
Interleaved Zero-Knowledge

(A Preliminary Version)

Oded Goldreich

�

Sha� Goldwasser

y

Silvio Micali

z

July 8, 1999

Abstract

We introduce the notion of Interleaved Zero-Knowledge (iZK), a new security measure for

cryptographic protocols which strengthens the classical notion of zero-knowledge, in a way

suitable for multiple concurrent executions in an asynchronous environment like the internet.

We prove that iZK protocols are robust: they are \parallelizable", and preserve security when

run concurrently in a fully asynchronous network. Furthermore, this holds even if the prover's

random-pads in all these concurrent invocations are identical. Thus, iZK protocols are ideal for

smart-cards and other devices which cannot reliably toss coins on-line nor keep state between

invocations.

Under general complexity asumptions (which hold in particular if the Discrete Logarithm

Problem is hard), we construct iZK (computationally-sound) interactive proofs for all NP lan-

guages which run in constant-rounds. The protocols are in the public key model: the veri�er

is assumed to have a public key associated with it. This implies, concurrent constant-round

zero-knowledge computationally-sound proofs for NP in the public key model, without resorting

to any timing assumptions.

Analogously, we de�ne Interleaved Witness-Indistinguishable (iWI), protocols which are wit-

ness indistiguishable even if the prover's random-pads in all concurrent executions are identical.

Under general complexity assumptions we construct InterleavedWitness-Indistinguishable (iWI)

interactive proofs for all NP languages which run in constant-rounds. These interactive proofs do

not require any public keys, and make no assumptions about the prover computational ability.

We extend iZK (and iWI) interactive proofs to iZK (and iWI) proofs of identity: These are

methods to prove identity that remain secure even if the prover can be forced to repeatedly run

the identi�cation protocol on the same coins. All previous ZK or WI proofs of identity were

totally breakable in such case. In particular, this case arises whenever the prover is realized by

means of a device which can be reset to initial conditions, such as a \smart card". Here, our

protocols call for the veri�er of identity (but not the prover) to have an associated public key.

Keywords: Zero-Knowledge, Concurrent Zero-Knowledge, Smart Cards, ID Schemes, commit-

ment schemes, DLP

�

Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel,

oded@wisdom.weizmann.ac.il

y

Laboratory for Computer Science, Massachusetts Institute of Technology, Cambridge, MA02139,

shafi@theory.lcs.mit.edu

z

Laboratory for Computer Science, Massachusetts Institute of Technology, Cambridge, MA02139,

silvio@theory.lcs.mit.edu

1

A subset of this work is included in patent application [21].

1 Introduction

The notion of zero-knowledge interactive proofs, was put forward and �rst instantiated by Gold-

wasser, Micali and Racko� [22] in '85, before the onset of the internet. By now, zero-knowledge

is the accepted way to de�ne and prove security of various cryptographic tasks. Its generality was

demonstrated by Goldreich, Micali and Wigderson [18], who showed that any NP-statement can be

proven in zero-knowledge, provided commitment schemes exist (or, equivalently [26, 24], one-way

functions exist). An important application of zero-knowledge proposed by Fiat and Shamir [11]

was proving identity.

Alongside many applications, the notion of zero knowledge raises a few important questions.

Parallel composition. The �rst question is whether zero knowledge is preserved when (zero-

knowledge) protocols are composed. For sequential composition of protocols, the question was

answered in the a�rmative (cf., [19]), provided zero knowledge is augmented in a natural manner

(satis�ed by all natural examples).

2

The situation with respect to parallel composition, however,

turned out to be more complicated: There exist (unnatural) zero-knowledge protocols which yield

knowledge if executed twice in parallel [16]. Furthermore, parallel executions of some natural zero-

knowledge interactive proofs (like the abovementioned proof for NP by [18]) cannot be proven

zero-knowledge using a black-box simulator (the only way known) unless NP � BPP [16].

An alternative avenue toward the parallel composition problem was taken by the work on witness

indistinguishability of [10]. In a sense their conclusion is that the zero-knowledge requirement is

too strict and that one should suggest (as they do) weaker notions which are both preserved under

parallel composition and su�ce for (hopefully) many applications.

Concurrent execution. With the rise of the internet, the question of concurrent execution of

zero-knowledge protocols emerged. In a concurrent setting, many executions of protocols can be

running at the same time, involving many veri�ers which may be talking with the same (or many)

provers simultaneously. This presents the new risk of an overall adversary who controls the veri�ers,

interleaving the executions and choosing veri�ers queries based on other partial executions. This risk

is made even more challenging by the fact that each prover{veri�er pair should act independently.

(It would be unrealistic to require all interactive parties to coordinate their actions such that zero-

knowledge is preserved!) Note that maintaining zero-knowledge in the concurrent setting is even

harder than preserving zero-knowledge under parallel composition, as all executions need not start

at the same time nor remain totally synchronized.

A recent approach towards addressing the concurrent execution problem has been suggested by

Dwork, Naor and Sahai [8], who assume that a very mild level of synchronization is guaranteed: the

so-called timing assumption. Under this assumption, protocols may not start at the same time, but

once an execution starts there are a-priori known bounds on the delays of messages with respect

to some ideal global clock. Furthermore, it is assumed that each party uses a local clock whose

rate is within a constant factor of the rate of the ideal clock. Under the timing assumption (and

some standard intractability assumption), constant-round zero-knowledge (computationally-sound)

proofs for NP were presented in [8]. In a later paper by Dwork and Sahai[9], it was shown how the

use of timing can be pushed up to a pre-processing protocol, to be executed before the concurrent

executions of protocols (which do not use timing), and still get constant-round zero-knowledge

computationally-sound proofs for NP.

2

The augmentation is indeed necessary; see [16].

1

More recent work by Ransom and Kilian [27] seems to indicate that it may be possible to get

rid of the timing assumption, alas their protocols are either not constant-round or only simulatable

in quasi-polynomial time.

Resettability. It is known that zero-knowledge proof in which the prover is deterministic exist

only for BPP languages (cf., [19]). Furthermore, (standard) Zero-Knowledge protocols do not

necessarily remain zero-knowledge if the prover uses the same sequence of coins in many interactions

(even if the interactions are with a honest veri�er). In fact, a wide class of ZK protocols (e.g.,

Zero-Knowledge proof for 3-Coloring [18] or proofs of identi�cation a la Fiat-Shamir [11]), are

trivially breakable in such setting. Furthermore, by de�nition in any proof of knowledge protocol,

if the veri�er can reset the prover to the same initial conditions (i.e., to use the same coins) for

a polynomial number of executions, then the veri�er can easily extract the very same secret key

which the prover is claiming knowledge of. (For the original protocol of [11] it su�ces to repeat

the protocol twice with the same prover coins to be able to extract the prover's secret).

This `feature' restricts the physical implementations of the prover to those of essentially fully-

reliable hardware, where it is impossible for the veri�er to \reset" the prover. For instance, assume

that the prover is a smart card which has neither a built-in power supply nor a (tamper-proof)

non-volatile writable memory. Then, one could (e.g., by disconnecting and reconnecting the power

supply) restore a �xed internal con�guration of the card, thus essentially cloning it any time one

pleases. (In the unlikely case that the card generates a random-pad by sampling the environment,

one can possibly determine the random-pad.) Thus, being zero-knowledge in the classical sense

does not provide security against such an attack on the card. An interesting question is whether it

is possible to have zero-knowledge protocols even when the prover is realized by a resettable device.

1.1 A New Notion: Interleaved Zero Knowledge

This work puts forward the notion of Interleaved Zero-Knowledge (iZK), a new security measure

for cryptographic protocols which strengthens the classical notion of zero knowledge [22], to �t

todays \internet age".

Informally, an interactive proof or a computationally-sound proof is iZK, if a veri�er learns

nothing (except for the verity of a given statement) even when he can make the prover interact

with him polynomially-many times, while the prover uses the same sequence of random moves in

all these interactions. In other words, a polynomial-time veri�er learns nothing extra even if it can

\clone" the prover (each time with the same initial con�guration, random tape included) as many

times as it pleases, and then interact with these clones in any order and manner it wants. (In

particular, it can start a second interaction in the middle of a �rst one, and thus choose to send a

message in the second interaction as a function of messages received in the �rst.) We stress that, in

each of these interleaved interactions, the prover (i.e., each prover clone) is not aware of any other

interaction, nor of having been cloned.

The above de�nition may seem unnatural; however, it is a powerful abstraction which yields

results for a variety of realistic settings. This makes our positive results only stronger. In particular,

our notion enjoys the following properties:

� iZK protocols are closed under parallel composition;

� iZK is preserved even when the protocol is executed polynomially-many times in a totally

asynchronous network (and furthermore the number of executions may be a-priori unknown);

2

� iZK allows the prover's random-pad to be randomly selected and �xed, once and for all: The

resulting deterministic prover can prove in zero-knowledge polynomial many claims without

keeping record of any kind, and again the number of interaction need not be a-priori known.

The importance of the �rst two properties has been recognized in the litureature and requires

no further emphasis. We now discuss the importance of the third property, and speci�cally its

relevance to some realistic settings. Randomly selecting and �xing the prover's random coins is

advantageous in settings where the proving device can be physically tampered with. In particular,

when one can e�ect on-line random choices made by the device and reset all its registers to their

initial state. A iZK prover (with few random bits that can be wired in) maintains zero-knowledge

also under such an attack, since it uses no on-line random choices and resetting it is guaranteed

(by de�nition) to cause no harm.

In general, iZK enables enlarging the number of physical ways in which ZK proofs may be

implemented while guaranteeing that security is preserved. Previous notions of zero-knowledge (and

identity proving schemes in particular) worked only for a restricted class of physical implementations

of the prover; typically, implementations over fully-reliable hardware. Note that for example a

smart-card (playing the role of a prover of identity say in an interactive proof) cannot be considered

such a device as we discussed in the previous subsection. In contrast, if a smart card implements

an iZK proof and we hard-wire a (short) random-pad into its program then the card's security is

maintained even under such an attack.

The Public Key Model. We will consider protocols which achieve iZK in the public-key model.

Namely, we assume that participants are part of a network, where parties can register a public key

which can be read by all other participants. We stress that we only assume that public-keys can be

registered in the literal sense of the word. Registration does not have to include interaction with

a trusted system manager which may verify properties of the registrated public-key (e.g., that it

valid or even that the user registrating it knows a corresponding secret key).

For sake of simplicity, we assume throughout the paper that registration occurs before any

interaction between the users takes place. More exible models allowing registration at all times,

seem to require a mild notion of timing (or synchronization), and are deferred to a future version

of this work.

We note that in the iZK computationally-sound proofs for NP which we construct only one of

the participants of the two-party protocol { the veri�er { is required to have an associated public-

key. The fact that only the veri�er is required to have a public-key is crucial for using iZK protocols

in the context of identity proving protocols, where the prover does not necessarily have a registered

public key but the veri�er which is typically a server governing use of a resource (e.g., a computer

or a data base) does have a pubic key.

1.2 Interleaved Witness-Indistinguishable

The notion of witness indistinguishability was introduced by [10] as a relaxation of the zero-

knowledge requirement which could be still suitable in many applications and may be achieved

with greater ease and e�ciency. For example, witness indistinguishable protocols are closed under

parallel composition and concurrent execution.

We de�ne (analogously to iZK) Interleaved Witness-Indistinguishable protocols (iWI). Infor-

mally, a witness indistinguisable proof is iWI, if it remains witness indistinguishable even if the

veri�er can make the prover interact with him polynomially-many times, while the prover uses the

3

same sequence of random moves in all these interactions. In other words, a polynomial-time veri�er

can still not distinguish between two di�erent witnesses for an NP statement that the prover is

proving even if it can \clone" the prover (each time with the same initial con�guration, random

tape included) as many times as it pleases, and then interact with these clones in any order and

manner it wants.

We note that existing WI protocols (e.g., [18]) are not Interleaved Witness-Indistinguishable

protocols. Furthermore, even the honest veri�er can easily extract the entire witness (not to mention

distinguish between witnesses), when the protocol is executed polynomial many times with a prover

using the same coins.

Interestingly, as we shall see in an upcoming subsection, we can achieve iWI interactive proofs

(rather than computationally-sound ones) without requiring neither prover or veri�er to have a

public key. This will be under essentially the same complexity assumptions as required for the iZK

proofs in the public-key model.

1.3 Public Key Model iZK

The advantages of the new notion are clear, but do iZK protocols exist for languages outside BPP?

Our main result is answering this question a�rmatively, under reasonable complexity assumptions,

in the public key model. We prove

Main Theorem 1 (informal statement): Any language in NP has a constant-round iZK computationally-

sound interactive proof in the public key model, under the assumption that trapdoor strong claw-free

pairs of permutations exist.

By strong claw-free pairs of permutations we mean that the clawfree property should hold also

with respect to subexponential-size circuits (i.e., circuits of size 2

n

�

, where n is the input length

and � > 0 is �xed), rather than only with respect to polynomial-size circuits. By trapdoor we mean

that these pairs can be generated along with auxiliary information which allows to form (random)

claws.

The existence of trapdoor strong claw-free pairs of permutations is, in particular, implied by the

computational intractability of the Discrete-Log Problem (DLP). More generally, our result holds

if constant-round commitment schemes with certain features exist.

Recall that zero-knowledge protocols (for NP) are extremely powerful tools with numerous

applications in cryptography. This holds both if these protocols are absolutely sound or just

computationally-sound (a.k.a arguments). The above says that this powerful tool is available, at

moderate price (i.e., constant-round), in the fully concurrent setting of asynchronous networks (e.g.,

the internet) assuming veri�ers have established public keys using the public-keys infrastructure.

Moreover, this tool is available even when the prover is realized by a device which can potentially

be reset to its initial state (coin tosses included).

Techniques. We believe some of our technique will prove useful in other applications and in

particular ones related to security in the internet. These techniques include:

1. Replacing random choices by application of a pseudorandom function (cf., [14]) on the history

of the interaction. This technique is at the heart of the \cloning-robustness" property of our

zero-knowledge protocols. It enables to move the randomness of a party from the on-line

interaction to a prior o�-line stage.

4

2. Proving that such \cloning-robustness" (for sequential executions) guarantees security in

interleaved executions, and thus security in an asynchronous concurrent setting.

3. Using public-keys as a tool to achieving zero-knowledge protocols. It is customary to use

public-keys for encryption and digital signatures. However, here the fact that the veri�er uses

a registered public key in concurrent executions of the protocol enables achieving ZK in a

concurrent and resettable setting. What is important is that the number of total public-keys

ever utilized by veri�ers (including multiple veri�ers in multiple executions) is bounded by a

�xed polynomial in the security parameter.

4. \Telescopic" usage of intractability assumptions. The idea is to use two \secure" schemes,

one with security parameter K and one with a smaller security parameter k. Suppose that,

for some � > 0, the security of the �rst scheme (with security parameter K) is maintained

aganist adversaries running in time 2

K

�

, and that instances of the second scheme (with security

parameter k) can be broken in time 2

k

. Then setting k = K

�

=2 guarantees both security of

the second scheme as well as \non-mallability" of the �rst scheme in presence of the second

one. The reason for the latter fact is that breaking the second scheme can be incorporated

into an adversary attacking the �rst scheme without signi�cantly e�ecting its running-time:

Such an adversary is allowed running-time 2

K

�

which dominates the time 2

k

= 2

K

�

=2

required

for breaking the second scheme.

Resolving the zero-knowledge concurrency question in the public key model. As should

be clear from the above discussion, our Main Theorem 1 is directly relevant to the open problem

of concurrent zero-knowledge: We provide constant-round concurrent zero-knowledge protocols for

NP, based on standard intractability assumptions in the public key model. As the existence of a

public-key may be thought of as a mild form of preprocessing, this directly improves Dwork and

Sahai's work that required a pre-processing protocol which uses the timing technique and thus

makes timing assumptions to achieve concurrent computationally-sound proofs for NP. In our case,

no timing assumptions are necessary, just the plain old public key model. Moreover, the notion of

concurrent zero-knowledge achieved is a stronger notion than that in previous works as it allows

concurrent executions with a prover who may use the same coins.

1.4 Constructing iWI Protocols for NP

Without resorting to the public key infrastructure, we show how to achieve Interleaved Witness-

Indistinguishable interactive proofs for all NP statements. Note that here we can achieve interactive

proofs rather than computationally sound proofs. Namely, no bound need be assumed about the

computational power of the cheating prover. We prove

Main Theorem 2 (informal statement): Under the assumption that claw-free pairs of permutations

exist, every language in NP has a constant-round rewindable witness-indistinguishable interactive

proof system.

The assumption in Main Theorem 2 is seemingly weaker than in Main Theorem 1: Ordinary

clawfree pairs will do, rather than strong clawfree pairs with trapdoor. Again, the assumption in the

theorem can be alternatively stated in terms of the existence of constant-round perfect commitment

schemes.

5

1.5 Other Results

iZK vs. proofs of knowledge. We show that proofs of knowledge cannot be iZK, except in

a useless sense: That is, we show that if, on input x, one can provide an iZK proof of knowledge

of y so that (x; y) is in some polynomial-time recognizable relation, then it is possible given x to

�nd such a y in probabilistic polynomial-time. Thus, such a proof of knowledge is useless, since

by de�nition (of knowledge) anybody who gets input x knows such a y. (This holds even for the

weaker model presented in Section 3.)

iZK proof of identity. The fact that we cannot have (useful) iZK proofs of knowledge blocks

the applicability { to the \prover cloning" model { of a known paradigm for constructing identi-

�cation schemes. We refer to the Fiat-Shamir paradigm [11] by which any zero-knowledge proof

of knowledge (for a \hard" NP-language) yields a secure identi�cation scheme. Furthermore, the

Fiat-Shamir identi�cation scheme [11] (which is based on a zero-knowledge proof of knowledge of a

square root of a given number modulo a given composite [22]), as well as any identi�cation scheme

based on the above paradigm, can be totally broken if one can force the identifying user to re-run

the protocol on the same choice of coins several times. As discussed above, such an attack may be

feasible whenever the identi�cation is done by a device which uses hard-wired coins and may be

reset to its initial state.

Instead, we propose an alternative paradigm for constructing identi�cation schemes so that the

resulting schemes are secure also when the identi�cation is done by a device which uses hard-wired

coins and may be reset to its initial state. Furthermore, the scheme remains secure even if the

adversary can get hold of several copies of the same device (i.e., \clones") and interact with all

copies while possibly interleaving the executions.

The new paradigm consists of viewing the ability to convince the veri�er that a �xed input is in

a \hard" NP-language as a proof of identity. The legitimate user holds an NP-witness which allows

it to successfully carry out such proofs, whereas it is infeasible for an adversary which is only given

a yes-instance of the hard language to successfully carry out such a proof.

3

Using a iZK proof

system, the identifying user can always convince the veri�er while not yielding any information

which may facilitate latter impersonating attempts (by the current veri�er). This holds even if the

veri�er can attack the device used by the identifying user as described above.

2 Preliminaries

2.1 Standard Conventions

Throughout this paper we consider interactive proof systems [22] in which the designated prover

strategy can be implemented in probabilistic polynomial-time given an adequate auxiliary input.

Speci�cally, we consider interactive proofs for languages in NP and thus the adequate auxiliary

input is an NP-witness for the membership of the common input in the language. Also, whenever

we talk of an interactive proof system, we mean one in which the error probability is a negligible

function of the length of the common input (i.e., for every polynomial p and all su�ciently long

x's, the error probability on common input x is smaller than 1=p(jxj)). Actually, we may further

restrict the meaning of the term `interactive proof system' by requiring that inputs in the language

are accepted with probability 1 (i.e., so-called perfect completeness).

3

Note that an e�cient strategy to convince the veri�er on yes-instances yields an e�cient decision procedure for

the language (by emulating the interaction).

6

Likewise, when we talk of computationally-sound proof systems (a.k.a arguments) [7] we mean

ones with perfect completeness in which it is infeasible to cheat with non-negligible probability.

Speci�cally, for every polynomial p and all su�cienly large inputs x not in the language, every

circuit of size p(jxj) (representing a cheating prover strategy) may convince the veri�er to accept

only with probability less than 1=p(jxj).

For simplicity, we consider only interactive proof systems in which the total number of message-

exchanges (a.k.a. rounds) is a pre-determined (polynomial-time computable) function of the com-

mon input. Actually, we are most interested in interactive proof systems in which this number is

a constant; these are called constant-round interactive proof systems.

We adopt the basic paradigm of the de�nition of zero-knowledge [22]: The output of every

probabilistic polynomial-time adversary which interacts with the designated prover on a common

input in the language, ought to simulatable by a probabilistic polynomial-time machine (which

interacts with nobody). The latter machine is called a simulator. We stress that throughout this

paper, a probabilistic polynomial-time machine means a probabilistic machine running in expected

polynomial-time (rather than strict polynomial-time). Recall that it is not known whether constant-

round zero-knowledge proofs for NP exists, if one insists on strictly polynomial-time simulators

(rather than expected polynomial-time ones). See [15, 13].

We also refer (or, actually, extend) the de�nition of witness indistinguishable proof systems

(cf., [10]). Loosely speaking, these are proof systems in which the prover is a probabilistic polynomial-

time machine with auxiliary input (typically, an NP-witness), having the property that interactions

in which the prover uses di�erent \legitimate" auxiliary-inputs are computationally indistinguish-

able.

2.2 The models considered

In this paper we consider a variety of models. These models are de�ned by two parameters specifying

the initial set-up assumptions and the generality of the adversary attack.

Initial set-up assumptions: The vanilla case is when no set-up assumptions are made. This

is indeed the \cleanest" model typically employed in theoretical works regarding secure two-party

and multi-party computation. Whenever we make no mention of set-up assumptions/model, we

mean the vanilla model.

By the public-key model we mean a model in which all users are assumed to have deposited a

public-key in a �le that is accessible by all users at all times. The only assumption about this �le

is that it guarantees that entries in it were deposited before any interaction among the users takes

place. No further assumption is made about this �le, and so in particular an adversary may deposit

many (possibly invalid) public-keys in it (and, in particular, without even knowing corresponding

secret keys or whether such exist). Access to the �le may be implementable by either several

identical servers or by providing users with certi�cates for their deposited public-keys. This (and

even more imposing variants) is a standard model in many applied works.

A more imposing model (i.e., assuming stronger set-up assumptions) which is still quite rea-

sonable in practice, augments the public-key model by allowing (\validating") interaction between

users and system manager at deposit time. In general, the preprocessing model postulates that

before any interaction among users takes place, the users have to interact with a system manager

which issues them certi�cates in case it did not detect cheating at this stage. In particular, one may

use the preprocessing stage in order to verify that the user knows a secret-key for the public-key it

wishes to have certi�ed.

7

We stress that our work actually uses weaker assumptions. Speci�cally, in both the latter

models, we only need that potential veri�er will deposit public-keys and/or participate in a pre-

computation. This is not required of users who are only going to play the role of provers.

The attacks: The most basic attack we consider allows the adversary to rewind any of the prior

completed interactions with the prover to an arbitrary point and carry out a new interaction from

that point. Once the adversary initiates a new interaction, it must complete it (or abandon it), and

so interleaving of interactions is not allowed. The basic model is considered in Section 3, whereas

a model allowing arbitrary interleaving of interactions is considered in Section 4. However, in both

sections we consider only a single incarnation of the prover; all interactions with it are on a �xed

input and �xed random-tape. In Section 5 we generalize the treatment to the case the adversary can

interact (i.e., rewind and interleave) with polynomially many di�erent incarnations of the prover.

The tasks: Our main focus is on zero-knowledge protocols. However, we also consider other

variants such as witness-indistinguishable protocols and identi�cation protocols.

3 Rewindable Zero-Knowledge

Given a speci�ed prover P , a common input x and an auxiliary input y to P (e.g., y may be an NP-

witness for x being in some NP-language), we consider polynomially-many sequential interactions

with the residual deterministic prover strategy P

x;y;!

determined by uniformly selecting and �xing

P 's coins, !. That is, ! is uniformly selected and �xed once and for all, and the adversary may

sequentially invoke and interact with P

x;y;!

. In each such invocation, P

x;y;!

behaves as P would have

behaved on common input x, auxiliary-input y, and random-tape !. Thus, the adversary and P

x;y;!

engange in polynomially-many interactions; but whereas P

x;y;!

's actions in the current interaction

are independent of prior interaction (since P

x;y;!

mimics the \single interaction strategy" P), the

actions of the adversary may depend on prior interactions. In particular, the adversary may repeat

the same messages sent in a prior interaction, resulting in an identical pre�x of an interaction (since

the prover's randomness is �xed). Furthermore, by deviating in the next message, the adversary

may obtain two di�erent continuations of the same pre�x of an interaction. Viewed in other terms,

the adversary may \e�ectively rewind" the prover to any point in a prior interaction, and carry-on

a new continuation (of this interaction pre�x) from this point.

De�nition 1 (rewindable security { vanilla model): A prover strategy P is said to be rewindable

zero-knowledge (on L) if for every probabilistic polynomial-time adversary V

�

as below there exists

a probabilistic polynomial-time simulator M

�

so that the following distribution ensembles, indexed

by a common input x 2 L and a prover auxiliary input y, are computationally indistinguishable

(cf., [20, 28]):

Distribution 1 is de�ned by the following random process which depends on P and V

�

.

1. Randomly select and �x a random-tape, !, for P , resulting in a deterministic strategy

P

0

= P

x;y;!

de�ned by P

x;y;!

(history) = P (x; y; !; history).

2. Machine V

�

is allowed to initiate polynomially-many sequential interactions with P

0

.

The actions of V

�

in the i

th

interaction with P

0

may depend on previous interactions,

but the i

th

interaction takes place only after the i� 1

st

interaction was completed.

More formally, V

�

sends whatever message its pleases, yet this message is answered as

indicated above. That is, suppose P

0

expects to get t messages per interaction. Then, for

8

every i � 0 and j = 1; :::; t, the it+j

th

message sent by V

�

is treated as the j

th

message in

the i

th

interaction of P

0

, and accordingly the response is P

0

(msg

it+1

; :::;msg

it+j

), where

msg

k

is the k

th

message sent by V

�

.

3. Once V

�

decides it is done interacting with P

0

, it (i.e., V

�

) produces an output based on

its view of these interactions (which, as usual, includes the internal coin-tosses of V

�

).

Distribution 2: The output of M

�

(x).

In case there exists a universal probabilistic polynomial-time machine, M , so that M

�

can be imple-

mented by letting M have oracle-access to V

�

(cf., [19]), we say that P is rewindable zero-knowledge

via a black-box simulation.

A prover strategy P is said to be rewindable witness-indistinguishable (on L) if every two distri-

bution ensembles of Type 1, each indexed by a common input x 2 L and depending on a possibly

di�erent prover auxiliary input y, are computationally indistinguishable.

We note that many known zero-knowledge protocols are not rewindable zero-knowledge. Further-

more, they are even not rewindable witness-indistinguishable. For example, ability to \rewind"

the original zero-knowledge proof for 3-Colorability [18], allows the adversary to fully recover the

3-coloring of the input graph used by the prover. Still (as shown below), rewindable witness-

indistinguishable interactive proofs for NP exists, provided that the Discrete Logarithm Problem

(DLP) is hard modulo primes p of the form 2q + 1 where q is a prime. Actually, a more general

result holds

Theorem 2 If constant-round perfect commitment schemes exists then every language in NP has

a constant-round rewindable witness-indistinguishable interactive proof system.

Analogously to De�nition 1, we may de�ne rewindable zero-knowledge in the public-key model: The

only modi�cation is that the prover and veri�er (as well as the simulator) have access to a public-�le

which was generated by the adversary V

�

before all interactions began.

In the public-key model, we may obtain computationally-sound rewindable zero-knowledge proof

systems. Here we use two-round perfect commitment schemes with some additional features (to

be speci�ed below). Such schemes exist assuming that DLP is hard for sub-exponential circuits.

Thus, as a special case, we obtain:

Theorem 3 Suppose that for some � > 0 and su�ciently large n's, any circuit of size 2

n

�

solves

DLP correctly only on a negligible fraction of the inputs of length n. Then every language in NP has

a constant-round rewindable zero-knowledge computationally-sound proof system in the public-key

model. Furthermore, the prescribed prover is rewindable zero-knowledge via a black-box simulation.

3.1 Proof Sketch of Theorem 2

Traditional zero-knowledge interactive proofs rely on the randomized nature of the prover strategy.

In a sense, this is essential (cf., [19]). In our context, the prover's randomization occurs only once

and is �xed for all subsequent interactions. So the main idea is to utilize the initial randomization

(done in the very �rst invocation of the prover) in order to randomize all subsequent invocations.

The natural way of achieving this goal is to use a pseudorandom function, as de�ned and constructed

9

in [14].

4

However, just \using a pseudorandom function" does not su�ce. The function has to be

applied to \crucial steps" of the veri�er; that is, exactly the steps which the veri�er may want to

alter later (by rewinding) in order to extract knowledge. Thus, the zero-knowledge proof system

for 3-Colorability of [18] is not an adequate starting-point (since there the prover's randomization

takes place before a crucial step by the veri�er). Instead, we start with the zero-knowledge proof

system of Goldreich and Kahan [15]: In that proof system, the veri�er �rst commits to a sequence

of edge-queries, then the prover commits to random colorings, and then the veri�er reveals its

queries and the prover reveals the adequate colors. Starting with this proof system, we replace

the prover's random choices (in its commitment) by the evaluation of a pseudorandom function

(selected initially by the prover) on the veri�er commitment. Thus, on an abstract level, the proof

system is as follows.

Common input: A graph G = (V;E), where V = [n]

def

= f1; :::; ng, claimed to be 3-colorable.

Prover's auxiliary input: A 3-coloring � : [n] 7! f1; 2; 3g of G.

Prover's initial randomization: The prover's random-pad is used to determine a pseudorandom

function f : f0; 1g

poly(n)

7! f0; 1g

poly(n)

.

The rest is an adaptation of the [15] proof system, where the only modi�cation is at Step (P1).

(V1) The veri�er commits to a sequence of t

def

= n � jEj uniformly and independently chosen edges.

The commitment is done using a perfect commitment scheme, so that the prover gets no

information on the committed values, while it is infeasible for the veri�er to \de-commit" in

two di�erent ways.

(P1) As in [18, 15], the prover commits to t random relabeling of colors. The commitment is done

using an ordinary commitment scheme, providing computational-secrecy and absolute/perfect

binding. The key point is that the prover's random choices (both for the relabelling and

randomization needed for the commitment scheme) are replaced by the value of the function

f applied to the message sent by the veri�er in Step (V1).

Actually, to allow smooth extension to the general model discussed in Section 5, we apply f

to the pair ((G;�);msg), where msg denotes the message sent by the veri�er in Step (V1).

That is, let (�

1

; r

1

); :::; (�

t

; r

t

) = f(G;�;msg), and use �

i

: f1; 2; 3g

1�1

7! f1; 2; 3g as the i

th

randomization of � (i.e., �

i

(v) = �

i

(�(v))), and r

i

= (r

i;1

; :::; r

i;n

) as randomness to be used

when committing to the values of �

i

on [n]. That is, for i = 1; :::; t and j = 1; :::; n, the prover

commits to �

i

(j) using randomness r

i;j

.

(V2) The veri�er reveals the sequence of t edges to which it has committed to in Step (V1). It

also provides the necessary information required to determine the correctness of the revealed

values (i.e., \de-commit").

(P2) In case the values revealed (plus the \de-commitment") in Step (V2) match the commitments

sent in Step (V1), and in case all queries are edges, the prover reveals the corresponding colors

and provides the corresponding \de-commitment". That is, suppose that the i

th

edge revealed

in Step (V2) is (u; v), then the prover reveals �

i

(u) and �

i

(v).

4

Recall, that by combining [24] and [14] one may construct pseudorandom functions using any one-way function.

Furthermore, relying on the intractability of the DLP, a much more e�cient construction is available by combining [5]

and [14].

10

(V3) In case the values revealed (plus the \de-commitment") in Step (P2) match the commitments

sent in Step (P1), and in case they look as part of legal 3-colorings (i.e., each corresponding

pair is a pair of di�erent elements from the set f1; 2; 3g), the veri�er accepts. Otherwise it

rejects.

There is one problem, however, with the above presentation. In Step (V1) we have assumed the

existence of a 1-round (i.e., uni-directional communication) perfect commitment scheme. However,

any commitment scheme with perfect secrecy which is computational-binding require at least two

rounds of communication (i.e., a message sent from the commitment-receiver to the commitment-

sender followed by a message from the sender to the receiver).

5

Thus, we need to integrate such

(two-round) commitment schemes in the above protocol.

It appears as if the above protocol is rewindable zero-knowledge; however, we were not able to

prove this. The subtle problem is that the veri�er may fail to de-commit in Step (V2). Speci�cally,

it may fail to decommit in one interaction and decommit properly in a later interaction in which it

has sent the same message in Step (V1). Doing so will harm the straightforward simulation attempt,

which proceeds interaction-by-interaction so that in each interaction one �rst tries to obtain the

veri�er's commitment values via a dummy (P1)-message so that one can later simulate Step (P1)

(and the subsequent steps of the same interaction) properly. The problem is that we cannot answer

the same Step (V1) message, sent in two interactions, in two di�erent ways (in the two interactions),

since the prover would answer identically in the real execution.

6

(We comment that if the veri�er

always decommits in Step (V2) then we can simulate polynomially many interactions with the

above prover. That is, the above protocol is rewindable zero-knowledge with respect to veri�ers

which always decommit properly in Step (V2). For details see Appendix B.)

Fortunately, the subtle problem mentioned above has much milder e�ect on the proof that the

above protocol is witness-indistinguishable. Speci�cally, as a mental experiment, we �rst consider

an ideal prover that uses a truely random function rather than a pseudorandom one. The key

observation is that whenever a di�erent Step (V1) message is sent, the corresponding Step (P1) is an

independently selected random commitment to an independently selected random relabelling of the

speci�c coloring �. Our goal is to show that the dependence of the interaction on the speci�c witness

coloring � is computationally unnoticeable. That is, we show that multiple interactions (with an

adversary V

�

) in which one possible witness coloring � is used are computationally indistinguishable

from such interactions in which another witness coloring �

0

is used. This is proved using a hybrid

argument, where the i

th

hybrid is de�ned as follows: In each of the i �rst iterations, the prover uses

� when executing Step (P1), and this determines also its action in Step (P2). For j > i, if in the j

th

iteration the message sent in Step (V1) is identical to one sent in iteration j

0

(for some j

0

< j) then

the prover repeats the corresponding Step (P1) message. (In particular, this happens in case j

0

� i,

5

Here, as in all work on zero-knowledge, with the exception of a fully-uniform treatment (cf. [12]), the computa-

tional condition refers to non-uniform adversaries. The reason being that the standard zero-knowledge condition is

itself somewhat non-uniform (as it refers to any input). Inspecting De�nition 14 (in Appendix A), it is evident that

no 1-round scheme may satisfy it.

6

Speci�cally, suppose that the simulator always tries �rst to send a dummy messsage in Step (P1), and consider

two consequetive interactions with a cheating veri�er. In the �rst interaction, the veri�ers commits to some edge

sequence in Step (V1) but refuses to decommit in Step (V2). The simulator will thus produce a truncated interaction

(which, by itself, is �ne). Now suppose the veri�er repeats the same Step (V1) message in the second interaction,

but does decommit properly in Step (V2). The simulator would like now to send a corresponding commitment to a

pseudo-coloring, but the problem is that this message is di�erent from the dummy commitment sent in Step (P1)

of the �rst interaction. Note that the real prover will always send the same (P1)-message in response to the same

(V1)-message, and so if the simulator behaves di�erently this is easily detectable. This problem is further discussed

and resolved in the next subsection.

11

which means that in this case the Step (P1) message will also be a commitment to �.) Otherwise,

Step (P1) message is computed as a commitment to �

0

. Using another standard trick (cf., [18,

pp. 719{721]), we prove Theorem 2. We stress that the argument uses in an essential way the

key observation above: If the i

th

iteration utilizes a new Step (V1) message then the commitment

generated in response is independent of the prior iterations.

3.2 Proof Sketch of Theorem 3

We �rst present a rewindable zero-knowledge protocol for a model allowing preprocessing (i.e., a

model which has stronger set-up assumptions). The preprocessing will be used in order to guarantee

that veri�ers know \trapdoors" corresponding to \records" deposited by them in the public �le.

The protocol uses two types of perfect commitment schemes; that is, secrecy of commitment

holds in an information theoretic sense, whereas the binding property holds only in a computational

sense. The two commitment schemes used has some extra features informally stated below. For a

precise de�nition see Appendix A.

1. A two-round perfect commitment scheme, denoted PC1, with two extra features:

� The trapdoor feature: It is possible to e�ciently generate a receiver message (called the

index) together with a trapdoor, so that knowledge of the trapdoor allows to decommit

in any way.

Note that the �rst message in a two-round commitment scheme is from the commitment-

receiver to the commitment-sender. The trapdoor feature says that the receiver will be

able to decommit to the sender's message in any way it wants (but as usual the sender,

not knowing the trapdoor, will not be able to do so).

In our solution we will \decouple the execution" of the two-round commitment scheme

so that the �rst message (i.e., the index) will be sent in a preliminary stage (i.e., will

be deposited in a public-�le), and only the second message will be send in the actual

protocol. We stress that the same index can and will be used for polynomially many

commitments, and that the number of such commitments need not be a-priori known.

(Note that both perfect secrecy and computational-binding continue to hold also under

such \recycling" of the index.)

� The strong computational-binding feature: The computational-binding property holds

also with respect to subexponential circuits. That is, there exists a constant � > 0 so

that for su�ciently large security parameterK no sender strategy which is implementable

by a circuit of size 2

K

�

can decommit in two di�erent ways with probability greater than

2

�K

�

.

2. A constant-round perfect commitment scheme, denoted PC2. (This scheme corresponds to

the one used in the actual implementation of Step (V1) above.) Without loss of generality,

we may assume that the binding property can be violated in exponential time. That is, when

the commitment protocol is run on security parameter k, the sender may in time 2

k

decommit

any way it wants.

Indeed, any PC1 scheme yields a PC2 scheme. However, for sake of modularity we prefer the current

presentation. We also note that for our application it is possible to further relax the requirement

from PC2 so that secrecy may be demonstrated to hold at a latter stage (i.e., \a posteriori"); see [13,

Sec. 4.8.2]. We comment that a PC1 scheme can be constructed under the assumption the DLP

12

is hard for subexponential circuits; see details in Appendix A. More generally, one may use any

pair of trapdoor claw-free permutations, provided the clawfree property holds w.r.t subexponential

circuits.

7

The protocol in the preprocessing model: The inputs to the protocol are as follows.

Security parameter: K. All objects (resp., actions taken) in the protocol have size poly(K)

(resp., are implementable in poly(K)-time).

Common input: A graph G = (V;E), where V = [n]

def

= f1; :::; ng, claimed to be 3-colorable.

In addition, a public �le containing a list of indices (i.e., receiver's message for PC1), generated

by veri�ers on security parameter K. Each veri�er need only deposit a single index in the

public �le, which may be stored under its name. We consider also cheating veri�ers who may

deposit polynomially many such indices. We stress however that the number of entries in the

public-�le should be bounded by some �xed polynomial.

At this point we assume that the veri�er knows a trapdoor to any index it has deposited.

This can be enforced by a preprocessing stage, say, via a zero-knowledge proof of knowledge.

Veri�er's auxiliary input: A trapdoor, denoted trap(i), for some index i in the public �le.

Prover's auxiliary input: A 3-coloring � : [n] 7! f1; 2; 3g of G.

Prover's initial randomization: The prover's random-pad is used to determine a pseudorandom

function f : f0; 1g

poly(n)

7! f0; 1g

poly(n)

.

The protocol itself is an adaptation of the proof system of the previous subsection, with Step (V1)

being replaced (or rather implemented) by current Steps (1) and (3). Another important change

is the replacement of former Step (P1) by current Step (2); the di�erence being that commitment

via a standard commitment scheme (with perfect binding) is replaced by a commitment relative to

a (perfect secrecy) scheme which is only computationally-binding.

(1) The veri�er sends an index i to prover, who checks that it appears in the public-�le. (Otherwise

the prover aborts.)

Note that this step may be viewed as transcendental to the protocol, since it amount to the

veri�er telling the prover its identity. [Indeed, a cheating veri�er may lie about its indentity;

we merely rely on the fact that somebody knows the trapdoor to the index i if indeed it is

in the public �le. Since we view the adversary as controlling the entire \world outside the

prover" it really does not matter who knows the trapdoor.]

(2) This step is analogous to Step (V1) in the protocol of the previous subsection: The veri�er

commits to a sequence of t

def

= n � jEj uniformly and independently chosen edges. The commit-

ment is done using the constant-round perfect commitment scheme PC2, in which the veri�er

plays the role of the sender and the prover plays the role of the receiver. The scheme PC2

is invoked while setting the security parameter to k = K

�

=2, where � > 0 is as speci�ed in

the strong binding feature of PC1. The randomization required for the actions of the receiver

7

In fact, it su�ces to have collision-intractable family of hashing function, provided it carries trapdoors and is

strong wrt subexponential circuits.

13

in PC2 are determined by applying the pseudorandom function f to (G;�; history), where

history is the transcript of all messages received by the prover so far.

Thus, the prover gets no information on the committed edges, while it is infeasible for the

veri�er to \de-commit" in two di�erent ways.

[The analysis makes heavy use of the setting of the security parameter k = K

�

=2. On one

hand, this setting guarantees that a quantity that is polynomial in K is also polynomial in

k. On the other hand, time 2

k

which su�ces to violate the computational-binding property

of PC2 when run on security paramter k, is insu�cient to violate the strong computational-

binding property of PC1 when run on security paramter K (since 2

k

= 2

K

�

=2

� 2

K

�

).]

(3) This step is analogous to Step (P1) in the protocol of the previous subsection: The prover uses

PC1 with index i in order to commit to a sequence of t random colorings. That is, the prover

invokes t instances of protocol PC1 playing the sender in all, and acts as if it has received i

(the index) in all these instances.

Recall that the prover wishes to commit to t � n values, the (jn + v)

th

value being the color

assigned to vertex v by the j

th

random coloring (i.e., the j

th

random relabelling of �, selected

among the six permutations of the colors f1; 2; 3g). All randomizations (i.e., the choice of the

random coloring as well as randomization required by PC1) are determined by applying the

pseudorandom function f to (G;�; history), where history is the transcript of all messages

received by the prover so far.

(4) The veri�er decommits to the edge-sequence it has committed to in Step (2). That is, it

reveals the sequence of t edges, as well as the necessary information required to determine

the correctness of the revealed values. [This step is analogous to Step (V2).]

(5) In case the values revealed (plus the \de-commitment" information) in Step (4) match the

commitments sent in Step (2), and in case all queries are edges, the prover reveals the corre-

sponding colors and provides the corresponding de-commitment. [This step is analogous to

Step (P2).]

(6) In case the values revealed (plus the \de-commitment") in Step (5) match the commitments

sent in Step (3), and in case they look as part of legal 3-colorings (i.e., each corresponding

pair is a pair of di�erent elements from the set f1; 2; 3g), the veri�er accepts. Otherwise it

rejects. [This step is analogous to Step (V3).]

We note that, in the above description of the protocol, the veri�er does not use the trapdoor (i.e.,

trap(i)). The fact that the veri�er (or rather an adversary controlling all possible veri�ers) knows

the trapdoor will be used by the simulator which is rather straightforward: In contrast to standard

constructions of simulators (cf., [22, 18]), the current simulator does not \rewind" the veri�er.

Instead, it simulates an execution of the protocol by emulating the actions of the prover in Steps (1){

(4) using some dummy sequence, rather than a sequence of colorings, in Step (3). However, when

getting to Step (5), and in case the veri�er has decommitted properly, the simulator uses trap(i)

in order to decommit to the corresponding edge queries in a random legal-looking way (i.e., it

decommits to a uniformly and independently chosen pair of distinct colors, for each such edge).

This uses the trapdoor feature of PC1 and the hypothesis that the veri�er (and so the simulator)

knows this trapdoor. The above description corresponds to simulation of the �rst interaction with

the prover. Subsequent interactions are simulated in the same way assuming that the execution

of Steps (1){(2) of the current interation is di�erent than in all previous interactions. Otherwise,

14

we simulate Steps (3) and (5) by copying the values used in the previous interaction. A last issue

to be addressed is the possibility that in two executions of the protocol the veri�er may send the

same messages in Step (2) but latter decommit in two di�erent ways in Step (5), in which case the

output of the simulator may be noticeablly di�erent from the output in real executions. Using the

computational-binding property of the scheme PC2 (as done in Appendix B), we argue that this

event may only occur with negligible probability. This establishes the rewindable zero-knowledge

property of the above protocol (in the preprocessing model).

Observe that the computational-binding property of PC1 allows computationally-unbounded

provers to successfully fool the veri�er, and hence the above protocol does not constitute an inter-

active proof. However, one can show that computationally-bounded provers can fool the veri�er

only with negligible probability, and so that the protocol is computationally-sound.

Intuitively, one would like to argue that the computational-binding property of PC1 does not

allow to decommit to two di�erent values in Step (5). The problem is that the prover commits to

colors in Step (3) after obtaining the veri�er's commitment to queries, and that the prover decom-

mits only after the veri�er decommits. How can we rule out the (intuitively unlikely) possibility that

the veri�er's decommitment allows the prover to decommit accordingly (in a way it could not have

done before getting the veri�er's decommitment)? Here we use the strong computational-binding

property of PC1 (relative to security paramter K); that is, the fact that it holds also with respect

to circuits of size 2

K

�

= 2

2k

. We also use the fact that commitments with PC2 were done while

setting the security parameter to k, and so we can decommit any way we want while using time 2

k

.

Thus, the binding property of PC1 has to be maintained in Step (5); i.e., it should be infeasible to

decommit \at will" in Step (5) also after obtaining the decommitment of the veri�er at Step (4). In

the actual proof we consider what happens in Step (5) when the prover interacts with an imaginary

veri�er which at Step (4) uniformly selects new queries and decommits according to these values.

Observe that such an imaginary veri�er can be implemented within time poly(n) � 2

k

. Thus, if we

consider the mental experiment in which Steps (4)-(5) are repeated T = 2

k=3

times, after a single

execution of Steps (1)-(3), then all proper decommits by the prover must be for the same value

(or else the binding property of PC1 is violated in time T � poly(n) � 2

k

� 2

2k

). Furthermore, the

above should hold for at least 1 � T

�1

fraction of random executions of Steps (1)-(3). Thus, if

we consider a computationally-bounded prover which fools the veri�er, only a term of O(2

�k=3

)

in its success probability may be attributed to \ambigious decommitment". The computational-

soundness of the protocol follows by noting that (1 � jEj

�1

)

t

) � e

�n

is an upper bound on the

probability of fooling the veri�er in case commitments are non-ambigious. This establishes the

computationally-soundness of the above protocol.

Back to the bare public-key model (i.e., without preprocessing): Given the above, all that

is needed in order to adapt the protocol to the public-key model is to replace the assumption that the

veri�er knows the trapdoor by a (zero-knowledge) proof-of-knowledge of this claim. We stress that

the veri�er in the above protocol will play the role of knowledge-prover, whereas the main prover

will play the role of a knowledge-veri�er. This protocol has to maintain its soundness also when

the knowledge-veri�er undergoes \rewinding". Furthermore, it should be constant-round. (We

comment that we are not aware of a known protocol satisfying these strong requirements.) On the

other hand, we don't need \full-edged" zero-knowledge property; simulatability in subexponential

time will su�ce (as it is merely used for the computational-soundness property which is established

based on the strong computational-binding property of PC1, which in turn accounts for such

running times too). Thus, Step (1) in the above protocol is augmented by a constant-round proof-

of-knowledge (POK) which proceeds as follows:

15

The parties: A knowledge-veri�er, denoted KV, played by the main prover, and a knowledge-

prover, denoted KP, played by the main veri�er.

Inputs: Common input i 2 f0; 1g

K

.

Furthermore, KP gets auxiliary input the randomness used to generate i (equiv., to generate

(i; trap(i))).

Goal: KP wants to prove that it knows trap(i).

High level: We present a proof of knowledge (POK) of the relevant NP-witness; that is, POK of

the randomness used to generate i. (Such knowledge yields knowledge of trap(i).) The POK

is via the standard reduction of this NP-relation to the NP-relation corresponding to Hamil-

tonicity (which is NP-Complete). We stress that the standard reduction comes with e�cient

transformation of NP-witnesses from the original relation to the target Hamiltonicity relation

and vice versa. Thus, the auxiliary-input of KP allows to e�ciently compute a Hamiltonian

cycle in the target graph, and from any such Hamiltonian cycle one may e�ciently retreive

trap(i).

The proof of knowledge (POK) of Hamiltonicity is based on Blum's proof system for this

language, which is reproduced in Appendix C. An important property of Blum's basic proto-

col is that it is a \challenge{response" game in which the challenge consists of a single bit.

Furthermore, responding correctly to both possible challenges allows to extract a Hamilto-

nian cycle (i.e., the knowledge claimed).

8

This property simpli�es the knowledge extraction

argument in case many copies are played in parallel: Ability to respond to any two di�erent

sequences of challenges yields a Hamiltonian cycle. Below we run the protocol k times in

parallel, where k = K

�

=3. The resulting protocol will have negligible knowledge-error

9

(i.e.,

error of 2

�k

), and will be simulatable in time poly(K) � 2

k

. Furthermore, the simulation will

be indistinguishable from the real interaction by any 2

K

�

-size circuits. As stated above, we

are not concerned of the fact that the protocol may not be zero-knowledge (i.e., simulatable

in poly(K)-time).

The protocol uses a perfectly-binding commitment scheme with strong computational-secrecy;

that is, circuits of size 2

K

�

cannot distinguish commitments to two di�erent known values

(with distinguishing gap better than 2

�K

�

). Such a scheme can be constructed based on the

DLP assumption utilized above.

(pok1) Using the perfectly-binding commitment scheme, KP commits to each of the entries of

k = K

�

=3 matrices, each generated as in Blum's basic protocol. (That is, each matrix is the

adjacency matrix of a random isomorphic copy of the graph obtained from the reduction.

In case the output of the reduction is a graph with N vertices, the commitment scheme is

applied k �N

2

times.) The commitment scheme is run with security parameter K.

(pok2) KV \randomly" selects a sequence c = c

1

� � � c

k

2 f0; 1g

k

of k challenges. Actually, the

sequence c is determined by applying the pseudorandom function f to the input (i.e., the

index i) and the history so far (of the POK protocol).

8

This property holds also for other protocols for NP, but not for the 3-Colorability protocol of [18]. Any protocol

having the property will do.

9

Loosely speaking, the knowledge-error is the probability that the veri�er may get convinced by a cheating prover

who does not know a Hamiltonian cycle. For a precise de�nition, see Appendix C.

16

(pok3) KP answers each of the k bit queries as in Blum's basic protocol. (That is, if c

j

= 0 then

KP decommits to all entries of the j

th

matrix and also reveals the isomorphism; otherwise, KP

decommits only to the entries corresponding to the Hamiltonian cycle. Note that the location

of the latter entries is determined by applying the isomorphism to the original cycle.)

(pok4) KV accepts if and only if all answers are valid. Speci�cally, in case c

j

= 0, KV checks

that the revealed matrix is indeed isomorphic (via the provided isomorphism) to the matrix

representing the reduced graph. In case c

j

= 1, KV checks that all revealed entries are indeed

1's. (In both cases, for each revealed value, KV checks that the decommitment is valid.)

Again, the weak zero-knowledge property is easy to establish. That is, we need and do show that

the interaction with any (possibly dishonest but computationally-bounded) knowledge-veri�er can

be simulated in time poly(k) � 2

k

. This follows by merely using the standard simulator procedure

(cf., [22, 18]), which merely selects a random string c 2 f0; 1g

k

and \simulates" Step (pok1) so that

it can answer the challenge c (but not any other challenge). The strong computational-secrecy of

the commitment scheme (used with security parameter K) guarantees that the knowledge-veri�er

cannot guess c better than with probability approximately 2

�k

, and so we will succeed with over-

whelming probability after at most k �2

k

tries. Standard arguments will also show that the output of

the simulator cannot be distinguish from the real interaction by circuits of size 2

K

�

�1

> 2

2k

. Thus,

this simulator can be plugged into the argument given above for computational-soundness in the

case of preprocessing, and yield that the augmented protocol maintains computational-soundness:

The potentially cheating prover in the main protocol induces a cheating knowledge-veri�er, and

what the simulation says is that in case the veri�er (playing the knowledge-prover) follows the

protocol then whatever the knowledge-veri�er can compute after interacting with it, can also be

computed with overhead of at most poly(k) � 2

k

on input the index i.

We now turn to establish the rewindable zero-knowledge property of the entire protocol. As

a �rst step towards this goal, we establish that the above subprotocol is indeed a POK with

knowledge-error 2

�k

(see Def. 17 in Appendix C). In other words, we analyze a single execution of

the subprotocol, and thus we may assume that Step (pok2) is replaced by sending a truely random

string c. This assumption is not valid when the subprotocol is run many times, and this is why the

simpli�ed analysis provided here does not su�ce. However, it does provide a good warm-up.

Without loss of generality, consider a deterministic cheating knowledge-prover, and let C be

the message sent by it in Step (pok1). Consider the probability space of all 2

k

possible challenges

c 2 f0; 1g

k

that KV may send in Step (pok2). Say that a challenge c 2 f0; 1g

k

is successful for

this knowledge-prover if its answer in Step (pok3) is accepted by KV in Step (pok4). The key

observation is that given the knowledge-prover's answer to any two di�erent successful challanges

we can easily reconstruct the Hamiltonian cycle (and from it the trapdoor).

10

To extract the

Hamiltonian cycle we just invoke the knowledge-prover many times, each time it answers with the

same Step (pok1) message but then we challenge it with a new randomly chosen c (i.e., chosen

independently of all prior attempts). If we ever obtain its answer to two successful challenges

then we are done. Denoting by p the probability that a uniformly chosen challenge is succesful, we

conclude that if p > 2

�k

then given oracle access to the knowledge-prover (played by the adversary)

we can (with overwhelmingly high probability) �nd the trapdoor in time poly(k)=(p � 2

�k

). By

a trivial modi�cation, we obtain a knowledge extractor which for any p > 0 with overwhelming

10

This is the case since each such pair of challenges di�ers in some location and from the two answers to this

location we may reconstract the Hamiltonian cycle.

17

probability runs for time poly(k)=p, and in case p > 2

�k

also retreives the trapdoor.

11

The above argument would have su�ces if we were guaranteed that the adversary, when playing

the role of KP, never repeats the same Step (pok1) message (in two di�erent invocations of the

entire protocol). Assuming that this is indeed the case avoids the subtle problem discussed in the

previous subsection. Still let use assume so and see how, under this unjusti�ed assumption (which

will be removed later), the rewindable zero-knowledge property follows.

Consider a sequence of invocations of the main protocol. The simulator will proceed by sim-

ulating one interaction after the other, where a single interaction is simulated as follows. The

simulator starts by playing the role of KV in Step (1). In case KV rejects then the simulator

complete the simulation of the current interaction by annoncing that the prover aborts it. Note

that this is exactly what would have happened in the real interaction. In case KV accepts, the

simulator will use the knowledge-extractor described above in order to extract the trapdoor of the

index i sent in Step (1). Here is where we use the assumption that the adversary does not repeat

the same Step (pok1) message. The point is that the knowledge-extractor described above will

try many di�erent challenges for Step (pok2). Since the challenge is determined as a \random"

function evaluated at a new point (here is where we use the \no repeat" clause), we may view this

challenge as random. Thus, the above analysis applies. The conclusion is as follows. Suppose that

the cheating veri�er convinces KV with probability p, We distinguish three cases. In case p = 0,

the simulator will always construct an aborting execution (just as in the real interaction). In case

p > 2

�k

, with probability 1 � p the simulator will construct an aborting execution (just as in the

real interaction), and otherwise using time poly(k)=p it �nds the trapdoor of the index i sent in

Step (1), which allows it to complete the simulation of Steps (2){(6) just as done above (in the case

of preprocessing). Note that the expected number of steps required for the simulation in this case

is (1� p) �poly(k) + p � (poly(k)=p) = poly(k). The only case left is the one where p = 2

�k

. In this

case, the simulator fails with probability p, which is negligible, and so its output is computationally

indistingushiable from a real interaction. We stress that in all cases the simulator runs in expected

time poly(k).

Having concluded all these warm-ups, we are now ready to deal with reality. The di�culty occurs

when the adversary uses the same index and same Step (pok1) message in two di�erent interactions

with the prover. Furthermore, suppose that in the �rst interaction it fails to convince KV played by

the prover, but in the second it succeeeds. The problem (avoided by the assumptions above) is that

we cannot use a di�erent challenge (i.e., message for Step (pok2)) in the second interaction, since

the challenge is determined already by the �rst interaction. Thus, the simulator cannot complete

the simulation of the second interaction, unless it \rewinds" upto the �rst interaction in which

the same Step (pok1) message is used.

12

This need to \rewind" interactions which were already

completed may lead to exponential blow-ups as discussed by Dwork, Naor and Sahai [8]. What

saves us here is that the number of times we possibly need to \rewind" is a-priori bounded by

the total number of indices in the public �le. (This is the key and only place where we use the

assumption underlying the public-key model.)

Resolving the problem { a sketch: Let us reproduce and further abstract the problem we

need to analyze. We are dealing a game consisting of multiple (history dependent) iterations of the

following steps, which depends on a random function f �xed once and for all.

11

This can be done by using a time-out mechanism invoked when poly(k) � 2

k

steps are completed, and observing

that if p > 2

�k

then in fact p � 2 � 2

�k

and so (p� 2

�k

)

�1

� 2=p.

12

We comment that in general, a simulator for rewindable zero-knowledge may not proceed by generating the

interactions one after the other without \rewinding" between di�erent interactions.

18

(a) The veri�er sends a pair (i; C), where i belongs to some �xed set I and C is arbitrary. This pair

is determined by applying the veri�er's strategy, V

�

, to the history of all previous iterations

(of these steps).

[Indeed, i corresponds to the index sent in Step (1), I to the public �le, and C to the

Step (pok1) message.]

(b) The prover determines a k-bit string, c = f(i; C), by applying f to the pair (i; C).

[This corresponds to Step (pok2) of KV played by the prover.]

(c) The veri�er either succeeds in which case some additional steps (of both prover and veri�er)

take place or it fails in which case the current execution is completed.

[This corresponds to whether the veri�er, playing KP, has provided a valid decommitment in

Step (pok3), and to the continuation of the main protocol which takes place only in case the

veri�er has done so.]

We want to simulate an execution of this game, while having oracle access to the veri�er's strategy

(but without having access to the prover's strategy, which enables the further steps referred to in

Step (c) above). Towards this goal we are allowed to consider corresponding executions with other

random functions, f

0

; f

00

; :::, and the rule is that whenever we have two di�erent successes (i.e.,

with two di�erent challenges c) for the same pair (i; C) we can complete the extra steps referred to

in Step (c). [This corresponds to extracting the trapdoor of i, which allows the simulation of the

rest of the steps in the current interaction of the main protocol.]

Thus, problems in simulating the above game occur only when we reach a successful Step (c).

In such a case, in order to continue, we need a di�erent success with respect to the same pair (i; C).

In order to obtain such a di�erent success, we will try to run related simulations of the game. Once

we �nd two successes for the same pair (i; C), we say that i is covered, and we may proceed in the

simulation temporarily suspended above. That is, a natural attempt at a simulation procedure is

as follows. We simulate the iterations of the game one after the other, using a random function

f selected by us. Actually, the random function f is de�ned iteratively { each time we need to

evaluate f at a point in which it is unde�ned (i.e., on a new pair (i; C)) we randomly de�ne f

at this point. As long as the current iteration we simulate fails, we complete it with no problem.

Similarly, if the current iteration is successful relative to the current pair (i; C) and i is already

covered, then we can complete the execution. We only get into trouble if the current iteration

is successful relative to (i; C) but i is not covered yet. One natural thing to do is to try to get i

covered and then proceed. (Actually, as we shall see, covering any new element of I, not neccesarily

i, will do.)

Starting with all I uncovered, let us denote by p the probability that when we try to simulate

the game a success occurs. Conditioned on such a success occuring, our goal is to cover some

element of I within expected time poly(k)=p. Suppose we can do this. So in expected time

(1 � p) � poly(k) + p � (poly(k)=p) = poly(k) we either completed a simulation of the entire game

or got some i 2 I covered. In the �rst case, we are done. In the second case, we start again in an

attempt to simulate the game, but this time we have already i covered. Thus, we get into trouble

only if we reach a success relative to (i

0

; C) with i

0

2 I

0

def

= I n fig. Again, we may denote by p

0

the

probability that when we try to simulate the game a success occurs with respect to some i

0

2 I

0

. In

such a case, we try to cover some element of I

0

, and again the same analysis holds. We may proceed

this way, in upto jIj + 1 phases, where in each phase we either complete a random simulation of

the game or we get a new element of I covered in each iteration. Eventually, we do complete a

19

random simulation of the game (since there are more phases than new elements to cover). So,

pending on our ability to cover new elements within time inversely proportional to the probability

that we encounter a success relative to a yet uncovered element, each phase requires poly(k) steps

on the average. Thus, pending on the above, we can simulate the game within expected time

poly(k) � jIj = poly(k) (by the hypothesis regarding I).

We now consider the task of covering a new element. Let us denote the set of currently uncovered

elements by U . Let H denote the pre�x of completed executions of the simulated game and let

(i; C) = V

�

(H) be the current pair which is related to the current success, where i 2 U . To get i

covered we do the following:

1. Let H

0

be the maximal sequence of executions which does not contain (i; C) as a Step (a)

message. Note that H

0

= H in case the current pair (i; C) does not appear as a Step (a)

message in some (prior) execution in H.

2. Rede�ne f

0

(i; C) uniformly at random, and try to extend H

0

(wrt to the function f

0

) just as

we do in the main simulation (where we currently try to extend H wrt to the function f).

If during an attempt to extend H

0

we encounter a new (i.e., di�erent than above) success

with respect to the same pair (i; C) then i itself gets covered, and we have ful�lled our goal.

Otherwise, we repeat the attempt to extend H

0

(with a new random choice for f

0

(i; C)) as

long as we did not try more than k � 2

k

times. In case all attempts fail, we abort the entire

simulation.

We will show that, for p > 2

�k

, we will get a new element covered while making (p� 2

�k

)

�1

tries, on the average.

3. If during the current attempt to extend H

0

we encounter a success relative to some other pair

(i

0

; C

0

) 6= (i; C), where i

0

(possibly equals i) is also currently uncovered, then we abort the

current extension of H

0

(and try a new one { again as long as k � 2

k

tries are made).

A more precise description is provided in Figures 1 and 2, and the actual analysis presented below

refers to this formal description. The main procedure (of Figure 1) attempts jIj+1 times to generate

a full transcript, while constructing the random function, f , on the y. Typically, each attempt

which fails to generate a full transcript provides \progress" in the form of a new element being

covered. The non-typicaly case, which (as we will show) occurs with negligible probability, is that

neither happens. Another thing to be proven is that the expected number of times that the main

procedure repeats (M8){(M10) is inversely proportion to the probability that for uniformly chosen

r 2 f0; 1g

k

it holds that V

�

(H

0

; (i; C); r) succeeds, where H

0

and (i; C) are as de�ned in (M6). The

extension of transcripts, either initial ones as in (M4) or partial ones as in (M9), is performed (in a

straightforward manner) by the Extend procedure depicted in Figure 2. In particular, once Extend

\gets into trouble" (reaches a success w.r.t (i

0

; C

0

) where i

0

is uncovered) it returns control to the

main procedure. In case Extend is invoked in (M4), we next try to get i covered. In case Extend is

invoked in (M9), if (i

0

; C

0

) = (i; C) then we obtain a di�erent success to the one obtained already,

and consequently i gets covered.

Proposition 4 (Analysis of the main procedure): We consider a single execution of the outer loop

in the main procedure.

1. The total expected time spent in such an execution is poly(k).

2. The probability that the the execution aborts with an error message is at most poly(k) � 2

�k

.

20

The procedure has oracle access to the adversary V

�

, and calls the procedure Extend.

(M1) Initialization: U ;.

(M2) Repeat up to jIj+ 1 times

(M3) Initialization: H x and f is totally unde�ned.

(M4) Let answer Extend

f

V

�

(U;H).

(M5) If answer constitute a full simulation transcript then halt with output answer.

[Comment: Otherwise answer = (H; (i; C); f(i; C)), with i =2 U ,

and V

�

(H; (i; C); f(i; C)) is successful. Our aim now is to cover i]

(M6) Let H

0

be the maximal pre�x of H satisfying V

�

(H

0

) = V

�

(H), and let r = f(i; C).

(M7) Repeat up to k � 2

k

times

(M8) Rede�ne f(i; C) at random di�erent than r:

That is, select r

0

uniformly in f0; 1g

k

n frg and let f(i; C) r

0

.

(M9) Let answer Extend

f

V

�

(U;H

0

).

[Comment: answer is an extension of H

0

.]

(M10) If answer contains a success with respect to (i; C) then U U [fig and goto (M2).

[Comment: In this case we have two di�erent successes w.r.t (i; C),

since f(i; C) = r

0

6= r. Thus, i got covered.]

[Comment: Otherwise we proceed to the next iteration of (M7).]

(M11) End [of inner repeat loop]

(M12) In case all attempts have failed, the procedure aborts with an error message.

(M13) End [of outer repeat loop]

Figure 1: The main simulation procedure

Recall that, unless the execution aborts with an error message, it either completes a simulation of

the game or provides a new covered element. Incorporating the abort event into the deviation of

the simulator, we obtain a simulation of the game within expected time jIj � poly(k) = poly(k) and

deviation poly(k) � 2

�k

.

Proof Sketch: The running-time of Extract is bounded by the running time of an execution of

the real game, which in turn is polynomial in k. Thus, we may charge each invocation of Extract

as unit cost. Our aim is to show that the expected charge accomulated in a single execution of the

outer loop in the main procedure is poly(k).

For every partial transcript H (and every U � I), denote by p

H

the probability that H appears

as a pre�x of a transcript generated by Extend

V

�

(U; x). By disjointness of the events corresponding

to pre�ces of equal length we have

P

H

p

H

= poly(k).

Let us call H

0

interesting if the following two conditions hold: (1) V

�

(H

0

) = (i; C) with i 2 U ,

and (2) for every pre�x H

00

of H

0

, it holds that V

�

(H

00

) 6= V

�

(H

0

). For every interesting H

0

,

denote by q

H

0

the probability that Extend

V

�

(U;H

0

) contains a success with respect to V

�

(H

0

) and

furthermore that this is the �rst success in the extension of H

0

. Note that q

H

0

equals the probability

that a single execution of the outer loop of the main procedure determines H

0

as a maximal pre�x

in (M6), conditioned on H

0

being a pre�x of Extend

V

�

(U; x). Thus, conditioned on the latter event,

the inner loop is executed with probability q

H

0

. In case q

H

0

> 2

�k

(i.e., q

H

0

� 2 �2

�k

), each iteration

of the inner loop covers i with probability

2

k

� q

H

0

� 1

2

k

� 1

> q

H

0

� 2

�k

21

The procedure is invoked with some set U � I, partial transcript H and partially de�ned

function f . Speci�cally, it is either invoked with a trivial partial transcript (i.e., H = x) or

with H so that (i; C)

def

= V

�

(H) and i =2 U . In the latter case, f is de�ned on (i; C), and

V

�

(H; (i; C); f(i; C)) succeeds.

Extend

f

V

�

(U;H)

(E1) Repeat till V

�

(H) halts

(E2) (i

0

; C

0

) V

�

(H) (assuming V

�

(H) does not halt).

(E3) If f is not de�ned on (i

0

; C

0

) then select r

0

uniformly in f0; 1g

k

and let f(i

0

; C

0

) r

0

.

(E4) If V

�

(H; (i

0

; C

0

); f(i

0

; C

0

)) fails then H (H; (i

0

; C

0

); f(i

0

; C

0

);?) and goto (E1).

[Comment: Otherwise V

�

(H; (i

0

; C

0

); f(i

0

; C

0

)) succeeds.]

(E5) If i

0

is covered (i.e., i

0

2 I n U) then complete H as in Step (c) and goto (E1).

[Comment: Otherwise i

0

is not covered, and we return a partial transcript.]

(E6) return(H; (i

0

; C

0

); f

0

(i

0

; C

0

)).

[Comment: If (i

0

; C

0

) = (i; C) we retrun a transcript contating a success w.r.t (i; C).]

(E7) End [of repeat loop]

[Comment: Reaching this point means completion of simulation.]

(E8) return(H).

Figure 2: The Extend procedure

Thus, the expected number of iteration of the inner loop is less than (q

H

0

� 2

�k

)

�1

� 2=q

H

0

.

Furthermore, with probability at least 1 � 2

�k

, the inner loop is not repeated more than 2k=q

H

0

times. In case q

H

0

= 2

�k

, the number of iteration of the inner loop equals k � 2

k

= k=q

H

0

. We

conclude that the expected running time of a single iteration of the outer loop is at most

X

H

0

:q

H

0

=0

p

H

0

� 1 +

X

H

0

:q

H

0

>0

p

H

0

�

�

q

H

0

�

O(k)

q

H

0

+ (1� q

H

0

) � 1

�

= poly(k)

and Part 1 of the proposition follows.

Part 2 follows easily by observing that the execution (of the outer loop) may be aborted only

in two cases (relative to the current H

0

determined in (M6)). The �rst case is when q

H

0

> 2

�k

, but

(as mentioned above) in this case abort happens with probability at most (1� (q

H

0

=2))

k2

k

< 2

�k

,

since k � 2

k

� 2k=q

H

0

. The second case is when q

H

0

= 2

�k

, but in this case we reach (M6) with

probability p

H

0

� q

H

0

. Summing over all H

0

's, the probability of abort is bounded above by

X

H

0

:q

H

0

=2

�k

p

H

0

� q

H

0

+

X

H

0

:q

H

0

>2

�k

p

H

0

� q

H

0

� 2

�k

�

X

H

0

p

H

0

� 2

�k

= poly(k) � 2

�k

and Part 2 of the proposition follows.

3.3 Comments

Using a perfect commitment scheme which enjoys the trapdoor feature (but not necessarily the

strong computational-binding feature), one may obtain rewindable zero-knowledge computationally-

sound proof system for NP in the public-key model. These protocols, however, have an unbounded

number of rounds. The idea is to use sequential repetitions of the basic protocols (both for Steps (2){

(6) of the main protocol as well as for the POK subprotocol) rather that parallel repetitions. That

22

is, both Steps (2){(6) of the main protocol and the POK subprotocol consists of parallel executions

of a basic protocol, and what we suggest here is to use sequential repetitions instead. The number

of (sequential) repetitions can be decreased by using Blum's protocol (rather than the one of [18])

also as a basis for the main proof system (i.e., in Steps (2){(6)). To minimize round complexity, one

may use a parallel-sequential hybrid in which one performs s(n) sequential repetitions of a protocol

composed of parallel execution of p(n) = O(log n) copies of the basic protocol (of Blum). This

yields a O(s(n))-round rewindable zero-knowledge computationally-sound proof system for NP in

the public-key model, for any unbounded function s : N 7!N. In particular, we obtain

Theorem 5 Let r : N 7! N be any unbounded function which is computable in polynomial-time,

and suppose that for every polynomial p and all su�ciently large n's, any circuit of size p(n) solves

DLP correctly only on a negligible fraction of the inputs of length n. Then every language in NP

has a r(�)-round rewindable zero-knowledge computationally-sound proof system in the public-key

model.

Alternatively, we note that by using the perfect commitment scheme PC1 also in role of the

(\weaker") scheme PC2, we obtain rewindable zero-knowledge property also against subexponential

adversaries. Speci�cally, even adversaries of running-time bounded by 2

k

�

= 2

K

�

2

gain nothing

from the interaction, where K (the primary security parameter), k = K

�

(the secondary security

parameter) and � (the exponent in the strong computational-binding feature) are as above.

We mention that the idea of applying a pseudorandom function to the veri�er's message may

be used to derive alternative schemes secure in the rewindable sense. For example, starting with a

non-interactive zero-knowledge proof system (cf., [4])

13

, we may obtain an alternative rewindable

witness-indistinguishable proof system for NP (establishing Theorem 2) as follows. The idea is to

employ \coin tossing into the well" (cf., [2]), but with a small twist: We let the veri�er commit to a

sequence of random bits using a perfect (two-round) commitment scheme. Next, the prover sends

a corresponding sequence of bits which are determined by applying a pseudorandom function to

the veri�er's message. Then, the veri�er de-commits and a reference-string for the non-interactive

zero-knowledge proof is de�ned (as usual in \coin tossing into the well"), and �nally the prover

sends such a (non-interactive) proof (relative to that reference-string).

3.4 An alternative presentation of rewindable zero-knowledge systems

In the last section of the paper we present the above protocol in a di�erent way. Rather than

relying on general proofs of knowledge we introduce an additional requirement from the PC1 com-

mitment scheme. The new feature referred to as One-Or-All asserts that obtaining two di�erent

decommitments to the same commitment allows to (feasiblly) decommit any way one wants. In

our application, the veri�er is supposed to know the trapdoor to an instance of the PC1 scheme,

allowing it to decommit any way it wants. Thus, if the veri�er demonstrates ability to decommit

at will then this e�ectively yields a proof of knowledge of the trapdoor. Put in other words, if the

simulator may obtain from the veri�er (by rewinding, whic is not possible for the actual prover) two

di�erent decommitments to the same commitment then it can later decommit at will. Of course, the

veri�er's demonstration of ability to decommit at will should be performed in a \zero-knowledge"

manner. The natural protocol is to have the veri�er commit to a k-bit string, and later decommit

any way as required by the prover. The natural way to (weakly) simulate this is to select at random

a single k-bit string, commit to it and hope that the prover will require to decommit to this value.

13

The basic version (of non-interactive zero-knowledge) allowing for a proof of a single assertion relative to one

reference-string su�ces for our application.

23

4 Interleaved Zero-Knowledge

We now show that the restriction on the interaction of V

�

with copies of the prover made in

De�nition 1 is inessential. That is, allowing the adversary to interleave these interactions (rather

than conduct them in a sequential manner) does not add to its power. This result is very important

since it places rewindable (or interleaved) zero-knowledge quite close to concurrent zero-knowledge.

The extra step is taken in the next section, but �rst we formally de�ne the interleaving model and

prove the above stated result.

In the actual de�nition we introduce a small technicality, which we motivate now. In the model

of De�nition 1, the adversary does not need to specify which interaction with the prover it wishes

to continue next, since at any point in time only one interaction is active. In the model below,

several interactions may be active (i.e., not completed) concurrently, and hence such an indication

is necessary. The simplest way of addressing this technicality is to modify the original interactive

proof so that each party prepends its message by the full transcript of all messages exchanged so

far. That is, we adopt the following convention.

Convention: Given an interactive pair of (deterministic) machines, (A;B), we construct a mod-

i�ed pair, (A

0

; B

0

), so that for t = 1; 2; :::

A

0

(�

1

; �

1

; :::; �

t�1

; �

t�1

) = (�

1

; �

1

; :::; �

t�1

; �

t�1

; A(�

1

; :::; �

t�1

))

provided that �

i

= A(�

1

; :::; �

i�1

), for i = 1; :::; t � 1

B

0

(�

1

; �

1

; :::; �

t�1

; �

t�1

; �

t

) = (�

1

; �

1

; :::; �

t�1

; �

t�1

; �

t

; B(�

1

; :::; �

t�1

))

provided that �

i

= B(�

1

; :::; �

i�1

), for i = 1; :::; t � 1

In case the corresponding condition does not hold, the modi�ed machine outputs a special symbol

indicating detection of cheating. Probabilistic machine are handled similarly (just view the random-

pad of the machine as part of it). Same for initial (common and auxiliary) inputs. We stress that

the modi�ed machines are memoryless (they respond to each message based solely on the message

and their initial inputs), whereas the original machines respond to each message based on their

initial inputs and the sequence of all messages they have received so far.

In the traditional context of zero-knowledge, the above transformation adds power to the ad-

versary, since each machine just checks partial properness of the history presented to it { its own

previous messages.

14

That is, A

0

checks that �

i

= A(�

1

; :::; �

i�1

), but it does not (and in general

cannot) check that �

i

= B(�

1

; :::; �

i�1

) as it does not know B (which by the convention regard-

ing probabilistic machines and inputs may depend also on \hidden variables" { the random-tape

and/or input to B). However, in the context of interleaved zero-knowledge (or even in rewind-

able zero-knowledge) this does not add power: Indeed, the transformation allows an adversary to

pick a di�erent (possible) continuation to an interaction, but this is allowed anyhow in the inter-

leaved (resp., rewindable) zero-knowledge model. In the following de�nition, we assume that P is

a machine resulting from the modi�cation above. We start again with the vanilla version.

De�nition 6 (interleaved zero-knowledge { vanilla model): A prover strategy P is said to be inter-

leaved zero-knowledge (on L) if for every probabilistic polynomial-time adversary V

�

as below there

exists a probabilistic polynomial-time simulator M

�

so that the following distribution ensembles,

indexed by common input x 2 L and prover's auxiliary input y, are computationally indistinguish-

able:

14

Actually, this part of the history may be omitted from these messages, as it can be re-computed by the receiver

itself. Furthermore, it is actually not needed at all. We chose the current convention for greater explicitness.

24

Distribution 1 is de�ned by the following random process which depends on P and V

�

.

1. As in De�nition 1: Randomly select and �x a random-tape, !, for P , resulting in a

deterministic strategy P

0

= P

x;y;!

de�ned by P

x;y;!

(�) = P (x; y; !; �).

2. Machine V

�

is allowed to initiate polynomially-many interleaved interactions with P

0

.

Formally speaking, we may allow V

�

to send arbitrary messages to P

0

and obtain the

response of P

0

to any such message.

15

3. As in De�nition 1: Once V

�

decides it is done interacting with P

0

, it (i.e., V

�

) produces

an output based on its view of these interactions.

Distribution 2: The output of M

�

(x).

In case there exists a universal probabilistic polynomial-time machine, M , so that M

�

can be im-

plemented by letting M have oracle-access to V

�

, we say that P is interleaved zero-knowledge via a

black-box simulation.

Note that once one adopts the above convention, the de�nition of the interleaving model is sim-

pler than the de�nition of the rewindable model (i.e., De�nition 1). Analogously, we may de�ne

interleaved zero-knowledge in the public-key model as well interleaved witness-indistinguishable in

both models.

By the above convention, we may assume without loss of generality that V

�

only sends messages

which result by augmenting some message (i.e., a sequence of strings) received before by a string

of its choice. That is, V

�

is allowed to send the message (e

1

; :::; e

i

; e

i+1

) only if it has received the

message (e

1

; :::; e

i

) before. This claim is justi�ed by the following modi�cation. Assume, without

loss of generality, that the veri�er V

�

moves in odd rounds, and that it currently wishes to send the

message msg

def

= (e

1

; :::; e

2i

; e

2i+1

). Then, the modi�ed veri�er, denoted V

��

, proceeds in iterations

as follows: For j = 1; :::; i, in the j

th

iteration V

��

sends the message (e

1

; :::; e

2j�1

), and continues

to the next iteration only if the response equals (e

1

; :::; e

2j

). In case all i iteration were completed

successfully, V

��

sends the message msg = (e

1

; :::; e

2i

; e

2i+1

); otherwise, (e

1

; :::; e

2i

) is not a valid

history w.r.t the prover, and V

��

refrains from sending msg and behaves as V

�

does after sending

msg and receiving a prover's response equal to a special symbol (indicating detection of cheating

by the veri�er).

The main result of this section is that security (e.g., zero-knowledge) in the rewindable model

implies security in the seemingly stronger interleaving model. For simplicity we state and prove

this result for zero-knowledge in the vanilla model. It is straightfoward to modify the proof to the

public-key model as well as other variants.

Theorem 7 Suppose that P is rewindable zero-knowledge. Then P is interleaved zero-knowledge.

Furthermore, simulation via black-box simulators is preserved.

Proof Sketch: This argument too is by a transformation of one veri�er strategy into another

so that a more general adversay is transformed into a milder one, which nevertheless produces

exactly the same output. Here we transform an adversary of the interleaving model into a more

(syntaxically) restricted adversary of the rewindable model. Thus, simulability of the latter ad-

versary implies simulability of the former, which means that the syntaxical restriction is actually

immaterial.

15

That is, V

�

is given full oracle access to P

0

.

25

Let V

�

be an adversary for the interleaving model, and suppose that it invokes P

0

(to obtain a

single message) at most t times. We construct an adversary, W

�

, for the sequential (rewindable)

model which has output distribution identical to V

�

. The adversaryW

�

will use V

�

as a black-box.

Thus, combining the black-box simulator provided for the sequential model with the operation

of W

�

(and providing it with black-box access to V

�

), we obtain a black-box simulator for the

interleaving model (which works given black-box access to V

�

).

Machine W

�

will run t copies of P

0

, sequentially. (Thus, if P expect to get r messages per

interaction, then W

�

will send a total of r � t messages, where t was de�ned as the number of

messages sent by V

�

.) Firstly,W

�

selects and �xes a random-pad for V

�

and so make the interaction

of V

�

with copies of P

0

totally determined (as both V

�

and P

0

are now deterministic). We next

employ exactly the same transformation used above (when arguing that w.l.o.g each message of

V

�

is obtained by appending a string to a message it has received below), stressing the relevant

fact that it yields an adversary in the rewindable model. Speci�cally, we assume without loss of

generality, that whenever V

�

sends a message to a copy of P

0

, the response arrives immediately.

Thus, all that we need to do is embed each message sent by V

�

in a new interaction of W

�

with a

fresh copy of P

0

. Machine W

�

sequentially reconstructs the messages exchanged between V

�

and

the (interleaved) copies of P

0

as follows.

Assuming, w.l.o.g., that the veri�er takes odd moves in interaction with P

0

. For k = 1; :::; t,

suppose that the k

th

message sent by V

�

is msg

def

= (e

1

; :::; e

2i

; e

2i+1

). Then, W

�

initiates a new

interaction (i.e., the k

th

one) with P

0

and proceeds in it as follows: For j = 1; :::; i, in the j

th

step,

W

�

sends the message (e

1

; :::; e

2j�1

) to P

0

, and continues to the next step only if the response of P

0

equals (e

1

; :::; e

2j

). (The condition is violated only when V

�

does not satisfy the second convention.

By the above transformation we may assume that V

�

always satis�es the latter.) In case all i

steps were completed successfully, W

�

sends the message msg = (e

1

; :::; e

2i

; e

2i+1

), and obtains the

response of P

0

. (Again, we may ignore the case in which these steps were not completed successfully,

which occurs when (e

1

; :::; e

2i

) is not a valid history w.r.t the prover. In such a case W

�

refrains

from sending msg and behaves as V

�

does after sending msg and receiving a \cheating detected"

response from P

0

.) Machine W

�

records this response of P

0

to the message msg. (We stress that

this response of P

0

equals its k

th

response in the interaction with V

�

.) Finally, W

�

aborts the

current (i.e., k

th

) interaction (or, actually, to �t the exact de�nition of the sequential model, runs

this copy to termination arbitrarily). (We stress that the current copy of P

0

may detect that W

�

is \cheating" in the subsequent steps in the current interaction, but this information does not pass

to and e�ect future copies of P

0

.)

To summarize,W

�

is able to conduct sequential interactions with P

0

as allowed in the rewindable

model, and still obtain a transcript of the corresponding execution of V

�

in the interleaved model.

Thus, upon termination, W

�

may output exactly the same value as output by V

�

.

Comment: We note that various properties of V

�

are not necessarily inherited by W

�

. For

example, even in case V

�

is honest (i.e., merely runs a single copy of P

0

while behaving as the

prescribed veri�er), the resulting W

�

is not. In general, as noted at the end of the above proof,

the interaction of W

�

with each copy may be terminated in a \bad" way. Speci�cally, applying the

transformation to the construction of the previous section, we obtain an adversary W

�

which does

not always decommit properly (even in case the underlying V

�

always decommits properly).

Comment: The ideas underlying the above proof can be employed also when the above conven-

tion is not adopted. In such a case we need an alternative convention for regulating simultaneously

26

interactions with several copies of P

0

. Suppose that we adopt a convention by which each message

of V

�

is prepanded with an index of a copy of P

0

, and that responses are accordingly. Suppose that

the k

th

message that V

�

wishes to send has the form (i;msg); that is, it is a message to the i

th

copy

of P

0

. Then W

�

invokes a new (i.e., k

th

) copy of P

0

, and interacts with it as follows. Firtst W

�

sends to the k

th

copy each of the previous messages sent by V

�

to the i

th

copy (i.e., all messages of

the form (i; �)), next W

�

sends to the k

th

copy the current message msg, and records the answer.

Finally, W

�

dismisses the k

th

copy of P

0

(or, actually, run this copy to termination arbitrarily).

Note that, again, each message of the interleaved adversary is embeded in a new interaction with

a fresh copy of P

0

so that there is no interleaving among these copies (and so the requirements of

the rewindable model are satis�ed).

5 Generalization to multiple inputs

In order to relate interleaved zero-knowledge to concurrent zero-knowledge we need to somewhat

extend the former model. Speci�cally, we need to allow the adversary to invoke polynomially-many

random indepedently selected incarnations of P , rather than only one. Similarly, we need to allow

the adversary to invoke incarnations of P on several inputs, rather than on a single one. We stress

that in all cases, the adversary may invoke each incarnation polynomially-many times, the issue

is whether there are many incarnations of P or only one. Intuitively, having many (independent!)

incarnations should not add power to the adversary since communicating with the same incarnation

on the very same common input seems most advantageous for the adversary (and most dangerous

for the prover). Currently, we do not know if this intuition is correct (in general). Fortunately, it

can be easily veri�ed that the results of the previous two sections extend to the more general setting.

We start by extending the models of the two previous sections. Again, we provide de�nitions and

state most results only for zero-knowledge in the vanilla model, and trust the reader to infer other

varaints (such as interleaved zero-knowledge in the public-key model as well interleaved witness-

indistinguishable in both models).

De�nition 8 (generalization to multiple inputs { vanilla model): A prover strategy P is said to be

interleaved zero-knowledge (resp., rewindable zero-knowledge) on L (in the general model) if for every

probabilistic polynomial-time adversary V

�

as below there exists a probabilistic polynomial-time

simulator M

�

so that the following distribution ensembles, indexed by a sequence of common inputs

x

1

; :::; x

poly(n)

2 L\f0; 1g

n

and a corresponding sequence of prover's auxiliary-inputs y

1

; :::; y

poly(n)

,

are computational indistinguishable:

Distribution 1 is de�ned by the following random process which depends on P and V

�

.

1. Randomly select and �x t = poly(n) random-tape, !

1

; :::; !

t

, for P , resulting in deter-

ministic strategies P

(i;j)

= P

x

i

;y

i

;!

j

de�ned by P

x

i

;y

i

;omega

j

(�) = P (x

i

; y

i

; !

j

; �).

2. Machine V

�

is allowed to initiate polynomially-many interactions with the P

(i;j)

's.

� In the interleaving version we allow V

�

to send arbitrary messages to each of the

P

(i;j)

and obtain the response of P

(i;j)

to such message.

� In the sequential (or rewindable) version V

�

is required to complete its current inter-

action with the current copy of P

(i;j)

before starting an interaction with any P

(i

0

;j

0

)

,

regardless if (i; j) = (i

0

; j

0

) or not. Thus, the activity of V

�

proceeds in rounds. In

each round it selects one of the P

(i;j)

's and conducts a complete interaction with it.

27

3. Once V

�

decides it is done interacting with the P

(i;j)

's, it (i.e., V

�

) produces an output

based on its view of these interactions.

Distribution 2: The output of M

�

(x).

We let iZK denote an interactive proof which is interleaved zero-knowledge in the general model.

Zero-knowledge via black-box simulation is de�ned as in the previous cases.

Several previously investigated aspects of zero-knowledge can be casted as special cases of the above

general model. For example, sequential composition of zero-knowledge protocols coincides with a

special case of the sequential model where one is allowed to run each P

(j;j)

once (and may not run

any other P

(i;j)

). More importantly, concurrent zero-knowledge coincides with a special case of

the interleaving model where one is allowed to run each P

(j;j)

once (and may not run any other

P

(i;j)

).

16

Thus, we immediately have

Theorem 9 Suppose that P is interleaved zero-knowledge in the general model (i.e., iZK). Then

P is concurrent zero-knowledge. Furthermore, simulation via black-box simulators is preserved.

By a straightforward adaptation of the proof of Theorem 7, it follows that rewindable zero-

knowledge in the general model implies interleaved zero-knowledge in the general model.

17

That

is,

Theorem 10 Suppose that P is rewindable zero-knowledge in the general model. Then P is in-

terleaved zero-knowledge in the general model (i.e., iZK). Furthermore, simulation via black-box

simulators is preserved.

Finally, as stated above, the (constant-round) protocols presented in Section 3 are in fact secure

in a setting allowing multiple inputs. Speci�cally, both Theorems 2 and 3 hold with respect to

multiple inputs. Combining the above, we obtain the main result of this paper:

Theorem 11 Suppose DLP is hard for subexponential circuits. Then every language in NP has

a constant-round interleaved zero-knowledge computationally-sound proof system in the public-key

model, even when multiple inputs are allowed (i.e., iZK). Furthermore, the prescribed prover is

interleaved zero-knowledge via a black-box simulation.

Thus, as a special case we get results for concurrent execution. For example,

Corollary 12 Suppose DLP is hard for subexponential circuits. Then every language in NP has

a constant-round concurrent zero-knowledge computationally-sound proof system in the public-key

model.

The above actually holds under more general conditions (see discussion and proof of Theorem 3).

Likewise, note that under more general assumptions, every language in NP has a �ve-round inter-

leaved witness-indistinguishable interactive proof system (in the vanilla) model, again even when

multiple inputs are allowed (i.e., iWI).

16

Indeed, the possibility to run various P

(i;j)

's (i.e., same j and varying j's) was never considered before. This

refers to running the prover on the same random-tape but on di�erent input, and is a natural extention of our notion

of rewindable zero-knowledge.

17

Note that even in case the adversary V

�

of the general interleaving model only runs each P

(i;j)

once, the adversary

W

�

derived for the general sequential (rewindable) model may run the same P

(i;j)

several times.

28

6 Alternative Rewindable Zero Knowledge Protocol

In this section we give an alternative version of the Rewindable Zero Knowledge (RZK) Proof for

NP. This presentation does not use Blum's (or any other version) of the general proof that NP

statement has Zero-Knowledge proofs. Rather, we de�ne two types of commitment schemes Type-

1 and Type-2 and show how to use them directly to give RZK protocol for NP statements in the

public key model where the veri�er has a public key assigned to it. As before these commitment

schemes exist if for example the DLP is hard.

6.1 Preliminaries

Probability spaces.

18

If A(�) is an algorithm, then for any input x, the notation \A(x)" refers

to the probability space that assigns to the string � the probability that A, on input x, outputs �.

The set of strings having a positive probability in A(x) will be denoted by \fA(x)g".

If S is a probability space, then \x

R

 S" denotes the algorithm which assigns to x an element

randomly selected according to S, and \x

1

; : : : ; x

n

R

 S" denotes the algorithm that respectively

assigns to, x

1

; : : : ; x

n

, n elements randomly and independently selected according to S. If F is a

�nite set, then the notation \x

R

 F" denotes the algorithm that chooses x uniformly from F .

If p is a predicate, the notation PROB [x

R

 S; y

R

 T ; � � � : p(x; y; � � �)] denotes the probability

that p(x; y; � � �) will be true after the ordered execution of the algorithms x

R

 S; y

R

 T ; � � �.

The notation [x

R

 S; y

R

 T ; � � � : (x; y; � � �)] denotes the probability space over f(x; y; � � �)g gener-

ated by the ordered execution of the algorithms x

R

 S; y

R

 T; � � �.

6.2 Two Types of Commitments

In this section we introduce two types of commitment schemes which will be useful for our result.

6.2.1 Type-1 Commitments

Informal Description. A type-1 commitment consists of a quintuple of algorithms. Algorithm

GEN1 generates a pair of matching public and secret keys. Algorithm COM1 takes two inputs,

a value v to be committed to and a public key, and outputs a pair, (c; d), of commitment and

decommitment values. Without knowledge of the secret key, it is computationally hard |given c,

v and d| to decommit to any value other than v (computational soundness). On the other hand,

having seen c yields no information about the value v (perfect secrecy).

The knowledge of the secret key enables decommiting the same value c in arbitrary ways (trap-

doorness). This arbitrary decommitment ability is achieved by by running the FAKE1 algorithm.

Finally, succeeding in decommitting any single value into more than one way is essentially

equivalent to knowing the secret key (one-or-all). This property is achieved by algorithm FAKE

0

.

Put together, the properties of type-1 commitment yield (using standard terminology) a perfect-

secrecy computationally- binding commitment scheme for which there exists auxilary information

(the secret key) whose knowledge enables decommitment in more than one way. Moreover, it is

possible to give a secure "proof-of-knowledge" of the secret key. This commitment scheme will be

used in the iZK protocol for graph 3-colorability in the following way: the veri�er will publish the

public key of the commitment scheme ahead of the protocol and keep to himself the secret key. At

the onset of the iZK protocol itself, the veri�er will essentially proves to the prover that he knows

18

Verbatim from [3] and [23].

29

the matching secret key. This proof will be secure to the extent that the prover cannot learn any

knowledge which will allow him to cheat. Next, the prover will use commitment scheme speci�ed

by the veri�ers public key to encode the coloring of the input graph.

The Formal Notion.

De�nition 1: A Type-1 Commitment Scheme is a tuple of probabilistic polynomial-time algorithms

GEN1(�), COM1(�; �), V ER1(�; �), KEY V ER1, FAKE1(�; �), and FAKE1

0

such that

1. Completeness. 8k, 8v,

PROB[(PK;SK)

R

 GEN1(1

k

); (c; d)

R

 COM1(PK; v) : KEY V ER1(PK; 1

k

) = V ER1(1

k

; PK; c; v; d) = Y ES] = 1

2. Computational Soundness. 9� > 0 such that 8 su�ciently large k and 8 2

k

�

-gate adversary

ADV

PROB[(PK;SK)

R

 GEN1(1

k

) ; (c; v

1

; v

2

; d

1

; d

2

)

R

 ADV (1

k

; PK) :

v

1

6= v

2

and V ER1(1

k

; PK; c; v

1

; d

1

) = Y ES = V ER1(1

k

; PK; c; v

2

; d

2

)] < 2

�k

�

(We call � the soundness constant.)

3. Trapdoorness. 8 (PK;SK) 2 fGEN1(1

k

)g, 8v

1

; v

2

such that v

1

6= v

2

the following two

probability distributions are identical:

[(c; d

1

)

R

 COM1(PK; v

1

) ; d

0

2

R

 FAKE1(PK;SK; c; v

1

; d

1

; v

2

) : (c; d

0

2

)]

and

[(c; d

2

)

R

 COM1(PK; v

2

) : (c; d

2

)]

(Comment: d

0

2

R

 FAKE1(PK;SK; c; v

1

; d

1

; v

2

) implies V ER1(1

k

; PK; c; v

2

; d

0

2

) = Y ES)

4. Perfect Secrecy. 8 PK such that KEY V ER1(PK; 1

k

) = 1 and 8v

1

; v

2

:

[(c

1

; d

1

)

R

 COM1(PK; v

1

) : c

1

] = [(c

2

; d

2

)

R

 COM1(PK; v

2

) : c

2

]

5. One-Or-All. 8 (PK;SK) 2 fGEN1(1

k

)g, and 8c; v

1

; v

2

; d

1

; d

2

; C; V

1

;D

1

; V such that v

1

6= v

2

,

V ER1(1

k

; PK; c; v

1

; d

1

) = Y ES = V ER1(1

k

; PK; c; v

2

; d

2

), (C;D

1

) 2 fCOM1(V

1

; PK), and

V

1

6= V

2

,:

PROB[D

2

R

 FAKE1

0

(PK; c; v

1

; v

2

; d

1

; d

2

; C; V

1

;D

1

; V

2

) : V ER1(1

k

; PK;C; V

2

;D

2

) = Y ES] =

1

6.2.2 Type-2 Commitment

Informal Description. In type-1 commitment schemes, one commits to a value by means of a

public key, and can de-commit at will if he knows the matching secret key.

In a type-2 commitment scheme, there is a single key used to commit to values, but this key

can be easily inspected (by algorithm KEYVER2) to determine that a corresponding trap-door

information exists (and thus can be used by algorithm FAKE2 to decommit at will). Because such

trapdoor information exists, it can be found by an exhaustive search. It is not required, however,

that there is a easy way to generate type-1 commitment keys and their trapdoor information

together.

Type-1 and type-2 requirement appear to be incomparable.

The use we make of type-2 commitment in the iZKprotocol for graph 3-colorability is for the

veri�er to commit to his questions about colors of end points of edges in the graph before he sees

an encoding of the graph.

30

The Formal Notion.

De�nition 2: A type-2 commitment scheme is a quintuple of probabilistic polynomial-time algo-

rithms GEN2(�), COM2(�; �), V ER2(�; �; �; �), FAKE2(�; �) and KEY V ER2(�),

1. Completeness. 8k, 8v,

PROB[key

R

 GEN2(1

k

) ; (c; d)

R

 COM2(key; v) : V ER2(key; c; v; d) = Y ES] = 1

2. Computational Soundness. 9�;> 0 such that 8 su�ciently large k and 8 2

k

�

-gate adversary

ADV

PROB[key

R

 GEN2(1

k

) ; (c; v

1

; v

2

; d

1

; d

2

)

R

 ADV (key) :

v

1

6= v

2

and V ER2(key; c; v

1

; d

1

) = Y ES = V ER2(key; c; v

2

; d

2

)] < 2

k

�

(� is referred to as the soundness constant.)

3. Veri�able Trapdoorness. 8 key such that KEY V ER2(key; 1

k

) = Y ES 9 trap 2 f0; 1g

k

such

that, 8v

1

; v

2

such that v

1

6= v

2

:

PROB[c

R

 COM2(key; v

1

) ; d

R

 FAKE2(key; trap; c; v

1

; d

1

; v

2

) : V ER2(key; c; v

2

; d) =

Y ES] = 1

4. Veri�able Perfect Secrecy. 8key such that KEY V ER2(key)=YES and 8v

1

; v

2

[(c

1

; d

1

)

R

 COM2(key; v

1

) : c

1

] = [(c

2

; d

2

)

R

 COM(key; v

2

) : c

2

]

6.2.3 Remarks on Type-1 and Type-2 Commitments

The above commitment schemes can be implemented under a variety of assumptions. For example,

the assumption that family of claw-free trapdoor permutation pairs de�ned by [GoMiRi] su�ces for

Type-1 commitment. Moreover, this same assumption su�ces for implementing type-2 commitment

if KEYVER2 is relaxed to be an interactive procedure (or if it has access to a random string as

required for noninteractive zero-knowledge proofs).

Alternatively, based on the assumption that the discrete logarithm problem is hard, both Type-

1 and Type-2 commitment can be achieved as we show below. Even though the two commit-

ment schemes implementations follow from the same complexity assumption, our rewindable zero-

knowledge protocol uses commitments in two fundamentally di�erent ways. Thus, having two

di�erent types of commitmentments enhances the understanding of the protocol, and may possibly

lead to minimizing the complexity assumptions necessary in future implementations.

Finally, as shown within our RZK protocol (i.e., in its �rst 4 steps), the producer of a public-

secret key pair for a type-1 commitment scheme, can prove in constant round that he knows the

secret key corresponding to the public key without enabling the veri�er of this proof of knowledge

to \decommit at will".

6.3 Discrete-Log Implementations of Type-1 and Type-2 Commitment

De�nition: We de�ne the language DLP

0

to consist of the quadruplets (p; g; x; p � 1), where

p is a prime, g a generator of Z

�

p

, x an element of Z

�

P

, and p� 1 is an encoding of the prime

factorization of p� 1. We denote by DLP

0

k

the set of quadruplets in DLP

0

whose prime has length

k: DLP

0

k

def

= f(p; g; x; p � 1) 2 DLP

0

: jpj = kg.

31

The DLP

0

Assumption: 9c; d > 0 8k > d 8 2

k

-gate circuits C:

PROB[(p; g; y; p� 1)

R

 DLP

0

k

c

; C(p; g; y; p� 1) = x : g

x

mod p) = y] < 2

�k

Remark: We include the factorization of p� 1 in the Discrete-Logarithm Problem to enable one

to check easily that g is a generator for Z

�

p

. We may avoid this \di�culty" in varius ways. For

instance, by (1) rede�ning DLP

0

to consist of triplets (p; g; x), where p is a prime of the form

2q + 1, and q is itself prime, and (2) assuming that one may easily randomly select a member of

the corresponding sublanguage DLP

0

k

on input 1

k

. The Discrete-Logarithm Problem appears to

remain hard to solve for primes of this special form.

Lemma 1: Under the DLP

0

assumption, there exist a type-1 commitment scheme.

Proof: De�ne algorithms GEN1, COM1, V ER1, FAKE1, and FAKE1

0

as follows:

GEN1 is a probabilistic, polynomial-time algorithm that, on input 1

k

, randomly selects a k-bit

prime p, a generator g for Z

�

p

, and x 2 [1; p�1] and outputs PK = (p; g; y; p� 1) and SK = x.

(Note: GEN1 makes use of the fact that one can generate k-bit composite numbers in factored

form as shown by Bach.)

COM1 is a probabilistic polynomial-time algorithm that, on inputs (p; g; y; p � 1) 2 DLP

0

k

and a

bit b, randomly selects d 2 f1; :::; p � 1g, computes c = g

d

y

b

mod p, and outputs (c; d).

(Note: Longer binary strings are committed in a \bit-by-bit fashion")

V ER1 takes as input (p; g; y; p� 1) and c; v; d. If (p; g; y; p � 1) 2 DLP

0

k

and c = g

d

y

v

mod p it

outputs YES, else it outputs NO.

KEY V ER1 is a probabilistic polynomial time algoritm that takes as input (p; g; y; p � 1) and

outputs YES if p is prime, g is generator for Z

�

p

, and y 2 Z

�

p

, and NO otherwise.

FAKE1 takes as input (p; g; y; p � 1) 2 DLP

0

k

and (x; c; v

1

; d

1

; v

2

) where g

x

= y mod p, v

1

6= v

2

mod p� 1, and c = g

d

1

y

v

1

mod p, and outputs d

2

= d

1

+ x(v

1

� v

2

) mod p� 1.

FAKE1

0

takes as input PK 2 DLP

0

k

and c; v

1

; v

2

; d

1

; d

2

; C; V

1

;D

1

; V such that v

1

6= v

2

mod p� 1,

V

1

6= V mod p � 1, and V ER1(PK; c; v

1

; d

1

) = Y ES = V ER1(PK; c; v

2

; d

2

). It computes

x = (d

1

� d

2

)(v

1

� v

2

)

�1

mod p� 1 and outputs D = D

1

+ x(V

1

� V) mod p� 1.

Lemma 2: Under the DLP

0

assumption, there is a type-2 commitment scheme.

Proof: De�ne algorithms GEN2, COM2, V ER2, FAKE2, and KEY V ER2 as follows:

GEN2 is a probabilistic, polynomial-time algorithm that, on input 1

k

, randomly selects a k-

bit prime q together with q � 1, a generator h for Z

�

q

, and z 2 Z

�

q

and outputs PK =

(q; h; z; q � 1).

COM2 is a probabilistic polynomial-time algorithm that, on input (q; h; z; q � 1) 2 DLP

0

k

and a

bit b, randomly selects d 2 f1; :::; q � 1g, computes c = h

d

z

b

mod q, and outputs (c; d).

(Note: Longer binary strings are committed in a \bit-by-bit fashion")

32

V ER2 takes as input (q; h; z; q � 1) 2 DLP

0

k

and c; v; d. If c = h

d

h

v

mod q it outputs YES, else it

outputs NO.

KEY V ER2 takes as input (q; h; z; q � 1) 2 DLP

0

k

and 1

k

. If q is prime, h is a generator for Z

�

q

and z 2 Z

�

q

it outputs YES, else it outputs NO.

FAKE2 takes as input key = (q; h; z; q � 1) such that KEY V ER(key; 1

k

) = Y ES, trap 2 f0; 1g

k

and c; v

2

; v

1

; d

1

such that v

1

6= v

2

mod p�1 and V ER2((q; h; z); c; v

1

; d

1

) = Y ES. If h

trap

= z

mod q, then output d

2

= d

1

+ trap(v

1

� v

2

) mod q � 1.

Note that for every key = (q; h; z) where KEY V ER(key; 1

k

) = Y ES, there exists trap such

that h

trap

= z mod q (as required above).

6.4 An iZK Protocol For 3-Coloring Using Public Keys

6.4.1 Initial Remarks

The protocol utilizes a type-1 commitment scheme, (GEN1; COM1; V ER1;KEY V ER1; FAKE1; FAKE1

0

),

with soundness constant �

1

. Before the protocol starts, the veri�er runs GEN1 with security pa-

rameter K to obtain a public key, PK, and its matching secret key, SK. This public key will be a

common input of prover and veri�er. The second common input will be G, a graph that the prover

claims to be 3-colorable. The private input of the veri�er consist of SK, while the private input to

the prover consist of a seed s for a pseudo-random function �a la [GGM], f

s

.

The protocol also uses a type-2 commitment scheme, (GEN2; COM2; V ER2; FAKE2;KEY V ER2),

with soundness constant �

2

. The prover generates a (single) key for this commitment scheme by

using GEN2, with security parameter k, during run time.

Note that the security parameters K and k are not chosen equal, nor independently. Rather,

the protocol requires that K be suitably bigger than k: more precisely, K = k

1

2�

1

.

19

The length

of the seed s, may however, be chosen quite independently of K and k: it is only for simplicity that

we chose it to be K-bit long.

At a very high level, the protocol consists of two phases. First, the veri�er convinces the prover

that he \knows" SK(steps 1-4). Second, the prover convinces the verifer that the input graph G is

3-colorable (steps 5-10). The prover is de-facto deterministic: at each step of the protocol, all his

\random" choices are made by applying f

s

to the history of the communication so far.

6.4.2 The Protocol

Protocol RZK

� Security Parameter(s): k and K where K = k

1

2�

1

.

� Veri�er's public and secret key: (PK;SK)

R

 GEN1(1

K

).

� Prover's secret seed: s 2

R

f0; 1g

K

� Common input to protocol: A 3-colorable graph G with vertex set VERTICES and edge

set EDGES, where VERTICES has cardinality n and EDGES has cardinality m.

19

As a result, \cheating" will be hard in both schemes, but it will be much harder for the type-1 scheme than for

the type-2 scheme. In particular, as it will become clear later on, �nding two di�erent decommitments for the same

type-2 commitment cannot signi�cantly help in �nding SK, the type-1 secret key.

33

� Secret input to prover : a 3-coloring of G, COL : V ERS ! f1; 2; 3g, where COL(v) is

the color of vertex v.

Comment: The following 10 steps are executable in 7 rounds of communication.

1. (Instructions for V)

For i = 1; : : : ; k, let (X

i

; R

i

)

R

 COM1(PK; 0), send X

i

to P.

2. (Instructions for P) If KEY V ER1(Pk; 1

k

) = NO, then halt. Else,

Compute a

1

; : : : ; a

k

= f

s

(X

1

j : : : jX

k

) where f

s

is a GGM random function with seed s and

send them to V.

3. (Instructions for V)

For i = 1; : : : ; k, compute R

0

i

R

 FAKE1(PK;SK;X

i

; 0; R

i

; 1).

If a

i

= 0, then set D

i

= R

i

, else set D

i

= R

0

I

. Send D

i

to P .

4. (Instructions for P)

For i = 1 : : : ; k, if V ER1(PK;X

i

; a

i

;D

i

) = NO, then reject.

5. (Instructions for P)

Select key

R

 GEN2(1

k

) and send it to V.

6. (Instructions for V) If KEY V ER2(key; 1

k

) = NO, then reject. Else,

For j = 1 : : : ; n

3

, randomly select edge e

j

= (u

j

; v

j

) in G, compute (ce

j

; de

j

)

R

 COM2(key; e

j

),

and send P the commitment values ce

j

.

7. (Instructions for P) For j = 1; : : : ; n

3

, choose �

j

, a random permutation of f1; 2; 3g, and:

for all u 2 V ERTICES do: (cu

j

; du

j

)

R

 COM1(PK; �

j

(COL(u))) and send cu

j

to V.

8. (Instructions for V) For j = 1; : : : ; n

3

, decommit e

j

= (u

j

; v

j

) by sending e

j

and de

j

to P.

9. (Instructions for P) For j = 1 : : : ; n

3

, if V ER2(key; ce

j

; e

j

; de

j

) = NO, then reject. Else,

decommit the colors of the endpoints of e

j

by sending �

j

(COL(u

j

)), du

j

, �

j

(COL(v

j

)) and

dv

j

to P.

10. (Instructions for V)

(a) For j = 1; : : : ; n

3

, if V ER1(PK; cv

j

; �

j

(COL(v

j

)); dv

j

) = NO or V ER1(PK; cu

j

; �

j

(COL(u

j

)); du

j

) =

NO, then reject.

(b) For j = 1; : : : ; n

3

, if �

j

(COL(u

j

)) = �

j

(COL(v

j

)) (where e

j

= (u

j

; v

j

)), then reject.

(c) Else, accept.

Acknowledgements

We are indebted to Ran Canetti for discussion on the notion of rewindability and its possibility in

earlier stages of this work. We are indebted to Amit Sahai for his invaluable help in �nding a aw

in an earlier version of this paper.

34

References

[1] M. Ben-Or, O. Goldreich, S. Goldwasser, J. H�astad, J. Kilian, S. Micali and P. Rogaway.

Everything Provable is Probable in Zero-Knowledge. In CRYPTO88, Springer-Verlag

LNCS403, pages 37{56, 1990

[2] M. Blum. Coin Flipping by Phone. IEEE Spring COMPCOM, pages 133{137, February

1982. See also SIGACT News, Vol. 15, No. 1, 1983.

[3] M. Blum, A. De Santis, S. Micali, and G. Persiano. Non-Interactive Zero-Knowledge Proof

Systems. SIAM J. Computing, Vol. 20, No. 6, pages 1084{1118, 1991. (Considered the

journal version of [4].)

[4] M. Blum, P. Feldman and S. Micali. Non-Interactive Zero-Knowledge and its Applications.

In 20th STOC, pp. 103{112, 1988.

[5] M. Blum and S. Micali. How to Generate Cryptographically Strong Sequences of Pseudo-

Random Bits. SIAM J. Computing, Vol. 13, pages 850{864, 1984.

[6] J. Boyar, M. Krentel and S. Kurtz. A Discrete Logarithm Implementation of Perfect

Zero-Knowledge Blobs. Jour. of Cryptology, Vol. 2, pp. 63{76, 1990.

[7] G. Brassard, D. Chaum and C. Cr�epeau. MinimumDisclosure Proofs of Knowledge. JCSS,

Vol. 37, No. 2, pages 156{189, 1988.

[8] C. Dwork, M. Naor, and A. Sahai. Concurrent Zero-Knowledge. In 30th STOC, pages

409{418, 1998.

[9] C. Dwork, and A. Sahai. Concurrent Zero-Knowledge: Reducing the Need for Timing

Constraints. In Crypto98.

[10] U. Feige and A. Shamir. Witness Indistinguishability and Witness Hiding Protocols. In

22nd STOC, pages 416{426, 1990.

[11] A. Fiat and A. Shamir. How to Prove Yourself: Practical Solution to Identi�cation and

Signature Problems. In CRYPTO86, Springer-Verlag LNCS263, pages 186{189, 1987.

[12] O. Goldreich. A Uniform Complexity Treatment of Encryption and Zero-Knowledge. Jour.

of Cryptology, Vol. 6, No. 1, pages 21{53, 1993.

[13] O. Goldreich. Foundation of Cryptography { Fragments of a Book. Febru-

ary 1995. Revised version, January 1998. Both versions are available from

http://theory.lcs.mit.edu/�oded/frag.html.

[14] O. Goldreich, S. Goldwasser, and S. Micali. How to Construct Random Functions. JACM,

Vol. 33, No. 4, pages 792{807, 1986.

[15] O. Goldreich and A. Kahan. How to Construct Constant-Round Zero-Knowledge Proof

Systems for NP. Jour. of Cryptology, Vol. 9, No. 2, pages 167{189, 1996.

[16] O. Goldreich and H. Krawczyk. On the Composition of Zero-Knowledge Proof Systems.

SIAM J. Computing, Vol. 25, No. 1, pages 169{192, 1996.

35

[17] O. Goldreich and L.A. Levin. Hard-core Predicates for any One-Way Function. In 21st

STOC, pages 25{32, 1989.

[18] O. Goldreich, S. Micali and A. Wigderson. Proofs that Yield Nothing But Their Validity

or All Languages in NP Have Zero-Knowledge Proof Systems. JACM, Vol. 38, No. 1, pp.

691{729, 1991.

[19] O. Goldreich and Y. Oren. De�nitions and Properties of Zero-Knowledge Proof Systems.

Jour. of Cryptology, Vol. 7, No. 1, pages 1{32, 1994.

[20] S. Goldwasser and S. Micali. Probabilistic Encryption. JCSS, Vol. 28, No. 2, pages

270{299, 1984.

[21] S. Goldwasser and S. Micali. Patent applications on Internet Zero-knowledge Protocols

and Application (3/3/99) and Internet Zero-Knowledge and Low-Knowledge Proofs and

Protocols (6/11/99).

[22] S. Goldwasser, S. Micali and C. Racko�. The Knowledge Complexity of Interactive Proof

Systems. SIAM J. Comput., Vol. 18, No. 1, pp. 186{208, 1989.

[23] S. Goldwasser, S. Micali, and R.L. Rivest. A Digital Signature Scheme Secure Against

Adaptive Chosen-Message Attacks. SIAM J. Comput., April 1988, pages 281{308.

[24] J. H�astad, R. Impagliazzo, L.A. Levin and M. Luby. Construction of Pseudorandom Gen-

erator from any One-Way Function. To appear in SIAM Jour. on Computing. Preliminary

versions by Impagliazzo et. al. in 21st STOC (1989) and H�astad in 22nd STOC (1990).

[25] J. Kilian, E. Petrank, and C. Racko�. Lower Bounds for Zero-Knowledge on the Internet.

In 39 FOCS, pages 484{492, 1998.

[26] M. Naor. Bit Commitment using Pseudorandom Generators. Jour. of Cryptology, Vol. 4,

pages 151{158, 1991.

[27] R. Ransom and J. Kilian. Non-Synchronized Composition of Zero-Knowledge Proofs.

Manuscript, 1998.

[28] A.C. Yao. Theory and Application of Trapdoor Functions. In 23rd FOCS, pages 80{91,

1982.

36

Appendix A: Commitment Schemes

We formally de�ne the various types of commitment schemes used by our main protocol. We start

with the more standard notion of a commitment scheme in which secrecy is preserved only w.r.t

computationally bounded adversaries, and later pass to the dual notion of a perfect commitment

scheme (in which secrecy is preserved in an information theoretic sense). Recall that the binding

property in standard schemes is absolute (i.e., information theoretical), whereas in perfect commit-

ment schemes it holds only w.r.t computationally bounded adversaries. But before de�ning any

of these, let use de�ne a su�cient condition for the existence of all these schemes { a strong DLP

assumption.

A.1 The Strong DLP Intractability Assumption

The Discrete Logarithm Problem (DLP) is de�ned as follows. On input p; g; y, where p is a prime, g

is a primitive element in the multiplicative group modulo p, and y 2 Z

�

p

, one has to �nd x suct that

g

x

� y (mod p). We assume that this task is intractable also in the special case where p = 2q+1

and q is a prime too. Such p's are often called safe primes, and the above assumption is quite

standard. It follows that the same would hold when g is of order q and so is y. Finally, we assume

that intractability refers to sub-exponential size circuits rather merely to super-polynomial ones.

Thus we assume the following:

The Strong DLP Assumption: For some � > 0, for every su�ciently large n, and

every circuit C of size at most 2

n

�

Pr[C(p; g; g

x

mod p) = x] < 2

�n

�

where the probability is taken uniformly over all n-bit long safe primes p, elements g of

order q

def

= (p� 1)=2, and x 2 Z

�

q

.

We comment that, although stronger than the standard assumption, the above Strong DLP As-

sumption seems very reasonable.

A.2 Standard Commitment Schemes

By a standard commitment scheme we refer to one providing computational-secrecy and absolute

(or perfect) binding. For simplicity, we consider here only one-round commitment schemes.

De�nition 13 (standard commitment scheme): A standard commitment scheme is a probabilistic

polynomial-time algorithm, denoted C satisfying:

(Computational) Secrecy: For every v; u of equal poly(n)-length, the random variables C(1

n

; v)

and C(1

n

; u) are computationally indistinguishable by circuits. That is, for every two polyno-

mials p; q, all su�ciently large n's and all v; u 2 f0; 1g

p(n)

and every distinguishing circuit D

of size q(n),

jPr[D(C(1

n

; v)) = 1] � Pr[D(C(1

n

; u)) = 1]j <

1

q(n)

(Perfect) Binding: For every v; u of equal poly(n)-length, the random variables C(1

n

; v) and

C(1

n

; u) have disjoint support. That is, for every v; u and �, if Pr[C(1

n

; v) = �] and

Pr[C(1

n

; u) = �] are both positive then u = v.

37

The way such a commitment scheme is used should be clear: To commit to a string v, under security

parameter n, the sender invokes C(1

n

; v) and sends the result as its commitment. The randomness

used by C during this computation, is to be recorded and can latter be used as a decommitment.

A commitment scheme as above can be constructed based on any one-way permutation: Loosely

speaking, given a permutation f : D 7! D with a hard-core predicate b (cf., [17]), one commits to

a bit � by uniformly selecting x 2 D, and sending (f(x); b(x)� �) as a commitment.

A strong version of the standard commitment scheme requires computational-secrecy to hold

also with respect to subexponential-size circuits (i.e., replace the polynomial q above by a function

f of the form f(n) = 2

n

�

, for some �xed � > 0). This is analogous to the strong computational-

binding feature discussed below. The Strong DLP Assumption implies the existence of such strong

computational-secrecy commitment schemes.

A.3 Perfect Commitment Schemes

We start by de�ning two-round perfect commitment schemes. In such schemes the party's strategies

may be represented by two algorithms, denoted (S;R), for sender and receiver. The sender has a

secret input v 2 f0; 1g

�

and both parties share a security parameter n. Thus, the �rst message sent

(by an honest receiver) is R(1

n

), and the response by a sender wishing to commit to a value v (of

length bounded by a polynomial in n) is S(1

n

; v;msg), where msg is the message received in the

�rst round. To \de-commit" to a value v, the sender may provide the coin tosses used by S when

committing to this value, and the receiver may easily verify the correctness of the de-committed

value.

De�nition 14 (perfect two-round commitment scheme): A perfect two-round commitment scheme

is a pair of probabilistic polynomial-time algorithms, denoted (S;R) satisfying:

(Perfect) Secrecy: For every mapping R

�

(representing a computationally-unbounded cheating

receiver), and for every v; u of equal poly(n)-length, the random variables S(1

n

; v; R

�

(1

n

)) and

S(1

n

; u;R

�

(1

n

)) are statistically close. That is, for every two polynomials p; q, all su�ciently

large n's and all v; u 2 f0; 1g

p(n)

X

�

jPr[S(1

n

; v; R

�

(1

n

)) = �]� Pr[S(1

n

; u;R

�

(1

n

)) = �] j <

1

q(n)

(Computational) Binding: Loosely speaking, it should be infeasible for the sender, given the

message sent by the honest receiver, to answer in a way allowing it to later de-commit in two

di�erent ways.

In order to formulate the above, we rewrite the honest sender move, S(1

n

; v;msg), as con-

sisting of uniformly selecting s 2 f0; 1g

poly(n;jvj)

, and computing a polynomial-time function

S

0

(1

n

; v; s;msg), where msg is the receiver's message. A cheating sender tries, given a receiver

message msg, to �nd two pairs (v; s) and (v

0

; s

0

) so that v 6= v

0

and yet S

0

(1

n

; v; s;msg) =

S

0

(1

n

; v

0

; s

0

;msg). This should be infeasible; that is, we require that for every polynomial-size

circuit S

�

(representing a cheating sender invoked as part of a larger protocol), for every

polynomial p, all su�ciently large n's

Pr[V

n

6= V

0

n

& S

0

(1

n

; V

n

; S

n

; R(1

n

)) = S

0

(1

n

; V

0

n

; S

0

n

; R(1

n

))] <

1

q(n)

where (V

n

; S

n

; V

0

n

; S

0

n

) = S

�

(1

n

; R(1

n

)).

38

A perfect two-round commitment scheme can be constructed using any claw-free collection (cf., [15]).

In particular, it can be constructed based on the standard assumption regarding the intractability

of DLP (as the latter yields a claw-free collection). Combing the two constructions, we get the

following perfect two-round commitment scheme: On input a security parameter n, the receiver

selects uniformly an n-bit prime p so that q

def

= (p� 1)=2 is prime, a element g of order q in Z

�

p

, and

z in the multiplicative subgroup of Z

�

p

formed by g, and sends the triple (p; g; z) over. To commit

to a bit �, the sender �rst checks that (p; g; z) is of the right form (otherwise it halts announcing

that the receiver is cheating

20

), uniformly selects s 2 Z

q

, and sends g

s

z

�

mod p as its commitment.

Additional features: The additional requirements assumed of the perfect commitment schemes

in subsection 3.2 can be easily formulated. The strong computational binding feature is formulated

by extending the Computational Binding Property (of Def. 14) to hold for subexponential circuits

S

�

. Again, the Strong DLP Assumption yields such a stronger binding feature. The trapdoor feature

requires the existence of a probabilistic polynomial-time algorithm R that outputs pairs of strings

so that the �rst string is distributed as in R (above), whereas the second string allows arbitrary

decommiting. That is, there exists a polynomial-time algorithm A so that for every (msg; aux) in

the range of R(1

n

), every v; u 2 f0; 1g

poly(n)

, and every s 2 f0; 1g

poly(n;jvj)

, satis�es

S

0

(1

n

; v; s;msg) = S

0

(1

n

; u; A(aux; (v; s); u);msg)

That is, a = A(aux; (v; s); u) is a valid decommit of the value u to the sender's commitment to

the value v (i.e., the message S

0

(1

n

; v; s;msg)). Thus, one may generate random commitments c

(by uniformly selecting s and computing S

0

(1

n

; 0

poly(n)

; s;msg)) so that later, with knowledge of

aux, one can decommit to any value u of its choice (by computing a = A(aux; (0

poly(n)

; s); u)).

The DLP construction (of above) can be easily modi�ed to satisfy the trapdoor feature: Actually,

the known implementation for the random selection of z (in the subgroup generated by g) is to

select r uniformly in Z

�

q

and set z = g

r

mod p. But in this case r is the trapdoor we need, since

g

s

z

v

� g

s+(v�u)r

z

u

(mod p), and so we may decommit to u by presending s+ (v � u)r mod q.

Appendix B: the subtle problem or rewindable zero-knowledge

wrt limited veri�ers

Clearly, the protocol described in Subsection 3.1 is constant-round (speci�cally 5-round). It is also

easy to see that it constitutes an interactive proof for Graph 3-Colorability: Perfect completeness is

obvious (by just following the speci�ed strategies). Soundness follows by noting that the protocol

di�ers from the one in [15] only in Step (P1), but this is irrelevant since the analysis of soundness

is with respect to an arbitrary cheating prover. Thus, soundness follows from [15]. We therefore

focus on the zero-knowledge aspect of the protocol:

Proposition 15 The protocol described in Subsection 3.1 is rewindable zero-knowledge with re-

spect to veri�ers which decommit properly.

Proof Sketch: Here we use some extra properties of the simulator presented in [15] for the

related protocol. We �rst consider, as a mental experiment, a prover which uses a truly random

function rather than a pseudorandom one. Let V

�

a probabilistic polynomial-time adversary which

20

Actually, to �t the de�nition, the sender should commit via a special symbol which allows arbitrary decommit.

Surely, such a commitment-decommit pair will be rejected by the honest receiver, which never cheats.

39

interacts with this prover as in (Distribution 1 of) De�nition 1. We �rst claim that in case V

�

sends the same �rst message (i.e., the Step (V1) commitment) in two invocations of the prover then,

except with negligible probability, it cannot reveal two di�erent edge-sequences in the corresponding

Step (V2). This follows from the computational-binding property of the commitment scheme used

for the veri�er's commitments, and from the fact that the simulator presented in [15] starts by

�xing the coins of V

�

(once and for all). That is, for the i

th

iteration, the claim follows by the

computational-binding property and the fact that a simulation of the previous i � 1 interactions

can be incorporated into a cheating sender (played by the veri�er).

Thus, ignoring these negligible probability events, whenever the veri�er repeats a Step (V1)

message it has to reveal the same values in the decommitment Step (V2). The reason being that

failure to decommit is disallowed by the hypothesis, whereas decommitment to a di�erent value may

only occur with negligible probability (by the above). But whenever the Step (V1) commitment

message as well as the decommitment Step (V2) are the same as in a previous interaction, so are

the values revealed in Step (P2). Thus, in such a case, we can simulate the current interaction

by copying values from the previous interaction. It follows that, without loss of generality (and

ignoring negligible probability events), we may assume that V

�

never repeats the same Step (V1)

message in two di�erent interactions.

But in such a case, the interaction amounts to polynomially-many sequential composition of

the [15] protocol (since an application of a totally random function f : f0; 1g

m

7! f0; 1g

m

to q

di�erent values is equivalent to uniform and independent selection of q elements in f0; 1g

m

). Since

the [15] protocol has a black-box zero-knowledge simulator it follows that the above ideal prover

(which uses a truly random function) is rewindable zero-knowledge via a black-box simulation.

Turning back to the actual prover (which uses a pseudorandom function rather than a totally

random one), we claim that the simulator provided for the ideal prover also simulates the ac-

tual prover. Otherwise, one can combine the prover and adversary interactive programs into a

(non-uniform) algorithm which distinguishes pseudorandom functions from truly random ones, in

contradiction to the de�nition of pseudorandom functions. Here we use the fact that the prover's

strategy can be implemented in polynomial-time given the input graph and a 3-coloring of it. The

latter are incorporated into the distinguishing algorithm (and constitute { as usual in the area {

its only non-uniform aspect).

21

Appendix C: Blum's Proof of Knowledge

For sake of self-containment, we �rst recall the de�nition of a proof of knowledge. The following

text is reproduced from [13].

C.1 Proofs of Knowledge

C.1.1 Preliminaries

Let R � f0; 1g

�

� f0; 1g

�

be a binary relation. Then R(x)

def

= fs : (x; s) 2 Rg and L

R

def

= fx :

9s s.t. (x; s) 2 Rg. If (x; s) 2 R then we call s a solution for x. We say that R is polynomially

bounded if there exists a polynomial p such that jsj � p(jxj) for all (x; s) 2 R. We say that R

is an NP relation if R is polynomially bounded and, in addition, there exists a polynomial-time

algorithm for deciding membership in R (i.e., L

R

2 NP). In the sequel, we con�ne ourselves to

polynomially bounded relations.

21

A fully-uniform treatment is applicable here too; see [12].

40

We wish to be able to consider in a uniform manner all potential (knowledge) provers, without

making distinction based on their running-time, internal structure, etc. Yet, we observe that these

interactive machine can be given an auxiliary-input which enables them to \know" and to prove

more. Likewise, they may be lucky to select a random-input which enables more than another.

Hence, statements concerning the knowledge of the prover refer not only to the prover's program

but also to the speci�c auxiliary and random inputs it has. Hence, we �x an interactive machine

and all inputs (i.e., the common-input, the auxiliary-input, and the random-input) to this machine,

and consider both the corresponding accepting probability (of the veri�er) and the usage of this

(prover+inputs) template as an oracle to a \knowledge extractor". This motivates the following

de�nition.

De�nition 16 (message speci�cation function): Denote by P

x;y;r

(m) the message sent by machine

P on common-input x, auxiliary-input y, and random input r, after receiving messages m. The

function P

x;y;r

is called the message speci�cation function of machine P with common-input x,

auxiliary-input y, and random input r.

An oracle machine with access to the function P

x;y;r

will represent the knowledge of machine P on

common-input x, auxiliary-input y, and random input r. This oracle machine, called the knowledge

extractor, will try to �nd a solution to x (i.e., an s 2 R(x)). (As postulated below, the running time

of the extractor is inversely related to the corresponding accepting probability (of the veri�er).)

C.1.2 Knowledge veri�ers

Now that all the machinery is ready, we present the de�nition of a system for proofs of knowledge.

At �rst reading, the reader may set the function � to be identically zero.

De�nition 17 (System of proofs of knowledge): Let R be a binary relation, and � : N ! [0; 1].

We say that an interactive machine V is a knowledge veri�er for the relation R with knowledge error

� if the following two conditions hold.

� Non-triviality: There exists an interactive machine P so that for every (x; y) 2 R all possible

interactions of V with P on common-input x and auxiliary-input y are accepting.

� Validity (with error �): There exists a probabilistic oracle machine K such that for every

interactive machine P , every x 2 L

R

and every y; r 2 f0; 1g

�

, on input x and access to P

x;y;r

machine K �nds a solution s 2 R(x) within expected time inversely proportional to p��(jxj),

where p is the probability that V accepts x when interacting with P

x;y;r

. More precisely:

Denote by p(x; y; r) the probability that the interactive machine V accepts, on input x, when

interacting with the prover speci�ed by P

x;y;r

. Then if p(x; y; r) > �(jxj) then, on input x and

access to oracle P

x;y;r

, machine K outputs a solution s2R(x) within an expected number of

steps bounded above by

poly(jxj)

p(x; y; r)� �(jxj)

The oracle machine K is called a universal knowledge extractor.

When �(�) is identically zero, we just say that V is a knowledge veri�er for the relation R. An

interactive pair (P; V) so that V is a knowledge veri�er for a relation R and P is a machine

satisfying the non-triviality condition (with respect to V and R) is called a system for proofs of

knowledge for the relation R.

41

C.2 Blum's Protocol

In the main text, we consider k parallel repetitions of the following basic proof system for the Hamil-

tonian Cycle (HC) problem which is NP-complete (and thus get proof systems for any language in

NP). We consider directed graphs (and the existence of directed Hamiltonian cycles).

Construction 18 (Basic proof system for HC):

� Common Input: a directed graph G = (V;E) with n

def

= jV j.

� Auxiliary Input to Prover: a directed Hamiltonian Cycle, C � E, in G.

� Prover's �rst step (P1): The prover selects a random permutation, �, of the vertices V , and

commits to the entries of the adjacency matrix of the resulting permuted graph. That is, it

sends an n-by-n matrix of commitments so that the (�(i); �(j))

th

entry is a commitment to

1 if (i; j) 2 E, and is a commitment to 0 otherwise.

� Veri�er's �rst step (V1): The veri�er uniformly selects � 2 f0; 1g and sends it to the prover.

� Prover's second step (P2): If � = 0 then the prover sends � to the veri�er along with the

revealing (i.e., preimages) of all commitments. Otherwise, the prover reveals to the veri�er

only the commitments to entries (�(i); �(j)) with (i; j) 2 C. In both cases the prover also

supplies the corresponding decomitments.

� Veri�er's second step (V2): If � = 0 then the veri�er checks that the revealed graph is indeed

isomorphic, via �, to G. Otherwise, the veri�er just checks that all revealed values are 1 and

that the corresponding entries form a simple n-cycle. In both cases the veri�er checks that the

decommitments are proper (i.e., that they �ts the corresponding commitments). The veri�er

accepts if and only if the corresponding condition holds.

We stress that the above protocol uses a standard commitment scheme.

Proposition 19 The protocol which results by k parallel repeations of Construction 18 is a proof of

knowledge of Hamiltonicity with knowledge error 2

�k

. Furthermore if, for every positive polynomial

p, the commitment scheme used in Step (P1) maintain secrecy with respect to circuits of size p(n)�2

3k

and distinguishing gap of 2

�3k

=p(n) then, for every positive polynomial q, the interaction can be

simulated in time poly(n) �2

k

so that no circuit of size q(n) �2

2k

can distinguish the simulation from

the real interaction with gap of 2

�2k

=q(n) or more.

42

