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Abstra
t. We show that if any one-way fun
tion exists, then 3-round


on
urrent zero-knowledge arguments for all NP problems 
an be built

in a model where a short auxiliary string with a pres
ribed distribu-

tion is available to the players. We also show that all known eÆ
ient

identi�
ation s
hemes using spe
ialized assumptions 
an be modi�ed to

work in this model with no essential loss of eÆ
ien
y. We argue that the

assumptions of the model will be satis�ed in most pra
ti
al s
enarios

where publi
 key 
ryptography is used, in parti
ular our 
onstru
tion

works given any se
ure publi
 key infrastru
ture. Finally, we point out

that in a model with prepro
essing (and no auxiliary string) proposed

earlier, 
on
urrent zero-knowledge for NP 
an be based on any one-way

fun
tion.

1 Introdu
tion

In a zero-knowledge proto
ol [17℄, a prover 
onvin
es a veri�er that some state-

ment is true, while the veri�er learns nothing ex
ept the validity of the asser-

tion. Apart from being interesting as theoreti
al obje
ts, it is well-known that

zero-knowledge proto
ols are extremely useful tools for pra
ti
al problems, e.g.,

stand-alone for identi�
ation s
hemes, but perhaps even more as subproto
ols

in s
hemes for voting, ele
troni
 
ash, et
.

Hen
e the appli
ability of the theory of zero-knowledge in real life is of ex-

treme importan
e. One important aspe
t of this is 
omposition of proto
ols, and

the extent to whi
h su
h 
omposition preserves zero-knowledge. While sequen-

tial 
omposition does preserve zero-knowledge, this is not always the 
ase for

parallel 
omposition [16℄.

In [9℄ Dwork, Naor and Sahai pointed out that the stri
t syn
hronization

usually assumed when 
omposing zero-knowledge proto
ols is unrealisti
 in s
e-

narios su
h as Internet based 
ommuni
ation. Here, many instan
es of the same

or di�erent proto
ols may start at di�erent times and may run with no �xed

timing of messages. What is needed here is a stronger property known as 
on-


urrent zero-knowledge, i.e., even an arbitrary interleaving of several instan
es

of zero-knowledge proto
ols is again zero-knowledge, even when the veri�ers are

all 
ontrolled by a single adversary, who may use information obtained from one

proto

ol to determine its behavior in another instan
e.
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Unfortunately, standard 
onstru
tions for zero-knowledge proto
ols fail to

provide this property. This is be
ause they are based on simulation by rewinding

the veri�er. In a 
on
urrent setting, the simulator may be for
ed to rewind an

exponential number of times. In fa
t, it seems that 
on
urrent zero-knowledge


annot be provided at all in the usual model with as few rounds as ordinary

zero-knowledge. Kilian, Petrank and Ra
ko� [14℄ show that only BPP languages

have 
on
urrent zero-knowledge proofs or arguments with 4 rounds or less, if

bla
k-box simulation is assumed

1

.

Thus, a lot of resear
h has gone into �nding ways of getting around this

problem. In [9℄, it was shown that given 
onstraints on the time at whi
h mes-

sages must arrive, 
on
urrent zero-knowledge 
an be a
hieved for all of NP in a


onstant number of rounds. Subsequently it was shown that the need for timing


onstraints 
ould be pushed into a prepro
essing phase[10℄. In [7℄ it was shown

that the timing 
onstraints in the prepro
essing 
an be redu
ed to merely ensur-

ing that all prepro
essings are �nished before the main proofs start. This 
omes

at the pri
e that the work needed in the prepro
essing depends on the size and

number of statements to be proved later. Finally, Ri
hardson and Kilian [20℄

show that it is possible to do without timing 
onstraints, at the expense of a

non-
onstant number of rounds.

We note that a 
ompletely di�erent approa
h is possible: one 
ould go for a

weaker property than zero-knowledge, one that would be preserved in a 
on
ur-

rent setting. One su
h possibility is the Witness-Hiding (WH) proto
ols of Feige

and Shamir [12℄. Most WH proto
ols are based on the standard paradigm of

the prover proving knowledge of one of two "
omputationally independent" wit-

nesses without revealing whi
h one he knows. Su
h proto
ols are also WH when

used 
on
urrently, and 
an be used to 
onstru
t se
ure identi�
ation systems. In

[6℄, very eÆ
ient methods for building su
h proto
ols are developed. However,

for more general use, e.g., as subrutines in multiparty 
omputation or veri�able

se
ret sharing proto
ols, WH is not always suÆ
ient, one needs simulatability

to prove the overall proto
ol se
ure.

2 Our Work

Our main obje
tive is to show that 
on
urrent zero-knowledge 
an often be

obtained in a simple way using standard tools. We do not 
laim any major new

te
hniques, in fa
t our solution is quite straightforward. Nevertheless, we believe

it is useful to realize that 
on
urrent zero-knowledge is very easy to a
hieve in

many pra
ti
al s
enarios. We do not mean to suggest that this makes the large

body of theoreti
al work on the subje
t less interesting or important, or that our

solution 
an handle any pra
ti
al s
enario. Independently, Kilian and Petrank

have made observations very similar to ours [13℄.

1

Virtually all known zero-knowledge proto
ols are bla
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2.1 The Model

Our work starts from the following assumption: an auxiliary string with a pre-

s
ribed distribution is available to the prover and veri�er. Given this assumption

we will see that 
on
urrent zero-knowledge is easy to a
hieve in 
onstant round

with no timing 
onstraints or prepro
essing. Informally, zero-knowledge in su
h

a setting means as usual that the veri�ers entire view 
an be simulated eÆ-


iently, whi
h here means its view of the intera
tion with the prover, as well as

the auxiliary string. Soundness means that no polynomial time prover 
an 
heat

the veri�er with non-negligible probability where the probability is taken over

the 
hoi
e of the auxiliary string as well as the 
oin tosses of the players. Formal

de�nitions will appear in the �nal version of this paper.

Note that the standard non-intera
tive zero-knowledge model (where the

auxiliary string is a uniformly 
hosen random string) [2℄ is a spe
ial 
ase, and

indeed by their very nature non-intera
tive zero-knowledge proofs do not require

rewinding to simulate, and so are robust in a 
on
urrent setting. It is even

possible to do any polynomial number of non-intera
tive proofs based on the

same globally shared random string [11℄.

However, there are still several reasons why non-intera
tive zero-knowledge

proofs are not the answer to all our problems: they are in general mu
h less

eÆ
ient than intera
tive ones and - as far as we know - require stronger 
ryp-

tographi
 assumptions (trapdoor one-way permutations as opposed to arbitrary

one-way fun
tions). We would like a solution allowing us to use standard eÆ
ient


onstru
tions of proto
ols se
urely in a 
on
urrent setting, without signi�
ant

loss of eÆ
ien
y. Moreover, non-intera
tive proofs are always proofs of language

membership, and 
annot be proofs of knowledge for non-trivial problems. There

are 
ases, for instan
e when ensuring so 
alled input awareness in multiparty


omputation, where proofs of knowledge (rather than membership proofs) are

required.

The model we use (with a general auxiliary string) was also used in [4℄ (for

a di�erent purpose). The rationale for allowing a general distribution of the

referen
e string is of 
ourse that one may hope that this allows for more eÆ
ient

proto
ols, for example a mu
h shorter auxiliary string. The problem, on the

other hand, may be that requiring a more powerful resour
e makes the model

less realisti
.

However, as we shall see, our proto
ols do in fa
t apply to a realisti
 situation,

namely a publi
-key 
ryptography setting where users have publi
/private key

pairs. In fa
t our prover and veri�er do not need to have key pairs themselves,

nevertheless, they will be able to prove and verify general NP statements in


on
urrent zero-knowledge by using the publi
 key P

A

of a third party A as

auxiliary string. This will work, provided that

{ The veri�er believes that A's se
ret key is not known to the prover.

{ The prover believes that P

A

was generated using the proper key generation

algorithm for the publi
-key system in use.



We stress that A does not need to take part in the proto
ols at all, nor does he

need to be aware that his publi
 key is being used this way, in parti
ular keys for

standard publi
 key systems like RSA, El Gamal or DSS 
an be used dire
tly.

Note that if we have a se
ure publi
 key infrastru
ture where publi
 keys

are being 
erti�ed by a 
erti�
ation authority (CA), then all our demands are

already automati
ally satis�ed be
ause the CA 
an serve as player A in the

above: in order for the infrastru
ture to be se
ure in the �rst pla
e, ea
h user

needs to have an authenti
 
opy of the CA's publi
 key available, and one must of


ourse trust that the CA generated a proper key and does not reveal its private

key to anyone else.

So although our model does make stronger assumptions on the environment

than the standard one, we believe that this 
an be reasonable: The problem of


on
urrent zero-knowledge arises from the need to apply zero-knowledge proto-


ols in real situations. But then solutions to this problem should be also allowed

to take advantage of resour
es that may exist in su
h s
enarios.

2.2 The Results

Our �rst result is a general 
onstru
tion for proto
ols of a parti
ular form. As-

sume we have a binary relation R, and a 3-move proof of knowledge for R, where

the veri�er sends a random 
hallenge as the se
ond message. Thus 
onversations

in this proto
ol are of form (a; e; z), where the prover 
hooses a; z. We will as-

sume that this proto
ol is honest veri�er zero-knowledge in the sense that given

e, one 
an eÆ
iently 
ompute a 
orre
tly distributed 
onversation where e is the


hallenge. Finally we assume that a 
heating prover 
an answer only one of the

possible 
hallenges, or more pre
isely, from the 
ommon input x and any pair

of a

epting 
onversations (a; e; z); (a; e

0

; z

0

) where e 6= e

0

, one 
an 
ompute a

witness of x, i.e. w su
h that (x;w) 2 R. We 
all this a �-proto
ol. We have

Theorem 1. Given any binary relation R and a �-proto
ol for R. If one-way

fun
tions exist, then there exists a 
omputationally 
onvin
ing and 
on
urrent

zero-knowledge 3-move proof of knowledge (with negligible knowledge error and

no timing 
onstraints) for R in the auxiliary string model.

The 
onstru
tion behind this result 
an be applied in pra
ti
e to the well known

identi�
ation s
hemes of S
hnorr and Guillou-Quisquater to yield 
on
urrent

zero-knowledge identi�
ation s
hemes in the auxiliary string model with negli-

gible loss of eÆ
ien
y 
ompared to the original proto
ols (whi
h were not even

zero-knowledge in the usual sense!). The idea behind this result also immediately

gives:

Theorem 2. If one-way fun
tions exist, there exist 3-move 
on
urrent zero-

knowledge intera
tive arguments in the auxiliary string model (with no timing


onstraints) for any NP problem.

In both these results, the length of the auxiliary string is essentially the size

of the 
omputational problem the prover must solve in order to 
heat. The length

does not depend on the size or the number of statements proved.



Our �nal result is an observation 
on
erning the prepro
essing model of

Dwork and Sahai [10℄ (where there is no auxiliary string). It was shown in [10℄

that prover and veri�er 
an do a on
e-and-for-all prepro
essing (where timing


onstraints are applied), and then do any number of intera
tive arguments for

any NP problem in 
on
urrent zero-knowledge (with no timing 
onstraints) in 4

rounds. This was shown under the assumption that one-way trapdoor permuta-

tions exist. Below, we observe the following:

Theorem 3. If any one-way fun
tions exists, then any NP problem has a 3-

round 
on
urrent zero-knowledge argument in the prepro
essing model of Dwork

and Sahai.

We note that our prepro
essing is on
e-and-for-all, like the one in [10℄: on
e

the prepro
essing is done, the prover and veri�er 
an exe
ute any polynomial

number of proofs se
urely, and the 
omplexity of the prepro
essing does not

depend on the number or size of the statements proved.

3 The Proto
ols

3.1 Trapdoor Commitments S
hemes

In a 
ommitment s
heme, a 
ommitter C 
an 
ommit himself to a se
ret s 
hosen

from some �nite set by sending a 
ommitment to a re
ieverR. The re
eiver should

be unable to �nd s from the 
ommitment, yet C 
hould be able to later open

the 
ommitment and 
onvin
e R about the original 
hoi
e of s.

A trapdoor 
ommitment s
heme is a spe
ial 
ase that 
an be loosely des
ribed

as follows: �rst a publi
 key pk is 
hosen based on a se
urity parameter value k,

usually by R, and is sent to C. There is a �xed fun
tion 
ommit that C 
an use

to 
ompute a 
ommitment 
 to s by 
hoosing some random input r, and setting


 = 
ommit(s; r; pk). Opening takes pla
e by revealing s; r to R, who 
an then


he
k that 
ommit(r; s; pk) is the value he re
eived originally. We require the

following:

Hiding: For 
orre
tly 
hosen pk, uniform r; r

0

and any s; s

0

, the distributions

of 
ommit(s; r; pk); 
ommit(s

0

; r

0

; pk) are polynomially indistinguishable.

Binding: For any polynomially bounded C, the probability that C on input

pk 
omputes s; r; s

0

; r

0

su
h that 
ommit(s; r; pk) = 
ommit(s

0

; r

0

; pk) and

s 6= s

0

is negligible.

Trapdoor Property: The algorithm for generating pk also outputs a string

t, the trapdoor. There is an eÆ
ient algorithm whi
h on input t; pk out-

puts a 
ommitment 
, and then on input any s produ
es r su
h that 
 =


ommit(s; r; pk). The distribution of 
 is poynomially indistinguishable from

that of 
ommitments 
omputed in the usual way.

In other words, the 
ommitment s
heme is binding if you know only pk, but

given the trapdoor, you 
an 
heat arbitrarily.



From the results in Shamir et al.[15℄, it follows that existen
e of any one-way

fun
tion f implies the existen
e of a trapdoor 
ommitment s
heme, where the

publi
 key is simply f(y), where y is 
hosen uniformly in the input domain of

f , and y is the trapdoor. Based on standard intra
tability assumptions su
h as

hardness of dis
rete log or RSA root extra
tion, very eÆ
ient trapdoor 
ommit-

ment s
hemes 
an be built, see e.g. [5℄.

3.2 A 
onstru
tion for �-proto
ols

In what follows, we will assume that we have a relation R and a �-proto
ol P

for R. Also, we will be in the auxiliary string model, where the auxiliary string

will be the publi
 key pk of a trapdoor 
ommitment s
heme. Our proto
ol in the

auxiliary string model gets as 
ommon input for prover and veri�er x, while the

prover gets as private input w, su
h that (x;w) 2 R. For simpli
ity, we assume

that the 
ommitment s
heme allows to 
ommit in one 
ommitment to any string

a, that may o

ur as the �rst message in P (in 
ase of a bit 
ommitment s
heme,

we 
ould just 
ommit bit by bit). The proto
ol then pro
eeds as follows:

1. On input x;w, the prover 
omputes a using the prover's algorithm from P ,


hooses r at random and sends 
 = 
ommit(a; r; pk) to the veri�er.

2. The veri�er 
hooses e at random and sends it to the prover.

3. The prover 
omputes z, the answer to 
hallenge e in P and sends z; a; r to

the veri�er.

4. The veri�er a

epts i� it would have a

epted on x; a; e; z in P , and if 
 =


ommit(a; r; pk).

It is straightforward to show that this proto
ol has the desired properties.

First, a simulator for the proto
ol given an arbitrary veri�er V

�

:

1. Generate pk with known trapdoor t and give x; pk to V

�

.

2. Send a 
ommitment 
 
omputed a

ording to the trapdoor property to V

�

and get e ba
k.

3. Run the honest veri�er simulator on input e to get an a

epting 
onversation

(a; e; z) in the original proto
ol. Use the trapdoor to 
ompute r su
h that


 = 
ommit(a; r; pk). Send z; a; r to V

�

.

This simulation works based on the hiding and trapdoor properties of the 
om-

mitment s
heme, and does not require rewinding of V

�

, hen
e the proto
ol is

also 
on
urrent zero-knowledge.

For the knowledge soundness (or validity), we give only a very loose analysis

in this preliminary version. Note that we are using the de�nition of Bellare

and Goldrei
h, in the version modi�ed for 
omputationally 
onvin
ing proofs

of knowledge[3℄. We will aim for a knowledge error �(x) satisfying that the

binding property of the 
ommitments 
an be broken in time poly(jxj)=�(x) with

only negligible probability. Depending on the intra
tability assumption we are

willing to make in the binding 
ondition, we 
an set �(x) to be some 
on
rete

negligible fun
tion. The properties of a �-proto
ol are preserved under parallel




omposition, so we 
an assume without loss of generality that the length k of

the 
hallenge e is su
h that 2

�k

< �(x).

From any prover 
onvin
ing the veri�er with probability p(x) > �(x), we 
an

extra
t, using rewinding, 
onvin
ing answers to two di�erent 
hallenges e; e

0

, in

time proportional to 1=p(x) sin
e p(x) > 2

�k

. Note that this is less obvious

than it may seem: the prover may be probabilisti
, but we still have to �x his

random tape on
e we start rewinding. And there is no gurantee that the prover

has su

ess probability p(x) for all 
hoi
es of random tapes, indeed p(x) is the

average over all su
h 
hoi
es. However, a strategy for probing the prover 
an be

devised that 
ir
umvents this problem. Details will appear in the �nal version

of the paper.

On
e we are su

essful, we get 
ommitment 
, 
onversations (a; e; z); (a

0

; e

0

; z

0

)

that are a

epting in the original proto
ol, and �nally values r; r

0

su
h that


 = 
ommit(a; r; pk) = 
ommit(a

0

; r

0

; pk). This breaks the binding property of

the 
ommitment s
heme if a 6= a

0

, but this possibility 
an be ignored be
ause we

have used time less than a polynomial times 1=�(x) to rea
h this situation. On

the other hand, if a = a

0

, a witness for the 
ommon input x 
an be 
omputed

by assumption on the original proto
ol.

This proto
ol and the result from [15℄ above on existen
e of trapdoor 
om-

mitments now implies Theorem 1. As for Theorem 2, we just need to observe

that the standard zero-knowledge intera
tive proto
ols for NP 
omplete prob-

lems [18, 1℄ 
an in fa
t be based on any 
ommitment s
heme. They are usually

des
ribed as sequential iterations of a basi
 3-move proto
ol. However, in our

model we will use a trapdoor 
ommitment s
heme, and do the iterations in par-

allel: it is then trivial that the proto
ols 
an be straight line simulated if the

simulator knows the trapdoor. And soundness for a poly-time bounded prover

follows by a standard rewinding argument. A more 
areful analysis of the error

probability and the way it depends on the intra
tability assumption we make


an be obtained using the de�nitions from [8℄.

This same idea applies easily to the prepro
essing model (with no auxiliary

string) of Dwork and Sahai [10℄: here, the prover and veri�er are allowed to do a

prepro
essing, where timing 
onstraints are used in order to ensure 
on
urrent

zero-knowledge. After this, the goal is to be able to do any number of intera
tive

arguments in 
on
urrent zero-knowledge, without timing 
onstraints. In [10℄, it

is shown how to a
hieve this based on existen
e of one-way trapdoor permuta-

tions. However, an idea similar to the above will allow us to do it based on any

one-way fun
tion (and a smaller number of rounds): In the prepro
essing, the

veri�er 
hooses an instan
e of the trapdoor 
ommitment s
heme from [15℄ and

sends the publi
 key to the prover. The veri�er then proves knowledge of the

trapdoor. After this, any number of intera
tive arguments for NP problems 
an

be 
arried out in 
onstant round and 
on
urrent zero-knowledge. We will use the

parallel version of [18℄ or [1℄ based on the 
ommitment s
heme we established in

the prepro
essing. Simulation 
an be done by extra
ting the trapdoor from the

veri�er's proof of knowledge (here, rewinding is allowed be
ause of the timing


onstraints) and then simulate the main proofs straight-line.



4 Implementation in Pra
ti
e

In our arguments for pra
ti
ality of our model, we 
laimed that the publi
 key

of a third party 
an be used as auxiliary string. Given the 
onstru
tion above,

this amounts to 
laiming that the publi
 key of any publi
-key 
rypto-system or

signature s
heme 
an also be used without modi�
ation as the publi
 key of a

trapdoor 
ommitment s
heme.

We 
an assume that the publi
 key was generated using some known key

generation algorithm (re
all that we originally assumed about the third party

that he generates his keys properly and does not give away the private key).

Clearly, the fun
tion mapping the random bits 
onsumed by this algorithm to

the resulting publi
 key must be one-way. Otherwise, the system 
ould be broken

by re
onstru
ting the random input and running the algorithm to obtain the

private key. Thus, from a theoreti
al point of view, we 
an always think of the

publi
 key as the image of a random input under a one-way fun
tion and apply

the 
ommitment s
heme from [15℄.

This will not be a pra
ti
al solution. But fortunately, standard publi
 key

systems used in real life allow mu
h more eÆ
ient implementations. Any system

based on dis
rete logarithms in a prime order group, su
h as DSS, many El

Gamal variants, and Cramer-Shoup has as part of the publi
 key some group

element of form g

x

where x is private and g is publi
, and where g has prime

order q . This is pre
isely the publi
 key needed for the trapdoor 
ommitment

s
heme of Pedersen [19℄, whi
h allows 
ommitment to a string of length log q in

one 
ommitment.

If we have an RSA publi
 key with modulus n, we 
an always 
onstru
t from

this a publi
 key for the RSA based trapdoor 
ommitment s
heme des
ribed in

[5℄. We de�ne q to be the least prime su
h that q > n (this 
an easily be 
omputed

by both prover and veri�er). We then �x some number b in Z

�

n

, this 
ould be

for instan
e be a string representing the name of the veri�er. The intra
tability

assumption for the 
ommitment s
heme then is that the prover will not be able

to extra
t a q'th root mod n of b (su
h a root always exists by 
hoi
e of q). Also

this s
heme allows 
omitment to log q bits in one 
ommitment.

Note that when exe
uting a proof of the kind we 
onstru
ted, it is always

enough in pra
ti
e for the prover to make only one 
ommitment: he 
an always

hash the string the wants to 
ommit to using a standard 
ollision intra
table hash

fun
tion and 
ommit to the hash value. This means that well known eÆ
ient

proto
ols 
an be exe
uted in this model with no signi�
ant loss of eÆ
ien
y.
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