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Abstract

In this paper we present a new scheme for constructing universal

one-way hash functions that hash arbitrarily long messages out of uni-

versal one-way hash functions that hash �xed-length messages. The

new construction is extremely simple and is also very e�cient, yielding

shorter keys than previously proposed composition constructions.

1 Introduction

In this paper we consider the problem of constructing universal one-way

hash functions (UOWHFs).

The notion of a UOWHF was introduced by Naor and Yung [7]. A

UOWHF is a keyed hash function with the following property: if an ad-

versary chooses a message x, and then a key K is chosen at random and

given to the adversary, it is hard for he adversary to �nd a di�erent message

x

0

6= x such that H

K

(x) = H

K

(x

0

).

As a cryptographic primitive, a UOWHF is an attractive alternative to

the more traditional notion of a collision-resistant hash function (CRHF),

which is characterized by the following property: given a random key K, it

is hard to �nd two di�erent messages x; x

0

such that H

K

(x) = H

K

(x

0

).

A reasonable approach to designing a UOWHF that hashes messages of

arbitrary and variable length is to �rst design a compression function, that

�
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is, UOWHF that hashes �xed-length messages, and then design a method

for composing these compression functions so as to hash arbitrary messages.

In this paper, we address the second problem, that of composing compres-

sion functions. The main technical problem in designing such composition

schemes is to keep the key length of the composite scheme from getting too

large.

This composition problem was studied in some detail by Bellare and

Rogaway [1]. They proposed and analyzed several composition schemes.

In this paper, we propose and analyze a new composition scheme. This

scheme is extremely simple, and yields shorter keys than previously proposed

schemes.

We also suggest an e�cient and concrete implementation based on our

composition technique, using a standard \o� the shelf" compression func-

tion, like SHA-1, under the weak assumption of second preimage collision

resistance.

2 UOWHFs versus CRHFs

A UOWHF is an attractive alternative to a CRHF because

(1) it seems easier to build an e�cient and secure UOWHF than to build

an e�cient and secure CRHF, and

(2) in many applications, most importantly for building digital signature

schemes, a UOWHF is su�cient.

As evidence for claim (1), we point out the recent attacks on MD5 [4, 5].

We also point out the complexity theoretic result of Simon [8] that shows

that there exists an oracle relative to which UOWHFs exist but CRHFs do

not. CRHFs can be constructed based on the hardness of speci�c number-

theoretic problems, like the discrete logarithm problem [2]. Simon's result

is strong evidence that CRHFs cannot be constructed based on an arbitrary

one-way permutation, whereas Naor and Yung [7] show that a UOWHF can

be so constructed.

As for claim (2), one of the main applications of collision resistant hash-

ing is digital signatures. The idea is to create a short \message digest" that

can then be signed using a signature algorithm that needs to work only on

short messages. As pointed out by Bellare and Rogaway [1], a UOWHF

su�ces for this. To sign a message x, the signer chooses a key K for a

UOWHF H, and produces the signature (K;�(K;H

K

(x))), where � is the
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underlying signing function for short messages. For some UOWHFs, the

key K can grow with the message length|indeed, the scheme we propose

here has a key that grows logarithmically with the message length. This

can lead to technical di�culties, since then the message we need to sign

with � can get too large. One solution to this problem is to instead make

the signature (K;�(H

K

0

(K);H

K

(x))), where K

0

is a UOWHF key that is

part of the signer's public key. This is a somewhat simpler solution to this

problem than the one presented in [1], and we leave it to the reader to verify

the security of this composite signature scheme.

Naor and Yung [7] in fact show how to build a secure digital signature

scheme based solely on a UOWHF; however, the resulting scheme is not

particularly practical.

3 Previous Composition Constructions

We brie
y summarize here previous constructions for composing UOWHFs.

We assume we have UOWHF H that maps strings of length a to strings

of length b, where a > b, and that H is keyed by a key K. The goal is to

build from this a composite UOWHF that hashes messages of arbitrary and

variable length. To simplify the discussion, we restrict our attention in this

section to the problem of hashing long, but �xed-length messages. There

are general techniques to deal with variable length messages (see [1]).

The simplest construction is the linear hash. Let m = a � b. Suppose

the message x consists of l blocks x

1

; : : : ; x

l

, where each block is an m-bit

string. Then using l keys K

1

; : : : ;K

l

for H, and an arbitrary b-bit \initial

vector" h

0

, we compute h

i

for 1 � i � l as h

i

= H

K

i

(h

i�1

� x

i

), where \�"

denotes concatenation. The output of the composite hash function is h

l

.

The security of this scheme is analyzed in detail in [1]. Note that we

need to use l independent keys K

1

; : : : ;K

l

for the If we use instead just

a single key, the resulting scheme does not necessarily preserve the UOW

property of the compression function. This situation is quite di�erent from

the situation where we are constructing a composite hash function out of

a CR compression function; in that situation, the composite hash function

does indeed inherit the CR property from the compression function [3, 6].

Although the linear hash is quite simple, it is not very attractive from

a practical point of view, as the key length for the composite scheme grows

linearly with the message length.

If the keys for the compression function are longer than the output length
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b of the compression function, then a variant of the linear hash, the XOR

linear hash [1], yields somewhat shorter, though still linear sized keys. In

this scheme, we use a single key K for the compression function H, and in

addition, the key of the composite scheme has l \masks" M

1

; : : : ;M

l

, each

of which is a random b-bit string. The scheme is then the same as the linear

hash, except that we compute h

i

for 1 � i � l as h

i

= H

K

((h

i�1

�M

i

) �x

i

).

As pointed out by Naor and Yung [7], we can get composite schemes with

logarithmic key size by using a tree hash, which is the same as a construction

proposed by Wegman and Carter [9] for composing universal hash functions.

For simplicity, assume that a = bd for an integer d, and that we want to

hash messages of length bd

t

for some t > 0. Then we hash using a tree

evaluation scheme, where at each level i of the tree, for 1 � i � t, we hash

bd

i

bits to bd

i�1

bits. At a given level i, we apply the compression function

H d

i�1

times, using the same key K

i

. So in the composite scheme we need

t keys K

1

; : : : ;K

t

.

If the keys of the compression function are long, a more e�cient scheme

is the XOR tree hash [1]. This is the same as the tree hash scheme, except as

follows. We used a single compression function key K, and in addition, we

use t \masks"M

1

; : : : ;M

t

, each of which is a random a-bit string. Whenever

we evaluate the compression function at level i in the tree, we \mask" its

input with M

i

; that is, we compute its input as the bit-wise exclusive-or of

M

i

and the input used in the normal tree hash.

The new scheme we present in the next section most closely resembles

the XOR linear hash, except that we re-use the masks as much as possible

to minimize the key length. The key length of the new scheme is smaller

(asymptotically) than the key length of the XOR tree hash by a factor of

d= log

2

d. This, combined with the fact that the new scheme is extremely

simple, makes it an attractive alternative to the XOR tree hash.

4 The New Scheme

We now describe our new scheme, which is the same as the XOR linear

hash, except that we get by with a smaller number of masks. Since it is

not di�cult to do, we describe how our scheme works for variable length

messages.

Again, our starting point is a UOW compression functionH that is keyed

by a key K, and compresses a bits to b bits. Let m = a � b. We assume

that a message x is formatted as a sequence of l blocks x

1

; : : : ; x

l

, each of
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which is an m-bit string, and we assume that the last block x

l

encodes the

bit length of x in some canonical way. The number of blocks l may vary,

but we assume that l � L for some given L.

The key for the composite scheme consists of a single key K for H,

together with a number of \masks," each of which is a random b-bit string.

We need t+ 1 masks M

0

; : : : ;M

t

, where t = dlog

2

Le.

To de�ne the scheme, we use the function �

2

(i) which counts the number

of times 2 divides i, i.e., for i � 1, �

2

(i) is the largest integer � such that 2

�

divides i.

The hash function is de�ned as follows. Let h

0

be an arbitrary b-bit

string. For 1 � i � l, we de�ne h

i

= H

K

((M

�

2

(i)

� h

i�1

) � x

i

). The output

of the composite hash is h

l

.

Theorem 1 If H is a UOWHF, then the above composite scheme is also a

UOWHF.

The remainder of this section is devoted to a proof of this theorem. We

show how an adversary A that �nds collisions in the composite scheme can be

turned into an adversary A

0

that �nds collisions in the compression function

H. This reduction is quite e�cient: the running time of A

0

is essentially the

same as that of A, and if A �nds a collision with probability �, then A

0

�nds

a collision with probability about �=L.

We begin with an auxiliary de�nition. Let x be an input to the composite

hash function; for 1 � i � l, de�ne S

i

(x) be the �rst b bits of the input to

the ith application of the compression function H. The de�nition of S

i

(x)

depends, of course, on the value of the composite hash function's key, which

will be clear from context.

Consider the behavior of adversary A. Suppose its �rst message x|the

\target" message|is formatted as x

1

; : : : ; x

l

, and its second message x

0

that

yields the collision is formatted as x

0

1

; : : : ; x

0

l

0

.

For this collision, we let � be the smallest nonnegative integer such that

S

l��

(x)�x

i

6= S

l

0

��

(x

0

)�x

0

i

. Since we are encoding the bit length of a message

in the last message block, if the bit lengths of x and x

0

di�er, then clearly

� = 0. Otherwise, l = l

0

and it is easy to see that � is well de�ned.

The pair S

l��

(x) � x

i

, S

l

0

��

(x

0

) � x

0

i

will be the collision on H

K

that A

0

�nds.

The adversary A

0

runs as follows. We let A choose its �rst message x.

Then A

0

guesses the value of � at random. This guess will be right with

probability 1=L. A

0

now constructs its target message as S � x

l��

, where S
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is a random b-bit string. Now a random key K for the compression function

H is chosen. The task of A

0

is to generate masks M

0

; : : : ;M

t

such that the

composite key (K;M

0

; : : : ;M

t

) has the correct distribution, and also that

S

l��

(x) = S. Once this is accomplished, the adversary A attempts to �nd

a collision with x. If A succeeds, and if the guess at � was correct, this will

yield a collision for A

0

.

We now present a \key construction" algorithm that on input x; �;K; S; t

as above, generates masksM

0

; : : : ;M

t

as required. The algorithm to do this

is described in Figure 1.

We can describe the algorithm at a high level as follows. During the

course of execution, each maskM

j

, for 0 � j � t, has a status, status

j

, where

the status is one of the values \unde�ned," \being de�ned," or \de�ned."

Initially, each status value is \unde�ned." As the algorithm progresses, the

status of a mask changes �rst to \being de�ned," and �nally to \de�ned,"

at which point the algorithm actually assigns a value the mask.

The algorithm starts at block l��, and assigns the value S to S

l��

, where

in general, S

i

represents the value of S

i

(x) for 1 � i � l. The algorithm

sets the status of mask �

2

(l � �) to \being de�ned." Now the algorithm

considers blocks l � � � 1; l � � � 2; : : : ; 1 in turn. When it reaches block i

in this \right to left sweep," it looks at the status of mask j = �

2

(i). As

we shall prove below, the status of this mask j is never \being de�ned" at

this moment in time. If the status is \de�ned," it skips to the next value of

i. If the status is \unde�ned," then it chooses S

i

at random, and changes

the status of mask j to \being de�ned." The algorithm also runs the hash

algorithm from \left to right," computing h

i

; h

i+1

; : : : ; h

i

0

�1

, until it �nds

a block i

0

whose mask j

0

= �

2

(i

0

) has the status \being de�ned." At this

point, the mask j

0

is computed as M

j

0

= h

i

0

�1

� S

i

0

, and the status of mask

j

0

is changed to \de�ned." Thus, at any point in time, there is exactly one

mask whose status is \being de�ned," except brie
y during the \left to right

hash evaluation."

When the algorithm �nishes the \right to left sweep," there will still

be one mask whose status is \being de�ned," and the \left to right hash

evaluation" as described above is used to de�ne this mask, thereby convert-

ing its status to \de�ned." There may still be other masks whose status is

\unde�ned," and these are simply assigned random values.

The key to analyzing this algorithm is to show that when we visit block

i in the \right to left sweep," we do not encounter a mask j = �

2

(i) such

that the status of mask j is \being de�ned." Let us make this more precise.

As i runs from l � � � 1 down to 1 in the main loop, let V

i

be the value of
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for (j  0; j � t; j  j + 1) status

j

 \unde�ned"

S

l��

 S

status

�

2

(l��)

 \being de�ned"

for (i l � � � 1; i � 1; i i� 1) f

j  �

2

(i)

(1) if (status

j

= \unde�ned") f

choose S

i

as a random b-bit string

status

j

 \being de�ned"

h

i

 H

K

(S

i

� x

i

)

i

0

 i+ 1; j

0

 �

2

(i

0

)

while (status

j

0

6= \being de�ned") f

h

i

0

 H

K

((h

i

0

�1

�M

�

2

(i

0

)

) � x

i

0

)

i

0

 i

0

+ 1; j

0

 �

2

(i

0

)

g

M

j

0

 h

i

0

�1

� S

i

0

status

j

0

 \de�ned"

g

g

i

0

 1; j

0

 0

while (status

j

0

6= \being de�ned") f

h

i

0

 H

K

((h

i

0

�1

�M

�

2

(i

0

)

) � x

i

0

)

i

0

 i

0

+ 1; j

0

 �

2

(i

0

)

g

M

j

0

 h

i

0

�1

� S

i

0

status

j

0

 \de�ned"

for (j  0; j � t; j  j + 1)

if (status

j

= \unde�ned") choose M

j

as a random b-bit string

Figure 1: Key Construction Algorithm
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status

j

when the line marked (1) in Figure 1 is executed. We prove below

in Lemma 1 that V

i

6= \being de�ned" for all i. So long as this is the case,

we avoid circular de�nitions, and it is easy to see that the algorithm con-

structs masks M

0

; : : : ;M

t

with just the right distribution. Indeed, the key

construction algorithm implicitly de�nes a one-to-one map between tuples

(K;M

0

; : : : ;M

t

) and (K;S; S

(1)

; : : : ; S

(t)

), where S

(1)

; : : : ; S

(t)

are randomly

chosen b-bit strings, and S = S

l��

(x).

So the proof of Theorem 1 now depends on the following lemma.

Lemma 1 For 1 � i � l � � � 1, V

i

6= \being de�ned."

To prove this lemma, we need two simple facts, which we leave to the

reader to verify.

Fact 1 For any positive integers A < B with �

2

(A) = �

2

(B), there exists

an integer C with A < C < B and �

2

(C) > �

2

(A).

Fact 2 For any positive integers A < B, and for any nonnegative integer

� < minf�

2

(A); �

2

(B)g, there exists an integer C with A < C < B and

�

2

(C) = �.

Now to the proof of the lemma. Suppose V

i

= \being de�ned" for some

i, and let A be the largest such value of i. Then there must be a unique

integer B with A < B � l � � such that �

2

(B) = �

2

(A). This is the point

where we set the status of mask �

2

(A) to \being de�ned." The uniqueness

of B follows from the maximality of the choice of A.

By Fact 1, there must be an index C with A < C < B and �

2

(C) >

�

2

(A). There may be several such C; among these, choose from among those

with maximal �

2

(C), and from among these, choose the largest one.

We claim that V

C

= \de�ned." To see this, note that we cannot have

V

C

= \being de�ned," since we chose A to be the maximal index with this

property. Also, we could not have since V

C

= \unde�ned," since then we

would have de�ned mask �

2

(A) at this point, and we would have V

A

=

\de�ned."

Since V

C

= \de�ned," we must have set the status of mask �

2

(C) to

\being de�ned" in a loop iteration prior to C. Thus, there must exist D

with C < D � l � � and �

2

(D) = �

2

(C). By the way we have chosen C, we

must have D > B.

Again by Fact 1, there exists integer E with C < E < D, and �

2

(E) >

�

2

(C). Again, by the choice of C, we must have E > B.
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|

| | |

| | | | | |

A C B E F D

Figure 2: From the proof of Lemma 1. The vertical lines represent the

relative magnitudes of the corresponding values of �

2

.

Finally, by Fact 2, there exists an integer F with E < F < D and

�

2

(F ) = �

2

(A). So we have B < F < l � � with �

2

(F ) = �

2

(A), which is a

contradiction. That completes the proof of the lemma. See Figure 2 for a

visual aid.

5 A Concrete Implementation

In this section, we suggest a concrete implementation for a practical

UOWHF.

Given a method for building a composite UOW hash function out of a

UOW compression function, one still has to construct a UOW compression

function. A pragmatic approach is to use an \o� the shelf" compression

function such as the SHA-1 compression function C : f0; 1g

160

�f0; 1g

512

!

f0; 1g

160

. The assumption we make about C is that it is second preimage

collision resistant, i.e., if a random input (S;B) is chosen, then it is hard to

�nd di�erent input (S

0

; B

0

) 6= (S;B) such that C(S;B) = C(S

0

; B

0

). This

assumption seems to be much weaker than assumption that no collisions in

C can be found at all (which as an intractability assumption is not even well

de�ned). Indeed, the techniques used to �nd collisions in MD5 [4, 5] do not

appear to help in �nding second preimages.

Note that from a complexity theoretic point of view, second preimage

collision resistance is no stronger than the UOW property. Indeed, if H

K

(x)

is a UOWHF, then the function sending (K;x) to (K;H

K

(x)) is second

preimage collision resistant.

The second preimage resistance assumption on C allows us to build a

UOW compression function as follows. The key is a random element (

^

S;

^

B)

in the domain of C, and the value of the compression function on (S;B) is
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C(

^

S � S;

^

B �B).

We could apply our composition construction directly to this. However,

there is one small optimization possible; namely, we can eliminate

^

S from

the key.

We can now put this all together. Assume that a message x is formatted

as a sequence x

1

; : : : ; x

l

of 512-bit blocks, where the last block encodes the

bit length of x. Let L be an upper bound on l, and let t = dlog

2

Le. The

key for our hash function consists of a random 512-bit string

^

B, along with

t + 1 160-bit strings M

0

; : : : ;M

t

. Then the hash of x is de�ned to be h

l

,

where h

0

is an arbitrary 160-bit string, and h

i

= C(h

i�1

�M

�

2

(i)

; x

i

�

^

B)

for 1 � i � l.

Our analysis shows that this hash function is UOW, assuming C is second

preimage collision resistant.
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