of messages M

1

;M

2

and for randomly chosen R the distribution ch(M

1

; R

1

) and

ch(M

2

; R

2

) are statistically close.

To transform a division intractable hash function h into one that also satis�es Conditions 3 and 4

from Subsection 5.1, we simply apply it to the hash string c = ch(R;M) instead of to the message

M itself. A little more formally, we have the following construction.

Let H be a division-intractable family, and let CH be a Chameleon hashing scheme. We construct

a randomized family

~

H in which each function is associated with a function h 2 H and an instance

ch 2 CH . We denote this by writing

~

h

h;ch

. This function is de�ned as

~

h

h;ch

(R;M) = h(ch(R;M)):

(if h itself is randomized, then we have

~

h

h;ch

(R

1

; R

2

;M) = h(R

2

; ch(R

1

;M))). It is easy to see that

~

H enjoys the following properties

1.

~

H always outputs odd integers if H does.

12

2.

~

H is collision intractable, since violating division-intractability requires either �nding two

di�erent messages with the same hash string, or violating the division-intractability of H.

3.

~

H is a statistically hiding hashing scheme (since CH is, and H is collision intractable).

It is left to show that

~

H also satis�es the last condition. This is shown in the following proposition:

Proposition 10 If the Strong RSA conjecture holds, then it also holds in a relativized world where

there is a randomness-�nding oracle for

~

H.

Proof: We need to show that an e�cient algorithm for solving strong RSA in a relativized world

where there is a randomness-�nding oracle for

~

H can be used to solve strong RSA also in the

\real world". To do that, we use the trapdoor for the chameleon hashing scheme to implement the

randomness-�nding oracle in the real world.

A little more precisely, if there exists an e�cient reduction algorithm A that solves strong RSA in

the relativized world, then we construct an e�cient algorithm that solves strong RSA (without the

oracle) by picking a Chameleon hashing instance ch together with its trapdoor. Now, we execute the

algorithm A, and whenever the forger asks a query concerning the hash, A turns to the randomness-

�nding oracle, which uses the randomness-�nding algorithm of CH with the trapdoor to answer

that query. 2

Since Chameleon hashing exists based on the factoring conjecture (which, in turn, is implied by

the strong RSA conjecture) we have

Corollary 11 Under the Strong RSA conjecture, suitable hashing families exist.

7 Conclusions

We present a new signature scheme which has advantages in terms of both security and e�ciency.

In terms of e�ciency, this scheme follows the \hash-and-sign" paradigm, i.e. the message is �rst

hashed via a speci�c kind of hash function and then an RSA-like function is applied. Thus, in total

the scheme requires a hashing operation and the only one modular exponentiation. These is no

need to maintain trees and to rely on some stored information on the history of previous signatures.

The security of the scheme is based on two main assumptions. One is the \strong RSA" assumption:

although this assumption has already appeared previously in the literature, it is still quite new

and we think it needs to be studied carefully. The other assumption is the existence of division-

intractable hash functions. We showed that such functions exist and that e�cient implementations

(like the one in Section 5.2) are possible based on conjectures which seem to be supported by

experimental results and which we invite the research community to explore. In any case the proof

of security is still based on concrete computational assumptions rather than on idealized models of

computation (like the random oracle model).

References

[1] N. Bari�c, and B. P�tzmann. Collision-free accumulators and Fail-stop signature schemes

without trees. In Advances in Cryptology - Eurocrypt '97, LNCS vol. 1233, Springer, 1997,

pages 480-494.

13

[2] M. Bellare and P. Rogaway. Random Oracles are Practical: a Paradigm for Designing E�cient

Protocols. In 1st Conf. on Computer and Communications Security, ACM, pages 62{73, 1993.

[3] M. Bellare and P. Rogaway. The Exact Security of Digital Signatures: How to Sign with RSA

and Rabin. In Advances in Cryptology { Eurocrypt '96, LNCS vol. 1070, Springer-Verlag,

1996, pages 399-416.

[4] C. Boyd. Digital Signature and Public Key Cryptosystem in a Prime Order Subgroup of Z

�

n

,

Proceedings of ICICS'97, LNCS vol. 1334, Springer-Verlag, 1997, pages 346{355.

[5] G. Brassard, D. Chaum, and C. Cr�epeau. Minimum disclosure proofs of knowledge. JCSS,

37(2):156{189, 1988.

[6] R. Canetti, O. Goldreich and S. Halevi. The Random Oracle Methodology, Revisited. STOC

'98, ACM, 1998, pages ???-???.

[7] L. Carter and M. Wegman. Universal Hash Functions. J. of Computer and System Science

18, 1979, pp. 143-154.

[8] R. Cramer and I. Damg�ard. New generation of secure and practical RSA-based signatures.

In Advances in Cryptology { CRYPTO '96, LNCS vol. 1109, Springer-Verlag, 1996, pages

173-185.

[9] I. Damg�ard. Collision free hash functions and public key signature schemes. In Advances in

Cryptology - Eurocrypt '87, LNCS vol. 304, Springer, 1987, pages 203-216.

[10] C. Dwork and M. Naor. An e�cient existentially unforgeable signature scheme and its appli-

cations. In J. of Cryptology, 11(3), Summer 1998, pp. 187{208

[11] National Institute for Standards and Technology. Secure Hash Standard, April 17 1995.

[12] R. Gennaro, D. Micciancio, and T. Rabin. An E�cient Non-Interactive Statistical Zero-

Knowledge Proof System for Quasi-Safe Prime Products. Proceedings of 1998 ACMConference

on Computers and Communication Security.

[13] S. Goldwasser, S. Micali, and R. Rivest. A digital signature scheme secure against adaptive

chosen-message attacks. SIAM J. Computing, 17(2):281{308, April 1988.

[14] National Institute of Standards and Technology. Digital Signature Standard (DSS), Technical

report 169, August 30, 1991.

[15] W. de Jonge and D. Chaum, Some Variations on RSA Signatures & their Security. Advances

in Cryptology: CRYPTO '86, LNCS vol. 263, Springer-Verlag, 1987, pages 49{59.

[16] A.K. Lenstra and H.W. Lenstra, Jr. Algorithms in number theory. In Handbook of theoretical

computer science, Volume A (Algorithms and Complexity), J. Van Leeuwen (editor), MIT

press/Elsevier, 1990. Pages 673-715.

[17] M. Michels, M. Stadler and H.-M. Sun. On the Security of Some Variants of the RSA Signature

Scheme. Computer Security - ESORICS '98, LNCS vol. 1485, Springer-Verlag, 1998, pages

85{96.

[18] D. Pointcheval and J. Stern. Security Proofs for Signature Schemes. In Advances in Cryptology

{ Proceedings of EUROCRYPT'96, LNCS vol. 1070, Springer-Verlag, pages 387{398.

14

[19] R. Rivest, A. Shamir and L. Adelman. A Method for Obtaining Digital Signature and Public

Key Cryptosystems. Comm. of ACM, 21 (1978), pp. 120{126

[20] A. Shamir. On the generation of cryptographically strong pseudorandom sequences. ACM

Trans. on Computer Systems, 1(1), 1983, pages 38-44.

[21] H.Krawczyk and T.Rabin. Chameleon Hashing and Signatures. manuscript.

A Experimental Results

Here we describe the results of some experiments which we performed to estimate the \true com-

plexity" of the division property. We tried to measure how many random k-bit integers need to be

chosen until we have a good chance of �nding one that divides the product of all the others.

We carried out these experiments for bit-lengths 16 through 96 in increments of 8 (namely k =

16; 24; : : : ; 88; 96). For each bit length we performed 200 experiments in which we counted how

many random integers of this length were chosen until one of them divides the product of the

others. For each length, we took the second-smallest result (out the of the 200 experiments) as

our estimate for the number of integers we need to choose to get a 1% chance of violating the

division-intractability requirement.

7

We repeated this experiment twice: in one experiment we chose random k-bit integers, and in the

other we forced the least- and most-signi�cant bits to '1'. The results are described in Figure 1. It

can be seen that the number of integers seems to behave exponentially in the bit-length. Speci�cally

for the bit-lengths k = 16 : : :96, it seems to behave more or less as 2

k=8

(in fact even a little more).

Forcing the low and high bits to `1' seems to increase the complexity slightly.

7

Taking the 2nd-smallest of 200 experiments seems like a slightly better estimate than taking the smallest of 100

experiments, and our equipment didn't allow us to do more than 200 experiments for each bit-length.

15

Bit length 16 24 32 40 48 56 64 72 80 88 96

random 5 9 23 50 151 307 691 1067 2786 3054 8061

msb=lsb=1 8 17 39 63 160 293 710 1472 3198 4013 8124

10 20 30 40 50 60 70 80 90 100
10

0

10
1

10
2

10
3

10
4

Complexity of the division property for some bit lengths

Bit length

N
um

be
r

 o
f

in
te

ge
rs

−o− : Number of random integers

−*− : Number of integers with msb=lsb=1

Figure 1: Experimental results. The line |o{ describes the number of random k-bit integers, and

the line |?{ describes the number of random k-bit integers with the �rst and last bits set to `1'.

16

