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Abstract

We prove the equivalence of two de�nitions of non-malleable encryption appearing in the

literature| the original one of Dolev, Dwork and Naor and the later one of Bellare, Desai,

Pointcheval and Rogaway. The equivalence relies on a new characterization of non-malleable

encryption in terms of the standard notion of indistinguishability of Goldwasser and Micali.

We show that non-malleability is equivalent to indistinguishability under a \parallel chosen

ciphertext attack," this being a new kind of chosen ciphertext attack we introduce, in which

the adversary's decryption queries are not allowed to depend on answers to previous queries,

but must be made all at once. This characterization simpli�es both the notion of non-malleable

encryption and its usage, and enables one to see more easily how it compares with other notions

of encryption. The results here apply to non-malleable encryption under any form of attack,

whether chosen-plaintext, chosen-ciphertext, or adaptive chosen-ciphertext.
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1 Introduction

Public-key encryption has several goals in terms of protecting the data that is encrypted. The most

basic is privacy, where the goal is to ensure that an attacker does not learn any useful information

about the data from the ciphertext. Goldwasser and Micali's notion of indistinguishability [8] forms

the accepted formalization of this goal. A second goal, introduced by Dolev, Dwork and Naor [5],

is non-malleability, which, roughly, requires that an attacker given a challenge ciphertext be unable

to modify it into another, di�erent ciphertext in such a way that the plaintexts underlying the two

ciphertexts are \meaningfully related" to each other. Both these goals can be considered under

attacks of increasing severity: chosen-plaintext attacks, and two kinds of chosen ciphertext attacks

[11, 12].

Recent uses of public-key encryption have seen a growing need for, and hence attention to,

stronger than basic forms of security, like non-malleability. This kind of security is important

when encryption is used as a primitive in the design of higher level protocols, for example for

key distribution (cf. [1]) or electronic payment (cf. [13]). The interest is witnessed by attention

to classi�cation of the notions of encryption [2] and new e�cient constructions of non-malleable

schemes [3, 4].

In our discussions below, we begin for simplicity by focusing on the case where the notions are

considered under chosen-plaintext attacks. We will discuss the extensions to stronger attacks later.

1.1 Themes in foundations of encryption

Equivalences. We said above that indistinguishability was the \accepted" formalization of the

privacy goal. This agreement is due in large part to a body of work that has established that numer-

ous other formalizations put forth to capture privacy are actually equivalent to indistinguishability.

In particular this is true of semantic security [8] and for a notion of privacy based on computational

entropy [14, 10]. These foundational results have since been re�ned and extended to other settings

[7]. These equivalences are a cornerstone of our understating of privacy, providing evidence that

we have in fact found the \right" formalization.

Characterizations. Semantic security captures in perhaps the most direct way one's intuition

of a good notion of privacy. (Roughly, it says that \whatever can be e�ciently computed about a

message given the ciphertext can be computed without the ciphertext"). But it is a relatively com-

plex and subtle notion to formalize. For this reason, it is somewhat di�cult to use in applications of

encryption. Indistinguishability has the opposite attributes. The formalization is simple, appealing

and easy to use. (It says that if we take two equal-length messages m

0

;m

1

, an adversary given an

encryption of a random one of them cannot tell which it was with a probability signi�cantly better

than that of guessing). It is by far the �rst choice when analyzing the security of an encryption

based application. But it is less clear (by just a direct examination of the de�nition) that it really

captures an intuitively strong notion of privacy. However, we know it does, because it is in fact

equivalent to semantic security. Accordingly, we can view indistinguishability as a \characteriza-

tion" of semantic security, a simple, easy to use notion backed by the fact of being equivalent to

the more naturally intuitive one.

Thus, beyond equivalences between notions, one also seeks a characterization that is simple and

easy to work with, a role which for privacy is played by the notion of indistinguishability.
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1.2 Questions for non-malleability

The foundations of non-malleable encryption are currently not as well laid as those of privacy, for

several reasons.

First, there are in the literature two di�erent formalizations to capture the notion of non-

malleable encryption. The �rst is the original de�nition of Dolev, Dwork and Naor [5], which

we call SNM (simulation based non-malleability). A second, somewhat simpler formalization was

introduced by Bellare, Desai, Pointcheval and Rogaway [2], and we call it CNM (comparison based

non-malleability). A priori, at least, the two seem to have important di�erences.

Second, there is no simple characterization of non-malleable encryption akin to indistinguisha-

bility for privacy. Rather, the current formalizations of non-malleability follow the de�nitional

paradigm of semantic security and in particular both existing formulations are quite complex (even

though that of [2] is somewhat simpler than that of [5]), and subtle at the level of details. A con-

sequence is that non-malleability can be hard to use. The applicability of non-malleability would

be increased by having some simple characterization of the notion.

Although not required for the statement of our results, it may be instructive to try to convey

some rough idea of the existing formalizations. (Formal de�nitions of both notions can be found

in Section 3.) The de�nitions involve considering some relation R between plaintexts, having an

adversary output a distribution on some set of messages, and then setting up a challenge-response

game. The adversary is given as input a ciphertext y of a plaintext x drawn from the message

distribution, and must produce a vector of ciphertexts y. If x is the plaintext vector corresponding

to y, security requires, roughly, that the adversary's ability to make R(x;x) true in this game is not

much more than her ability to make it true had she had to produce y without being given y at all,

namely given no information about x other than its distribution. The two known de�nitions di�er

in how exactly they measure the success in the last part of the game. The SNM notion is based

on the simulation paradigm: a scheme is secure if for any adversary there exists a simulator which

does almost as well without any information about the challenge ciphertext given to the adversary.

In the CNM formalization, there is no simulator: it is required instead that the success probability

of the adversary under the \real" challenge and a \fake" challenge be about the same. Besides the

fundamental di�erence of one being simulation based and the other not, the SNM notion does not

allow the simulator access to the decryption oracle even when the adversary gets it, while the CNM

notion allows the adversary access to the decryption oracle in both games. These di�erences would

raise a priori doubts about whether the two notions could be equivalent. In particular, SNM would

appear to be stronger since it asks for simulation even without access to decryption ability.

1.3 The equivalence

In this paper we show that the above two notions of non-malleability are in fact equivalent. (This

holds under all three kinds of attack mentioned above.) In other words, if a particular encryption

scheme meets the SNM notion of security, then it also meets the CNM notion, and vice versa.

Thus, we are saying that two formalizations of non-malleability, that were originally proposed

with somewhat di�erent intuitions behind them, are in fact capturing the same underlying notion.

Like the equivalences amongst notions of privacy, this result serves to strengthen our conviction

that this single, uni�ed notion of non-malleability is in fact the appropriate one.

1.4 An indistinguishability based characterization

Perhaps more interesting than the above-mentioned equivalence is a result used to prove it. This

is a new characterization of non-malleability that we feel simpli�es the notion and increases our
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understanding of it and its relation to the more classic notions. Roughly speaking, we show that

non-malleability is actually just a form of indistinguishability, but under a certain special type of

chosen-ciphertext attack that we introduce and call a parallel chosen-ciphertext attack. Thus, what

appears to be a di�erent adversarial goal (namely, the ability to modify a ciphertext in such a way

as to create relations between the underlying plaintexts) corresponds actually to the standard goal

of privacy, as long as we add power to the attack model. This represents a tradeo� between goals

and attacks.

Our characterization dispenses with the relation R and the message space: it is just about a

game involving two messages.

To illustrate, consider non-malleability under chosen-plaintext attack. Our characterization says

this is equivalent to indistinguishability under a chosen-ciphertext attack in which the adversary

gets to ask a single vector query of the decryption oracle. This means it speci�es a sequence

c[1]; : : : ; c[n] of ciphertexts, and obtains the corresponding plaintexts p[1]; : : : ;p[n] from the oracle.

But the choice of c[2] is not allowed to depend on the answer to c[1], and so on. (So we can think

of all the queries as made in parallel, hence the name. Perhaps a better name would have been

non-adaptive queries, but the term non-adaptive is already in use in another way in this area and

was best avoided.) This query is allowed to be a function of the challenge ciphertext. We call this

type of attack a \parallel chosen-ciphertext attack". In more detail the game is that we take two

equal-length messages m

0

;m

1

, give the adversary a ciphertext y of a random one of them, and now

allow it a single parallel vector decryption oracle query, the only constraint on which is that the

query not contain y in any component. The adversary wins if it can then say which of the two

messages m

0

;m

1

had been encrypted to produce the challenge y, with a probability signi�cantly

better than that of guessing. Thus, as mentioned above, our notion makes no mention of a relation

R or a probability space on messages, let alone of a simulator. Instead, it follows an entirely

standard paradigm, the only twist being the nature of the attack model.

A special case that might be worth noting is that when the relation R is binary, the parallel

attack need contain just one ciphertext. In general, the number of parallel queries needed is one

less than the arity of R.

Recall that non-malleability at �rst glance is capturing a very di�erent sort of notion than

indistinguishability: the ability to modify a ciphertext in some way so as to create plaintext depen-

dencies. This can be done even if one doesn't \know" the plaintexts involved, so it seems di�erent

from privacy. Our characterization brings out the fact that the di�erence is not so great: the

increased severity of the goal of non-malleability can be compensated for by a strong attack under

indistinguishability.

1.5 Extensions and discussion

We have focused above mostly on non-malleability under chosen-plaintext attack. Let us brie
y

discuss the extensions of the results to the two kinds of chosen-ciphertext attack. They are referred

to in [2] as CCA1 and CCA2, and correspond to lunch-time [11] and adaptive [12] attacks.

As mentioned above, our equivalence result extends to the stronger attack forms. However, for

the case of the strongest type of attack, namely CCA2, the result is not really a novelty, because it

can be derived as a consequence of the results of [2] and [6]. (Speci�cally each of these showed that

their notion of non-malleability under CCA2 is equivalent to indistinguishability under CCA2, so

this makes the two notions of non-malleability under CCA2 equivalent to each other.) Thus the

interest of our results is largely for the case of chosen-plaintext attack and CCA1.

A similar situation holds with regard to the characterization. It is simple to provide an appro-

priate extension of indistinguishability under parallel attack to the CCA1 and CCA2 settings, and
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we can show the characterization holds. But adding a parallel attack to CCA2 leaves the latter

unchanged, and our results just collapses to the already know equivalence between non-malleability

and indistinguishability in the CCA2 case.

1.6 Relations among notions of security

Our new characterization of non-malleability as indistinguishability under a parallel chosen-ciphertext

attack simpli�es the discussion of relationships among the notions of security studied in [2, 6]. Our

characterization shows that non-malleability with respect to chosen-plaintext attack, lunchtime

chosen-ciphertext attack, or adaptive chosen-ciphertext attack is equivalent to indistinguishability

with respect to a parallel chosen-ciphertext attack (denoted PA0), a lunchtime attack followed by a

parallel attack (denoted PA1), or an adaptive chosen ciphertext attack (denote CCA2), respectively.

Thus, by our equivalence, the six standard notions of security are equivalent to indistinguishability

with respect to �ve di�erent types of attack, denoted CPA;PA0;CCA1;PA1; and CCA2.

Now, to show that these notions are all distinct, it su�ces to show for each pair of notions that

an encryption scheme secure against the weaker form of attack can be modi�ed to fail against the

stronger attack, but still be secure against the weaker form of attack. Using our new characterization

one can in fact separate all these notions by simply following the following guidelines: To make a

system insecure under a lunchtime attack, one simply needs to �x a particular ciphertext which

decrypts to the secret key. In order to require that a non-parallel attack be used to do this, one

may add a level of indirection by having a particular ciphertext that decrypts to another randomly

chosen ciphertext, whose decryption is the secret key. To modify a system that is secure against

lunchtime attacks in order to make it fail against an adaptive parallel attack, one simply establishes

a rule that a ciphertext can be modi�ed in a canonical manner to produce a new ciphertext that

decrypts to the same value. Again, to require that a non-parallel attack be used, one may again

add a level of indirection, by having the modi�ed ciphertext decrypt to another ciphertext, which

decrypts to the original message. These intuitions, which are very natural given the attacks, can

readily be made into proofs which are simpler than those given by [2] to accomplish this goal.

Note also that each of [2] and [6] established relations using their own de�nitions of non-

malleability. Their results are uni�ed by our results showing the two notions of non-malleability

are the same.

Above, we only consider parallel chosen-ciphertext attacks in the adaptive stage of the attack,

i.e. when the adversary has seen the challenge ciphertext. However, it is quite natural to consider

a parallel attack as also possible in the �rst stage of the attack, before the challenge ciphertext is

known. This leads naturally to nine di�erent notions of security against chosen-ciphertext attacks.

It could be interesting to investigate these attacks and any relations which may exist among them.

1.7 Related work

Halevi and Krawczyk introduce a weak version of chosen-ciphertext attack which they call a one-

ciphertext veri�cation attack [9]. This is not the same as a parallel attack. In their attack, the

adversary generates a single plaintext along with a candidate ciphertext, and is allowed to ask a

veri�cation query, namely whether or not the pair is valid. In our notion, the adversary has more

power: it can access the decryption oracle. No equivalences are proved in [9].
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2 Preliminaries

Experiments. We use standard notations and conventions for writing probabilistic algorithms

and experiments. If A is a probabilistic algorithm, then A(x

1

; x

2

; : : : ; r) is the result of running

A on inputs x

1

; x

2

; : : : and coins r. We let y  A(x

1

; x

2

; : : :) denote the experiment of picking

r at random and letting y be A(x

1

; x

2

; : : : ; r). If S is a �nite set then x  S is the operation

of picking an element uniformly from S. If � is neither an algorithm nor a set then x  � is a

simple assignment statement. We say that y can be output by A(x

1

; x

2

; : : :) if there is some r such

that A(x

1

; x

2

; : : : ; r) = y. Also, to clarify complicated probabilistic statements, we de�ne random

variables as experiments.

Syntax and conventions. The syntax of an encryption scheme speci�es what kinds of algorithms

make it up. Formally, an asymmetric encryption scheme is given by a triple of algorithms, � =

(K; E ;D), where

� K, the key generation algorithm, is a probabilistic algorithm that takes a security parameter

k 2 N (provided in unary) and returns a pair (pk; sk) of matching public and secret keys.

� E , the encryption algorithm, is a probabilistic algorithm that takes a public key pk and a

message x 2 f0; 1g

�

to produce a ciphertext y.

� D, the decryption algorithm, is a deterministic algorithm which takes a secret key sk and

ciphertext y to produce either a message x 2 f0; 1g

�

or a special symbol ? to indicate that the

ciphertext was invalid.

We require that for all (pk; sk) which can be output by K(1

k

), for all x 2 f0; 1g

�

, and for all y

that can be output by E

pk

(x), we have that D

sk

(y) = x. We also require that K, E and D can be

computed in polynomial time. As the notation indicates, the keys are indicated as subscripts to

the algorithms.

Recall that a function � : N! R is negligible if for every constant c � 0 there exists an integer

k

c

such that �(k) � k

�c

for all k � k

c

.

Notation. We will need to discuss vectors of plaintexts or ciphertexts. A vector is denoted in

boldface, as in x. We denote by jxj the number of components in x, and by x[i] the i-th component,

so that x = (x[1]; : : : ;x[jxj]). We extend the set membership notation to vectors, writing x 2 x

or x 62 x to mean, respectively, that x is in or is not in the set f x[i] : 1 � i � jxj g. It will be

convenient to extend the decryption notation to vectors with the understanding that operations

are performed component-wise. Thus x  D

sk

(y) is shorthand for the following: for 1 � i � jyj

do x[i] D

sk

(y[i]).

We will consider relations of arity t where t will be polynomial in the security parameter k.

Rather than writing R(x

1

; : : : ; x

t

) we write R(x;x), meaning the �rst argument is special and the

rest are bunched into a vector x with jxj = t� 1.

3 Two de�nitions of non-malleable encryption

In the setting of non-malleable encryption, the goal of an adversary, given a ciphertext y, is not (as

with indistinguishability) to learn something about its plaintext x, but rather to output a vector y

of ciphertexts whose decryption x is \meaningfully related" to x, meaning that R(x;x) holds for

some relation R. The question is how exactly one measures the advantage of the adversary. This

turns out to need care. One possible formalization is that of [5, 6], which is based on the idea of

simulation; it asks that for every adversary there exists a certain type of \simulator" that does just

as well as the adversary but without being given y. In another, somewhat simpler formalization
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introduced in [2], there is no simulator; security is de�ned via an experiment involving the adversary

alone. We begin below by presenting these two notions.

3.1 De�nition of SNM

In this subsection we describe the de�nition of non-malleable encryption of [5, 6], which we call SNM

for \simulation based non-malleability." The SNM formulation �xes a polynomial time computable

relation R, which is viewed as taking four arguments, R(x;x;M; s

1

), with x being a vector with an

arbitrary number of components.

The adversary A = (A

1

; A

2

) runs in two stages. The �rst stage of the adversary, namely A

1

,

computes (the encoding of) a distributionM on messages and also some state information: a string

s

1

to pass to the relation R, and a string s

2

to pass on to A

2

. (At A

1

's discretion, either of these

might include M and pk.) We call M the message space. It must be valid, which means that all

strings having non-zero probability under M are of the same length.

The second stage of the adversary, namely A

2

, receives s

2

and the encryption y of a random

message x drawn from M . Algorithm A

2

then outputs a vector of ciphertexts y. We say that A is

successful if R(x;x;M; s

1

) holds, and also y 62 y and ? 62 x, where x = D

sk

(y).

The requirement for security is that for any polynomial time adversary A and any polynomial

time relation R there exists a polynomial time algorithm S = (S

1

; S

2

), the simulator, that, without

being given y, has about the same success probability as A. The experiment here is that S

1

is �rst

run on pk to produce M; s

1

; s

2

, then x is selected from M , then S

2

is run on s

2

(but no encryption

of x) to produce y. Success means x = D

sk

(y) satis�es R(x;x;M; s

1

) and ? 62 x.

For CCA2 both A

1

and A

2

get the decryption oracle, but A

2

is not allowed to call it on the

challenge ciphertext y; for CCA1 just A

1

gets the decryption oracle; and for CPA neither A

1

nor

A

2

get it. However, a key feature of the SNM de�nition is that no matter what the attack, the

simulator does not get a decryption oracle, even though the adversary may get one.

We now provide a formal de�nition for simulation-based non-malleability. When we say O

i

= ",

where i 2 f1; 2g, we mean O

i

is the function which, on any input, returns the empty string, ".

De�nition 3.1 [SNM-CPA, SNM-CCA1, SNM-CCA2] Let � = (K; E ;D) be an encryption scheme,

let R be a relation, let A = (A

1

; A

2

) be an adversary, and let S = (S

1

; S

2

) be an algorithm (the

\simulator"). For atk 2 fcpa; cca1; cca2g and k 2 N de�ne

Adv

snm-atk

A;S;�

(R; k)

def

= Pr[Expt

snm-atk

A;�

(R; k) = 1]� Pr[Expt

snm-atk

S;�

(R; k) = 1] ;

where

Expt

snm-atk

A;�

(R; k)

(pk; sk) K(1

k

)

(M; s

1

; s

2

) A

O

1

1

(pk)

x M

y  E

pk

(x)

y A

O

2

2

(s

2

; y)

x D

sk

(y)

return 1 i� (y 62 y) ^R(x;x;M; s

1

)

Expt

snm-atk

S;�

(R; k)

(pk; sk) K(1

k

)

(M; s

1

; s

2

) S

1

(pk)

x M

y S

2

(s

2

)

x D

sk

(y)

return 1 i� R(x;x;M; s

1

)

and

If atk = cpa then O

1

(�) = " and O

2

(�) = "

If atk = cca1 then O

1

(�) = D

sk

(�) and O

2

(�) = "

If atk = cca2 then O

1

(�) = D

sk

(�) and O

2

(�) = D

sk

(�)
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We say that � is secure in the sense of SNM-ATK if for every polynomial p(k), every R computable

in time p(k), every A that runs in time p(k) and outputs a valid message space M sampleable

in time p(k), there exists a polynomial-time algorithm S = (S

1

; S

2

) such that Adv

snm-atk

A;S;�

(R; k) is

negligible. It is understood above that in the case of CCA2, A

2

is not allowed to ask its oracle for

the decryption of the challenge ciphertext y.

The condition that y 62 y is made in order to not give the adversary credit for the trivial and un-

avoidable action of copying the challenge ciphertext. The requirement that M is valid is important;

it stems from the fact that encryption is not intended to conceal the length of the plaintext.

3.2 De�nition of CNM

We now recall the de�nition of non-malleable encryption of [2], which we call CNM for \comparison

based non-malleability." Let A = (A

1

; A

2

) be an adversary. The �rst stage of the adversary, namely

A

1

, is given the public key pk, and outputs a description of a valid message space, described by a

sampling algorithm M . The second stage of the adversary, namely A

2

, receives an encryption y of

a random message x drawn from M . The adversary then outputs a (description of a) relation R

and a vector y. We insist that no component of y be equal to y. The adversary hopes that

R(x;x) holds, where x  D

sk

(y). An adversary (A

1

; A

2

) is successful if it can do this with a

probability signi�cantly more than that with which R(x;x) holds if she had been given as input not

an encryption of x but rather an encryption of some ~x also chosen uniformly fromM , independently

of x.

De�nition 3.2 [CNM-CPA, CNM-CCA1, CNM-CCA2] Let � = (K; E ;D) be an encryption scheme

and let A = (A

1

; A

2

) be an adversary. For atk 2 fcpa; cca1; cca2g and k 2 N de�ne

Adv

cnm-atk

A;�

(k)

def

= Pr[Expt

cnm-atk

A;�

(k) = 1]� Pr[

g

Expt

cnm-atk

A;�

(k) = 1] ;

where

Expt

cnm-atk

A;�

(k)

(pk; sk) K(1

k

)

(M; s) A

O

1

1

(pk)

x M

y  E

pk

(x)

(R;y) A

O

2

2

(s; y)

x D

sk

(y)

return 1 i� (y 62 y) ^R(x;x)

g

Expt

cnm-atk

A;�

(k)

(pk; sk) K(1

k

)

(M; s) A

O

1

1

(pk)

x; ~x M

~y  E

pk

(~x)

(R;
~
y) A

O

2

2

(s; ~y)

~
x D

sk

(
~
y)

return 1 i� (~y 62
~
y) ^R(x;

~
x)

and

If atk = cpa then O

1

(�) = " and O

2

(�) = "

If atk = cca1 then O

1

(�) = D

sk

(�) and O

2

(�) = "

If atk = cca2 then O

1

(�) = D

sk

(�) and O

2

(�) = D

sk

(�)

We say that � is secure in the sense of CNM-ATK if for every polynomial p(k): if A runs in

time p(k), outputs a (valid) message space M sampleable in time p(k), and outputs a relation R

computable in time p(k), then Adv

cnm-atk

A;�

(�) is negligible. It is understood above that in the case

of CCA2, A

2

is not allowed to ask its oracle for the decryption of the challenge ciphertext y.

7



We declare the adversary unsuccessful when some ciphertext y[i] does not have a valid decryption

(that is, ? 2 x), because in this case, the receiver is simply going to reject the adversary's message

anyway.

The major di�erence between SNM and CNM is that the former asks for a simulator and the

latter does not, but some more minor di�erences exist too. For example in SNM the relation R is

�xed beforehand, while in CNM it is generated dynamically by the adversary in its second stage.

4 New notion: IND under parallel attack

We present a new notion of security for a public key encryption scheme: indistinguishability under

a parallel chosen-ciphertext attack.

Here, malleability is not evident in any explicit way; there is no relation R, and the adversary

does not output ciphertexts, but rather tries to predict information about the plaintext. Nonetheless

we show that this notion is equivalent to both forms of non-malleability given above.

In this attack, the adversary is allowed to query the decryption oracle a polynomial number

of times, but the di�erent queries made are not allowed to depend on each other. A simple way

to visualize this is to imagine the adversary making the queries \in parallel," as a vector c where

c[1]; : : : ; c[n] are ciphertexts, for n = jcj. The oracle replies withD

sk

(c) = (D

sk

(c[1]); : : : ;D

sk

(c[n])),

the vector of the corresponding plaintexts. Only one of these parallel queries is allowed, and it is

always in the second stage, meaning can be a function of the challenge ciphertext.

It is convenient to make the parallel query quite explicit in the formalization. We do this by

considering the second stage A

2

of the adversary as made up of two sub-stages, A

2;q

and A

2;g

,

the \q" standing for \query" and the \g" for \guess". The �rst stage outputs the parallel query;

the second is given the response, and completes the guessing work of the second stage. More

precisely, view the adversary A = (A

1

; A

2

) where A

2

= (A

2;q

; A

2;g

) as a pair. Algorithm A

1

is run

on input the public key, pk. At the end of A

1

's execution she outputs a triple (x

0

; x

1

; s

1

), the �rst

two components being messages which we insist be of the same length, and the last being state

information (possibly including pk) which she wants to preserve. A random one of x

0

and x

1

is

now selected, say x

b

. A \challenge" y is determined by encrypting x

b

under pk. It is the job of the

pair (A

2;q

; A

2;g

) to try to determine if y was selected as the encryption of x

0

or x

1

, i.e. try to guess

b. To make this determination, �rst run A

2;q

on x

0

; x

1

; s

1

; y and let it output a parallel query c and

state information s

2

. (The latter will include y; s

1

if necessary.) Then run A

2;g

on input D

sk

(c); s

2

and get a guess g. The adversary wins if g = b.

We can add this parallel attack to any of the previous attacks CPA;CCA1;CCA2, yielding

respectively the attacks PA0;PA1;PA2. Note that since in CCA2, the second stage of the adversary

can already do adaptive chosen ciphertext attacks, giving it the ability to perform a parallel attack

yields no additional power, so in fact CCA2 = PA2. For concision and clarity we simultaneously

de�ne indistinguishability with respect to PA0;PA1; and PA2. The only di�erence lies in whether

or not A

1

and A

2

are given decryption oracles. We let the string atk be instantiated by any

of the formal symbols pa0;pa1;pa2, while ATK is then the corresponding formal symbol from

PA0;PA1;PA2.

De�nition 4.1 [IND-PA0, IND-PA1, IND-PA2] Let � = (K; E ;D) be an encryption scheme and

let A = (A

1

; A

2

) be an adversary. For atk 2 fpa0;pa1;pa2g and k 2 N, let

Adv

ind-atk

A;�

(k)

def

= Pr[Expt

ind-atk

A;�

(k) = 1]�

1

2

where
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Expt

ind-atk

A;�

(k)

(pk; sk) K(1

k

)

(x

0

; x

1

; s

1

) A

O

1

1

(pk)

b f0; 1g

y  E

pk

(x

b

)

(c; s

2

) A

O

2

2;q

(x

0

; x

1

; s

1

; y)

p D

sk

(c)

g  A

O

2

2;g

(p; s

2

)

return 1 i� (y 62 c) ^ (g = b)

and

If atk = pa0 then O

1

(�) = " and O

2

(�) = "

If atk = pa1 then O

1

(�) = D

sk

(�) and O

2

(�) = "

If atk = pa2 then O

1

(�) = D

sk

(�) and O

2

(�) = D

sk

(�)

We say that � is secure in the sense of IND-ATK ifA being polynomial-time implies that Adv

ind-atk

A;�

(�)

is negligible. We insist, above, that A

1

outputs x

0

; x

1

with jx

0

j = jx

1

j. In the case of PA2, we

further insist that A

2

does not ask its oracle to decrypt y.

5 Results

Here we establish the equivalence of all three notions discussed. This is established by the following

sequence of propositions.

Proposition 5.1 [CNM-ATK) SNM-ATK] For any ATK 2 fCPA;CCA1;CCA2g, if encryption

scheme � is secure in the sense of CNM-ATK then � is secure in the sense of SNM-ATK.

Proposition 5.2 [SNM-ATK ) IND-PXX] For any ATK 2 fCPA;CCA1;CCA2g, if encryption

scheme � is secure in the sense of SNM-ATK then � is secure in the sense of IND-PXX, where

If ATK = CPA then PXX = PA0

If ATK = CCA1 then PXX = PA1

If ATK = CCA2 then PXX = PA2

Proposition 5.3 [IND-PXX ) CNM-ATK] For any PXX 2 fPA0;PA1;PA2g, if encryption

scheme � is secure in the sense of IND-PXX then � is secure in the sense of CNM-ATK, where

If PXX = PA0 then ATK = CPA

If PXX = PA1 then ATK = CCA1

If PXX = PA2 then ATK = CCA2

We now turn to the proofs.

5.1 CNM implies SNM

How does SNM compare with CNM? Let us �rst consider the question under CPA. It is easy to

see that CNM-CPA) SNM-CPA. Intuitively, the CNM-CPA de�nition can be viewed as requiring

that for every adversary A there exist a speci�c type of simulator, which we can call a \canonical

simulator," A

0

= (A

0

1

; A

0

2

). The �rst stage, A

0

1

, is identical to A

1

. The second simulator stage A

2

simply chooses a random message from the message space M that was output by A

0

1

, and runs the

9



adversary's second stage A

2

on the encryption of that message. Since A does not have a decryption

oracle, A

0

can indeed do this. With some additional appropriate tailoring we can construct a

simulator that meets the conditions of the de�nition of SNM-CPA.

Let us try to extend this line of thought to CCA1 and CCA2. If we wish to continue to think

in terms of the canonical simulator, the di�culty is that this \simulator" would, in running A, now

need access to a decryption oracle, which is not allowed under SNM. Thus, it might appear that

CNM-CPA is actually weaker, corresponding to the ability to simulate by simulators which are also

given the decryption oracle.

However, this appearance is false. In fact, CNM-CPA is not weaker; rather, CNM-ATK implies

SNM-ATK for all three types of attacks ATK, including CCA1 and CCA2. (In other words, if a

scheme meets the CNM-CPA de�nition, it is possible to design a simulator according to the SNM

de�nition.)

Proof of Proposition 5.1: Let � = (K; E ;D) be the given encryption scheme. Let R and

A = (A

1

; A

2

) be given. To show the scheme is secure in the sense of SNM-ATK we need to

construct a simulator S = (S

1

; S

2

). The idea is that S will run A on a newly chosen public key of

which it knows the corresponding decryption key:

Algorithm S

1

(pk)

(pk

0

; sk

0

) K(1

k

)

(M; s

1

; s

2

) A

~

O

1

1

(pk

0

)

~s

2

 (M; s

2

;pk;pk

0

; sk

0

)

return (M; s

1

; ~s

2

)

Algorithm S

2

(~s

2

) where ~s

2

= (M; s

2

;pk;pk

0

; sk

0

)

~x M ; ~y  E

pk

0

(~x)

~
y A

~

O

2

2

(s

2

; ~y)

if (~y 2
~
y) then abort

~
x D

sk

0

(
~
y)

y E

pk

(
~
x)

return y

where

If atk = cpa then

~

O

1

(�) = " and

~

O

2

(�) = "

If atk = cca1 then

~

O

1

(�) = D

sk

0

(�) and

~

O

2

(�) = "

If atk = cca2 then

~

O

1

(�) = D

sk

0

(�) and

~

O

2

(�) = D

0

sk

0

(�)

A key point is that the simulator, being in possession of sk

0

, can indeed run A with the stated

oracles. (That's how it avoids needing access to the \real" oracles O

1

;O

2

that are provided to A

and might depend on sk.) Now we want to show that Adv

snm-atk

A;S;�

(R; k) is negligible. We will do

this using the assumption that � is secure in the sense of CNM-ATK. To that end, we consider

the following adversary B = (B

1

; B

2

) attacking � in the sense of CNM-ATK.

Algorithm B

O

1

1

(pk)

(M; s

1

; s

2

) A

O

1

1

(pk)

return (M; (M; s

1

; s

2

))

Algorithm B

O

2

2

((M; s

1

; s

2

); y)

De�ne R

0

by R

0

(a;b) = 1 i� R(a;b;M; s

1

) = 1

y A

O

2

2

(s

2

; y)

return (R

0

;y)

It is clear from the de�nition of B that Expt

cnm-atk

B;�

(k) is precisely the same as Expt

snm-atk

A;�

(R; k).

Now, let us expand the de�nition of Expt

snm-atk

S;�

(R; k), substituting in the de�nition of S given

above. Once we eliminate lines that do not a�ect the outcome of the experiment, this yields:

10



Expt

snm-atk

S;�

(R; k)

(pk

0

; sk

0

) K(1

k

)

(M; s

1

; s

2

) A

~

O

1

1

(pk

0

)

x; ~x M

~y  E

pk

0

(~x)

~
y A

~

O

2

2

(s

2

; ~y)

~
x D

sk

0

(
~
y)

return 1 i� (~y =2
~
y) ^R(x;

~
x;M; s

1

)

Thus, glancing at the de�nition of B, we see that this experiment is precisely the same as

g

Expt

cnm-atk

B;�

(k)

with pk and sk replaced by the pk

0

and sk

0

chosen by the simulator. Hence, Adv

snm-atk

A;S;�

(R; k) =

Adv

cnm-atk

B;�

(k). But the latter is negligible since � is secure in the sense of CNM-ATK, so the former

is negligible too.

5.2 SNM-ATK) IND-PXX

Proof of Proposition 5.2: We already know that SNM-CCA2 and IND-CCA2 are equivalent [6].

But IND-PA2 and IND-CCA2 are obviously identical since in both cases, a chosen-ciphertext attack

is allowed in the second stage, and this subsumes a parallel attack. Thus we need prove the

proposition only for the cases of ATK = CPA and ATK = CCA1.

We are assuming that encryption scheme � is secure in the SNM-ATK sense. We will show it

is also secure in the IND-PXX sense. Let B = (B

1

; B

2

) be an IND-PXX adversary attacking �.

We want to show that Adv

ind-pxx

B;�

(�) is negligible. To this end, we describe a relation R and an

SNM-ATK adversary A = (A

1

; A

2

) attacking � using R. We wish to show that A will have the

same advantage attacking � using R as B has as an IND-PXX adversary using a parallel attack.

What allows us to do this is to pick the relation R to capture the success condition of B's parallel

attack. Adversaries A and B have access to an oracle O

1

in their �rst stage (but we can assume

that oracle in their second stage O

2

= "), with this oracle being instantiated according to the attack

ATK as per the de�nitions.

To get some intuition it is best to think of ATK = CPA, meaning A is allowed only a chosen-

plaintext attack. However, B has (limited) access to a decryption oracle; it is allowed the parallel

query. How then can A \simulate" B? The key observation is that the non-malleability goal

involves an \implicit" ciphertext attack on the part of the adversary, even under CPA. This arises

from the ciphertext vector y that such an adversary outputs. It gets decrypted, and the results

are fed into the relation R. Thus, the idea of our proof is to make A output, as its �nal response,

the parallel query that B will make. Now, B would expect to get back the response and compute

with it, which A can't do; once it has output its �nal ciphertext, it stops, and the relation R gets

evaluated on the corresponding plaintext. So we de�ne R in such a way that it \completes" B's

computation. A useful way to think about this is as if A were trying to \communicate" with R,

passing it the information that R needs to execute B.

Notice that for this to work it is crucial that B's query is a parallel one. If B were making the

usual adaptive queries, A could not output a single ciphertext vector, because it would have to

know the decryption of the �rst ciphertext query before it would even know the ciphertext which

is the second query. Yet, for the non-malleability game, A must output a single vector.
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This is the rough idea. There are a couple of subtleties. R needs to know several pieces of

information that depend on the computation of some stages of B, such as coin tosses. A must

communicate them to R. The only mechanism that A has to communicate with R is via the

ciphertext vector y that A outputs, whose decryption is fed to R. So any information that A wants

to pass along, it encrypts and puts in this vector.

Now let us provide a more complete description. Given the IND-PXX adversary B = (B

1

; B

2;q

; B

2;g

),

we want to de�ne the SNM-ATK adversary A = (A

1

; A

2

). The �rst stage A

1

is:

Algorithm A

O

1

1

(pk)

(m

0

;m

1

; t

1

) B

O

1

1

(pk)

Let M be a canonical encoding of the uniform distribution over fm

0

;m

1

g

along with an encoding of the ordered pair (m

0

;m

1

)

Let s

1

= " and s

2

= (m

0

;m

1

; t

1

;pk)

return (M; s

1

; s

2

)

The second stage A

2

is:

Algorithm A

2

(s

2

) where s

2

= (m

0

;m

1

; t

1

;pk)

(c; t

2

) B

2;q

(m

0

;m

1

; t

1

; y)

Choose random coins � for B

2;g

e

1

 E

pk

(t

2

) ; e

2

 E

pk

(�)

Let y = (e

1

; e

2

; c[1]; : : : ; c[jcj])

return y

Notice above that A

2

picks coins � for B

2;g

. We can think of each stage of B as picking its own

coins afresh, since any information needing to be communicated from stage to stage is passed along

in the state information. Now, here is the relation R.

Relation R(x;x;M; s

1

)

Let t

2

and � be the �rst two components of x

Let the remaining components form the vector p

If (M is not a valid canonical encoding of an ordered pair of strings (m

0

;m

1

)

and the uniform distribution over fm

0

;m

1

g)

then return 0

Let b be such that x =m

b

return 1 i� B

2;g

(p; t

2

;�) = b

Notice that R is polynomial time computable.

If one expands the de�nition of Expt

snm-atk

A;�

(R; k) using the de�nitions of R and A above, by elimi-

nating unnecessary lines we see that the experiment is the same as Expt

ind-atk

B;�

(k) up to negligible

factors.

To conclude the proof, we need only show that the probability that any simulator S will succeed

in attacking R as de�ned above in the experiment Expt

snm-atk

S;�

(R; k) is at most

1

2

. By construction,

in order to satisfy R the �rst stage of S must output a distribution M that is uniform on two

messages m

0

and m

1

. Suppose S does so with probability q � 1. Now let p

b

be the probability
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that S create output so as to cause B

2;g

to output b. Since the behavior of S is independent of the

chosen x 2 M , p

0

+ p

1

� 1. Hence, also by independence, the probability that S will succeed in

causing R to accept is bounded by q(p

0

� Pr[x = m

0

] + p

1

� Pr[x = m

1

]) � q(p

0

�

1

2

+ p

1

�

1

2

) �

1

2

.

Thus, we have that

Adv

ind-atk

B;�

(k) = Pr[Expt

ind-atk

B;�

(k) = 1]�

1

2

� Pr[Expt

snm-atk

A;�

(R; k) = 1]�

1

2

+ �(k)

� Pr[Expt

snm-atk

A;�

(R; k) = 1]� Pr[Expt

snm-atk

S;�

(R; k) = 1] + �(k)

� Adv

snm-atk

A;�

(R; k) + �(k)

where �(k) is a negligible function. Since by assumption Adv

snm-atk

A;�

(R; k) is negligible, this completes

the proof.

5.3 IND-PXX) CNM-ATK

Proof of Proposition 5.3: We are assuming that � is secure in the IND-PXX sense. We will

show it is also secure in the CNM-ATK sense.

Let B = (B

1

; B

2

) be an CNM-ATK adversary attacking �. We want to show that Adv

cnm-atk

B;�

(�) is

negligible. To this end, we describe an IND-PXX adversary A = (A

1

; A

2

) attacking �. We wish to

show that A will have the same advantage as an IND-PXX adversary as B has as an CNM-ATK

adversary. The de�nition of a parallel attack was chosen to make this proof easy, and the intuition

will be simple: since A has access to a parallel decryption oracle in the second stage, she can

decrypt the ciphertexts that B outputs, and check herself to see if B's relation holds.

Given the CNM-ATK adversary B = (B

1

; B

2

), we de�ne the IND-PXX adversaryA = (A

1

; A

2;q

; A

2;g

)

as follows:

Algorithm A

O

1

1

(pk)

(M; t) B

O

1

1

(pk)

x

0

; x

1

 M ; s

1

 (M; t)

return (x

0

; x

1

; s

1

)

Algorithm A

O

2

2;q

(x

0

; x

1

; s

1

; y) where s

1

= (M; t)

(R; c) B

O

2

2

(M; t; y)

s

2

 (R; x

0

; x

1

; c; y)

return (c; s

2

)

Algorithm A

O

2

2;g

(p; s

2

) where s

2

= (R; x

0

; x

1

; c; y)

if (y =2 c) ^R(x

0

;p)

then g  0

else g  f0; 1g

return g

A straightforward calculation establishes that the advantage of the IND-PXX adversary given above

will be negligibly close to the advantage of the CNM-ATK adversary, completing the proof.
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