
Public-Key Cryptography and Password Protocols:

The Multi-User Case

Maurizio Kliban Boyarsky

�

Abstract

The problem of password authentication over an insecure

network when the user holds only a human-memorizable

password has received much attention in the literature.

The �rst rigorous treatment was provided by Halevi and

Krawczyk, who studied o�-line password guessing attacks

in the scenario in which the authentication server pos-

sesses a pair of private and public keys. In this work we:

� Show the inadequacy of both the HK formalization

and protocol in the case where there is more than a

single user: using a simple and realistic attack, we

prove failure of the HK solution in the two-user case.

� Propose a new de�nition of security for the multi-

user case, expressed in terms of transcripts of the

entire system, rather than individual protocol exe-

cutions.

� Suggest several ways of achieving this security against

both static and dynamic adversaries.

In a recent revision of their paper, Halevi and Krawczyk

again attempted to handle the multi-user case. We expose

a weakness in their revised de�nition.

1 Introduction

The problem of password authentication over an insecure

network when the user holds only a human-memorizable

password has received much attention in the literature.

This is a realistic scenario for remote login, and it is ex-

tremely important both to correctly de�ne the security in

such settings and to prove the security of any proposed im-

plementation. Consider the asymmetric scenario in which

the authentication server possesses a pair of private and

public keys while the user holds only a weak, memorizable

�

Mailing address: Fine Hall, Dept. of Mathematics, Prince-

ton University, Princeton, NJ 08544, USA. E-mail: mkbo-

yarsky@yahoo.com. Supported by ESPRIT Grant RAND2.

password. A �rst step towards a rigorous treatment of this

scenario was provided by Halevi and Krawczyk [17], who

studied the case where there is a single user in the system.

We continue this line of investigation.

A natural solution in the setting under consideration is

an encrypted challenge-response protocol. Roughly speak-

ing, the server generates a public key, private key pair.

The users are all informed of the public key. When a

user u attempts to log in, the server sends in the clear

a challenge r to u, and u must reply with an encryp-

tion, under the server's public key, of u, r, and u's secret

password, denoted spwd

u

. The critical question in mak-

ing such an approach work is the type of security that

must be enjoyed by the cryptosystem. To see this, sup-

pose the cryptosystem is malleable

1

, and consider the case

in which u, in response to a challenge r, responds with an

encryption c 2

R

E(spwd

u

; u; r). Then v, impersonating

u and receiving a challenge r

0

, may be able to transform

c to c

0

2 E(spwd

u

; u; r

0

). This is trivial if encryption is

bit-by-bit, so semantic security is clearly insu�cient (be-

cause there exist semantically secure bit-by-bit encryption

schemes, e.g. [13]). As this example shows, some non-

malleability is essential to implementing the encrypted

challenge-response approach.

Halevi and Krawczyk �rst present de�nitions of a forg-

ing attack against a password authentication scheme in

this scenario, and of what it means to break a scheme.

They next introduce the notion of a public-key cryptosys-

tem that is semantically secure against a weak type of

chosen-ciphertext attack they call a \one-ciphertext veri�-

cation" attack, and present the encrypted challenge-response

password authentication scheme. Finally, they prove that

if the authentication scheme is implemented using a public-

key cryptosystem that is is semantically secure against

one-ciphertext veri�cation attacks then it is secure against

their notion of a forging attack. We note that any cryp-

tosystem that is non-malleable against a chosen-plaintext

attack is semantically secure against one-ciphertext veri-

�cation attacks (Theorem 7.1).

Halevi and Krawczyk's de�nition of security concen-

trates on the single-user (and single server) case. One

may suspect that, as a general principal, a protocol which

is good when there is one user is also good when there are

1

Non-malleability, an extension of semantic security de�ned

in [11], says, roughly, that for any polynomial-time computable

relation R, seeing E(x) \does not help" in �nding an encryption

E(y) such that R(x; y) holds.



several. This turns out to be false: we show that there

are protocols secure in the single-user case but insecure

in the multi-user case (Section 3). In particular, there

exists a public-key cryptosystem that is semantically se-

cure against one-ciphertext veri�cation attacks (the no-

tion proposed in [17]), but under which the HK challenge-

response password authentication system is easily broken

in the two-user case (we exhibit an explicit break). The

control needed by the adversary for our attack is minimal

and realistic: it does not require an active intruder-in-the-

middle; the adversary simply has to eavesdrop to a single

authentication session of a good user and control one other

user.

On a more positive note, we provide a de�nition of se-

curity for the multiple-user case (Section 4), and outline

several protocols that satisfy it, including the proposal of

Halevi and Krawczyk when the requirements for the en-

cryption scheme are strengthened. We address both static

and dynamic adversaries in the multi-user case. These re-

sults appear in Section 5.

In Section 6 we map the complexity of the crypto-

graphic primitives that must be used in order to achieve

secure password authentication in various settings. We

give neccesary and su�cent conditions for both the case

where the user knows (or can verify) the public key of the

server, and for the case where no such key is known.

Independently of this work, Halevi and Krawczyk con-

sidered the multi-user case as well [18], revising their def-

inition of security and changing the requirements for the

public-key encryption function. In Section 8 we discuss

some shortcomings of their revision.

1.1 Related Work

As noted above, the problem of authentication with human-

memorizable passwords has an extensive history (see, for

example, [6, 15, 16, 17, 28]). The goal is to (safely) use a

not-so-long and not-so-random password to allow authen-

tication over a hostile network, where a particularly prob-

lematic issue is o�-line guessing of passwords. To the best

of our knowledge, Halevi and Krawczyk were the �rst to

consider this problem in a rigorous manner, without mak-

ing any idealized assumptions about encryption functions.

In a related line of work, Bellare and Rogaway con-

sidered authentication in several settings [3, 2, 4]. We

apply some of their ideas in order to de�ne security in the

multi-user case. Resilience against adaptive adversaries in

general multi-party protocols has been studied in several

places (see, e.g., [7, 8]). We use a notion of non-committing

encryptions, developed for these purposes, in order to han-

dle the case of adaptive corruption of users. It can also be

used to provide forward secrecy.

2 Precise Description of the Halevi-Krawczyk Results

In this Section we review the results in [17]. Section 2.1 re-

views the HK de�nition of security for a password authen-

tication scheme (both attack and break); Section 2.2 de-

scribes their notion of semantic security for a cryptosystem

under one-ciphertext veri�cation attacks; Section 2.3 de-

scribes a natural \generic" encrypted challenge-response

protocol for password authentication. In Theorem 1 of

[17] it is shown that when the generic protocol is imple-

mented using a cryptosystem semantically secure against

one-ciphertext veri�cation attacks, then the protocol sat-

is�es the HK de�nition of security for password authenti-

cation.

2.1 Security of Password Authentication Schemes

Halevi and Krawczyk do not provide protocols for system

setup: it is simply assumed that the server's public key is

established and a hash, under a collision-intractable hash

function, is known to the user (there is a nice discussion of

this in [17]); similarly, the user's password is established

and known to both the server and the user.

Halevi and Krawczyk consider the case in which the

attacker, referred to as a forger, can be quite active. We

quote from [17]:

De�nition 2.1 (HK forger's attack): \The attacker : : : is

allowed to watch regular runs of the protocol between the

user U and the server S, and can also actively communi-

cate with the user and the server in replay, impersonation

and man-in-the middle attacks. The forger can initiate

multiple authentication sessions with S as if they were re-

quested by U . It can intercept challenges sent from S to U

and change them to any value of its choice, and then see

the response from U to that (possibly modi�ed) challenge

and change their values and then send the (possibly modi-

�ed) response to S. Finally, F also gets to see whether S

accepts the authentication or not."

De�nition 2.2 (HK break of a password scheme): Halevi

and Krawczyk say that the forger breaks the authentication

protocol if \S accepts a response which was sent to it by

F but was not freshly generated by U ."

[17] assumes a relatively small password dictionary, D.

Since D is assumed not to be prohibitively large, the sys-

tem can be broken by exhaustive search of the dictionary.

The HK de�nition of security says, intuitively, that the

forger should not be able to break the system with con-

siderably less e�ort than that needed for such a brute force

approach:

De�nition 2.3 (HK de�nition of security for a password

veri�cation scheme; [17] De�nition 1): Let " be any pos-

itive real number. We say that a one-way password au-

thentication protocol enjoys basic security up to ", if no

feasible attacker F can break the protocol with probability

higher than

v

jDj

+ ", using only v impersonation attempts

with the server.

Halevi and Krawczyk explain that \feasible" should be

construed to potentially permit exhaustive search over the

password dictionary (if it is su�ciently small), but not to

permit breaking of the cryptographic primitives used in

the protocol (footnote 4, [17]).

Limitation: The starting point for our work is the obser-

vation that Halevi and Krawczyk's de�nition of an attack

(De�nition 2.1) does not permit F to interact with the

server except when posing as U . In particular, if F is itself

a valid user, the attack does not permit F to interact with

the server while claiming to be itself. As we shall see, this

is a crucial di�erence.

A more subtle point is that the Halevi-Krawczyk def-

inition of security (De�nition 2.3), when generalized to



the multi-user case in the natural way, ignores situations

where, for example, two user's passwords may be related.

Indeed, it is precisely this point that is overlooked in the

revised paper [18]. We say more about this in Section 8.

Our de�nition (Section 4.2) handles this.

2.2 One-Ciphertext Veri�cation Attacks

A cryptosystem E is speci�ed by a triple of procedures

(G;E;D). G is the key-generation algorithm, E is the

encryption algorithm, and D is the decryption algorithm.

Halevi and Krawczyk de�ne a weak type of chosen cipher-

text attack that they call one-ciphertext veri�cation at-

tacks. We paraphrase [17] in describing this attack. We

have named certain parts of the adversary B

1

, B

2

, and

B

3

for later use. We let A = (B

1

; B

2

; B

3

), with complete

communication between the di�erent B

i

.

1. The key-generation algorithm is run (with security

parameter k), to generate a secret/public key pair,

(S; P ).

2. Given P , the adversary B

1

generates a message s.

3. Let r 2

R

f0; 1g

jsj

. z 2

R

fs; rg is chosen and B

2

is given c 2

R

E

P

(z). B

2

generates a query (x

0

; c

0

),

where c

0

6= c.

4. B

3

is told whether or not x

0

= D

S

(c

0

) and guesses

whether or not c 2 E(s).

The following is a slight modi�cation of [17] De�ni-

tion 2. The modi�cation has no impact on our results.

De�nition 2.4 An encryption scheme (G;E;D) is said

to resist one-ciphertext veri�cation attacks if for any prob-

abilistic poly-time bounded adversary A = (B

1

; B

2

; B

3

):

jPr[A guesses \encryption of x " j c 2 E

P

(x)]

� Pr[A guesses \encryption of x " j c 2 E

P

(r)]j

� �(k)

where the function � grows more slowly than the inverse

of any polynomial, k is the security parameter given to the

public-key cryptosystem generator in generating the S=P

pair, and the probabilities are taken over the execution of

G, the coins of A, and the randomness used in Step 3 of

the attack.

2.3 The Challenge-Response Password Authentication

Protocol

The Generic Encrypted Challenge-Response Protocol of

[17] is described next. It is assumed that, during set-

up, the user learns a so-called \public password" for the

server, which is a collision-intractable hash of the server's

public key.

1. S �! u : Pick a nonce r and send hr; P i, where P is

the public key of the server.

2. u �! S : Check that P hashes to the hash value

learned during set-up. If not, then abort. Else send

c 2

R

E

P

(f(spwd; r; u; S)), where spwd is the user

u's secret password, S is the name of the server, and

f is a function of slightly special structure.

We do not go into the details of the structure of f here,

except to note that [17] give the concatenation function as

an example. For the rest of the paper we will assume that

f is indeed the concatenation function.

The following theorem is proved in [17] (the actual text

di�ers insigni�cantly from the version stated here). As we

will prove (Section 3.2), the theorem holds only in the

single user case, in which the adversary satis�es De�ni-

tion 2.1.

Theorem 2.1 ([17] Theorem 1): Let E be an encryption

scheme that resists one-ciphertext veri�cation attacks and

let f be one-to-one on its components (e.g., f may be the

identity function). Then the encrypted challenge-response

protocol using E and f enjoys basic security up to M ��(k),

where M is at most quadratic in the number of messages

that are sent by the attacker during active impersonation

attacks against the protocol, and k is the security parame-

ter.

Let G denote the generic encrypted challenge-response

protocol. When G is implemented with a public-key cryp-

tosystem S we write G(S). Thus, Theorem 2.1 says roughly

that (for appropriate choice of f) G(E) satis�es De�ni-

tion 2.3.

Remark 2.2 If a forger acts as a clear channel between

S and u in the HK protocol, then under De�nition 2.2, no

break has occurred. Suppose the public-key cryptosystem

used by the server is malleable only in the following sense:

given an encryption c 2

R

E

P

(f(spwd; r; u; S)) it is easy

to �nd c

0

6= c 2

R

E

P

(f(spwd; r; u; S)) (that is, it is easy,

given only the ciphertext, to �nd a di�erent encryption of

the same plaintext). Then if u

0

, being given c, sends c

0

to the server, this is considered a break. Our de�nition,

presented next, avoids this inconsistency.

3 Multi-User Insecurity of the HK Protocol

In this section we present a public-key cryptosystem, S,

that we prove semantically secure under a one-ciphertext

attack. Thus, this scheme satis�es De�nition 2 of [17]

(De�nition 2.4 above). The scheme can be viewed as a

watered down version of the [11] public-key cryptosys-

tem secure against chosen ciphertext attacks in the post-

processing mode. We then exhibit a simple break of G(S)

(the implementation of the encrypted challenge-response

password authentication protocol with cryptosystem S).

3.1 The Scheme S

We �rst describe the cryptosystem at a high level, then

discuss the tools needed for the construction, and �nally

present the details.

High Level Description of S The public key consists of

a collection of n pairs of keys he

0

i

; e

1

i

i, i = 1; : : : ; n, and a

universal one-way hash function h, providing a mapping

that de�nes a choice of a subset of the encryption keys.

The process of encrypting a message consists of the

following steps:

(1) Choose an \identity" for the current encryption by

generating a public signature veri�cation key F ; the cor-

responding signing key is kept private.



(2) Split the message into n strings whose bit-wise Xor

equals the message.

(3) Encrypt the n strings using n encryption keys chosen

from the set of keys according to the bits of h(F ), where

F is the public signature veri�cation key of Step 1.

(4) Sign the resulting encryptions using the private signing

key chosen in the �rst step.

When a message is decrypted it must �rst be veri�ed

that the signature is proper. If not, then the output is

null.

The Tools. We require a single-bit probabilistic public-

key cryptosystem that is semantically-secure against a cho-

sen plaintext attack. Let GP denote the key generator, e

and d denote the public and private keys, respectively,

and E and D denote, respectively, the encryption and de-

cryption algorithms. The encryption of a string x will be

bit-by-bit. The cryptosystem uses a universal family of

one-way hash functions as de�ned in [26]. This is a fam-

ily of functions H such that for any x and a randomly

chosen h 2

R

H, the problem of �nding y 6= x such that

h(y) = h(x) is intractable. Finally we need a one-time sig-

nature scheme, which consists of GS, the signature scheme

generator that outputs F , the public key veri�cation key,

and P the private signing key (see e.g. [26]).

Detailed Description of S:

Key generation: Run GP (n), the probabilistic encryp-

tion scheme generator, 2n times. Denote the output by

(e

0

1

; d

0

1

); (e

1

1

; d

1

1

); (e

0

2

; d

0

2

); (e

1

2

; d

1

2

); : : : (e

0

n

; d

0

n

); (e

1

n

; d

1

n

):

Generate h 2

R

H. The public encryption key is hh; e

0

1

; e

1

1

,

e

0

2

; e

1

2

, : : :, e

0

n

; e

1

n

i. The corresponding private decryption

key is hd

0

1

; d

1

1

; d

0

2

; d

1

2

; : : : d

0

n

; d

1

n

i.

Encryption: To encrypt a k-bit message m = b

1

: : : b

k

:

1. Select random bits b

i

j

for 1 � i � k and 1 � j � n

such that �

n

j=1

b

i

j

= b

i

for all 1 � i � k.

2. Run GS(n), the signature key generator. Let F be

the public signature veri�cation key and P be the

private signature key.

3. Compute h(F ). Denote the output by v

1

v

2

: : : v

n

where each v

j

2 f0; 1g.

4. For each 1 � i � k and for 1 � j � n generate c

i

j

,

an encryption of b

i

j

using e

v

j

j

.

5. Create a signature s of the sequence fc

i

j

g

1�i�k

1�j�n

.

The ciphertext is hF; s; c

1

1

; : : : c

k

1

: : : ; c

1

n

: : : c

k

n

i:

Decryption: To decrypt hF; s; c

1

1

; : : : c

k

1

: : : ; c

1

n

: : : c

k

n

i:

1. Using public signature veri�cation key F , verify that

s is a signature of fc

i

j

g

1�i�k

1�j�n

.

2. Compute h(F ). Denote the output by v

1

v

2

: : : v

n

.

3. If the signature passes the veri�cation, then for all

1 � i � k and all 1 � j � n retrieve b

i

j

by decrypting

using d

v

j

j

. For i = 1; : : : ; k, let b

i

= �

n

j=1

b

i

j

and

let the decrypted message be the k-bit string m =

b

1

b

2

: : : b

k

. Otherwise the output is null.

Theorem 3.1 S is resistant to a one-ciphertext veri�ca-

tion attack.

The proof is omitted for lack of space.

3.2 Insecurity of G(S) in the Multi-User Case

Assume the adversary has control over a single compro-

mised user u

0

. Let u be a non-compromised user. Given a

ciphertext hF; s; c

1

1

; : : : c

k

1

: : : ; c

1

n

: : : c

k

n

i of (spwd

u

; r; S; u),

the adversary learns b

i

j

for all 1 � i � k and 1 � j � n.

This is done as follows for each i and j in its turn when

u

0

is given a challenge and should respond:

� Generate a signature key F

0

such that the jth bit of

h(F

0

) equals the jth bit of h(F ) - this is true for half

the F

0

's, so it is easy to generate.

� Substitute c

i

j

instead of the ciphertext (c

0

)

i

j

that was

suppose to be in the corresponding place in the reply

by u

0

.

� Get through u

0

whether the response was accepted

or not. Since (b

0

)

i

j

(the bit encrypted by (c

0

)

i

j

) is

known to u

0

, it is possible to deduce the value of b

i

j

.

The intrusion detection parameter can be re-set to zero as

needed by having u

0

execute a successful login (as itself).

4 Our De�nition of Security in the Multi-User Case

As always in de�ning security, we must specify the attack

to be defended against, as well as what it means to break

the system. For the rest of the paper, the term \compro-

mised user" includes any party under the control of the

adversary (such as the forger in the HK de�nitions), and

is not restricted to users that do not have valid passwords.

4.1 Description of the Adversary in the Multi-User Case

Our notion of attack against a password authentication

system is the HK de�nition generalized to handle the multi-

user case (and, for the positive results, generalized to han-

dle arbitrary password distributions). As in [17], we sim-

ply assume that the server's public key is established and

a hash of this key under a collision-intractable hash func-

tion is known to the users. We assume that each user

knows its own password, and (as in [17]), the passwords

are known to the server. (Hence, it doesn't make sense

to discuss the case of a corrupted server.) Our break of

the HK protocol in the multi-user case is independent of

whether the passwords are chosen by the users or by the

server. Our positive results hold in either case as well;

in particular they hold in the case in which the adver-

sary has the additional power of choosing the passwords

of the compromised users. Also as in [17], we assume a sin-

gle server (our results generalize to multiple servers with

access to the same passwords but with possibly di�erent

public keys). Unlike in [17], we assume multiple users.



For most of the paper we assume a static polynomial-

time bounded (in the security parameter) adversary: the

adversary chooses which users to compromise (make faulty)

before execution of the protocol begins. The case of the

dynamic adversary is extremely interesting. We discuss

this case and o�er a solution in Section 5.2. The adver-

sary may compromise any number of users, and completely

controls the behavior of the compromised users. The com-

promise may take place before the users have chosen their

passwords, and the adversary may completely control the

selection of passwords by the compromised users. How-

ever, as mentioned, we assume those compromised users

having passwords are aware of their passwords.

The users in the system choose their passwords accord-

ing to some joint distribution

D = (D

1

; D

2

; : : : D

jUj

)

where U is the universe of users. User u gets his pass-

word from distribution D

u

. We assume nothing about the

joint distribution; for example, the passwords of two users

might be correlated or even identical.

The system may have some sort of intrusion detection

policy, based on the number and frequency of failed at-

tempts. For simplicity we assume that the system has an

intrusion detection parameter I. This can be used in one

of two ways: user u's account is frozen (u cannot log in

without appeal to some restoration protocol) after either

I consecutive failed attempts or I failed attempts since

the last change of password. Our demonstration of the in-

security of the HK protocol in the multi-user environment

(Section 3) is simpli�ed if only consecutive failed attempts

are counted, so we will make that assumption here. How-

ever, the security of our solutions for a multi-user environ-

ment (Section 5) can withstand any intrusion-detection

policy and the policy need not be speci�ed explicitly.

The adversary may listen to any number of success-

ful login attempts (challenges and encrypted responses)

by other users; the adversary can initiate any number of

authentications, posing either as non-compromised pro-

cessors or compromised processors; it can intercept and

alter messages and generate spurious messages, in any di-

rection between the server and any user, and it can learn

if attempted authentications were successful. We also as-

sume that the adversary has complete control over timing

of events in the system.

4.2 De�nition of a Break in the Multi-User Case

Let A be any adversary, for example, as described in Sec-

tion 4.1. We consider long-lived runs of the password au-

thentication protocol (the runs have length bounded in

the security parameter). Each run consists of many in-

vocations of the password authentication protocol, some

of which may fail, together with other spurious messages

that may be generated by the adversary and any replies

to these messages. Thus, each long-lived run gives rise to

a transcript.

Ideally, we would like to say that the system is secure

if the adversary cannot make the server accept a session

not initiated by said user, incorporating some notion of

matching between the user's initiations and the server's

acceptance, as was done by Bellare and Rogaway in several

settings [3, 4]. Indeed, if the passwords were chosen uni-

formly from a very large space, such a de�nition is reason-

able. However, since we assume the passwords are drawn

from a distribution that is weak against repeated sam-

pling or exhaustive search, some impersonation will occur

in practice. Our de�nition, like the de�nition in [17], must

re
ect this and make sure that the protocol itself doesn't

add to the insecurity.

Intuitively, we can say that the system is secure if the

transcripts of the login session can be simulated without

access to the password �le. However, since the adversary

can simply guess a password and test its guess by trying

it in the protocol, we equip the simulator with access to

a password veri�cation oracle PV. The password veri�ca-

tion oracle receives queries of the form (u; p) and returns

\yes" if p = spwd

u

(the secret password of user u), and

\no" otherwise.

Let us brie
y give some intuition for our de�nition be-

fore spelling out the details. Suppose there is an adversary

A that attacks the system as follows: for a randomly cho-

sen non-compromised user u, it causes u to log in to the

system, say, 50 times. It then attempts a single imperson-

ation of u. Suppose A always succeeds on its �rst attempt.

Clearly, assuming passwords are used at all, this should be

a break of the system and our de�nition should re
ect this,

so executions of this type should not be simulateable.

However, we know that the simulator, by brute force

querying of the password veri�cation oracle, can learn

the password with probability one (assuming no intrusion-

detection policy). Thus, if we de�ne the simulator na��vely,

it can �rst generate a transcript of 50 simulated successful

logins by u and then it can (o� the record, using the pass-

word veri�cation oracle PV) �nd spwd

u

by brute force.

Finally, it can simulate the { successful { impersonation,

since it has learned the secret password.

We therefore de�ne a transcript to include certain im-

mutable records of the execution history; these will not be

under the control of the simulator. In particular, queries

to the password veri�cation oracle, and attempts by non-

compromised users to log in, will be recorded even during

the simulation, and the simulator will not be permitted to

alter these records. Intuitively, this forces the simulator

not to access the password oracle PV with user u more

frequently than the adversary tries to impersonate u.

Suppose for pedagogical reasons that

1. Each non-compromised user u is equipped with a

special tape. Whenever the adversary causes u to

initiate a login attempt, this fact is recorded on the

tape.

2. The server is equipped with a special tape. Every

time a (possibly impersonated) user attempts to log

in, a record of the userid being accessed, together

with a bit saying whether or not the attempt was

successful, is recorded.

We do not assume the existence of the special tapes in

reality.

An annotated transcript of an execution includes all the

messages exchanged between servers and (compromised

and non-compromised) users, together with the contents

of the special tapes. The intuition is that if a break occurs

it will be re
ected in the special tapes: the server's special

tape will show more successful accesses to a user's account

than attempts recorded on the user's special tape.

The simulator must operate without access to the pass-

word �le. We assume the existence of a tape-writer T ,

whose function is to make entries in the special tapes of



the server and the non-compromised users upon legitimate

requests by the simulator.

There are no real non-compromised users in the sim-

ulation: messages supposedly sent by non-compromised

users must be generated by the simulator, who does not

know their passwords. However, the simulator has access

to the passwords of compromised users, since these are

known to the adversary.

Whenever the simulator accesses the password veri�-

cation oracle PV and receives a \yes/no" reply, T records

the attempt and the outcome on the server's special tape.

Whenever the adversary causes a (simulated) user u

(which is non-compromised) to attempt to log in, T records

the attempt on (the simulated) u's special tape.

The simulator may request T to record as success-

ful, on the server's special tape, an attempt by a non-

compromised user. However, for every such attempt there

must be a corresponding invocation on the user's special

tape. The simulator is bound by the intrusion detection

policy, which may decide to fail the attempt anyway, and

in this case a \no" is recorded.

The simulator may request T to record an unsuccessful

attempt to log in to the account of a non-compromised

user u. There needn't be any corresponding invocation on

u's special tape.

Returning to our example with the 50 observations:

under our constraints every failed guess by the simulator

of a non-compromised user's password is recorded as \part

of the simulation," so the transcript of any simulated ex-

ecution involving o�-line brute-force guessing will always

be distinguished from the transcript of a real execution in

which the adversary, having seen 50 real password veri�-

cations, succeeds at its �rst attempted impersonation.

De�nition 4.1 A protocol is secure against a given ad-

versary class if for all joint distributions D and all ad-

versaries A in the given class there is a probabilistic poly-

nomial time transcript simulator S that interacts with A,

a password veri�cation oracle PV, and a tape-writer T

as described above, such that annotated transcripts of real

long-lived runs with adversary A are probabilistic polyno-

mial time indistinguishable from those produced by S.

5 Solutions for the Multi-User Case

There are several ways to amend the Halevi-Krawczyk ap-

proach so that it will function securely in a multi-user en-

vironment and satisfy De�nition 4.1:

1. Strengthen the security of the encryption scheme by

making it non-malleable to chosen-ciphertext postprocess-

ing attacks (the adversary knows the challenge cipher-

text and can repeatedly and adaptively ask the decryption

mechanism to decrypt any ciphertext except the challenge

ciphertext). This is a natural suggestion given that, as dis-

cussed in the Introduction, the issue is one of malleability

(see also Section 7). The recent Cramer-Shoup cryptosys-

tem [10] makes this approach attractive.

2. Have the server select and assign to each user u a \per-

sonal" public encryption key to be used by u when sending

messages to the server; this key will be used only by u and

not by any other user. The cryptosystem used for gener-

ating these keys should be non-malleable with respect to

chosen plaintext attacks, or at least semantically secure

under one-ciphertext veri�cation attacks. This approach

is cumbersome and may require the server to sign each

personal public key.

3. Have the server and the user perform a fresh (secure

against replay) authenticated secret key exchange, where

the secret key that is exchanged is the user's password and

authentication is assisted using the server's public signa-

ture key.

We will give a complete proof for Suggestion 1 below.

However, we �rst brie
y expand on Suggestion 3, since in

Section 5.2 we show how to strengthen the requirements

on the public-key cryptosystem in order to achieve security

against a dynamic adversary who chooses which users to

compromise as a function of the history of the run. Han-

dling a dynamic adversary is always challenging. In par-

ticular, once a process is compromised all secret informa-

tion regarding its previously encrypted messages becomes

available to the adversary. This is a common assumption

to make, as it is dangerous to assume that \erasure" of

state is possible. This is particularly so in the scenario

we are dealing with in this paper, where the users do not

have complete control over the computers they are using.

We have in mind an adaptation of a system proposed

by Dolev, Dwork and Naor [11] (see Section 3.6 of the full

version of the paper). The idea for the system is straight-

forward: for each interaction the server chooses a fresh

(public key, private key) pair that is used only for one

message. However, this is not su�cient, since an active

adversary may intercept the keys and substitute its own

keys. We prevent this behavior by using signatures by

both parties. As in the [17] scenario, the server will have

a single �xed public key, a hash of which is given to the

user at set-up time. However, here the server's public

key will be used for signing and not for encryption. The

signature scheme used should be existentially unforgeable,

i.e. an adversary should not be able to generate a valid-

looking signature on any message not explicitly signed by

the legitimate signer. See [14] for exact de�nitions. The

user will choose a \session" key, which will be used to sign

a single message at the third round. Therefore a one-time

type signature scheme su�ces. A user u with password

spwd

u

wishing to be authenticated by server i whose pub-

lic key for signing is P

i

, performs the following protocol

with server i:

1. User u chooses a fresh private/public pair of signa-

ture keys (s

u

; p

u

) and sends the public part, p

u

, to-

gether with his name u to i (lower case is used to

distinguish p

u

from P

i

).

2. Server i chooses a fresh private/public pair of en-

cryption and decryption keys (E

iu

; D

iu

), where E

iu

is semantically secure against chosen plaintext at-

tack, and sends E

iu

together with S

i

(E

iu

� p

u

) (i.e.

a signature on the fresh public-key E

iu

concatenated

with the public signature key u chose) to u; u veri�es

the signature and that p

u

is indeed the public key it

chose in Step 1.

3. User u encrypts spwd

u

using E

iu

and sendsE

iu

(spwd

u

)

together with s

u

(E

iu

(spwd

u

)) to i. Server i veri�es

that the message encrypted with E

iu

is indeed signed

with the corresponding p

u

.

Note that the sender's key pair (s

j

; p

j

) in Step 1 is for a

one-time signature scheme, which can be implemented us-

ing a few (say 100) evaluations of a one-way function. The



server may use a signature scheme such as in [9, 12], which

makes the whole approach is relatively e�cient. We will

return to this scheme in Section 5.2, where we give an im-

plementation of the cryptosystem that yields a password

authentication scheme resilient to a dynamic adversary.

5.1 Proof of Security

The proofs of security in the multi-user case for of all of

the three approaches are similar. We describe in detail

the proof for Suggestion 1.

Let f be the concatenation function. Halevi and Krawczyk

don't specify what is to be done when a user fails to re-

spond correctly to a challenge. We will assume that when

the server issues a challenge r to a user u, the server adds

the challenge pair (u; r) to a list of challenges. A challenge

(u; r) that has not been successfully answered is said to

be outstanding for u. When a server accepts a response as

valid, it informs the user of which challenge was success-

fully answered and removes the challenge pair from the

list of outstanding challenges.

5.1.1 Outline of The Simulator

The simulator will choose a secret/public pair of keys S; P

for the simulated server. The non-compromised users will

never actually send any messages. The simulator will

choose a �xed random string �. Whenever the adversary

A schedules such a user to respond to a challenge, the

simulator will send a random encryption of �.

As explained in Section 4, the simulator has access to a

password veri�cation oracle PV that knows the passwords

of all the parties; the oracle will be consulted only on mes-

sages generated (not copied) by the compromised users

(who may be attempting to impersonate non-compromised

users).

If A causes a non-compromised user u to attempt to

log in, then T records this attempt on u's special tape.

The simulator handles ciphertexts generated by A dif-

ferently than ciphertexts generated by non-compromised

users. Let c be a ciphertext generated by A. Assume A

causes a compromised user u

0

to send c to the server as a

supposed response on the part of a user u (u may equal

u

0

, but need not). The simulator decrypts c and checks

that it is an encryption of the concatenation of �, r, u,

and S (S is the name of the server), where � is a guess of

u's password and r is some outstanding challenge for u.

If the plaintext is not of this form, the simulator asks T

to record on the server's special tape the fact that an un-

successful attempt to access u's account has taken place.

If the plaintext is of this form, then the simulator gives

the pair (u; �) to PV, whether or not u is compromised.

This attempt, and the outcome, is recorded by T on the

server's special tape.

Let c be a ciphertext generated by a simulated non-

compromised u. In this case, accessing PV makes no sense,

since the simulation never has access to the password of u,

so the simulator must decide what to do according to the

context in which c is sent to the simulated server.

� If A causes c to be sent to the server as a response by u

to a challenge from the server, then the simulator requests

T to record a successful access by non-compromised user

u on the server's special tape.

� If A causes c to be sent to the server as a response to

a challenge by some compromised party trying to log in

as any u

0

6= u, then the simulator requests T to record

an unsuccessful access by u

0

on the server's special tape.

In this case, if this were not a simulation then c would

be an encryption of (spwd

u

; r; u; S); in contrast, any valid

response that u

0

6= u would send should have u

0

as the

third component. Thus, if this were not a simulation then

capturing c and re-sending it as a response by u

0

would

unconditionally result in failure.

� If A causes c to be sent to the server, as a response to a

challenge by some compromised party u

0

trying to imper-

sonate u, then the simulator requests T to record success

if and only if the simulator, in generating c, was simulat-

ing a response by u to an outstanding challenge r, and r

is still an outstanding challenge for u. In case of success,

the challenge pair (u; r) is removed from the list of out-

standing challenges. This rule captures the clear-channel

case. If instead c was generated in response to a challenge

r

0

that was generated by A and sent to u from some com-

promised u

0

pretending to be the server (so in particular

(u; r

0

) is not on the list of outstanding challenges), then

the simulator requests T to record failure.)

Finally, recall that intrusion detection is performed by

T , and thus T complies with the simulator's requests only

in so far as they do not con
ict with the policy.

5.1.2 Indistinguishability of Simulated and Actual Tran-

scripts

For the sake of contradiction, letA be a forger as described

in Section 4.1, for which no polynomial-time simulator

satisfying De�nition 4.1 exists. In particular, there exists

a polynomial-time bounded distinguisher D that distin-

guishes transcripts generated by the simulator outlined in

Section 5.1.1 and (annotated) transcripts generated in the

real system. Let Q(k) denote the running time of D on se-

curity parameter k, so that Q(k) is an upper bound on the

length of the transcripts we need to consider. Then there

exists a polynomial �(k) such that for in�nitely many val-

ues of k

jPr[D(simulated) = 1]� Pr[D(real) = 1]j �

1

�(k)

Using A as an oracle, we will design an adversary B

that breaks the non-malleability of the underlying cryp-

tosystem under chosen-ciphertext attacks. (The construc-

tion is similar to the construction of the adversary A in

the proof of Theorem 2.1, given in [17], and is essentially

a hybrid argument.)

B receives as input a public key chosen according to

the public-key cryptosystem generator. B then runs the

adversary A to choose which processors will be compro-

mised, is given passwords for the non-compromised users,

and allows the adversary to choose passwords for the com-

promised users. B learns the passwords of the compro-

mised users. Before proceeding with the description of B

we de�ne several types of transcripts.

Annotated Real Transcripts. Annotated real transcripts,

de�ned in Section 4.2, are real transcripts that are anno-

tated with the contents of the special tapes:

1. the tape of a non-compromised user u records each

initiated login attempt;

2. the tape of the server records each attempted login

and success or failure of the attempt.



The annotations simply record the events that actually

occurred during the real execution.

real

Q(k)

. These are identical to annotated real transcripts.

The only di�erence is the way in which they are gener-

ated: B plays the role(s) of all the non-compromised users.

There is a real server involved, who has chosen the cryp-

tosystem.

real

`

, for ` 2 f1; : : : ; Q(k)g. These are a hybrid between

real

Q(k)

and transcripts real

0

(which we will show to be

distributed exactly the same as simulated transcripts).

The �rst ` challenges to non-compromised users u are

answered correctly by B. After that, every reply by a

non-compromised user u to an outstanding challenge r is

\apparently" answered with an encryption of a random

string �, in the sense that this is the ciphertext seen by

A. If A allows the ciphertext to go through as u's reply

to the outstanding challenge r, then an adaptor, working

with B (who knows all the passwords), sends to the server

an encryption of the proper response.

real

0

. These transcripts are a special case of real

`

, in

which no challenges to non-compromised users are an-

swered with encryptions of proper replies, but rather all

are answered with encryptions of a randomly chosen value

�. It is straightforward to show that transcripts of this

type are identical to simulated transcripts; the key point

is that in both cases the adversary A is only given access

to encryptions of a random string � and never given access

to encryptions of any string containing the passwords of

non-compromised users.

We therefore have by assumption on A that for some

` 2 f1; : : : ; Q(k)g

jPr[D(real

`�1

) = 1]� Pr[D(real

`

) = 1]j �

1

�(k)Q(k)

Assume for simplicity that such an ` is known to B. The

system is run against A until the `th reply to a challenge

by a non-compromised user is about to be issued. Let the

challenge string be r

`

and let u be the user about to make

the reply. The message space on which B will choose to be

tested will be ff(spwd

u

;S; u; r

`

); �g. At this point, B will

be given a ciphertext challenge c that is either an encryp-

tion of � or an encryption of f(spwd

u

;S; u; r

`

). During the

remainder of the run of the password authentication pro-

tocol, all challenges to non-compromised users will receive

as replies encryptions of �, as in real

`

. If the ciphertext

challenge is an encryption of �, then the transcript is an

instance of real

`�1

, otherwise it is an instance of real

`

. B

presents the transcript to D. B outputs D's response. We

therefore have:

Theorem 5.1 Let E be a cryptosystem that is non-malleable

against an adaptive chosen ciphertext attack in the post-

processing mode. Then G(E) satis�es De�nition 4.1 against

any forging adversary A as described in Section 4.1.

5.2 Dynamic Corruption of Users

We now return to Suggestion 3 for the multi-user case, in

which an authenticated secret key exchange is performed

on the user's password. By using a special encryption

scheme, which can withstand dynamic corruption of users

by the adversary, we obtain a password authentication

scheme that is itself resilient to dynamic adversaries.

The use of the special encryption schemes is critical,

since, otherwise, when a formerly non-compromised user u

becomes compromised, all of its previously sent messages

(e.g., encrypted responses to challenges) become available

to the adversary in the clear. This is because we do not

assume that processors erase the random bits they used in

generating their ciphertexts. Thus, if we have been sim-

ulating these messages by encrypting a random string �

instead of the appropriate reply to a challenge, the adver-

sary will be able to distinguish transcripts of the simula-

tion from a those of a real execution.

The special encryption scheme provides non-committing

encryption, a concept introduced by Canetti, Feige, Gol-

dreich, and Naor [8] precisely to tolerate dynamic adver-

saries in secure multi-party protocols. In such an encryp-

tion scheme here are two modes of operation:

normal mode messages are encrypted and decrypted

and each ciphertext has a unique decryption.

simulation mode where strings are generated as cipher-

texts, but they can be opened (decrypted) in two

ways by someone holding the secret keys.

The key point is that encryptions generated in the two

modes are indistinguishable.

In [8] the simulator must handle the case in which both

the sender and the receiver may be compromised at a later

time. In our scenario the problem is easier { permitting

more e�cient solutions { since the adversary can only com-

promise the users (the senders of encrypted messages, in

our protocol) and not the server (the receiver of the en-

crypted messages)

2

.

In the full paper we describe two non-committing en-

cryption schemes that are su�ciently strong for our sce-

nario. In both schemes, the fact that one can open the bit

both ways in the simulation will be used for dynamically

simulating the conversation. When a user is compromised

it is possible to pretend that before he was corrupted he

sent as replies to the server's challenges his actual pass-

word, even though the simulator didn't know it previously.

The schemes are based on trapdoor permutations and on

the quadratic residuousity assumption [13], respectively.

6 The Cryptographic Power Necessary for Password Au-

thentication

Over the last �fteen years most cryptographic primitives

have been placed in a hierarchy of three equivalence classes,

where in each class either all the tasks are possible or none

are; it is a hierarchy in the sense that if the higher classes

have constructions, then so do the lower ones. The canon-

ical representatives of the three classes (in increasing or-

der) are one-way functions, secret key exchange protocols

(SKE), and oblivious transfer (OT).

One-way functions are known to be equivalent to private-

key encryption, bit commitment, zero-knowledge proofs,

and signature schemes (see Luby's monograph [23]). SKE

2

In case the server can be compromised as well and the parties

are adding secret key exchange and encrypting their communication

we will have to either assume that the server can erase random bits

used or employ the full [8] scheme. This is sometimes called forward

secrecy.



represents the conceptual breakthrough of public-key cryp-

tography. Regarding OT, it is known that if any kind of

oblivious transfer is possible, then it is possible to perform

general secure function evaluation [21]. The notable re-

sult of Impagliazzo and Rudich [20] separates the one-way

functions class and secret key exchange under black-box

reductions. Although no separation between secret key

exchange and oblivious transfer is known, the problem of

reducing OT to SKE has been open for long time. It is

therefore reasonable to conjecture that the two classes may

be distinct. In this section, we locate password authenti-

cation in the hierarchy.

Halevi and Krawczyk showed that any secure password

authentication protocol requires some sort of secret key ex-

change [17]. Thus, password authentication requires SKE

and consequently is above one-way functions in the hier-

archy. Our �rst observation is that secret key exchange

is also a su�cient condition for password authentication,

i.e.: if secret key exchange protocols exist, then so do pass-

word authentication protocols. This follows from the fact

that our third proposed protocol for password authenti-

cation (see Section 5) requires only secret key exchange

and a signature scheme. Since secret key exchange im-

plies the existence of signature schemes (this follows from

[19, 26, 27]) we have:

Theorem 6.1 Secure authentication protocols satisfying

De�nition 4.1 exist if and only if secret key exchange pro-

tocols exist.

Password authentication is often performed in conjunc-

tion with secret key exchange in order to encrypt the com-

munication between the parties. In this paper, for the sake

of brevity, we considered only \vanilla" authentication,

both in our de�nitions and in our constructions; however,

it is relatively simple to extend the discussion to include

authenticated secret key exchange (and mutual authenti-

cated key exchange). The extended de�nition can follow

the lines of the work of Bellare and Rogaway in several

settings [3, 2, 4]. Extending the constructions accordingly

is easy, since, as we have seen, they include secret key

exchange anyway.

All the protocols discussed so far in the paper, as well

as De�nition 4.1, are for the setting where the server has

a pair of private/public keys and the public key is known

to the the user (or at least can be veri�ed by the user by

some other means). It is easy to modify De�nition 4.1

to capture the case in which the server does not have a

public key known to the user. A protocol for performing

secure password authentication between two parties in this

setting is proposed in [25], based on oblivious evaluation

of polynomials

3

. However, in order to use this protocol

in a multi-user (and multi-server) environment we must

deal with issues of malleability, created, for example, by

switching the conversations of two users.

One approach is to use non-malleable commitments

[11]. The [25] protocol consists of two phases: (1) oblivi-

ous evaluation of a randomly chosen linear polynomial at

a point correpsonding to the password and (2) exchanging

parts of the values of the �rst phase in order to check for

consistency. We modify this by adding a non-malleable

string commitment to the values that are to be exchanged

between the two phases. The issue of identities is solved

3

a di�erent protocol is suggested by Lucks [24] assuming random

oracles.

by concatenating to these values the transcripts of the

Phase (1) conversation, and other identifying information.

As it turns out, the use of oblivious transfer is neces-

sary in this case, and secret key exchange protocols are

not su�cient. The proof of necessity is based on showing

that such a protocol can be used to perform an oblivious

evaluation of the \or" function. The latter is known to

yield Oblivious Transfer [22].

Theorem 6.2 Secure authentication protocols satisfying

De�nition 4.1 without the server having veri�able public

keys exist if and only if OT protocols exist.

7 NM-CPA implies SS-1CV

Theorem 7.1 If a public-key cryptosystem is non-malleable

under chosen plaintext attack then it is semantically secure

under one-ciphertext veri�cation attacks.

For our proof, we use the de�nition of non-malleability

under chosen plaintext attack in [1]. (Under chosen plain-

text attack, this is known to be equivalent to non-malleability

under the (original) [11] de�nition [5].) The adversary is

split into two parts, A

1

and A

2

. A

1

receives the public

key drawn according to the pkcs generator. A

1

produces

a message distribution M (by providing a sampling algo-

rithm forM), as well as any state information. Next, x 2

R

M is chosen, A

2

receives a description of M , the state in-

formation produced by A

1

, and an encryption c 2

R

E(x).

A

2

responds with a relation R and a vector ~y of encryp-

tions, where c =2 ~y. The vector of decryptions (which can

involve \invalid") is denoted D(~y).

Let ~x = D(~y). Let p

1

= Pr[R(x; ~x)]. Let p

2

=

Pr[R(z; ~x)], where z 2

R

M . Then jp

1

�p

2

j should be negli-

gible. The probability space is over everything: the choice

of the keys, the choices by the adversary, the encryption

algorithm, the sampling of M , and any randomness used

by R.

Proof. Let (B

1

; B

2

; B

3

) denote an adversary as in Sec-

tion 2.2. We de�ne a \malleability" adversary (A

1

; A

2

)

accordingly, as follows. A

1

runs B

1

to choose s and then

A

1

also chooses r 2

R

f0; 1g

jsj

. Let's assume we are in the

high probability case that r 6= s. Let M be the uniform

distribution on fs; rg. Choose x 2

R

M and give to A

2

the

ciphertext c 2

R

E(x). A

2

runs B

2

on c to produce x

0

; c

0

.

A

2

outputs the relation R = R

(x

0

;c

0

;s;r)

(�; �), computed

in four steps as follows: (1) Let b = 1 i� � = x

0

, otherwise

b = 0. (2) B

3

is given b as input, together with the \his-

tory" E; s; x

0

; c

0

; c and any other state information for B

1

and B

2

. B

3

outputs a guess of whether or not D(c) = s.

(3) De�ne g (for \guess") as follows. If B

3

outputs \equal

to s" then set g = s. Otherwise set g = r. (4) If g = �

then output 1, else output 0.

Suppose the cryptosystem is non-malleable under cho-

sen plaintext attack. LetM be chosen as described above.

Fix x 2

R

M . When z 2

R

M and A

2

gets c 2 E(x), then

since c contains no information about z, A

2

's chance of

producing x

0

; c

0

such that R

(x

0

;c

0

;s;r)

(z;D(c

0

)) = 1 is 1/2.

Intuitively, this is because g 2 fs; rg is output in Step 3 of

the evaluation of R, independently of z, so we can simply

think of z as being chosen uniformly from M after g is

computed. By the [1] de�nition of non-malleability, this

means that R

(x

0

;c

0

;s;r)

(x;D(c

0

)) is also (negligibly close to)



1/2. So, given c 2 E(x), the probability that g = x is neg-

ligibly close to 1=2.

The remainder of the proof follows by arithmetic. 2

8 On Halevi and Krawczyk's Revised De�nitions

In a revision of their original paper, Halevi and Krawczyk

attempted to deal with the multi-user case [18]. The re-

vision di�ers from the original version in two respects:

� The de�nition of security was changed to incorporate

the fact that there are many users and that some

of them might be corrupt and cooperate with the

adversary.

� The security requirements of the encryption scheme

were changed to something resembling an adaptive

chosen ciphertext attack.

The revised paper ([18]) does not note the insecurity of

the original work ([17]) in the two-user case.

The new de�nition proposed by Halevi and Krawczyk

is weaker than De�nition 4.1 proposed in this paper. In-

tuitively, the weakness comes from the fact that the new

de�nition still concentrates on the fate of a single user,

rather than describing security in \system-wide" terms

e.g., global system transcripts.

For instance, it is possible to construct an authenti-

cation protocol that satis�es the new HK de�nition yet

leaks whether the passwords of two di�erent (non-corrupt)

users are equal (omitted for lack of space). Since �nding

a human-memorizable password is not prohibitively dif-

�cult, this extra information gives the adversary consid-

erable additional \bang" for its breaking \buck": when

the adversary attacks a system, it can �rst �nd a large

clique of users with a common password, and then use the

remaining queries in exhaustively searching for this pass-

word. On average, such an adversary can break into many

more users' accounts than an adversary that simply per-

forms the same number of queries using a password veri�-

cation oracle. Thus, the revised de�nition of [18] does not

adequately model the security requirement of a multi-user

environment.

References

[1] M. Bellare, A. Desai, D. Pointcheval and P. Rogaway, Rela-

tions among notions of security for public-key encryption

schemes, Advances in Cryptology - Crypto'98, LNCS vol.

1462, Springer, 1998, pp. 26{45.

[2] M. Bellare and P. Rogaway, Optimal Asymmetric Encryption

{ How to Encrypt with RSA, Advances in Cryptology { Eu-

rocrypt'94, LNCS vol. 950, Springer-Verlag, 1994, pp. 92-111.

[3] M. Bellare and P. Rogaway, Entity Authentication and key

distribution, Advances in Cryptology { Crypto'93, LNCS vol.

773, Springer-Verlag, 1994, pp. 232{249.

[4] M. Bellare and P. Rogaway, Provably Secure Session Key Dis-

tribution: The Three Party Case, Proc. 27th Annual ACM

Symp. on the Theory of Computing, 1995, pp. 57{66.

[5] M. Bellare and A. Sahai, Non-Malleable Encryption: Equiv-

alence between Two Notions, and an Indistinguishability-

Based Characterization, to appear, Proc. CRYPTO'99.

[6] S.M. Bellovin and M. Merritt, Encrypted key exchange:

Password-based protocols secure against dictionary attacks,

Proc. of the 1992 IEEE Computer Society Conference on Re-

search in Security and Privacy, pages 72-84, 1992.

[7] R. Canetti, Security and Composition of Multi-party Cryp-

tographic Protocols, Theory of Cryptography Library: Record

98-18. Available: http://philby.ucsd.edu/cryptolib.html

[8] R. Canetti, U. Feige, O. Goldreich, M. Naor, Adaptively Se-

cure Multi-party Computation, Proc. of the 27th ACM Symp.

on Theory of Computing, 1996, pp. 639{648.

[9] R. Cramer and I. Damgard, New generation of secure and

practical RSA-based signatures Advances in Cryptology -

Crypto '96, LNCS vol. 1109, Springer, 1996, pp. 173-185.

[10] R. Cramer and V. Shoup, A practical Public Key Cryptosys-

tem Provable Secure against Adaptive Chosen Ciphertext At-

tack, Advances in Cryptology - Crypto'98 LNCS vol. 1462,

Springer, 1998, pp. 13{25.

[11] D. Dolev, C. Dwork and M. Naor, Non-Malleable cryptog-

raphy, Preliminary version: Proc. of the Twenty third ACM

Symposium on Theory of Computing, 1991, pp. 542{552. Full

version, to appear, Siam J. on Computing. Available:

http://www.wisdom.weizmann.ac.il/~naor/onpub.html

[12] C. Dwork and M. Naor, An E�cient Existentially Unforge-

able Signature Scheme and its Applications, Journal of Cryp-

tology, vol 11, 1998, pp. 187-208.

[13] S. Goldwasser and S. Micali, Probabilistic Encryption, J.

Com. Sys. Sci. 28 (1984), pp 270-299.

[14] S. Goldwasser, S. Micali and R. Rivest, A Secure Digital Sig-

nature Scheme , Siam Journal on Computing, Vol. 17, 1988,

pp. 281-308.

[15] L. Gong. E�cient network authentication protocols: Lower

bounds and optimal implementations. Distributed Computing,

9(3):131-145, 1995.

[16] L. Gong, M.A. Lomas, R. Needham, and J. Saltzer. Protecting

poorly chosen secrets from guessing attacks. IEEE Journal on

Selected Areas in Communications, 11(5):648-656, June 1993.

[17] S. Halevi and H. Krawczyk, Public-key Cryptography and

password protocols, 5th ACM Conference on Computer and

Communication security, pp. 122{131, 1998.

[18] S. Halevi and H. Krawczyk, Public-key Cryptography and

password protocols, Theory of Cryptography Library: Record

99-04, 1999. Available: http://philby.ucsd.edu/cryptolib.html

[19] R. Impagliazzo and M. Luby, One-way functions are essential

to computational based cryptography, Proc. of the 30th IEEE

Symp. on the Foundation of Computer Science, 1989, pp. 230{

235.

[20] R. Impagliazzo and S. Rudich, On the Limitations of certain

One-Way Permutations , Proc. 20th ACM Symp. on Theory

of Computing, 1989, pp. 44{61.

[21] J. Kilian, Use of Randomness in Algorithms and Proto-

cols, MIT Press, Cambridge, Massachusetts, 1990.

[22] J. Kilian, A general completeness theorem for two-party

games, Proc. 23rd ACM Symp. on Theory of Computing, 1991,

pp. 553{560.

[23] M. Luby, Pseudo-randomness and applications, Princeton

University Press, 1996.

[24] S. Lucks, Open Key Exchange: How to Defeat Dictionary

Attacks Without Encrypting Public Keys, Proc. of Security

Protocol Workshop '97,

http://www.dmi.ens.fr/~vaudenay/spw97/spw97_Luc3.ps.gz.

[25] M. Naor and B. Pinkas, Oblivious Transfer and Polynomial

Evaluation Proc. 30th ACM Symp. on Theory of Computing,

1999, pp. 245{254.

[26] M. Naor and M. Yung, Universal One-way Hash Functions

and their Cryptographic Applications, Proc. 21st ACM Symp.

on the Theory of Computing, 1989, pp. 33{43.

[27] J. Rompel, One-way Functions are Necessary and Su�cient

for Signatures, Proc. 22nd Annual ACM Symposium on the

Theory of Computing, Baltimore, 1990, pp. 387{394.

[28] T. Wu, The Secure Remote Password Protocol, Proc. of the

1998 Internet Society Network and Distributed System Secu-

rity Symposium, San Diego, March 1998, pp. 97-111.


