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Abstrat. We show that if any one-way funtion exists, then 3-round

onurrent zero-knowledge arguments for all NP problems an be built

in a model where a short auxiliary string with a presribed distribu-

tion is available to the players. We also show that all known eÆient

identi�ation shemes using speialized assumptions an be modi�ed to

work in this model with no essential loss of eÆieny. We argue that the

assumptions of the model will be satis�ed in most pratial senarios

where publi key ryptography is used, in partiular our onstrution

works given any seure publi key infrastruture. Finally, we point out

that in a model with preproessing (and no auxiliary string) proposed

earlier, onurrent zero-knowledge for NP an be based on any one-way

funtion.

1 Introdution

In a zero-knowledge protool [17℄, a prover onvines a veri�er that some state-

ment is true, while the veri�er learns nothing exept the validity of the asser-

tion. Apart from being interesting as theoretial objets, it is well-known that

zero-knowledge protools are extremely useful tools for pratial problems, e.g.,

stand-alone for identi�ation shemes, but perhaps even more as subprotools

in shemes for voting, eletroni ash, et.

Hene the appliability of the theory of zero-knowledge in real life is of ex-

treme importane. One important aspet of this is omposition of protools, and

the extent to whih suh omposition preserves zero-knowledge. While sequen-

tial omposition does preserve zero-knowledge, this is not always the ase for

parallel omposition [16℄.

In [9℄ Dwork, Naor and Sahai pointed out that the strit synhronization

usually assumed when omposing zero-knowledge protools is unrealisti in se-

narios suh as Internet based ommuniation. Here, many instanes of the same

or di�erent protools may start at di�erent times and may run with no �xed

timing of messages. What is needed here is a stronger property known as on-

urrent zero-knowledge, i.e., even an arbitrary interleaving of several instanes

of zero-knowledge protools is again zero-knowledge, even when the veri�ers are

all ontrolled by a single adversary, who may use information obtained from one

protool to determine its behavior in another instane.
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Unfortunately, standard onstrutions for zero-knowledge protools fail to

provide this property. This is beause they are based on simulation by rewinding

the veri�er. In a onurrent setting, the simulator may be fored to rewind an

exponential number of times. In fat, it seems that onurrent zero-knowledge

annot be provided at all in the usual model with as few rounds as ordinary

zero-knowledge. Kilian, Petrank and Rako� [14℄ show that only BPP languages

have onurrent zero-knowledge proofs or arguments with 4 rounds or less, if

blak-box simulation is assumed
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Thus, a lot of researh has gone into �nding ways of getting around this

problem. In [9℄, it was shown that given onstraints on the time at whih mes-

sages must arrive, onurrent zero-knowledge an be ahieved for all of NP in a

onstant number of rounds. Subsequently it was shown that the need for timing

onstraints ould be pushed into a preproessing phase[10℄. In [7℄ it was shown

that the timing onstraints in the preproessing an be redued to merely ensur-

ing that all preproessings are �nished before the main proofs start. This omes

at the prie that the work needed in the preproessing depends on the size and

number of statements to be proved later. Finally, Rihardson and Kilian [20℄

show that it is possible to do without timing onstraints, at the expense of a

non-onstant number of rounds.

We note that a ompletely di�erent approah is possible: one ould go for a

weaker property than zero-knowledge, one that would be preserved in a onur-

rent setting. One suh possibility is the Witness-Hiding (WH) protools of Feige

and Shamir [12℄. Most WH protools are based on the standard paradigm of

the prover proving knowledge of one of two "omputationally independent" wit-

nesses without revealing whih one he knows. Suh protools are also WH when

used onurrently, and an be used to onstrut seure identi�ation systems. In

[6℄, very eÆient methods for building suh protools are developed. However,

for more general use, e.g., as subrutines in multiparty omputation or veri�able

seret sharing protools, WH is not always suÆient, one needs simulatability

to prove the overall protool seure.

2 Our Work

Our main objetive is to show that onurrent zero-knowledge an often be

obtained in a simple way using standard tools. We do not laim any major new

tehniques, in fat our solution is quite straightforward. Nevertheless, we believe

it is useful to realize that onurrent zero-knowledge is very easy to ahieve in

many pratial senarios. We do not mean to suggest that this makes the large

body of theoretial work on the subjet less interesting or important, or that our

solution an handle any pratial senario. Independently, Kilian and Petrank

have made observations very similar to ours [13℄.
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2.1 The Model

Our work starts from the following assumption: an auxiliary string with a pre-

sribed distribution is available to the prover and veri�er. Given this assumption

we will see that onurrent zero-knowledge is easy to ahieve in onstant round

with no timing onstraints or preproessing. Informally, zero-knowledge in suh

a setting means as usual that the veri�ers entire view an be simulated eÆ-

iently, whih here means its view of the interation with the prover, as well as

the auxiliary string. Soundness means that no polynomial time prover an heat

the veri�er with non-negligible probability where the probability is taken over

the hoie of the auxiliary string as well as the oin tosses of the players. Formal

de�nitions will appear in the �nal version of this paper.

Note that the standard non-interative zero-knowledge model (where the

auxiliary string is a uniformly hosen random string) [2℄ is a speial ase, and

indeed by their very nature non-interative zero-knowledge proofs do not require

rewinding to simulate, and so are robust in a onurrent setting. It is even

possible to do any polynomial number of non-interative proofs based on the

same globally shared random string [11℄.

However, there are still several reasons why non-interative zero-knowledge

proofs are not the answer to all our problems: they are in general muh less

eÆient than interative ones and - as far as we know - require stronger ryp-

tographi assumptions (trapdoor one-way permutations as opposed to arbitrary

one-way funtions). We would like a solution allowing us to use standard eÆient

onstrutions of protools seurely in a onurrent setting, without signi�ant

loss of eÆieny. Moreover, non-interative proofs are always proofs of language

membership, and annot be proofs of knowledge for non-trivial problems. There

are ases, for instane when ensuring so alled input awareness in multiparty

omputation, where proofs of knowledge (rather than membership proofs) are

required.

The model we use (with a general auxiliary string) was also used in [4℄ (for

a di�erent purpose). The rationale for allowing a general distribution of the

referene string is of ourse that one may hope that this allows for more eÆient

protools, for example a muh shorter auxiliary string. The problem, on the

other hand, may be that requiring a more powerful resoure makes the model

less realisti.

However, as we shall see, our protools do in fat apply to a realisti situation,

namely a publi-key ryptography setting where users have publi/private key

pairs. In fat our prover and veri�er do not need to have key pairs themselves,

nevertheless, they will be able to prove and verify general NP statements in

onurrent zero-knowledge by using the publi key P

A

of a third party A as

auxiliary string. This will work, provided that

{ The veri�er believes that A's seret key is not known to the prover.

{ The prover believes that P

A

was generated using the proper key generation

algorithm for the publi-key system in use.



We stress that A does not need to take part in the protools at all, nor does he

need to be aware that his publi key is being used this way, in partiular keys for

standard publi key systems like RSA, El Gamal or DSS an be used diretly.

Note that if we have a seure publi key infrastruture where publi keys

are being erti�ed by a erti�ation authority (CA), then all our demands are

already automatially satis�ed beause the CA an serve as player A in the

above: in order for the infrastruture to be seure in the �rst plae, eah user

needs to have an authenti opy of the CA's publi key available, and one must of

ourse trust that the CA generated a proper key and does not reveal its private

key to anyone else.

So although our model does make stronger assumptions on the environment

than the standard one, we believe that this an be reasonable: The problem of

onurrent zero-knowledge arises from the need to apply zero-knowledge proto-

ols in real situations. But then solutions to this problem should be also allowed

to take advantage of resoures that may exist in suh senarios.

2.2 The Results

Our �rst result is a general onstrution for protools of a partiular form. As-

sume we have a binary relation R, and a 3-move proof of knowledge for R, where

the veri�er sends a random hallenge as the seond message. Thus onversations

in this protool are of form (a; e; z), where the prover hooses a; z. We will as-

sume that this protool is honest veri�er zero-knowledge in the sense that given

e, one an eÆiently ompute a orretly distributed onversation where e is the

hallenge. Finally we assume that a heating prover an answer only one of the

possible hallenges, or more preisely, from the ommon input x and any pair

of aepting onversations (a; e; z); (a; e

0

; z

0

) where e 6= e

0

, one an ompute a

witness of x, i.e. w suh that (x;w) 2 R. We all this a �-protool. We have

Theorem 1. Given any binary relation R and a �-protool for R. If one-way

funtions exist, then there exists a omputationally onvining and onurrent

zero-knowledge 3-move proof of knowledge (with negligible knowledge error and

no timing onstraints) for R in the auxiliary string model.

The onstrution behind this result an be applied in pratie to the well known

identi�ation shemes of Shnorr and Guillou-Quisquater to yield onurrent

zero-knowledge identi�ation shemes in the auxiliary string model with negli-

gible loss of eÆieny ompared to the original protools (whih were not even

zero-knowledge in the usual sense!). The idea behind this result also immediately

gives:

Theorem 2. If one-way funtions exist, there exist 3-move onurrent zero-

knowledge interative arguments in the auxiliary string model (with no timing

onstraints) for any NP problem.

In both these results, the length of the auxiliary string is essentially the size

of the omputational problem the prover must solve in order to heat. The length

does not depend on the size or the number of statements proved.



Our �nal result is an observation onerning the preproessing model of

Dwork and Sahai [10℄ (where there is no auxiliary string). It was shown in [10℄

that prover and veri�er an do a one-and-for-all preproessing (where timing

onstraints are applied), and then do any number of interative arguments for

any NP problem in onurrent zero-knowledge (with no timing onstraints) in 4

rounds. This was shown under the assumption that one-way trapdoor permuta-

tions exist. Below, we observe the following:

Theorem 3. If any one-way funtions exists, then any NP problem has a 3-

round onurrent zero-knowledge argument in the preproessing model of Dwork

and Sahai.

We note that our preproessing is one-and-for-all, like the one in [10℄: one

the preproessing is done, the prover and veri�er an exeute any polynomial

number of proofs seurely, and the omplexity of the preproessing does not

depend on the number or size of the statements proved.

3 The Protools

3.1 Trapdoor Commitments Shemes

In a ommitment sheme, a ommitter C an ommit himself to a seret s hosen

from some �nite set by sending a ommitment to a reieverR. The reeiver should

be unable to �nd s from the ommitment, yet C hould be able to later open

the ommitment and onvine R about the original hoie of s.

A trapdoor ommitment sheme is a speial ase that an be loosely desribed

as follows: �rst a publi key pk is hosen based on a seurity parameter value k,

usually by R, and is sent to C. There is a �xed funtion ommit that C an use

to ompute a ommitment  to s by hoosing some random input r, and setting

 = ommit(s; r; pk). Opening takes plae by revealing s; r to R, who an then

hek that ommit(r; s; pk) is the value he reeived originally. We require the

following:

Hiding: For orretly hosen pk, uniform r; r

0

and any s; s

0

, the distributions

of ommit(s; r; pk); ommit(s

0

; r

0

; pk) are polynomially indistinguishable.

Binding: For any polynomially bounded C, the probability that C on input

pk omputes s; r; s

0

; r

0

suh that ommit(s; r; pk) = ommit(s

0

; r

0

; pk) and

s 6= s

0

is negligible.

Trapdoor Property: The algorithm for generating pk also outputs a string

t, the trapdoor. There is an eÆient algorithm whih on input t; pk out-

puts a ommitment , and then on input any s produes r suh that  =

ommit(s; r; pk). The distribution of  is poynomially indistinguishable from

that of ommitments omputed in the usual way.

In other words, the ommitment sheme is binding if you know only pk, but

given the trapdoor, you an heat arbitrarily.



From the results in Shamir et al.[15℄, it follows that existene of any one-way

funtion f implies the existene of a trapdoor ommitment sheme, where the

publi key is simply f(y), where y is hosen uniformly in the input domain of

f , and y is the trapdoor. Based on standard intratability assumptions suh as

hardness of disrete log or RSA root extration, very eÆient trapdoor ommit-

ment shemes an be built, see e.g. [5℄.

3.2 A onstrution for �-protools

In what follows, we will assume that we have a relation R and a �-protool P

for R. Also, we will be in the auxiliary string model, where the auxiliary string

will be the publi key pk of a trapdoor ommitment sheme. Our protool in the

auxiliary string model gets as ommon input for prover and veri�er x, while the

prover gets as private input w, suh that (x;w) 2 R. For simpliity, we assume

that the ommitment sheme allows to ommit in one ommitment to any string

a, that may our as the �rst message in P (in ase of a bit ommitment sheme,

we ould just ommit bit by bit). The protool then proeeds as follows:

1. On input x;w, the prover omputes a using the prover's algorithm from P ,

hooses r at random and sends  = ommit(a; r; pk) to the veri�er.

2. The veri�er hooses e at random and sends it to the prover.

3. The prover omputes z, the answer to hallenge e in P and sends z; a; r to

the veri�er.

4. The veri�er aepts i� it would have aepted on x; a; e; z in P , and if  =

ommit(a; r; pk).

It is straightforward to show that this protool has the desired properties.

First, a simulator for the protool given an arbitrary veri�er V

�

:

1. Generate pk with known trapdoor t and give x; pk to V

�

.

2. Send a ommitment  omputed aording to the trapdoor property to V

�

and get e bak.

3. Run the honest veri�er simulator on input e to get an aepting onversation

(a; e; z) in the original protool. Use the trapdoor to ompute r suh that

 = ommit(a; r; pk). Send z; a; r to V

�

.

This simulation works based on the hiding and trapdoor properties of the om-

mitment sheme, and does not require rewinding of V

�

, hene the protool is

also onurrent zero-knowledge.

For the knowledge soundness (or validity), we give only a very loose analysis

in this preliminary version. Note that we are using the de�nition of Bellare

and Goldreih, in the version modi�ed for omputationally onvining proofs

of knowledge[3℄. We will aim for a knowledge error �(x) satisfying that the

binding property of the ommitments an be broken in time poly(jxj)=�(x) with

only negligible probability. Depending on the intratability assumption we are

willing to make in the binding ondition, we an set �(x) to be some onrete

negligible funtion. The properties of a �-protool are preserved under parallel



omposition, so we an assume without loss of generality that the length k of

the hallenge e is suh that 2

�k

< �(x).

From any prover onvining the veri�er with probability p(x) > �(x), we an

extrat, using rewinding, onvining answers to two di�erent hallenges e; e

0

, in

time proportional to 1=p(x) sine p(x) > 2

�k

. Note that this is less obvious

than it may seem: the prover may be probabilisti, but we still have to �x his

random tape one we start rewinding. And there is no gurantee that the prover

has suess probability p(x) for all hoies of random tapes, indeed p(x) is the

average over all suh hoies. However, a strategy for probing the prover an be

devised that irumvents this problem. Details will appear in the �nal version

of the paper.

One we are suessful, we get ommitment , onversations (a; e; z); (a

0

; e

0

; z

0

)

that are aepting in the original protool, and �nally values r; r

0

suh that

 = ommit(a; r; pk) = ommit(a

0

; r

0

; pk). This breaks the binding property of

the ommitment sheme if a 6= a

0

, but this possibility an be ignored beause we

have used time less than a polynomial times 1=�(x) to reah this situation. On

the other hand, if a = a

0

, a witness for the ommon input x an be omputed

by assumption on the original protool.

This protool and the result from [15℄ above on existene of trapdoor om-

mitments now implies Theorem 1. As for Theorem 2, we just need to observe

that the standard zero-knowledge interative protools for NP omplete prob-

lems [18, 1℄ an in fat be based on any ommitment sheme. They are usually

desribed as sequential iterations of a basi 3-move protool. However, in our

model we will use a trapdoor ommitment sheme, and do the iterations in par-

allel: it is then trivial that the protools an be straight line simulated if the

simulator knows the trapdoor. And soundness for a poly-time bounded prover

follows by a standard rewinding argument. A more areful analysis of the error

probability and the way it depends on the intratability assumption we make

an be obtained using the de�nitions from [8℄.

This same idea applies easily to the preproessing model (with no auxiliary

string) of Dwork and Sahai [10℄: here, the prover and veri�er are allowed to do a

preproessing, where timing onstraints are used in order to ensure onurrent

zero-knowledge. After this, the goal is to be able to do any number of interative

arguments in onurrent zero-knowledge, without timing onstraints. In [10℄, it

is shown how to ahieve this based on existene of one-way trapdoor permuta-

tions. However, an idea similar to the above will allow us to do it based on any

one-way funtion (and a smaller number of rounds): In the preproessing, the

veri�er hooses an instane of the trapdoor ommitment sheme from [15℄ and

sends the publi key to the prover. The veri�er then proves knowledge of the

trapdoor. After this, any number of interative arguments for NP problems an

be arried out in onstant round and onurrent zero-knowledge. We will use the

parallel version of [18℄ or [1℄ based on the ommitment sheme we established in

the preproessing. Simulation an be done by extrating the trapdoor from the

veri�er's proof of knowledge (here, rewinding is allowed beause of the timing

onstraints) and then simulate the main proofs straight-line.



4 Implementation in Pratie

In our arguments for pratiality of our model, we laimed that the publi key

of a third party an be used as auxiliary string. Given the onstrution above,

this amounts to laiming that the publi key of any publi-key rypto-system or

signature sheme an also be used without modi�ation as the publi key of a

trapdoor ommitment sheme.

We an assume that the publi key was generated using some known key

generation algorithm (reall that we originally assumed about the third party

that he generates his keys properly and does not give away the private key).

Clearly, the funtion mapping the random bits onsumed by this algorithm to

the resulting publi key must be one-way. Otherwise, the system ould be broken

by reonstruting the random input and running the algorithm to obtain the

private key. Thus, from a theoretial point of view, we an always think of the

publi key as the image of a random input under a one-way funtion and apply

the ommitment sheme from [15℄.

This will not be a pratial solution. But fortunately, standard publi key

systems used in real life allow muh more eÆient implementations. Any system

based on disrete logarithms in a prime order group, suh as DSS, many El

Gamal variants, and Cramer-Shoup has as part of the publi key some group

element of form g

x

where x is private and g is publi, and where g has prime

order q . This is preisely the publi key needed for the trapdoor ommitment

sheme of Pedersen [19℄, whih allows ommitment to a string of length log q in

one ommitment.

If we have an RSA publi key with modulus n, we an always onstrut from

this a publi key for the RSA based trapdoor ommitment sheme desribed in

[5℄. We de�ne q to be the least prime suh that q > n (this an easily be omputed

by both prover and veri�er). We then �x some number b in Z

�

n

, this ould be

for instane be a string representing the name of the veri�er. The intratability

assumption for the ommitment sheme then is that the prover will not be able

to extrat a q'th root mod n of b (suh a root always exists by hoie of q). Also

this sheme allows omitment to log q bits in one ommitment.

Note that when exeuting a proof of the kind we onstruted, it is always

enough in pratie for the prover to make only one ommitment: he an always

hash the string the wants to ommit to using a standard ollision intratable hash

funtion and ommit to the hash value. This means that well known eÆient

protools an be exeuted in this model with no signi�ant loss of eÆieny.
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