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Abstract

We introduce the notion of Resettable Zero-Knowledge (rZK), a new security measure for

cryptographic protocols which strengthens the classical notion of zero-knowledge. In essence,

an rZK protocol is one that remains zero knowledge even if an adversary can interact with the

prover many times, each time resetting the prover to its initial state and forcing it to use the

same random tape. All known examples of zero-knowledge proofs and arguments are trivially

breakable in this setting. Moreover, by de�nition, all zero-knowledge proofs of knowledge are

breakable in this setting. Under general complexity assumptions, which hold for example if the

Discrete Logarithm Problem is hard, we construct:

� Resettable Zero-Knowledge proof-systems for NP with non-constant number of rounds.

� Five-round Resettable Witness-Indistinguishable proof-systems for NP.

� Four-round Resettable Zero-Knowledge arguments for NP in the public key model: where

veri�ers have �xed, public keys associated with them.

In addition to shedding new light on what makes zero knowledge possible (by constructing ZK

protocols that use randomness in a dramatically weaker way than before), rZK has great rele-

vance to applications. Firstly, rZK protocols are closed under parallel and concurrent execution

and thus are guaranteed to be secure when implemented in fully asynchronous networks, even

if an adversary schedules the arrival of every message sent so as to foil security. Secondly, rZK

protocols enlarge the range of physical ways in which provers of ZK protocols can be securely

implemented, including devices which cannot reliably toss coins on line, nor keep state between

invocations. (For instance, because ordinary smart cards with secure hardware are resettable,

they could not be used to implement securely the provers of classical ZK protocols, but can now

be used to implement securely the provers of rZK protocols.)
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1 Introduction

The notion of a zero-knowledge interactive proof was put forward and �rst exempli�ed by Gold-

wasser, Micali and Racko� [32]. The generality of this notion was demonstrated by Goldreich,

Micali and Wigderson [28], who showed that any NP-statement can be proven in zero-knowledge,

provided that commitment schemes exist.

1

Subsequently, related notions have been proposed;

in particular, zero-knowledge arguments [9], witness indistinguishability [19], and zero knowledge

proofs of knowledge [32, 43, 18, 1]. By now, zero-knowledge is the accepted way to de�ne and

prove security of various cryptographic tasks; in particular, as proposed by Fiat and Shamir [20],

it provides the basis for many proofs of identity.

A basic question about zero-knowledge. A zero-knowledge proof of a non-trivial language

is possible only if the Prover tosses coins.

2

But:

Is zero-knowledge possible when the prover uses the same coins in more than one execution?

For zero-knowledge proofs of knowledge (and thus for all proofs of identity �a la Fiat-Shamir [20]),

by de�nition, the answer is NO: if the veri�er can force the prover to use the same coins for a

polynomial number of executions, then even the honest veri�er can easily extract the very same

secret which the prover is claiming knowledge of.

3

For zero-knowledge proofs (of language membership), the answer also appeared to be negative:

all known examples of zero-knowledge proofs (including the 3-Coloring protocol of [28]) are trivially

breakable if the prover is \reset" (to his initial state) and forced to use the same coins in future

interactions, even if these interactions are with the honest veri�er.

Example. For instance, to prove that z = x

2

mod n is quadratic residue mod n, in [32] the

following basic protocol is repeated: the prover randomly chooses r 2 Z

�

n

and sends r

2

mod n to

the veri�er; the veri�er sends a random bit b to the prover; and the prover sends back r if b = 0,

and xr mod n if b = 1. Assume now that the prover is forced to execute twice with the same coins r

the basic protocol. Then, by sending b = 0 in the �rst execution and b = 1 in the second execution,

the veri�er learns both r and xr and thus trivially extract x, a square root of z mod n.

A New Notion. In this paper we extend the classical notion of zero-knowledge by introducing

the notion of Resettable Zero-Knowledge (rZK for short).

4

In essence, a rZK proof is a zero-

knowledge proof in which a veri�er learns nothing (except for the verity of a given statement) even

if he can interact with the prover polynomially many times (in an \interleaved manner"), each time

restarting the prover with the same con�guration and coin tosses.

In other words, a polynomial-time veri�er learns nothing extra even if it can \clone" the prover,

with the same initial con�guration and random tape, as many times as it pleases, and then interact

with these clones in any order and manner it wants. In particular, it can start a second interaction

in the middle of a �rst one, and thus choose to send a message in the second interaction as a

function of messages received in the �rst. We stress that, in each of these interleaved interactions,

the prover (i.e., each prover clone) is not aware of any other interaction, nor of having been cloned.

1

Or, equivalently [40, 35], that one-way functions exist.

2

Zero-knowledge proofs in which the prover is deterministic exist only for BPP languages (cf., [29]).

3

For instance, in [20] it su�ces to repeat the protocol twice with the same prover-coins to be able to extract the

prover's secret.

4

In a preliminary version of this work [24], the same notion was called rewind zero-knowledge and interleaved

zero-knowledge.

3



Resetability can be incorporated in the various variants of zero knowledge. In particular in this

work we will pay close attention to Resettable Zero-Knowledge proofs, Resettable Zero-Knowledge

arguments, and Resettable Witness-Indistinguishable Proofs (rWI for short).

Informally, in all of the above cases (i.e., ZK proofs, arguments, and WI proofs) the security

requirement is maintained even if the prover is forced to use the same coin tosses in repeated and

interleaved executions.

The Importance of the New Notion. Resettable zero knowledge sheds new light on what it

is that make secure protocol possible. In particular, such protocols make a much weaker use of

randomness than previously believed necessary. Moreover, resettable zero knowledge is a powerful

abstraction which yields both theoretical and practical results in a variety of settings: In particular,

� rZK increases the number of physical ways in which zero-knowledge proofs may be imple-

mented, while guaranteeing that security is preserved.

As we have said, previous notions of zero knowledge were insecure whenever an attacker could

reset the device implementing the prover to its initial conditions (which include his random

tape). For example, this class of implementations includes ordinary smart cards. In fact,

without a built-in power supply or without a re-writable memory that is not only tamper-

proof, but also non-volatile, these cards can be reset by disconnecting and reconnecting the

power supply.

� rZK proofs, rWI proofs and rZK arguments are guaranteed to preserve security when executed

concurrently in an asynchronous network like the Internet.

� rZK proofs, rWI proofs and rZK arguments provide much more secure identi�cation (ID)

schemes; that is, ID schemes that preserve security under circumstances as above.

NewResults. We show that, under standard complexity assumptions, Resettable Zero-Knowledge

exists. Let us quickly state our assumptions and main results.

Assumptions. All our protocols are based on the existence of certain types of commitment

schemes. Some of these schemes may be implemented under traditional complexity assumptions,

such as the hardness of the Discrete Log Problem (DLP), and for some we use stronger assumptions

such that the existence of strong trapdoor claw-free pairs of permutations.

5

For the purposes of

the current write-up, we renounce to some generality, and rely directly on two forms of the DLP

assumption: Informally, denoting by DLP (k) the task of solving DLP for instances of length k, we

have

Strong DLP Assumption: DLP (k) is not solvable in time 2

k

�

, for some � > 0.

Weak DLP Assumption: DLP is not solvable in polynomial time.

Main Results. We prove the following theorems:

Theorem 1: Under the weak DLP assumption, there is a (non-constant round) rZK proof for NP.

5

\Strong" refers to those in which the claw-free property should hold also with respect to sub-exponential-size

circuits (i.e., circuits of size 2

n

�

, where n is the input length and � > 0 is �xed), rather than only with respect to

polynomial-size circuits, and \trapdoor" refers to the fact that these pairs that can be generated along with auxiliary

information which allows to form (random) claws.
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Theorem 2: Under the weak DLP assumption, there is a constant-round rWI proof for NP.

Theorem 3: Under the strong DLP assumption, there is a constant-round rZK argument for NP

in the Public-Key Model.

By the public-key model, we mean that a veri�er has a public key that has been registered |i.e.,

�xed| prior to his interaction with the prover. We stress that we only assume that public-keys

can be registered in the sense that it has been posted. Registration does not have to include any

interaction with a trusted system manager that may verify properties of the registered public-key.

We also stress that the prover does not need a public key.

6

(As we shall point out later on, this

quite standard model of �xing a key before interaction starts can be further relaxed.) For a more

detailed discussion of this model see Section 6.1.

1.1 Resettable vs. Concurrent ZK

A weaker notion. In the past few years, considerable attention has been devoted to concurrent

zero-knowledge (cZK) protocols. In essence, these are ZK proofs that withstand malicious veri�ers

who can interact several times with the prover, in an \interleaved way," about the same theorem.

In each interaction, however, the prover will use a "fresh" random tape. (This model was �rst

considered in [17].)

Concurrent ZK is a weaker notion than resettable ZK, because in a rZK protocol, a malicious

veri�er may not only interact several times with the prover in an interleaved way, but also enforce

that, in each such interaction, the prover has the same initial con�guration (and thus uses the same

random tape).

Some prior cZK protocols. Concurrent ZK protocols have been suggested by Dwork, Naor

and Sahai [15], assuming that a certain level of synchronization is guaranteed: the so-called timing

assumption. Under this assumption, (1) there are a-priori known bounds on the delays of messages

with respect to some ideal global clock, and (2) each party uses a local clock whose rate is within

a constant factor of the rate of the ideal clock. Under the timing assumption (and some standard

intractability assumption), constant-round, ZK arguments for NP were presented in [15]. In a

later paper, Dwork and Sahai [14] show how the push up the use of the timing assumption to

a pre-processing protocol, to be executed before the concurrent executions of protocols. More

recent protocols by Richardson and Kilian [41] and Kilian and Petrank [38] do not use the timing

assumption, however their protocols are not constant-round. We stress that none of these concurrent

ZK protocols is rZK.

1.1.1 rZK vs. cZK in the standard model

In the standard (non public-key) model, we construct our resettable ZK protocols based on con-

current ZK ones, and in particular the cZK protocol of Richardson and Kilian [41]. (Therefore, in

this model, our constructions do not result in better cZK protocols.)

Constructions of rZK proof systems. We actually present two constructions of rZK protocols

for NP: one \by reduction" and a \direct" one. Our �rst construction consists of two steps. In

6

Note that the fact that only the veri�er requires a public key is especially suitable when extending rZK proofs

to rZK proofs of identity. In the latter case, in fact, the veri�er usually guards a resource and needs to identify the

identity of the user (the prover) attempting to use the resource. In this scenario, it is reasonable to expect (the few)

veri�ers to have public key accessible by all users, and it useful that the (many) provers may implemented by cheap,

resettable devices which do not have any registered public keys.
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a �rst step, we provide a transformation mapping any cZK protocol satisfying a special condition

(the admissible cZK protocols) into rZK protocols. In the second step, we show how to transform

the cZK protocol of [41] into an admissible one.

Our direct construction also consists of two steps. In the �rst step, we provide a constant-round

resettable witness-indistinguishable (rWI) protocol for NP (a step of independent interest). In the

second step, we properly combine our rWI protocol with the cZK protocol of [41] so as to obtain

an rZK protocol for NP. The combined protocol inherits the round complexity of the [41] protocol,

and thus is not constant-round.

Lower bounds for rZK proof systems. Demonstrating limitations on the ability to construct

cZK protocols, Kilian et.al. [39] show that four-round cZK protocols whose security is proved via

black-box simulation exist only for languages in BPP. Rosen [42] has recently extended this result

to seven-round protocols. Since any rZK protocol is also cZK, these lower bounds apply to rZK

protocols as well.

1.1.2 rZK vs. cZK in the public-key model

In the public-key model, our rZK protocols are built in totally novel ways (i.e., are not based

on prior cZK protocols), and indeed provide new implications for concurrent zero knowledge. In

particular, Theorem 3 yields the following corollary.

Corollary 4: Under the strong DLP assumption, there exists a constant-round, concurrent ZK

arguments for NP in the public-key model.

This result is important whenever ZK protocols are to be played over asynchronous networks

(like the Internet), because in such networks it is easy for a malicious veri�er to run many ZK

protocols at once in an interleaved way (thus making concurrent executions an eminent threat),

and because the number of rounds is an important resource for internet protocols.

Moreover, the above result is widely implementable, because the public-key model is ubiqui-

tous whenever cryptography is used (speci�cally, it underlies any public-key encryption or digital

signature scheme). As the public-key model is both simpler and more realistic than the timing as-

sumptions of [15, 14], we believe that the constant-round cZK protocol of Corollary 4 is preferable

to the constant-round one of [15, 14]. Indeed, even if one thinks of the public-key model as a form

of preprocessing, Corollary 4 provides an alternative to Dwork and Sahai's protocol which is based

on pre-processing with the timing assumption. For further comparison see Section 6.1.

Another constant-round cZK argument for NP (but not an rZK one!) has been independently

provided by Damg�ard[11, 12], but his protocol relies on a stronger public-key model: one in which a

trusted center generates the (secret key, public key) pairs (i.e the soundness of the protocols depends

on the trusted center keeping the secret key con�dential). Alternatively, this trusted center can be

replaced by a pre-processing interactive protocol between users (setting up their public-keys) and

certi�cation authorities.

1.2 Implications of rZK for Proofs of Identity

Fiat and Shamir in [20] introduced a paradigm for ID schemes based on the notion of Zero Knowl-

edge Proof of Knowledge. In essence, a prover identi�es himself by convincing the veri�er of knowing

a given secret (e.g., in [20], of knowing a square root of a given square mod n). All subsequent ID

schemes follow this paradigm, and are traditionally implemented by the prover being a smart card

(as suggested in [20]). However, Zero Knowledge Proof of Knowledge are impossible in a resettable

6



setting (i.e., they exist only in a trivial sense

7

), and thus all Fiat-Shamir like ID schemes fail to be

secure whenever the prover is resettable.

Instead, an alternative paradigm emerges for constructing ID schemes so that the resulting

schemes are secure when the identi�cation is done by a device which can be reset to its initial state

such as a smart card. The new paradigm consists of viewing the ability to convince the veri�er

that a �xed input is in a \hard" NP-language as a proof of identity, and employing an rZK proof

to do so. Further elaboration on the notion and the construction of Resettable Proofs of Identity

will appear in a separate paper.

Organization. Section 2 de�nes the notions of rZK and rWI. Section 3 provides a general method

for transforming a certain class of proof systems designed for the concurrent setting into resettable

ones. Sections 4 and 5 use the transformation of Section 3 to present rWI and rZK proof systems

for NP, respectively. Sections 2 through 5 concentrate on the standard model for interactive proofs.

Section 6 presents the public key model and describes our results in this model.

2 The Notions of rWI and rZK

2.1 Preliminaries

We shortly review some basic notions and point the reader to more comprehensive sources on these

notions.

Interactive proof systems. Throughout this paper we consider interactive proof systems [32]

in which the designated prover strategy can be implemented in probabilistic polynomial-time given

an adequate auxiliary input. Speci�cally, we consider interactive proofs for languages in NP and

thus the adequate auxiliary input is an NP-witness for the membership of the common input in the

language. Also, whenever we talk of an interactive proof system, we mean one in which the error

probability is a negligible function of the length of the common input (i.e., for every polynomial

p and all su�ciently long x's, the error probability on common input x is smaller than 1=p(jxj)).

Actually, we may further restrict the meaning of the term `interactive proof system' by requiring

that inputs in the language are accepted with probability 1 (i.e., so-called perfect completeness).

Argument systems. Likewise, when we talk of computationally-sound proof systems (a.k.a

arguments) [9] we mean ones with perfect completeness in which it is infeasible to cheat with non-

negligible probability. Speci�cally, for every polynomial p and all su�ciently large inputs x not in

the language, every circuit of size p(jxj) (representing a cheating prover strategy) may convince the

veri�er to accept only with probability less than 1=p(jxj).

Zero-knowledge. We adopt the basic paradigm of the de�nition of zero-knowledge [32]: The

output of every probabilistic polynomial-time adversary which interacts with the designated prover

on a common input in the language, ought to be simulatable by a probabilistic polynomial-time

machine (which interacts with nobody), called the simulator. We mention that the simulators in

Sections 3 and 5 run in strict polynomial-time, whereas those in Section 6.1 run in expected poly

7

It can be shown that if, on input x, one can provide an rZK proof of knowledge of y so that (x;y) is in some

polynomial-time recognizable relation, then it is possible given x to �nd such a y in probabilistic polynomial-time.

Thus, such a proof of knowledge is useless, since by de�nition (of knowledge) anybody who gets input x knows such

a y.
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nomial-time. (As Section 6 focuses on constant-round resettable zero-knowledge systems, expected

polynomial-time simulation seems unavoidable: recall that it is not known whether constant-round

zero-knowledge proofs forNP exists, when one insists on strictly polynomial-time simulators (rather

than expected polynomial-time ones); See [25, 22].)

Witness indistinguishable proof systems [19]. Loosely speaking, these are proof systems

in which the prover is a probabilistic polynomial-time machine with auxiliary input (typically,

an NP-witness), having the property that interactions in which the prover uses di�erent \legit-

imate" auxiliary-inputs are computationally indistinguishable from each other. Recall that any

zero-knowledge proof system is also witness indistinguishable, and there are witness indistinguish-

able proof systems that are not zero-knowledge.

2.2 De�nition of rWI and rZK

Given a speci�ed prover P , a common input x and an auxiliary input y to P (e.g., y may be an

NP-witness for x being in some NP-language), we consider polynomially-many interactions with

the deterministic prover strategy P

x;y;!

determined by uniformly selecting and �xing P 's coins,

denoted !. That is, ! is uniformly selected and �xed once and for all, and the adversary may

invoke and interact with many instances of P

x;y;!

. An interaction with an instance of P

x;y;!

is

called a session. It is stressed that P

x;y;!

's actions in each session are oblivious of other sessions

(since P

x;y;!

mimics the \single session strategy" P ); nonetheless, the actions of the adversary may

depend on other sessions.

We consider two variants of the model, and prove their equivalence. In the basic variant, a

session must be terminated (either completed or aborted) before a new session can be initiated

by the adversary. In the interleaving variant, this restriction is not made and so the adversary

may concurrently initiate and interact with P

x;y;!

in many sessions. A suitable formalism must be

introduce in order to support these concurrent executions. For simplicity, say that the adversary

prepend a session-ID to each message it sends, and a distinct copy of P

x;y;!

handles all messages

prepended by each �xed ID. Note that in both variants, the adversary may repeat in the current

session the same messages sent in a prior session, resulting in an identical pre�x of an interaction

(since the prover's randomness is �xed). Furthermore, by deviating in the next message, the

adversary may obtain two di�erent continuations of the same pre�x of an interaction. Viewed in

other terms, the adversary may \e�ectively rewind" the prover to any point in a prior interaction,

and carry-on a new continuation (of this interaction pre�x) from this point.

The interleaved variant of our model seems related to the model of concurrent zero-knowledge.

In both models an adversary conducts polynomially-many interleaved interactions with the prover.

In our case these interactions are all with respect to the same common input, and more importantly

with respect to the same prover's random coins (i.e., they are all with copies of the same P

x;y;!

,

where ! is random). In contrast, in the concurrent zero-knowledge model, each interaction is with

respect to an independent sequence of prover's coin tosses (while the common input may di�er and

may be the same). That is, in the concurrent zero-knowledge model, one may interact only once with

each P

x

j

;y

j

;!

j

, where the !

j

's are random and independent of one another. Intuitively, interacting

with copies of the prover that share the same coin sequence ! seem far more advantageous to the

adversary than interacting with copies which have each its independent coin tosses !

j

. However,

in order to show that resettable zero-knowledge implies concurrent zero-knowledge, we augment

the former model a little so to allow polynomially-many interaction with respect to each of a set of

polynomially-many independent choices of prover's coin sequence. That is, we allow the adversary

8



to interact polynomially-many times with each of polynomially-many P

x

i

;y

i

;!

j

's, where the !

j

's are

random and independent of one another.

2.2.1 The actual de�nition

In the actual de�nition we use a di�erent formalism than the one presented informally above. That

is, instead of prepending each message to P

x

i

;y

i

;!

j

with a session ID, we prepend each message by

the full transcript of all messages exchanged so far. That is, we adopt the following convention.

Convention: Given an interactive pair of (deterministic) machines, (A;B), we construct a mod-

i�ed pair, (A

0

; B

0

), so that for t = 1; 2; :::

A

0

(�

1

; �

1

; :::; �

t�1

; �

t�1

) = (�

1

; �

1

; :::; �

t�1

; �

t�1

; A(�

1

; :::; �

t�1

))

provided that �

i

= A(�

1

; :::; �

i�1

), for i = 1; :::; t� 1

B

0

(�

1

; �

1

; :::; �

t�1

; �

t�1

; �

t

) = (�

1

; �

1

; :::; �

t�1

; �

t�1

; �

t

; B(�

1

; :::; �

t�1

))

provided that �

i

= B(�

1

; :::; �

i�1

), for i = 1; :::; t� 1

In case the corresponding condition does not hold, the modi�ed machine outputs a special symbol

indicating detection of cheating. Probabilistic machine are handled similarly (just view the random-

tape of the machine as part of it). Same for initial (common and auxiliary) inputs. We stress that

the modi�ed machines are memoryless (they respond to each message based solely on the message

and their initial inputs), whereas the original machines respond to each message based on their

initial inputs and the sequence of all messages they have received so far.

In the traditional context of zero-knowledge, the above transformation adds power to the ad-

versary, since each machine just checks partial properness of the history presented to it { its own

previous messages. That is, A

0

checks that �

i

= A(�

1

; :::; �

i�1

), but it does not (and in general can-

not) check that �

i

= B(�

1

; :::; �

i�1

) since it does not know B (which by the convention regarding

probabilistic machines and inputs may depend also on \hidden variables" { the random-tape and/or

the auxiliary input to B). However, in the context of resettable zero-knowledge this transformation

does not add power: Indeed, the transformation allows an adversary to pick a di�erent (possible)

continuation to an interaction, but this is allowed anyhow in the resettable model. In the following

de�nition, we assume that P is a machine resulting from the modi�cation above. Also, without loss

of generality we use the standard convention where the \cheating veri�er", V

�

, is deterministic.

De�nition 1 (rZK and rWI - standard model): An interactive proof system (P; V ) for a language

L is said to be resettable zero-knowledge if for every probabilistic polynomial-time adversary V

�

there

exists a probabilistic polynomial-time simulator M

�

so that the following two distribution ensembles

are computational indistinguishable: Let each distribution be indexed by a sequence of common

inputs x = x

1

; :::; x

poly(n)

2 L \ f0; 1g

n

and a corresponding sequence of prover's auxiliary-inputs

y = y

1

; :::; y

poly(n)

,

Distribution 1 is de�ned by the following random process which depends on P and V

�

.

1. Randomly select and �x t = poly(n) random-tapes, !

1

; :::; !

t

, for P , resulting in de-

terministic strategies P

(i;j)

= P

x

i

;y

i

;!

j

de�ned by P

x

i

;y

i

;!

j

(�) = P (x

i

; y

i

; !

j

; � ), for

i; j 2 f1; :::; tg. Each P

(i;j)

is called an incarnation of P .

2. Machine V

�

is allowed to run polynomially-many sessions with the P

(i;j)

's.

� In the general model (i.e., the interleaving version) we allow V

�

to send arbitrary

messages to each of the P

(i;j)

, and obtain the responses of P

(i;j)

to such messages.

9



� In the sequential (or non-interleaving) version V

�

is required to complete its current

interaction with the current copy of P

(i;j)

before starting a new interaction with

any P

(i

0

;j

0

)

, regardless if (i; j) = (i

0

; j

0

) or not. Thus, the activity of V

�

proceeds

in rounds. In each round it selects one of the P

(i;j)

's and conducts a complete

interaction with it.

3. Once V

�

decides it is done interacting with the P

(i;j)

's, it (i.e., V

�

) produces an output

based on its view of these interactions. Let us denote this output by hP (y); V

�

i(x).

Distribution 2: The output of M

�

(x).

In case there exists a universal probabilistic polynomial-time machine, M , so that M

�

can be im-

plemented by letting M have oracle-access to V

�

, we say that P is resettable zero-knowledge via a

black-box simulation.

8

An interactive proof system (P; V ) for L is said to be resettable witness indistinguishable (rWI)

if every two distribution ensembles of Type 1 that are indexed by the same sequence of inputs

x = x

1

; :::; x

poly(n)

2 L \ f0; 1g

n

, (but possibly di�erent sequences of prover's auxiliary-inputs,

aux

(1)

(x) = y

(1)

1

; :::; y

(1)

poly(n)

and aux

(2)

(x) = y

(2)

1

; :::;y

(2)

poly(n)

), are computationally indistinguishable.

That is, we require that fhP (aux

(1)

(x)); V

�

i(x)g

x

and fhP (aux

(2)

(x)); V

�

i(x)g

x

are computationally

indistinguishable.

Comments on the De�nition:

Several previously investigated aspects of zero-knowledge can be cast as special cases of the

above general de�nition. For example, sequential composition of zero-knowledge protocols coincides

with the special case where V

�

must complete each session before starting another, and to run

against a di�erent incarnation of the prover in each session so that the prover uses di�erent coin

tosses in every session. More importantly, Concurrent zero-knowledge coincides exactly with rZK,

except that in each session V

�

runs against a di�erent incarnation of the prover, so that the

prover uses di�erent coin tosses in every session. Thus, every resettable zero-knowledge protocol is

concurrent zero-knowledge.

2.2.2 Relationship among the variants

Below we refer to four variants of the above de�nition, depending on two parameters:

1. Sequential versus interleaving: This aspect is explicitly considered in De�nition 1.

2. Single versus multiple incarnations: De�nition 1 refers to multiple incarnations, and the

single-incarnation variant is obtained by postulating above that t � 1 (or, equivalently, al-

lowing V

�

to interact only with P

(1;1)

).

Sequential versus interleaving. As stated above, the restricted non-interleaved model is actu-

ally as powerful as the general (interleaved) model. That is, any prover strategy that is resettable

zero-knowledge in the non-interleaved model is also resettable zero-knowledge in general (i.e., is rZK

in the interleaved model). This holds both when allowing a single incarnation or many incarnations.

In fact, a stronger result holds:

8

Recall that the existence of black-box simulators implies auxiliary-input zero-knowledge (cf. [29, 26]).
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Theorem 2 Let P be any prover strategy. Then for every probabilistic polynomial-time V

�

for

the interleaved model, there exists a probabilistic polynomial-time W

�

in the non-interleaved model

so that hP (y);W

�

i(x) is distributed identically to hP (y); V

�

i(x). Furthermore, W

�

uses V

�

as a

black-box, and if V

�

interacts with a single incarnation of P then so does W

�

.

So, in particular, a (zero-knowledge) simulator guaranteed forW

�

will do also for V

�

, and the black-

box feature will be preserved. Furthermore, resettable witness indistinguishable in the sequential

model imply rWI in the general (interleaved) model.

Proof Sketch: Using V

�

as a black-box and interacting with instances of P in a non-interleaved

manner, W

�

emulates interleaved interactions of V

�

with P . The emulation proceeds round by

round. In order to emulate the next communication round (i.e., a message sent by the interleaving

adversary followed by a respond by some copy of P

x;y;!

), the (non-interleaving) adversary W

�

initiates a new session of the protocol, and conducts the prior interaction relating to the session

that the interleaving adversary wishes to extend. Details follow.

Recall that by our conventions, each message sent in an interaction contains the full transcript

of prior messages exchanged during that session. Thus, given a veri�er-message, we can recover all

prior veri�er-messages sent in the corresponding session.

9

For simplicity, we �rst assume that V

�

interacts with a single incarnation of P (i.e., a single P

x;y;!

rather than polynomially-many such

P

x

i

;y

i

;!

j

's).

Suppose that the sequence of messages emulated so far is �

1

; :::; �

t

and the message to be

emulated is �

t+1

= (�

i

1

; �

i

1

; :::; �

i

j

; �

i

j

). That is, �

i

j+1

def

= �

t+1

is the j + 1

st

veri�er-message in

the current session that V

�

wishes to extend, and the previous veri�er-messages in that session

are �

i

1

; :::; �

i

j

. Then the non-interleaving adversary, W

�

, initiates a new session with P

x;y;!

, and

proceeds in j + 1 steps so that in the k

th

step it sends �

i

k

and obtains the response of P

x;y;!

. The

non-interleaving adversary W

�

forward to V

�

(only) the last response of P

x;y;!

(i.e., the response

of P

x;y;!

to �

i

j+1

). Finally, W

�

aborts the current session with P

x;y;!

(or, actually, to �t the exact

de�nition of the sequential model, it completes the interaction with this session arbitrarily).

10

Note that the emulation of each message-exchange between V

�

and P

x;y;!

(in the interleaved

model) is performed by W

�

by initiating and conducting a brand new session with P

x;y;!

(in

the sequential model). Thus, if V

�

(interleavingly) interacts with s sessions of P

x;y;!

then W

�

will (sequentially) interact with r � s sessions, where r is the number of message-exchanges in the

protocol (P; V ).

The argument extends easily to the general case in which V

�

(interleavingly) interacts with

polynomially-many P

x

i

;y

i

;!

j

's. All that is required is for W

�

to initiate a new session with the

corresponding P

x

i

;y

i

;!

j

(i.e., the one to which the current message of V

�

was directed).

Single versus multiple incarnations. As stated above, it is our intuition that interacting with

multiple incarnations of P is less advantageous to the adversary than interacting (many times) with

the same incarnation. This intuition holds for all natural results presented in this paper: as in the

proof of Theorem 2, the argument for the of security for the single-incarnation case extends easily

to the multiple-incarnation case. Unfortunately, a clean result analogous to Theorem 2 is false:

Proposition 3 There exists a protocol that is resettable zero-knowledge in the single-incarnation

model, but is not resettable zero-knowledge in the multiple-incarnation model.

9

Note that this holds also in case the alternative convention of specifying a session-ID is adopted. In such a case,

one recovers the prior messages corresponding to the current session from the sequence of all messages exchanged.

10

Indeed, the current session of P

x;y;!

may be \unhappy" with this completion, but (by de�nition) this information

cannot be passed to other sessions of P

x;y;!

.
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Proof Sketch: We adapt an argument of Goldreich and Krawczyk [26], introducing a prover P

that behaves as follows:

� In case the common input x is of even parity, the prover sends the jxj-bit long pre�x of its

random-tape (i.e., !), and halts.

� In case the common input x is of odd parity, the prover compares the message received from

the veri�er to the jxj-bit long pre�x of its random-tape (i.e., !). If equality holds then the

prover reveals to the veri�er some hard to compute function of x and/or its auxiliary input

(and halts). Otherwise, it halts without sending anything.

It can be easily veri�ed that P is resettable zero-knowledge in the single incarnation model: for x

of even parity, the simulator merely outputs a (sequence of repeats of a) uniformly chosen jxj-bit

long string; whereas for x of odd parity it outputs nothing. In contrast, P is not resettable zero-

knowledge in the multiple incarnation model: an adversary interacting with P

0x

0

;y;!

and P

1x

0

;y;!

,

where ! is uniformly selected and x

0

is of even parity, obtains \knowledge" (and/or y), by �rst

obtaining the j0x

0

j-bit long pre�x of ! from P

0x

0

;y;!

and then sending it to P

1x

0

;y;!

.

Summary and simpli�ed notation. In view of the results above, we analyze the protocols

presented in the rest of this paper only with respect to the sequential multiple-incarnation model.

In all cases, we �rst present the analysis of the single-incarnation (sequential) model, and then

(easily) extend it to the multiple-incarnation model. Since we shall be using the sequential variant,

we can drop the conventions of dealing with many sessions (which were introduced in Section 2.2.1).

These conventions were introduced only for the interleaving model, since there an indication must

be provided as to which session the current message belongs. Such an indication is unnecessary for

the sequential model.

3 Constructing rWI and rZK Protocols: A general paradigm

This section presents a general methodology for constructing rWI and rZK proof systems. This

is done as follows. First we present a transformation from a certain class of proof systems, called

admissible proof systems, into proof systems in the resettable model. Next, we de�ne a slight

strengthening of the concurrent model, called the hybrid model. We show that if the original proof

system is admissible and WI (respectively ZK) in the hybrid model then the transformed proof

system is rWI (respectively rZK).

It turns out that in the single-incarnation case the same transformation turns any admissible

proof-system that is WI (ZK) in the concurrent model (rather than in the hybrid model) into

an rWI (rZK) proof-system. The proof of this fact is somewhat simpler than the proof for the

multiple-incarnation case and can serve as a \warm-up" for that proof. This simpler proof appears

in Appendix A.

The next two sections demonstrate how to transform known constructions of concurrent WI

and ZK proof systems for NP (speci�cally, the constructions of Goldreich and Kahan [25] and

Richardson and Kilian [41]) into admissible ones that areWI and ZK in the hybrid model, obtaining:

Theorem 4 Suppose that there exists a two-round perfectly-hiding commitment scheme. Then the

following holds:

1. Every language in NP has a constant-round resettable witness indistinguishable interactive

proof system.
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2. Every language in NP has a resettable zero-knowledge interactive proof system. Furthermore,

rZK holds via black-box simulation.

The Class of Admissible Protocols Intuitively, we consider protocols (P; V ) in which the �rst

veri�er-message \essentially determines" all its subsequent messages. What we mean by \essentially

determine" is that the only freedom retained by the veri�er is either to abort (or act so that the

prover aborts) or to send a practically predetermined message. For clari�cation, consider the special

case (which actually su�ces for our applications), in which the �rst veri�er-message is a sequence

of commitments that are revealed (i.e., decommitted) in subsequent veri�er steps. In such a case,

the veri�er's freedom in subsequent steps is con�ned to either send an illegal decommitment (which

is viewed as aborting) or properly decommit to the predetermined value. (See Appendix B for a

more detail de�nition of commitment schemes.)

Although the above intuitive formulation su�ces for our main results (i.e., deriving the conclu-

sion of Theorem 4 under the standard DLP assumption), we wish to relax it for greater generality.

We syntactically partition each subsequent message of the veri�er into two parts: a main part and

an authenticator. In the special case considered above (of the �rst veri�er-message being a commit-

ment), the main part (of a subsequent veri�er-message) is the revealed value and the authenticator

is the extra decommitment information that establishes the validity of this value. The relaxation is

that the main part (in this case the revealed value) must be determined by the �rst veri�er message

(i.e., the commitment), but the authenticator (i.e., the decommitment information) may vary. Note

that this corresponds to the standard de�nition of commitment schemes that require that the com-

mitment binds the sender to a unique revealed value, but the decommitment information may vary.

(We comment that in some implementations, like the one based on DLP, the proper decommitment

information is unique too.) The above relaxed form su�ces, provided that the prover's subsequent

actions merely depend on whether the authenticator is valid (otherwise it aborts), and in case the

authenticator is valid the action depends only on the main part of the message. Note that this �ts

the usual use of commitment schemes within protocols.

Let us �rst set some useful convention regarding the presentation of protocols in the concurrent

and resettable settings. The �rst message in a session is always sent by the veri�er and speci�es an

incarnation of P . The second message is sent by the prover, and is called the prover initialization

message. The third message, sent by the veri�er, is called the determining message of the session.

(Recall that by our convention the determining message includes the previous two messages.) This

terminology will become self-explanatory below.

De�nition 5 (admissible proof-systems): A proof-system (P; V ) is called admissible if the following

requirements hold:

1. The prover P consists of two modules, P

1

; P

2

. Similarly, the random input w is partitioned

into two disjoint parts, w

(1)

; w

(2)

, where w

(i)

is given to P

i

. The prover initialization message

is sent by P

1

.

2. Each veri�er message (other than the �rst one) is �rst received by P

1

and is interpreted as

consisting of two parts, called main and authenticator. P

1

decides

11

whether to accept the

11

The above phrase postulates a deterministic decision, which su�ces for our applications. We may allow the

decision to be probabilistic; In such a case we require that the decision is via bounded-away probabilities (which,

without loss of generality, means that the prover either rejects or accepts with negligible probability). The analysis

of our transformation holds also in this case. A more relaxed (and natural) de�nition allows the prover's decision

to depend also on the �rst part of its random-tape. However, in this case the validity of veri�er's messages is not

universally veri�able (but rather veri�able only by the prover). We were not able to analyze our transformation for

the latter class.
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message or to abort.

12

If P

1

accepts, it forwards the main part of the message to P

2

, who

generates the next prover message.

3. Let V

�

be an arbitrary (deterministic) polynomial-size circuit representing a possible strategy

for the veri�er in the interactive proof (P; V ). Then, except with negligible probability, V

�

is unable to generate two di�erent messages for some round ` that specify the same session

determining message in their corresponding pre�xes, and such that P

1

accepts both.

The hybrid model. Recall that the di�erence between the concurrent model and the resettable

model is that in the resettable model the \cheating veri�er" V

�

can invoke many incarnations of

the prover with the same random input w, whereas in the concurrent model any two incarnations

of the prover have independently chosen random inputs. The hybrid model is de�ned for admissible

protocols (where the random input of the prover is of the form w = w

(1)

; w

(2)

) and provides the

following intermediate power to V

�

. Here V

�

can invoke many incarnations of the prover with the

same value of w

(1)

; but any two incarnations of the prover must have independently chosen values

for w

(2)

. The hybrid veri�er may be regarded as closer in spirit to the veri�er in the concurrent

setting (than to the veri�er in the resettable setting), since the �rst message usually only contains

initialization information for the session (and in particular is independent of the input). Speci�cally,

in the proof systems considered in this work the �rst prover message consists only on initialization

parameters for a (perfectly secret) commitment scheme.

More formally, In admissible proof systems an incarnation of the prover is identi�ed via three

indices: P

(i;j;k)

= P

x

i

;y

i

;w

j;k

, where w

j;k

= w

(1)

j

; w

(2)

k

. That is, i speci�es the input, j speci�es the

random input to P

1

and k speci�es the random input to P

2

.

De�nition 6 (hZK and hWI): A hybrid cheating veri�er V

�

works against admissible proof systems

as described above. That is, V

�

proceeds as in Distribution 1 of De�nition 1 with the exception that

no two sessions started by V

�

may interact with incarnations P

(i;j;k)

and P

(i

0

;j

0

;k

0

)

such that k = k

0

.

An admissible proof system is hZK (resp., hWI) if it satis�es De�nition 1 with respect to hybrid

cheating veri�ers.

3.1 The transformation

We are now ready to present our transformation from admissible proof systems to resettable ones:

Construction 7 Given an admissible proof system (P; V ), where P = (P

1

; P

2

), and a collection

ffg of pseudorandom functions (see [23]), we de�ne a new proof system (P;V) as follows.

The new veri�er is identical to V .

The new prover: The new prover's randomness is viewed as a pair (w

(1)

; f), where w

(1)

2

f0; 1g

poly(n)

is of length adequate for the random-tape of P

1

, and f : f0; 1g

�poly(n)

! f0; 1g

poly(n)

is a description of a function taken from an ensemble of pseudorandom functions. For con-

venience we describe the new prover, P, as a pair P = P

1

;P

2

. P

1

is identical to P

1

with

random-tape w

(1)

; P

2

emulates the actions of P

2

with random tape that is determined by

applying f to the determining message and the input. That is, upon receiving the determining

message, denoted msg, P

2

sets w

(2)

= f(x; msg) and runs P

2

with random input w

(2)

. From

this step on, P

2

emulates the actions of P using (w

(1)

; w

(2)

) as P 's random-tape.

12

The de�nition can be further extended by allowing P

1

to consider the main part of all prior veri�er-messages.

This requires to further specify in the next item what is meant by a properly authenticated generated by the oracle

machine (rather than in an interaction). However, the current de�nition su�ces for our purposes.
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Intuitively, Construction 7 \takes care" of the fact that in the resettable model the random-tape

of P

2

is �xed in all the sessions of an incarnation of P. The construction does not modify P

1

, and

in particular does not solve potential problems that may occur when P

1

uses the same w

(1)

in

di�erent incarnations of the prover. However, this is where the hybrid model becomes useful, since

in this model the cheating veri�er is prohibited from using the same w

(1)

in di�erent incarnations.

In other words, in the single-incarnation case Construction 7 is su�cient for turning any ad-

missible proof-system that is WI (ZK) in the concurrent model into an rWI (rZK) proof-system.

The hybrid model is not necessary in this case. The proof of this fact is somewhat simpler than

the proof for the multiple-incarnation case (presented below) and can serve as a \warm-up" for

that proof. This simpler proof appears in Appendix A. We now turn to stating and proving the

adequacy of Construction 7 for the general (i.e., multiple-incarnation) case.

Theorem 8 Suppose that (P; V ) is admissible, and let P be the prover strategy obtained from P by

applying Construction 7, assuming that pseudorandom functions exist. Then for every probabilistic

polynomial-time cheating veri�er V

�

(as in De�nition 1 there exists a probabilistic polynomial-

time hybrid cheating veri�er W

�

so that hP (y);W

�

i(x) is computationally indistinguishable from

hP(y); V

�

i(x).

Corollary 9 If a proof system (P; V ) is hWI then (P;V) is rWI. Similarly, if (P; V ) is hZK then

(P;V) is rZK.

Proof of Theorem 8 (sketch): Our analysis refers to a mental experiment in which P utilizes

a truly random function rather than a pseudorandom one. As usual, the corresponding views of

the veri�er V

�

in the two cases (i.e., random versus pseudorandom function) are computationally

indistinguishable. From this point on, we identify the random-tape of P with a truly random

function.

A �rst consequence of the above is that in the hybrid model there is essentially no di�erence

between the actions of P and of P.

13

For clarity, we state and prove Theorem 8 with respect toW

�

interacting with P rather than with P. Recall that hP(y); V

�

i(x) denotes the view (or output) of

V

�

after interacting with P on various inputs under the resettable model. Similarly, hP (y);W

�

i(x)

denotes the view (or output) of W

�

after interacting with P on various inputs under the hybrid

model.

We construct a hybrid-model adversary, W

�

, that interacts with incarnations of P , denoted

P

(i;j;k)

's (as in Def. 6). To satisfy De�nition 6, this W

�

will invoke each P

(i;j;k)

at most once,

and furthermore if it invokes P

(i;j;k)

then it will not invoke any other P

(i

0

;j

0

;k)

. Essentially, W

�

serves as a \mediator" between adversary V

�

and the prover P . That is, W

�

runs V

�

; whenever

V

�

starts a new session whose determining message is di�erent from all previous ones, W

�

merely

relays the messages of this session between V

�

and P . When V

�

\replays" an existing session s

(i.e., V

�

starts a new session whose determining message is identical to that of an existing session

s) W

�

responds to V

�

using the answers of P in session s, without interacting with P . Finally W

�

outputs whatever V

�

outputs.

The construction of W

�

. Working in the hybrid model, W

�

handles the messages of V

�

as

follows:

13

More precisely, a veri�er that can distinguish between P and P with non-negligible probability breaks the

\admissibility" of (P;V ).

15



1. V

�

initiates a new session with some P

(i;j)

: In this case W

�

initiates a new session with

P

(i;j;k)

, where k is a new index not used so far. Next it obtains the prover initialization

message, and forwards msg to V

�

.

We stress that a session with P

(i;j;k)

may be invoked even if a session with some P

(i;j;k

0

)

, with

k

0

< k, was invoked before. In the latter case, since r

1

= r

(j)

1

is identical in both sessions,

the prover initialization message obtained from P

(i;j;k)

is identical to the prover initialization

message obtained previously from P

(i;j;k

0

)

.

2. V

�

sends a new determining message to P

(i;j)

: That is, we refer to the case where V

�

sends

a determining message in the current session, and assume that this message is di�erent from

all determining messages sent in prior sessions with P

(i;j)

. Let msg

0

denote the message sent

by V

�

. Then W

�

sends msg

0

to one of the sessions of the form P

(i;j;�)

that still awaits a

determining message, obtains the response, and forwards it to V

�

. It designates this session

(with P

(i;j)

) as the active session of (i; j; msg

0

), and stores the prover's response.

(All subsequent sessions of V

�

with P

(i;j)

in which the determining message equals msg

0

will

be \served" by the single session of W

�

designated as the active session of (i; j; msg

0

).)

3. V

�

repeats a �rst-message to P

(i;j)

: That is, we refer to the case where the current message

sent by V

�

is the determining message in the current session, and assume that this message

equals a determining message, msg

0

, sent in a prior session of V

�

with P

(i;j)

. In this case, W

�

retrieves from its storage P 's answer in the active session of (i; j; msg

0

), and forwards it to V

�

.

We stress that W

�

does not communicate with any session of P in this case. (Note that if

W

�

were to send the same message msg

0

to two sessions of the form P

(i;j;�)

then the responses

could have di�ered, whereas V

�

expects to see exactly the same answer in sessions in which

it sends the same msg

0

.)

4. V

�

sends a valid message to P

(i;j)

: That is, we refer to the case where V

�

sends a message in

the current session with P

(i;j)

, and assume that this message is accepted; that is, P

1

accepts

it as valid as per De�nition 5. (In this case, the message is essentially determined by the

determining message in that session.)

14

We distinguish two cases, depending on whether this is the �rst time that a valid veri�er-

message of the current round was sent in a session of V

�

with P

(i;j)

in which the determining

message equals msg

0

, where msg

0

is the determining message sent by V

�

in the current session.

Let � > 1 denote the index of the current message sent by V

�

.

(a) The current session is the �rst session of V

�

with P

(i;j)

in which the determining message

equals msg

0

and the �

th

veri�er-message is valid: In this case W

�

forwards the current

message to the active session of (i; j; msg

0

), obtains P 's response, stores it, and forwards

it to V

�

.

(b) The current session is not the �rst session of V

�

with P

(i;j)

in which the determining

message equals msg

0

and the �

th

veri�er-message is valid: In this case W

�

does not

communicate with any session of P . Instead, it merely retrieve the corresponding prover

response from its storage, and forwards it to V

�

. Note that the corresponding answer is

stored in the history of the active session of (i; j; msg

0

).

14

We stress that by the standard de�nition of commitment schemes it is universally veri�able whether the current

message of V

�

is valid or not (i.e., this depends only on the current and the determining messages, and on all

prover-messages in the current session).

16



(Note that by De�nition 5, it is infeasible for V

�

to send, in two sessions starting with

any �xed veri�er-message, valid messages for the same round that di�er in their main

part. Thus, the responses of P

(i;j)

to valid �

th

messages, in sessions starting with any

determining message, are identical. It follows that V

�

will be content with the identical

responses supplied to it by W

�

.)

5. V

�

sends an invalid message to P

(i;j)

: That is, we refer to the case where V

�

sends a message

in the current session with P

(i;j)

, and assume that this message is invalid. In this case, W

�

just forwards P 's standard abort message to V

�

.

We stress that W

�

does not forward the invalid message of V

�

to any session of P , most

importantly not to an active session. This allowsW

�

to handle a corresponding valid message

that may be sent by V

�

in a future session.

6. V

�

terminates: When V

�

sends a termination message, which includes its output, W

�

just

outputs this message and halts.

We stress that W

�

is de�ned to operate in the hybrid model. That is, in every session it invokes

with P , a di�erent incarnation is used, and furthermore for every k the adversaryW

�

holds at most

one session with an incarnation of the form P

(�;�;k)

. So the second part of P 's random-tape in this

session is independent from the random-tape in all other sessions. In contrast, V

�

that operates

in the (stronger) resettable model may invoke each incarnation of P many times, and so the tape

r

2

as determined (by the same incarnation of P) in these sessions is identical. Nevertheless, we

claim that the output of W

�

is computationally indistinguishable from the output of V

�

. The key

observations justifying this claim refer to the actions of P in the various sessions invoked by V

�

:

� In sessions having di�erent determining messages, the second parts of the random-tape (i.e.,

the r

2

part) are independent. Same for sessions in which a di�erent incarnation P

(i;j)

is

used. This is because P determines r

2

by applying a random function on the the triplet

(x

i

; r

(j)

1

; msg

0

), where msg

0

is the determining message.

(Indeed, if i 6= i

0

(resp., j 6= j

0

) then x

i

6= x

i

0

(resp., r

(j)

1

6= r

(j

0

)

1

, with overwhelmingly high

probability).)

� In sessions having the same common-input, the same r

1

, and the same determining message,

the actions of P are essentially determined by the determining message. This is because in

this case P determines the same r

2

, and the only freedom of V

�

is practically to choose at

each message whether to send a predetermined (by the determining message) value or to

abort. Thus, the transcripts of all these sessions correspond to various augmented pre�xes of

one predetermined transcript, where each pre�x is either the complete transcript or a strict

pre�x of it augmented by an abort message.

The corresponding transcripts (of imaginary sessions with P) are generated by W

�

by merely copy-

ing from real sessions it conducts with P . Each set of P

(i;j)

-sessions sharing the same determining

message, is generated from a single (distinct) session with P (called the active session of that

message). The way in which W

�

handles invalid messages of V

�

guarantees that it never aborts

an active session, and so such a session can always be extended (up-to completion) to allow the

generation of all P

(i;j)

-sessions sharing that determining message. We stress again that W

�

does

not need to (and in fact does not) abort a session in order to produce P's abort message; it merely

determines whether P aborts (and, if so, generates the standard abort message by itself).

17



4 rWI proof systems for NP

Part 1 of Theorem 4 is proved by applying Construction 7 to an admissible (as per De�nition 5)

proof system for NP that is constant-round and witness-indistinguishable in the hybrid model (of

De�nition 6). Thus, we need to assert the existence of such a proof system.

Proposition 10 Suppose that there exists a two-round perfectly-hiding commitment scheme. Then

every language in NP has a 5-round admissible proof system that is hWI.

Proof Sketch: It su�ces to present a proof system for some NP-complete problem (we use Graph

3-Colorability). We comment that most of the known zero-knowledge proofs systems are either

not admissible (e.g., typically, they do not satisfy the third requirement in De�nition 5) or are

not witness-indistinguishable in the hybrid model.

15

Fortunately, as we show below, the (5-round)

zero-knowledge proof system of [25] is both admissible and witness-indistinguishable in the hybrid

model. On an abstract level, the proof system of [25] is as follows.

Common input: A graph G = (V;E), where V = [n]

def

= f1; :::; ng, claimed to be 3-colorable.

Prover's auxiliary input: A 3-coloring � : [n]! f1; 2; 3g of G.

(V1) The veri�er commits to a sequence of t

def

= n � jEj uniformly and independently chosen edges.

The commitment is done using a perfectly-hiding commitment scheme,

16

so that the prover

gets no information on the committed values, while it is infeasible for the veri�er to \de-

commit" in two di�erent ways (i.e., the scheme is computationally-binding).

(P1) The prover commits to t �n values corresponding to the colors of all vertices under t random

relabeling of the coloring �. The commitments are done using an ordinary commitment

scheme, providing computational-secrecy and perfect-binding.

(V2) The veri�er reveals the sequence of t edges to which it has committed to in Step (V1). It

also provides the necessary information required to determine the correctness of the revealed

values (i.e., \de-commit").

(P2) In case the values revealed (plus the \de-commitment") in Step (V2) match the commitments

sent in Step (V1), and in case all queries are edges, the prover reveals the corresponding colors

and provides the corresponding \de-commitment".

(V3) In case the values revealed (plus the \de-commitment") in Step (P2) match the commitments

sent in Step (P1), and in case they look as part of legal 3-colorings (i.e., each corresponding

pair is a pair of di�erent elements from the set f1; 2; 3g), the veri�er accepts. Otherwise it

rejects.

15

For example, in the zero-knowledge proof system of Goldreich, Micali and Wigderson [28], the prover starts

by committing itself to a (random) coloring of the graph, and the veri�er asks it to reveal the colors of a pair of

adjacent vertices. In case the prover's commitment is via unidirectional communication, the proof system is trivially

admissible (since the prover uses randomness only in its �rst message, and the veri�er sends a single message), but

is not witness-indistinguishable in the hybrid model (since the veri�er can obtain a full coloring of the graph by

invoking the prover many times on the same r

1

. In case the prover's commitment is via a two-round commitment

scheme (cf. [40], the proof system is not admissible (since the veri�er has total freedom in selecting the edges).

16

See discussion following this abstract presentation.
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There is one problem, however, with the above presentation. In Step (V1) we have assumed the

existence of a 1-round (i.e., uni-directional communication) perfectly-hiding commitment scheme.

However, any perfectly-hiding commitment scheme requires at least two rounds of communica-

tion (i.e., a message sent from the commitment-receiver to the commitment-sender followed by a

message from the sender to the receiver).

17

Thus, we need to integrate such (two-round) commit-

ment schemes in the above proof system. We stress that doing so means that the prover's initial

randomization is interpreted as a pair (r

1

; r

2

), where r

1

is randomness required by the receiver's

strategy in the two-round (perfectly-hiding) commitment scheme, and r

2

is the randomization used

for implementing Step (P1).

The reader may easily verify that the resulting proof system is indeed admissible. Furthermore,

as shown in [25], the proof system is indeed a 5-round zero-knowledge proof system for Graph

3-Colorability. Thus, it follows that the proof system is witness-indistinguishable in the concurrent

model (cf. [17]). However, we need to show that it is witness-indistinguishable also in the hybrid

model. The extra power of the adversary in the latter model is to invoke sessions with the same

(random) value of r

1

. However, the randomness of r

1

is only used to establish the (computational)

binding property of the veri�er's commitment, and this property continues to hold also when the

sender commits to several values using the same receiver message.

18

Thus, the above proof system

is witness-indistinguishable in the hybrid model, and the proposition follows.

Remarks:

1. In fact, the \modi�cation" to the proof system of [25] does not modify any protocol messages;

it only speci�es the separation of the prover P into P

1

and P

2

as in De�nition 5. Essentially, P

1

will play the role of the receiver in the (unconditionally binding) commitment scheme in the [25]

protocol; the other functions of P are played by P

2

.

2. The resulting proof system is probably not rZK; in fact, it is probably not even cZK. This

follows from recent work of A. Rosen (priv. comm.). Speci�cally, extending [26, 39], Rosen shows

that no language outside BPP can have a 7-round proof system that is concurrent zero-knowledge

via black-box simulation.

An alternative proof of Proposition 10. An alternative approach for constructing proof

systems as required by Proposition 10 is to start with a non-interactive zero-knowledge proof

system (cf., [6, 16]). The idea is to employ \coin tossing into the well" (cf., [4]). First, the veri�er

commits to a sequence of random bits using a perfectly-hiding (two-round) commitment scheme.

Next, the prover sends a corresponding sequence of bits that it selects uniformly. Then, the veri�er

de-commits and a reference-string for the non-interactive zero-knowledge proof is de�ned (as usual

in \coin tossing into the well"), and �nally the prover sends such a (non-interactive) proof (relative

to that reference-string). Recall that the latter may require the prover to toss additional coins.

The reader may easily verify that the resulting proof system constitutes a 5-round admissible proof

17

The lower bound refers to commitment schemes in which the computationally-hiding requirement should hold

w.r.t (non-uniform) polynomial-size circuits. (Such circuits may just incorporate two valid decommitments for the

same 1-message commitment.) Note that the standard zero-knowledge condition is itself somewhat non-uniform (as

it refers to any veri�er's input), and so the commitment scheme used by the veri�er must be computationally-binding

w.r.t. non-uniform polynomial-size circuits. (Such non-uniform complexity assumptions are employed in all work on

zero-knowledge, with the exception of a fully-uniform treatment (cf. [21]).)

18

See an analogous discussion in the proof of Proposition 11.
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system. Again, witness-indistinguishability in the hybrid model is established by analyzing the role

of the randomization in the prover's very �rst message.

5 rZK proof systems for NP

Part 2 of Theorem 4 is proved by applying Construction 7 to an admissible (as per De�nition 5)

proof system for NP that is zero-knowledge in the hybrid model (of De�nition 6). Thus, we need

to assert the existence of such a proof system.

Proposition 11 Suppose that there exists a two-round perfectly-hiding commitment scheme. Then

every language in NP has an admissible proof system that is zero-knowledge in the hybrid model.

The rest of this section is dedicated to proving Proposition 11. The desired proof-system is

obtained by properly modifying the cZK proof system of [41]. While the modi�cation is simple,

proving that it su�ces is non-trivial. We start by sketching their proof system (a more detailed

description of the modi�ed scheme is to follow.)

The Richardson-Kilian Protocol. In essence, given a common input x (allegedly a member

of an NP-complete language L), their proof system consists of two stages.

The �rst stage is independent of x. At its start, the veri�er commits to k random bit sequences,

r

1

; :::; r

k

2 f0; 1g

n

, where n is the security parameter and k is a parameter of the proof. We �x k to

be polynomial in the security parameter.

19

This initial commitment is then followed by k iterations.

In iteration i, the prover commits to a random bit sequence, s

i

, and the veri�er decommits to the

corresponding r

i

, thereby pinning down the i

th

coin-toss r

i

� s

i

, the bit-by-bit exclusive or of s

i

and r

i

. Note that r

i

� s

i

string is known only to the prover.

In the second stage, the prover provides a witness indistinguishable (WI) proof of the following

statement: either x 2 L or one of the k coin-tosses is the all-zero string (i.e., r

i

= s

i

for some i).

Intuitively, since the latter case is unlikely to happen, the protocol constitutes a proof system

for the language. However, the latter case is the key to the simulatability of the protocol: whenever

the simulator may force r

i

= s

i

for some i, it can simulate the rest of the protocol (and speci�cally

Stage 2) by merely running the WI proof system with r

i

(and thus s

i

) as a witness. By the WI

property, such a run will be indistinguishable from a run in which an NP-witness for the common

input being in the language is used.

Our Modi�cation. The above proof system is cZK, but it is not admissible. To obtain a proof

system (P ;V), that is admissible and secure in the hybrid model, we require the veri�er to send its

�rst message in the rWI proof system of Stage 2 together with his initial commitment message of

phase 1. more precisely, the statement S to be proven in Stage 2 is \x 2 L _ 9i s.t.r

i

= s

i

. This

\NP statement" is transformed in a standard fashion in an instance of 3 colorability, that is, in a

graph G, and this G will be the common input of our rWI proof system. Therefore, because (the

structure and) the size of S is known in advance (i.e., it is independent of the particular execution

of Stage 1 and thus of the particular values of the strings s

i

and r

i

), so is the number of nodes in

G. Consequently, because the veri�er of our rWI proof system should commit to choosing random

edges in G, such commitment can be made right away (i.e., together with the veri�er's commitment

19

Recall that, by our convention, the veri�er commitment message is in fact the third message in the proof system.

In the �rst message the veri�er initiates the session; next the prover chooses and sends, in the second message,

parameters for the (perfectly secret) commitment scheme used by the veri�er in the third message. Indeed, the

veri�er commitment message corresponds to the determining message de�ned in the previous section.

20



at the start of Stage 1), based solely of the number of nodes of G. The veri�er simply commits to

a random pair of nodes, and when such a pair (u; v) will not correspond to an actual edge of G, it

will simply be ignored.

Because the veri�er of our rWI proof system proceeds deterministically after sending its �rst

message, our modi�cation guarantees that, barring negligible probability events (e.g. the probabil-

ity that one could de-commit in two di�erent ways), the veri�er's �rst message (in Stage 1) of an

execution of the modi�ed protocol uniquely determines the rest of its messages (both in Stage 1

and Stage 2), unless the veri�er decides to abort the execution in the middle.

The next sub-section provides a more complete description of this proof-system.

5.1 The Proof-System (P;V)

The implementation of the protocol uses two complementary types of commitment schemes: The

prover's commitments are via a perfectly-binding commitment scheme (which is only computationally-

hiding), whereas the veri�er's commitments are via a perfectly-hiding commitment scheme (which

is only computationally-binding). For simplicity of presentation, we will use a one-round scheme

based on any one-way permutations

20

for the �rst type, and a two-round scheme based on claw-free

pairs

21

for the second type. The protocol is visually summarized in Figure 1.

Common Input: x supposedly in the language L 2 NP , and a security parameter n.

22

Prover's Auxiliary Input: an NP-witness w for x 2 L.

Prover's Randomness consists of two parts w = w

(1)

; w

(2)

. (Recall that w

(2)

is later used in

Construction 7 to de�ne a pseudorandom function f : f0; 1g

�poly(n)

! f0; 1g

poly(n)

.)

Stage 1: This stage has little e�ect on the actual interaction between the prover and the veri�er,

yet it provides a \trapdoor" for the simulation.

1. The veri�er sends a new-session(x) message to the prover. This message indicates that

the veri�er wishes to start a session for proving that x 2 L.

2. The prover uses w

(1)

to determine its �rst message in the two-round perfectly-hiding

commitment scheme.

23

3. The veri�er commits to k uniformly selected n-bit strings r

1

; :::; r

k

2 f0; 1g

n

, using the

perfectly-hiding commitment scheme whose �rst message was just sent by the prover.

Denote by � = �

1

; :::; �

k

the sequence of k commitments sent by the veri�er. Note that

� reveals no information about r

1

; :::; r

k

.

In addition, the veri�er executes the �rst round of the rZK WI proof from Section 4,

using the same commitment scheme whose parameters were just sent by the prover.

20

Speci�cally, given a one-way permutation f with a hard-core b (e.g., see [27]), one commits to bit � by selecting

uniformly a string x, and sending the value f(x); b(x)� �. Decommitment is done by providing (� and) x.

21

Speci�cally, given a family of claw-free pairs, f(f

0

a

; f

1

a

) : a 2 I � f0; 1g

�

g (e.g., see [22]), the sender commits

to bit � as follows. The receiver �rst selects at random an index a 2 I and sends it to the sender, which uniformly

selects x in the domain of f

�

a

, and sends the value f

�

a

(x). Decommitment is done by providing (� and) x.

22

For simplicity we equate the \security governing" parameters such as the the length of strings committed to in

Stage 1, the security parameters used in the pseudorandom function and in the commitment schemes, etc.

23

Here and in the sequel, whenever a party fails to provide a message as instructed the other party halts (detecting

an obvious cheating attempt).
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P (x; y; !) V (x)

new-session(x;prover-ID)

�

initialize veri�er-commitment

-

[r

1

]; :::; [r

k

]

�

[s

1

]

-

]r

1

[

�

:::

[s

k

]

-

]r

k

[

�

RWI proof of \x 2 L _ 9i; r

i

= s

i

"

� -

Figure 1: A sketch of the hZK protocol for language L. Here \[a]" and \]a[" denote commitment

and decommitment to a, respectively. The prover sets sets ! = !

1

; !

2

, and uses !

1

for the �rst

message and !

2

for the rest. Recall that, when transformed to the resettable setting, the value

� = f

!

2

(x; [r

1

]; :::; [r

k

]) is used instead of using !

2

directly.

4. For i = 1; :::; k, the following two-round interaction goes on. First the prover commits

(in a perfectly-hiding way) to a random k-bit string, denoted s

i

, and next the veri�er

decommits to �

i

by providing r

i

along with the randomness used in forming �

i

from

r

i

. The prover's choice (i.e., s

i

) as well as the randomization used in its commitment

are determined by w

(2)

. (Recall that, when transforming this protocol to the resettable

model, the randomness for this step, as well as for the prover's actions in Step 2, is

determined by applying f to (x;

�

�; i).) We stress that s

i

is uniquely determined by the

string, denoted �

i

, sent by the prover.

Stage 2: The prover provides a resettable witness indistinguishable proof that either x 2 L or

r

i

= s

i

, for some i. The NP-witness used by the prover is w, and the witness indistinguishable

proof is the one presented in Section 4. Speci�cally, we reduce the NP-statement either x 2 L

or there exists an i and an s so that �

i

is a valid commitment to s and r

i

= s to Graph 3-

Colorability. (Letting G be the graph resulting from this reduction, then G does not directly

depend on w, but w is e�ciently transformed into a 3-coloring of G.)

Completeness and soundness of (P ;V) are straightforward. The rest of this section is dedicated

to proving that (P ;V) is zero-knowledge in the hybrid model. To simplify that proof, we make the

following assumptions on the model, but stress that none of them restricts the generality of the

result.

5.2 Without Loss of Generality

Recall that the veri�er V

�

is taken to be deterministic. We also assume that V

�

does not generate

invalid messages (e.g., invalid decommitments). In addition, we make the following simplifying

assumptions. (Yet other simplifying assumptions are made when presenting the actual proof below.)
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A �xed bound on the number of sessions. Our simulator works assuming that a malicious

(resetting) veri�er V

�

opens at most K sessions in any of its runs, where K depends on the

security parameter n via some �xed polynomial known in advance. The simulator built here can

be extended in standard ways to handle situations where the value of K is no a-priori known or

the number of sessions depends on the execution itself. (For instance, keep running the simulator

with exponentially increasing values of K, until a successful simulation is generated.) Actually,

without loss of generality, but with greater resulting simplicity, we shall assume that V

�

always

opens exactly K sessions in each run.

Ignoring Stage 2. To prove that (P ;V) is hZK, we must exhibit a simulator S that generates,

with the right distribution, the view of a malicious veri�er interacting with an honest prover. Such a

veri�er will reset the proverK times, and thus execute K di�erent sessions of the protocol. Because

the protocol consists of two stages, in a session the veri�er may obtain a sub-view of Stage 2. Thus,

it may choose its messages in some session (better said, its initial-commitment message of Stage 1 in

some session) in a way that also depends on its sub-views of Stage 2 of other sessions. Nonetheless,

we shall construct our simulator S assuming that Stage 2 does not exist. The reason this can be

done without loss of generality is that, even though operating in the more di�cult resetting model,

our simulator S satis�es the following \forcing" property: whenever S completes a Stage 1 view

of some session in which the malicious veri�er has properly decommitted in all k iterations, then,

with overwhelming probability, S has already forced \s

i

= r

i

for some i" in that session. Therefore,

simulating the subsequent Stage 2 of that session against the malicious veri�er is so trivial that it

does not even need any \rewinding" of the veri�er: S just executes with the malicious veri�er the

honest prover program of our hWI protocol on common input \x 2 L_9i; r

i

= s

i

" and private input

\9i; r

i

= s

i

". Witness indistinguishability in the hybrid model guarantees that the so generated

view of the malicious resetting veri�er is computationally indistinguishable from that the same

veri�er may have with the real prover (who would instead use his witness of x 2 L as private

input).

Therefore, it su�ces and it is simpler to construct S, with the above \forcing" property, by

imagining that the protocol actually \consists of Stage 1 alone." Figuratively, we imagine that at

the end of Stage 1 (i.e., if the veri�er has properly decommitted in all k iterations of Stage 1), we

replace Stage 2 by the veri�er asking the prover if it has an NP-witness for \x 2 L or s

i

= r

i

for

some i" and by the prover providing a truthful answer (which will always be YES whenever he has

a witness for x 2 L). Accordingly, the simulator is required to answer truthfully too.

5.3 The High-Level Strategy of the Simulator

At a high level, this strategy is similar to that of the simulator of the cZK protocol of [41]; but

signi�cant di�erences exist in the actual simulation. (In fact, our proof also provides a detailed

alternative to the proof of the underlying cZK protocol.)

Call a session solved if, in it, s

i

= r

i

for some i, unsolved otherwise; and say that the simulator

solves a session in iteration i if it forces s

i

= r

i

. As we said, our simulator S should, with high

probability, solve every session s (in some iteration i

s

). But: how can it do this?

Recall that a malicious veri�er V

�

starts the �rst (ofK) session by committing to all its iteration

values, r

1

; : : : ; r

k

. Upon receiving this commitment message, the simulator (like the prover) does

not know r

1

, nor the other r

i

's. Thus it tries, by means of a \look ahead," to �gure out what r

1

might be. To this end, it sends V

�

a commitment, �, to a random value s

1

(most probably, di�erent

from r

1

). Assume V

�

responds to � with its next message of session 1, that is, by decommitting to

r

1

, then S has succeeded in discovering r

1

. In this case it \rewinds" V

�

up to the point in which
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V

�

sent its initial commitment to r

1

; : : : ; r

k

, and, instead of �, this time sends a commitment to

r

1

, thus forcing s

1

= r

1

and \solving" the session.

Assume, however, that V

�

responds to � by opening a new session s

0

, thus sending a commitment

to r

0

1

; : : : ; r

0

k

. Then, (at least) the following two choices are available to the simulator:

1. It may stop the look-ahead and leave session 1 unsolved at iteration 1. (That is, it may stick

with its answer � and hope to solve session s in some future iteration.)

2. It may insist on solving session 1 at iteration 1. (That is, it may choose random prover values

in all other sessions, until V

�

decommits to r

1

in session 1.)

Similar choices arise relative to other sessions and other iterations. Clearly, a simulator always

opting for type-1 choices cannot work properly. Nor can a simulator always opting for type-2

choices. (In particular, it fails to work whenever it interacts with the malicious veri�er V

�

that

decommits to r

1

in session 1 only when it has completed all iterations of all other sessions and has

veri�ed in Stage 2 that the proper NP-witness exists for all of them.) Therefore, simulator S will

adopt an \in-between" strategy.

Speci�cally, S uses three main procedures. Procedure Simulate tries to generate a simulated

run of V

�

. Each time a new prover's message is needed, Simulate calls procedure NextProverMsg,

which returns the next prover's message to be used in the simulated run. When NextProverMsg

encounters an unsolved session in an iteration j < k, it calls procedure Solve. Procedure Solve tries

to solve session s at iteration j+1 by means of a bounded look ahead. That is, before committing to

prover's string s

j+1

, Simulate tries to �nd the value r

j+1

that V

�

might decommit to in iteration

j + 1 of s, so as to choose s

j+1

= r

j+1

. Such look-ahead is no di�erent than the main simulation:

it is done via a recursive call to Simulate. At each call, however, a properly initialized counter

` is decreased by 1, and when ` = 0 no more recursive calls are made, and the simulator always

commits to random prover values s

0

i

for all iterations i of other sessions s

0

(unless it happens to

know the right r

0

i

), hoping to solve s at iteration j + 1. If it fails, it abandons all hope to solve

s in iteration j + 1, hoping instead to solve it at a future iteration. (In this case the simulator

sticks with a commitment, �, to a randomly selected value s

i

, and proceeds with the rest of the

simulation). Below we show that the running time of the simulator is n

O(log

k

K)

, and that, as long

as k = 
(log

k

K), the above strategy solves all sessions with high probability.

5.4 The Simulator S

Basic Notation

� Say that a message is an iteration-j (veri�er) message if it is a valid decommitment in iteration

j of some session i. The initial commitment message of a session is called an iteration-0

message.

� Sessions are addressed via their session identi�er. A session identi�er s includes the �rst three

messages in the session; these include the veri�er's new-session(x; prover ID) message, the

prover's initialization message, and the veri�er's commitment to r

1

; :::; r

k

.

� A session in an execution pre�x is completed if, within this execution pre�x, the veri�er has

decommitted properly in all its k iterations. A session is solved if for some j the j

th

prover's

commitment in this session is to a value equal to the j

th

value decommitted to by the veri�er

in the same session. A black-box simulator is called truthful if for every query h made by the

simulator and for every completed session in h, that session is solved.
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Variables

� `, a local variable bounding the number of recursive calls of Simulate.

Initially, ` = L = 2dlog

k

2

14

Ke.

Comment: In each call, the value of ` is reduced by one; when ` = 0 no more recursive calls

are made. This parameter will be used to bound the running time of NextProverMsg (and

the entire simulation).

� h, a local variable holding the current (pre�x of) the execution history of V

�

.

Initially, h holds the common input x.

� S, a global variable holding a set of triplets (s; j; r).

Initially, S is empty.

Comment: S consists of \identi�ed decommitment values". If (s; j; r) 2 S, then s is a

session identi�er, j is a numeral of an iteration within session s, and r is the (presumably

unique) value that V

�

can decommit to in the jth iteration of session s. A variable is \global"

if it is accessible to all procedures at all levels of the recursion.

� SS, a global variable holding the set of solved sessions.

Initially, SS is empty.

Simulator S

1. Let h Simulate(L; h).

2. If the last message in h is a halt message of the veri�er then output h. Otherwise (the last

message in h is fail) output fail.

Procedure Simulate(`; h): Here ` is the level of the recursion and h is a pre�x of a transcript at

a point where V

�

is expected to provide the next message. Keep iterating the following instructions:

1. Extend the transcript by one veri�er message:

(1) Set v-msg V

�

(h) and h (h; v-msg).

Comment: Recall that v-msg can be either a haltmessage, or a new-sessionmessage,

or an iteration-j message for some session s.

(2) If v-msg = halt (i.e., veri�er terminates), then return h.

(3) If v-msg is a decommitment in iteration j of session s, then set S  S[f(s; j; r)g, where

r is the decommitted value.

2. Extend the transcript by one prover message:

(1) Set (p-msg) NextProverMsg(`; h) and h (h; p-msg).

(2) If p-msg = fail (i.e., failure of NextProverMsg) then return h. Otherwise, continue the

simulation by going back to Step 1.
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Procedure NextProverMsg(`; h): Extract the last message in h, which is a veri�er message de-

noted v-msg, and proceed as follows.

1. New-Session message: If v-msg is a veri�er's message asking to initiate a new session then act

as follows. If this is the �rst session to be initiated (in h) then emulate the prover's answer

by selecting a random �rst receiver-message for the commitment scheme in use. Otherwise,

answer with the same prover's message provided in the previous initializations.

2. Iteration-j message in session s:

(1) If s 2 SS:

1. If j = k (last message in a session) then return (yes).

2. If j < k then return (�), where � is a commitment to a random k-bit string.

(2) If s =2 SS:

1. If j = k then return (fail).

2. Else, if (s; j + 1; r) 2 S for some r then add s to the set SS of solved sessions, and

return (�) where � is a commitment to r.

Comment: In this case we actually solve session s.

3. Else (i.e., if j < k and (s; j + 1; r) =2 S:

1. If ` > 0 then set S

0

 Solve(`� 1; h; s; j). If S

0

equals (s; j + 1; r) for some r,

then add s to SS and return (�), where � is a commitment to r. Otherwise,

return (�), where � is a commitment to a random k-bit string.

Comment: The values of s and j are implicit in h, but we provide them

explicitly for clarity of exposition.

2. If ` = 0 then return (�), where � is a commitment to a random k-bit string.

Procedure Solve(`; h; s; j): Set i 1. Next:

1. Make up to 128K attempts to solve session s at iteration j. That is, as long as i � 128K do:

(1) Run Simulate(`; h).

(2) If the global variable S contains a triple (s; j; r) for some r then return f(s; j; r)g. Oth-

erwise set i i+ 1 and go back to Step 1 (i.e., continue to the next attempt).

2. Return ;.

Comments:

1. Note that procedure Solve never updates h, even though Simulate returns an updated value

for h. In particular, all the attempts (i.e., all the invocations of Simulate) start with the

same value of h.

2. Note that, in principle, it su�ces to solve any one of the sessions in the inputs of the invoca-

tions of Solve that recursively called the current invocation. To simplify the analysis, we do

not take advantage of this additional \leeway" for the simulation.

3. It may seem at �rst glance that if an attempt stops due to the fact that V

�

halts then the

simulator can stop at this point and output the current history h. Doing so, however, would

skew the probability of the output of the simulation. (For instance, doing so would raise the

probability of \short executions", namely executions where V

�

halts after a smaller number

of steps.) To avoid such skew, we end the simulation only when V

�

halts within the main

procedure.
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5.5 S is Poly-Time

We �rst show that the simulator runs in (worst case) polynomial time. Say that an invocation of

Simulate (resp., an invocation of NextProverMsg or of Solve) is at level ` if it is called with �rst

parameter `. Let T

npm

(`; n) (resp., T

solve

(`; n)) denote the (worst case over all inputs) running time

of NextProverMsg (resp., Solve) at level ` and with security parameter n. We assume for simplicity

that the veri�er, V

�

, runs in worst-case polynomial time (in n). Recall that L = 2dlog

k

2

14

Ke. The

reader may verify the following facts:

1. The running time of the main procedure is at most poly(n) � T

npm

(L; n);

2. T

npm

(`; n) < T

solve

(`� 1; n) + poly(n);

3. T

solve

(`; n) � poly(n) � T

npm

(`; n);

4. T

solve

(0; n) = poly(n).

Thus, T

npm

(L) � n

O(L)

and the running time of the main procedure is poly(n) (as long as K =

k

O(1)

).

5.6 The Output of S is correctly distributed

To prove that S does its job, we show that it satis�es two main properties:

1. Conditioned on the event that S does not output fail, we have [S; V

�

](x) � [P; V

�

](x); and

2. S outputs fail with negligible probability.

Property 1 is easily veri�ed. (Essentially, any veri�er that violates property 1 can be turned into

an adversary that breaks the computational secrecy of the prover's commitments. We omit further

details.) Let us then focus on proving property 2, more speci�cally that S fails with probability at

most 2

�O(n)

. The heart of the proof is showing that, when invoked in a situation that is not too

unfavorable, procedure Solve succeeds in obtaining the desired value (i.e., the value decommitted

by V

�

in the corresponding iteration) with overwhelming probability. Once this is formalized and

shown, the rest of the proof is simpler.

The following three types of events can cause an \unfavorable situation" where Solve(l; h; s; j)

may fail. First, the probability of V

�

ever decommitting in iteration j of session s may be small.

Second, V

�

may open and complete too many new sessions before it decommits in iteration j of

session s. Third, the transcript h may contain existing sessions that are closed to completion but

not yet solved.

Demonstrating that each one of these three bad events does not a�ect the simulation too much

is done using di�erent techniques. For the �rst bad event, we argue that a session where many of

its iterations have small probability of completing will almost never complete. For the second type

of event we argue that if V

�

opens and completes \too many" new sessions before decommitting

in iteration j of session s, then it must be the case that during other iterations of this session

only few new sessions are opened. For the third bad event, we show that it never occurs; this,

however, requires that k, the number of iterations, be non-constant. (Note that this requirement

on k is made regardless of the restriction on k imposed by the requirement that the simulator runs

in polynomial time. In particular, we require k to be non-constant even if the simulator is allowed

to run in quasi-polynomial time.) We remark that much of the complexity of the proof is due to
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the fact that the schedule of opening and completing sessions is determined by V

�

\on the y". If

V

�

were limited to a �xed and known schedule the proof would would be considerably simpler.

The rest of the proof is organized as follows. We start with setting some notation to be used

throughout the proof. Next we prove three claims bounding the probabilities of the bad events

sketched above. Next, we show (in Claim 5.4) that under certain conditions each invocation of

Solve succeeds with overwhelming probability. Finally, we demonstrate Property 2 based on Claim

5.4.

Notation:

Simulator states, executions, and attempts. A state � of the simulator at some point during its run

describes all the current memory and control information about the current point in the

run. (Our convention is that a state does not specify the random choices to be used by the

simulator in a continuation of a run from the state.) An execution describes a speci�c run

of the simulator. some state. It is determined by the input x and by the random choices of

the simulator made during this execution. Given r 2 f0; 1g

�

, we use the term \execution r"

to denote \the execution with random choices r". (Formally, an execution r is a sequence of

states, where each state follows from the previous one by the code of the simulator and the

(deterministic) behavior of V

�

.) We also consider \execution-segments" that start at some

state (not necessarily the start state of the simulator) and end at some state (not necessarily

a halting state).

Successful attempts. Say that an attempt within an invocation of Solve(`; h; s; j) (within some

execution of the simulator) is successful if during this attempt an entry (s; j; r) is added to S.

An invocation of Solve is successful if one of its attempts is successful.

De�nition of q

�

. Let � be some state of the simulator at the point where an invocation Solve(`; h; s; j)

is called, and consider the following bad event: An invocation of Simulate(`; h) within an

attempt of this invocation of Solve returns a transcript in which V

�

halts, and a triple (s; j; r)

was not added to S during this attempt. Let q

�

denote the probability of this event. Here

the probability is taken over the random choices of the simulator, starting from state �.

24

De�nition of �

�

. Consider an execution r of Simulate starting at state �. Let h

�;r

denote the value

returned by Simulate in this execution. (Recall that this value holds a transcript, or history

of a run of V

�

.) Let �

�;r

denote the number of sessions in h

�;r

that are opened after Simulate

is called and are completed before h

�;r

ends. Let �

�

denote the expected value of �

�;r

when

r is chosen at random. (Loosely speaking, �

�

denotes the expected number of sessions that

are opened and completed within the \main thread" of a run of Simulate. Sessions that are

opened in recursive invocations of Simulate (i.e., during \look-aheads") are not counted.)

Since we have a strict bound K on the number of sessions in an execution of V

�

we have that

�

�

� K for all �.

Safe sessions, states, and executions. Consider a state � of the simulator at the point where either

an invocation Simulate(`; h) is called or an invocation Solve(`; h; s; j) is called. A session

s

0

is called an old session for � if the veri�er's commitment message in session s

0

is already

24

The above de�nition implicitly assumes that all the attempts of the invocation of Solve start at the same state.

This is somewhat imprecise, since each attempt has a slightly di�erent start state. speci�cally, the sets S and SS

may be di�erent for each attempt. We ignore this slight imprecision and return to it at the end of the analysis. (For

concreteness, de�ne q

�

with respect to the �rst attempt made in the said invocation of Solve.)
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sent in h. An old session s

0

is called m-safe for � if session s

0

is already solved by the

simulator (i.e., s

0

2 SS), or V

�

has not yet decommitted in at least m + 1 iterations of

session s

0

. State � is called m-safe if all the old sessions for it (and, in particular, session

s) are m-safe. An execution of Solve starting from state � is m-safe if � is m-safe. An

execution of Simulate is called m-safe throughout if all the states during this execution, in

which Simulate is recursively called, are m-safe. An attempt of Solve is m-safe throughout

if the corresponding execution of Simulate is m-safe throughout.

Observe that in a session that is m-safe and not solved for some state � there are at least

m iterations where the prover did not yet send its commitment. Also, an attempt of Solve

that starts from state � and is m-safe throughout for some m � 0 never fails due to failure

of NextProverMsg (in Step 22 of Simulate) on a session that is old for �.

Next we prove three claims that bound the probability of bad events in executions of Solve

and Simulate. The claims correspond to the three possibilities of failure, sketched above. The �rst

claim is used to bound the number of attempts that may fail due to old sessions:

Claim 5.1 Let ` � 0 and consider an (` + 1)-safe execution of Solve(`; S; h; s; j). Then at most

K � 1 attempts in this execution are not `-safe throughout.

Proof: Assume that an attempt in the given execution of Solve is not `-safe throughout. This

means that some old session s

0

is not `-safe at some state during this attempt. For that to happen,

V

�

must have properly decommitted in iteration k� ` of session s

0

. However, in this case the entry

(s

0

; k� `; r) is added to S in this attempt. Since the current execution of Solve is (`+ 1)-safe, we

have that the prover's commitment for iteration k�` in session s

0

is not yet sent in h. Consequently,

in future attempts session s

0

will remain `-safe. (Either V

�

will not decommit in iteration k � ` or

session s

0

will be solved and added to SS.)

Altogether, there are at most K � 1 old sessions. Thus at most K � 1 attempts are prevented

from being `-safe throughout.

For the next two claims, consider an execution of Simulate at level `. The second claim (Claim

5.2) says, essentially, that any new session that reaches the point where 2k=3 of its iterations are

completed must have many iterations where the corresponding invocations of Solve, at level `� 1,

have low probability of failure due to the fact that V

�

halts. (We remark that the \cut-o�" point

of 2k=3 iterations is rather arbitrary. It is chosen so that there is a substantial number of iterations

both before and after the cut-o� point.) The third claim (Claim 5.3) says that any new session

that reaches the point where 2k=3 of its iterations are completed must have many iterations where

the corresponding values of � are su�ciently small.

More precisely, consider an execution r of Simulate at level `, starting from state �. Recall

that h

�;r

denotes the value returned by Simulate in this execution. Let �

i;j;r

denote the state of

the simulator at the point where Solve is invoked (at level `�1) for the jth iteration at the ith new

session in h

�;r

.

25

Recall that �

�;r

denotes the number of sessions in h

�;r

that are opened after the

execution of Simulate started and completed before this execution returns, and that �

�

denotes

the expected value of �

�;r

when r is chosen at random. De�ne the following bad events: (Again,

the constants are somewhat arbitrary. They are set to match the conditions of Claim 5.4.)

25

We remark that state �

i;j;r

is a bit \over-speci�ed", in the sense that only a pre�x of r may be needed to specify

�

i;j;r

. Nonetheless, we stress that the state �

i;j;r

does not specify any random choices to be used in a continuation

of the run. In particular, the values q

�

i;j;r

and �

�

i;j;r

are de�ned, as usual, with respect to random continuations of

�

i;j;r

.
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Qbad executions. An execution r of Simulate, starting from state �, is i-Qbad if q

�

i;j;r

>

31

32

for at

least k=12 iterations j out of the �rst 2k=3 iterations in the ith new session in h

�;r

to complete

2k=3 iterations. An execution is Qbad if it is i-Qbad for some i.

Mbad executions. An execution r of Simulate at level `, starting from state �, is i-Mbad if �

�

i;j;r

>

1

64

(k=2

14

)

`�1

for at least k=2 iterations j out of the �rst 2k=3 iterations in the ith new session

to complete 2k=3 iterations in h

�;r

. An execution is Mbad if it is i-Mbad for some i.

Observe that in an execution r of Simulate at level `, that is not Qbad and not Mbad, any

session that completes 2k=3 iterations has at least one iteration j where both q

�

i;j;r

�

31

32

and

�

�

i;j;r

�

1

64

(k=2

14

)

`�1

. (In fact, at least k=12 such iterations exist.) This fact will be useful in

proving the induction step of Claim 5.4 below.

Long executions. An execution r of Simulate, starting from state �, is `-long if �

�;r

> (

k

2

14

)

`

. An

execution that is not `-long is called `-short.

Claim 5.2 Let � be a state of the simulator at the point where an execution of Simulate is called.

Then an execution of Simulate starting from state � is Qbad with probability at most K � 2

�O(k)

.

Proof: Let �

i

denote the probability that an execution is i-Qbad. We show that �

i

� 2

�O(k)

for every i. Consider an i-Qbad execution r, and let r

j

denote the segment of r that is used by

the simulator from state �

i;j�1;r

until state �

i;j;r

is reached. Note that r

1

; :::; r

k

are disjoint and

contained in r. Since the execution is i-Qbad, we have q

�

i;j;r

>

31

32

for at least k=12 iterations j out

of the �rst 2k=3 iterations in the ith session. Thus, we have:

�

i

�

X

B�f1::

2k

3

g;jBj<

k

12

Pr

r

(r is i-Qbad j q

�

i;j;r

>

31

32

for j 2 B)

�

X

B�f1::

2k

3

g;jBj<

k

12

Pr

r

0

@

^

j2B

iteration j completed j q

�

i;j;r

>

31

32

for j 2 B

1

A

�

X

B�f1::

2k

3

g;jBj<

k

12

Y

j2B

Pr

r

j

(iteration j completed j q

�

i;j;r

>

31

32

)

�

 

2k=3

k=12

!

� (1=32)

k=12

� 2

�O(k)

(The third inequality follows from the fact that the simulator uses independent random choices for

each message sent to V

�

.) It follows that an attempt is Qbad with probability at most

P

i=1::K

�

i

�

K � 2

�O(k)

.

Claim 5.3 Consider a state � at the point where an invocation of Simulate at level ` is called,

and assume that �

�

�

1

64

(k=2

14

)

`

. Then, a random `-short execution of Simulate starting from

state � is Mbad with probability at most K2

�O(k)

.

Proof: Let h

i;j

�;r

denote the segment of h

�;r

that starts when V

�

decommits in iteration j � 1

in the ith session opened in execution r, and ends when V

�

either halts or decommits in iteration

j of this session. Let m

i;j

�;r

denote the number of sessions that are opened and completed within

the segment h

i;j

�;r

. Observe that for any execution r and session i we have

P

k

j=1

m

i;j

�;r

� �

�;r

. (This

30



holds since for all r the segments fh

i;j

�;r

g

j=1::k

are disjoint and contained in h

�;r

.) It holds that in

each execution r there are at most k=4 iterations j with m

i;j

�;r

>

4

k

�

�;r

. Since in `-short executions

we have �

�;r

� (k=2

14

)

`

, it follows that in such executions there are at least 3k=4 iterations j with:

m

i;j

�;r

�

4

k

�

�;r

�

4

k

(

k

2

14

)

`

=

1

2

12

(

k

2

14

)

`�1

:

It follows that in Mbad executions there are at least k=4 iterations j among the �rst 2k=3 iterations,

such that m

i;j

�;r

�

1

2

12

(

k

2

14

)

`�1

and �

�

i;j;r

�

1

64

(k=2

14

)

`�1

. Call such iterations unlikely. Notice that

an unlikely iteration occurs with probability at most 2

�6

: m

i;j

�;r

describes a value drawn at random

from a distribution with expectancy at least �

�

i;j;r

. It thus follows from Markov Inequality that

m

i;j

�;r

is less than 2

6

times �

�

i;j;r

only with probability 2

�6

.
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Moreover, unlikely iterations occur

independently of each other, since they use disjoint segments of the random input r. More precisely,

recall that r

j

denotes the segment of r that is used by the simulator from state �

i;j�1;r

until state

�

i;j;r

is reached. Let 

i

denote the probability that an `-short execution r is i-Mbad. We have:



i

�

X

B�f1::

2k

3

g;jBj<

k

4

Pr

r

(iterations j 2 B are unlikely)

�

X

B�f1::

2k

3

g;jBj<

k

4

Y

j2B

Pr

r

j

(iteration j is unlikely)

�

 

2k=3

k=4

!

� (2

�6

)

k=6

� 2

�O(k)

It follows that an `-short execution is Mbad with probability at most

P

i=1::K



i

� K � 2

�O(k)

.

We proceed to state and prove the main technical claim used to prove Lemma 5.5:

Claim 5.4 Let � be a state of the simulator at the point where some invocation of Solve at level

` is called, and assume that:

� q

�

�

31

32

� �

�

<

1

64

(

k

2

14

)

`

� State � is (`+ 1)-safe.

Then there exists a constant c such that a random execution of Solve starting from state � fails

with probability 2

�cK

. Again, the probability is taken over the random choices of the simulator

starting from state �.

Proof: The proof proceeds by induction on `:

Base case: ` = 0. An execution of Solve is not successful only if none of its 128K attempts is

successful. We bound the probability that this event happens. We �rst assert the following fact:

Base-Case Fact: The invocation of Simulate(0; h) within a random attempt that is 0-safe through-

out returns due to failure of NextProverMsg(in Step 22 of Simulate) with probability at most 1=64.
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The above argument implicitly assumes that all the attempts of the invocation of Solve start at state �

i;j;r

. This

is somewhat imprecise, since each attempt has a slightly di�erent start state. speci�cally, the sets S and SS may be

di�erent for each attempt. We ignore this slight imprecision and return to it at the end of the analysis.
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Proof: Executions of Simulate that are 0-safe throughout never return due to failure of NextProverMsg

on an old session. The probability that an execution of Simulate returns due to failure of

NextProverMsg on a new session is at most the probability that V

�

starts and completes a new

session during this execution. However, since �

�

< 1=64 � (k=2

14

)

0

= 1=64, it follows from Markov

Inequality that V

�

starts and completes even a single new session during this execution with prob-

ability at most 1=64. 2

We are now ready to prove the base case. Say that an attempt is unfortunate if one of the two

events occur:

(i) The invocation of Simulate returns due to the fact that V

�

halts (i.e., in Step 12), and a triple

(s; j; r) was not added to S during this attempt.

(ii) The invocation of Simulate returns due to failure of NextProverMsg on a new session.

By the premise of the lemma, the probability of event (i) is at most q

�

<

31

32

. By our Base-Case

Fact, the probability of event (ii) is at most 1=64. Altogether, the expected number of unfortunate

attempts is at most

63

64

�128K = 126K. Since the attempts are independent of each other, it follows

from Cherno� Inequality that the probability that more than 126:5K attempts are unfortunate is

at most 2

�cK

for some c > 0. In other words, except with probability 2

�cK

, there are at least 1:5K

attempts that are either successful or where Simulate returns due to failure of NextProverMsg

on an old session. However, it follows from Claim 5.1 that at most K attempts are not 0-safe

throughout, thus in at most K attempts Simulate returns due to failure of NextProverMsg on an

old session. It follows that, except with probability 2

�cK

, at least

K

2

attempts succeed. (In fact, a

single successful attempt would su�ce.)

Induction step: As in the base case, we bound the probability that none of the 128K attempts in

an execution of Solve (now at level `) is successful. We �rst show:

Induction-Step Fact: Let � be a state where an invocation of Simulate at level ` is called. Assume

that Claim 5.4 holds for all `

0

< ` and that �

�

<

1

64

(

k

2

14

)

`

. Then a random execution of Simulate,

starting from state �, that is `-short and `-safe throughout, returns due to failure of NextProverMsg

with probability at most K2

�poly(k)

.

Proof: Recall that an execution of Simulate that is `-safe throughout never returns due to failure

of NextProverMsg on an old session. We bound the probability that an `-safe throughout execution

of Simulate returns due to failure of NextProverMsg on a new session. In fact, we show a slightly

stronger result than stated in the claim: Except with probability 1=64 + K2

�poly(k)

, all the new

sessions in this execution remain

k

3

-safe (i.e., they do not go beyond their

2k

3

-th iteration without

being solved).

Say than an execution of Simulate at level ` is bad if it is either Qbad or Mbad. Recall that a

random execution of Simulate at level ` is Qbad with probability at most K2

�poly(k)

(Claim 5.2),

and is Mbad given that it is `-short with probability at most K2

�poly(k)

(Claim 5.3). It follows

that a random execution of Simulate is bad with probability at most K2

�poly(k)

. We show that

an execution of Simulate that is not bad and `-safe throughout fails in Step 22 of Solve on a new

session with probability at most K � 2

O(K)

. Speci�cally, we demonstrate the following inductive

claim. Order the new sessions in an execution of Simulate according to the order in which they

complete 2k=3 iterations. That is, let s

i

denote the ith session to complete 2k=3 iterations. Let Z

i

denote the event that, at the point where session s

i

has completed 2k=3 iterations, there are new

sessions that are not k=3-safe. We show by induction on i that there exists a constant c > 0 such

that Pr(Z

i

) � i � 2

�cK

. (In other words, we show that, except for probability at most i � 2

�cK

, all

the �rst i new sessions to complete 2k=3 iterations are solved. (c is the constant guaranteed by

Lemma 5.4 for level `� 1.)
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We proceed to prove the induction step. (The base case is treated as a special case of a step.)

Let i � 1, and let r be a random execution of an attempt that is `-safe throughout, not Qbad and

not Mbad. Consider the invocations of Solve at level `� 1 that are associated with the �rst 2k=3

iterations of the ith session. Say that an invocation is good if the three conditions of Lemma 5.4

are satis�ed with respect to this invocation. (That is, let �

0

denote the state at the onset of a good

invocation; then, q

�

0

<

31

32

, �

�

0

<

1

64

(

1

2

14

)

`�1

, and �

0

is `-safe.) We want to show that at least one

of these invocation of Solve is good. Recall that, since the execution is neither Qbad not Mbad,

there is at least one such invocation of Solve for which the �rst two conditions are met. It remains

to show that this invocation is also `-safe. This is argued as follows. Since the attempt is `-safe

throughout, all the old sessions are `-safe. From the hypothesis of the induction on i we have that,

except for probability (i� 1)2

�cK

, all the new sessions are k=3-safe, hence also `-safe.
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We conclude that, except for probability (i�1)2

�cK

, at least one out of the �rst 2k=3 invocation

of Solve associated with the ith session is good. Applying the hypothesis of the induction on

`, we get this invocation of Solve fails with probability at most 2

�cK

. Consequently, the ith

session is not solved by the time 2k=3 of its iterations are completed with probability at most

2

�cK

+ (i� 1)2

�cK

= i2

�cK

. This completes the step of the induction on i, and the proof of our

Induction-Step Fact. 2

We are now ready to complete the step of the induction on ` (and the proof of Lemma 5.4)

based on our Induction-Step Fact. The argument is very similar to that of the base case. We repeat

it here for completeness, at the price of some repetition.

Recall the de�nition of unfortunate attempts. By the premise of the lemma, the probability of

event (i) is at most q

�

<

31

32

. By our Induction-Step Fact, the probability that Simulate returns

due to failure of NextProverMsg in an `-short execution is at most K2

�poly(k)

= 2

�poly(n)

. By

the premise of Claim 5.4, �

�

<

1

64

(

1

2

14

)

`

. It follows from Markov Inequality that an execution of

Simulate within an attempt of Solve at level ` is `-long with probability at most 1=64. Conse-

quently, the probability of event (ii) is at most 1=64 + 2

�poly(n)

. Altogether, the expected number

of unfortunate attempts is at most (

63

64

+ 2

�poly(n)

)128K = 126K + 2

�poly(n)

. Since the attempts

are independent of each other, it follows from Cherno� Inequality that the probability that more

than 126:5K attempts are unfortunate is at most 2

�cK

for some c > 0. In other words, except with

probability 2

�cK

, there are at least 1:5K attempts that are either successful or where Simulate

returns due to failure of NextProverMsg on an old session. However, it follows from Claim 5.1 that

at most K attempts are not `-safe throughout, thus in at most K attempts Simulate returns due

to failure of NextProverMsg on an old session. It follows that, except with probability 2

�cK

, at

least

K

2

attempts succeed. This completes the proof of Lemma 5.4.

We are �nally ready to prove the main lemma:

Lemma 5.5 The main procedure fails with probability at most 2

�cK

= 2

�poly(n)

.

Proof:

The main procedure consists of a single invocation of Simulate at level L, and fails if this

invocation returns due to failure of NextProverMsg. We prove the lemma by applying our Induction-

Step Fact to this invocation.

28

Speci�cally, all the requirements of our Induction-Step Fact are met:

� Claim 5.4 holds for all ` < L.

27

Recall that both k and K are polynomial in the security parameter n. Consequently ` � L = O(1), and k > 3`

for large enough n.

28

Though our Induction-Step Fact is stated within the induction step of Claim 5.4, it applies also to the invocation

of Simulate within the \main procedure."
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� We have that V

�

opens at most K sessions in an execution. Let �

0

be the state of the

simulator at the point where Simulate is invoked within the main procedure. Thus, for

K > 64 we have �

�

0

<

K

2

64

=

1

64

(

k

2

14

)

L

. Furthermore, any execution of Simulate within the

main procedure is L-short.

� There are no old sessions for state �

0

. Consequently, any execution of Simulate within the

main procedure is L-safe throughout.

We conclude that a random execution of Simulate within the main procedure returns due to failure

of NextProverMsg with probability at most 2

�poly(n)

.

On the e�ect of imperfect commitments. In the de�nition and argumentation on the quan-

tities q

�

and �

�

we have so far ignored the following fact. Di�erent attempts within an invocation

of Solve start with somewhat di�erent states of the simulator. Speci�cally, the sets S and SS may

di�er from attempt to attempt (and also in the continuation of a simulation once Solve returns).

Consequently, when invoked by Simulate in di�erent attempts, procedure NextProverMsgmay try

to \solve" di�erent sessions in Steps 2(2)2 and 2(2)31.

As long as the prover's commitments are assumed to be perfectly secret these di�erences in

the behavior of the simulator is transparent to V

�

, and the above analysis is precise. We conclude

the analysis by noting that the above analysis holds even when the prover's commitments are only

computationally secret. Speci�cally, we claim that the di�erences between the values of q

�

(and

similarly �

�

) in di�erent attempts of an execution of Solve are negligible. More precisely, consider

an execution of Solve starting from state �, and let �

v

denote the state at the point where the

vth attempt begins. Then for all v; v

0

= 1:::128K the di�erences q

�

v

� q

�

v

0

and �

�

v

� �

�

v

0

must

be negligible in the security parameter n. (If this were not the case then we could use this fact

to break the computational secrecy of the prover's commitment.) Consequently, it can be veri�ed

that the analysis (and in particular Claims 5.2 and 5.3) still holds.

29

6 rZK in the Public-Key Model

Thus far in the paper no set-up assumptions have been made in the model. This is indeed the

\simplest" model used for two-party and multi-party computation. Another model, used routinely

in the context of providing privacy and/or authenticity of messages (i.e public-key encryption and

digital signatures), is the public-key model, which relies on a set-up stage in which public-keys

are registered. In the work presented in this section, the public-key model is used for tasks totally

unrelated to privacy and authenticity, but rather for proving security of protocols whose participants

hold public-keys. (A similar use was independently suggested by Damg�ard [11, 12]. See discussion

below.)

6.1 The Public Key Model

In the mildest form of the public-key model, users are assumed to have deposited a public-key in a

public �le that is accessible by all users at all times. In fact, it is only necessary for the veri�ers in

our protocol to have public-keys. Access to this �le may be implementable by either providing access

29

The proof also ignores the fact that the veri�er's commitments are only computationally binding. This \ab-

straction" can be removed in standard ways: Assume that V

�

, in a run with the simulator, decommits to one of its

commitments in two di�erent valid ways with some probability p(n). Then, it is easy to construct an algorithms that

breaks the computational binding property of the commitment scheme in use with probability poly(p(n)).
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to several identical servers, or by providing users with certi�cates for their deposited public-keys.

The sole assumption is that entries in the public-�le were deposited before any interaction among

the users takes place. But no assumption is made on whether or not the public key deposited are

unique or \non-sensical" or \bad" (e.g., for which no corresponding secret key exist or are known)

public keys.

We use such a public-�le simply for limiting the number of di�erent identities that a potential

adversary may assume { it may indeed try to impersonate any registered user, but it cannot act

on behalf of a non-registered user.

We analyze our solutions in an \idealized" setting where the registration to the public �le is

complete before any interaction starts. A more realistic public-key model allows users to register

at all times. Note, however, that formally speaking such exibility requires some restriction as

otherwise it will coincide exactly with the the case in which no set-up stage or special model is

used. We thus suggest two intermediate augmentations of the public-key models in which we can

obtain our result (We note that others are possible but we defer discussion of those for another

paper.)

One augmentation is to enforce a time lag between when a public-key is registered and the

�rst time it will be used in an actual protocol. Namely, a prover will not interact with a veri�er

unless the veri�er's public-key was registered a su�ciently long time before the interaction starts,

where \su�ciently long" is chosen so as to ensure that whatever sessions were in progress before

registration occurred have terminated by the �rst time the key registered will be used. This implies

that users need be able to distinguish between some predetermined large delay (that all newly

registered public-keys must undergo before being used) and a small delay (that upper bounds the

communication delays in actual interaction).

Making such a distinction is quite reasonable in practice (e.g., say that a user in nowadays

internet may start using its key a couple of days after registration, whereas each internet session is

assumed to be completable within a couple of hours). Notice that, unlike usage of timing in [15], our

usage of timing here does not a�ect typical interactions, which can be and actually are completed

much faster than the conservative upper bound (of message delay) being used. In contrast, in [15]

each user delays each critical message by an amount of time that upper bounds normal transmission

delay. This means that all communication is delayed by this upper bound. Thus, in their case,

this always causes signi�cant delays: in fact the upper bound should be conservative enough so to

guarantee that communication by honest users are rarely rejected.

The second augmentation of the public-key model possible to require newly registered public-

keys to be used only after authorization by a trusted \switchboard", which go through an interactive

protocol with the new user and then issue a certi�cate that will allow it to act as a veri�er. We stress

that users that register at set-up time are not required to interact with a server (or a switchboard):

they merely deposit their public-key via a one-sided communication. This alternative seems better

suited to the smart-card application discussed in the introduction.

Moreover, the fact that registration is only required of veri�ers is nicely suited to smart-card

applications in which the provers are played by the smart-cards and the veri�ers by service providers.

In such applications service providers are much fewer in number, and are anyhow required to

undergo more complex authorization procedures (than the smart-card users).

De�nition 12 resettable zero-knowledge in the public-key model is de�ned similarly to rZK in the

standard model (De�nition 1), with the following exceptions:

� Before any interaction begins, the veri�er generates a public �le that contains identities of

potential veri�er-incarnations, together with information associated with each identity. (In
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fact, the identities of veri�er-incarnations are only implicit in the �le, or in other words they

are understood as the numeral of the entry in the �le.) The algorithm for generating the �le

is part of the description of the (honest) veri�er.

� The �rst veri�er message in any interaction should contain an identity that appears in the

public �le. In other words, the completeness and and soundness requirements are made only

in case that the �rst veri�er message contains an entry in the public �le.

� The rZK requirement remains unchanged, with the exception that the veri�er V

�

generates

an arbitrary public �le before any interaction begins. It is stressed that in all the sessions the

prover has access to the same instance of the public �le.

A more imposing model (i.e., assuming stronger set-up assumptions), which is still quite rea-

sonable in practice, augments the public-key model by allowing (\validating") interaction between

users and system manager at deposit time. In general, the preprocessing model postulates that

before any interaction among users takes place, the users have to interact with a system manager

that provides them with suitable certi�cates (in case it did not detect cheating at this stage). In

particular, one may use the preprocessing stage in order to verify that the user knows a secret-key

for the public-key it wishes to have certi�ed.

6.2 Overview

We start with an overview of our results and techniques in the public-key model.

Theorem 13 Under the strong DLP assumption, there exist constant-round resettable zero-knowledge

arguments for NP in the public-key model.

Recall that arguments (a.k.a computationally-sound proofs)[9] are a weaker notion than in-

teractive proofs [32]: it is infeasible rather than impossible to fool the veri�er to accept wrong

statements with non-negligible probability.

Since concurrent zero-knowledge are a special case of resettable zero-knowledge, we obtain:

Corollary 14 Under the strong DLP assumption, there exist constant-round concurrent zero-knowledge

arguments for NP in the public-key model.

6.2.1 Techniques

Several techniques used by our construction are worth singling out. First, in all messages of the

prover which require randomization, the prover will use, instead of fair coins, the result of applying

a pseudo random function [23] to the prover's input and the sequence of messages exchanged in the

interaction thus far. (In fact, it su�ces to apply the pseudo random function only to the input plus

some critical parts of the communication.) This ensures that on the same pre�x of an interaction,

the veri�er will always get the same response from the prover. Thus, the veri�er will not be able

to collect di�erent responses of the prover to the same questions { a capability which can lead to

breaking the security of the protocol, and is an obvious attack strategy for a veri�er who can run

several executions of the protocol each time resetting the prover to the same initial state and same

random tape.

Second, the public-key i which the veri�er deposited in the public-�le is used to specify a

perfectly hiding (and computationally binding) commitment scheme Comm

i

for the prover to use

during the protocol when he encrypts the coloring of graph which he attempts to show is 3-colorable
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(Recall that in a top level, the prover is trying to convince the veri�er that a graph is 3-colorable).

The �rst phase of the protocol is a sub-protocol in which the veri�er convinces the prover that he

(the veri�er) knows the secret key that matches the public key i. The knowledge of such secret

key enables decommitting values committed to using Comm

i

in more than one way. One must be

careful that this sub-protocol will not leak too much knowledge about this secret-key as otherwise

the soundness of the global protocol will be compromised. We did not construct a full edged

zero-knowledge proof of knowledge sub-protocol for this task as we do not know of the existence

of one which runs in constant rounds and will maintain its soundness even when its veri�er can be

reset (note: the veri�er in the sub-protocol is actually the resettable prover in the global protocol).

Instead we use a constant round proof of knowledge which can be simulated in sub-exponential time,

and argue that such simulation is su�cient to prove global soundness as otherwise our assumption

that commitment scheme secure against sub-exponential time exists will be violated.

Third, our construction uses actually two secure commitment schemes which interact in a novel

way, One commitment scheme is with security parameter K and the other with a smaller security

parameter k. We assume that , for some � > 0, the security of the �rst commitment scheme (with

security parameter K) is maintained against adversaries running in time 2

K

�

,

30

and that instances

of the second scheme (with security parameter k) can be broken in time 2

k

. Then setting k = K

�

=2

guarantees both security of the second scheme as well as \non-malleability" (cf. [13]) of the �rst

scheme in presence of the second one. The reason for the latter fact is that breaking the second

scheme can be incorporated into an adversary attacking the �rst scheme without signi�cantly

e�ecting its running-time: Such an adversary is allowed running-time 2

K

�

which dominates the

time 2

k

= 2

K

�

=2

required for breaking the second scheme. This \telescopic" usage of intractability

assumptions can be generalized to a case in which we have a lower and upper bound on the

complexity of some problem; speci�cally, we need a lower bound L(n) on the average-case of

solving n-bit long instances, and an upper-bound U(n) � L(n) on the corresponding worst-case

complexity. Suppose that we can choose polynomially-related security parameters k and K so that

L(k) is infeasible and U(k) � L(K) (i.e., L(k) is infeasible and U(k) � L(poly(k))). Then the

above reasoning still holds. (Above we used L(n) = 2

n

�

and U(n) = 2

n

.)

Outline of the Protocol. The common input is a 3-colorable input graph G. The input of the

prover is a 3-coloring of this graph and the input to the veri�er is the secret-key that matches his

public-key.

1. prover looks up public-key i of the veri�er ( no interaction required) which speci�es a com-

mitment scheme Comm

i

(which is perfectly private and computationally binding and has

security parameter K)

2. veri�er runs a sub-protocol in which he convinces the prover that he knows the matching

secret key to i

3. veri�er commits to a sequence of edges e

1

; :::e

n

of the graph G using 2nd commitment scheme

Comm

0

(which is also perfectly private and computationally binding but its security param-

eter is k)..

4. prover commits independently to n copies EG

1

; :::; EG

n

of the graph G, each copy is colored

with a permutation of the 3-coloring which the prover knows, using the commitment scheme

Comm

i

speci�ed by i.
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The strong DLP assumption is used to guarantee security against adversaries running in time 2

K

�

(rather than

in polynomial-time).
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5. veri�er decommits edges e

1

,..., e

n

.

6. prover decommits for each EG

i

the colors of the end points of the edge e

i

7. the veri�er accepts if indeed all edges e

i

were colored properly and rejects otherwise.

Almost constant-round rZK under weaker assumptions. We mention that using the weak

DLP assumption (rather than the strong one), we obtain for every unbounded function r : N! N,

an r(�)-round resettable zero-knowledge argument for NP in the public-key model. Again, such

protocols are concurrent zero-knowledge (as a special case).

6.3 A constant-round rZK protocol

The main result of this section is a construction of constant-round computationally-sound resettable

zero-knowledge proof systems. Here we use two-round perfect commitment schemes with some

additional features (to be speci�ed below). Such schemes exist assuming that DLP is hard for

sub-exponential circuits. Thus, as a special case, we obtain:

Theorem 15 Suppose that for some � > 0 and su�ciently large n's, any circuit of size 2

n

�

solves

DLP correctly only on a negligible fraction of the inputs of length n. Then every language in NP

has a constant-round resettable zero-knowledge computationally-sound proof system in the public-key

model. Furthermore, the prescribed prover is resettable zero-knowledge via a black-box simulation.

In the proof below, we only refer to the sequential single-incarnation variant of resettable zero-

knowledge in the public-key model. The treatment extends easily to the sequential multiple-

interaction model, and the equivalence (to the general interleaving variant), proven in Theorem 2,

holds here too.

6.3.1 rZK for NP in the preprocessing model

We �rst present a resettable zero-knowledge protocol for a model allowing preprocessing (i.e., a

model which has stronger set-up assumptions). The preprocessing will be used in order to guarantee

that veri�ers know \trapdoors" corresponding to \records" deposited by them in the public �le.

The protocol uses two types of perfect commitment schemes; that is, secrecy of commitment

holds in an information theoretic sense, whereas the binding property holds only in a computational

sense. The two commitment schemes used have some extra features informally stated below. For

a precise de�nition see Appendix A.

1. A two-round perfectly-hiding commitment scheme, denoted PC1, with two extra features:

� The trapdoor feature: It is possible to e�ciently generate a receiver message (called the

index) together with a trapdoor, so that knowledge of the trapdoor allows to decommit

in any way.

Note that the �rst message in a two-round commitment scheme is from the commitment-

receiver to the commitment-sender. The trapdoor feature says that the receiver will be

able to decommit to the sender's message in any way it wants (but as usual the sender,

not knowing the trapdoor, will not be able to do so).

In our solution we will \decouple the execution" of the two-round commitment scheme

so that the �rst message (i.e., the index) will be sent in a preliminary stage (i.e., will

be deposited in a public-�le), and only the second message will be send in the actual
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protocol. We stress that the same index can and will be used for polynomially many

commitments, and that the number of such commitments need not be a-priori known.

(Note that both perfect secrecy and computational-binding continue to hold also under

such \recycling" of the index.)

� The strong computational-binding feature: The computational-binding property holds

also with respect to sub-exponential circuits. That is, there exists a constant � > 0 so

that for su�ciently large security parameter K no sender strategy that is implementable

by a circuit of size 2

K

�

can, given a random K-bit index, produce a single commit-

ment together with two conicting decommitments (i.e., to two di�erent values) with

probability greater than 2

�K

�

.

2. A constant-round perfectly-hiding commitment scheme, denoted PC2. Without loss of gen-

erality, we may assume that the binding property can be violated in exponential time. That

is, when the commitment protocol is run on security parameter k, the sender may in time 2

k

decommit any way it wants.

Indeed, any PC1 scheme yields a PC2 scheme. However, for sake of modularity we prefer the current

presentation. We also note that for our application it is possible to further relax the requirement

from PC2 so that secrecy may be demonstrated to hold at a latter stage (i.e., \a posteriori"); see [22,

Sec. 4.8.2]. We comment that a PC1 scheme can be constructed under the assumption the DLP is

hard for sub-exponential circuits; see details in Appendix A. More generally, one may use any pair

of trapdoor claw-free permutations, provided the claw-free property holds w.r.t sub-exponential

circuits.
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The protocol in the preprocessing model: The inputs to the protocol are as follows.

Security parameter: K. All objects (resp., actions taken) in the protocol have size poly(K)

(resp., are implementable in poly(K)-time).

Common input: A graph G = (V;E), where V = [n]

def

= f1; :::; ng, claimed to be 3-colorable.

In addition, a public �le containing a list of indices (i.e., receiver's message for PC1), generated

by veri�ers on security parameter K. Each veri�er need only deposit a single index in the

public �le, which may be stored under its name. We consider also cheating veri�ers who may

deposit polynomially many such indices. We stress however that the number of entries in the

public-�le should be bounded by some �xed polynomial.

At this point we assume that the veri�er knows a trapdoor to any index it has deposited.

This can be enforced by a preprocessing stage, say, via a zero-knowledge proof of knowledge.

Veri�er's auxiliary input: A trapdoor, denoted trap(i), for some index i in the public �le.

Prover's auxiliary input: A 3-coloring � : [n]! f1; 2; 3g of G.

Prover's initial randomization: The prover's random-tape is used to determine a pseudoran-

dom function f : f0; 1g

poly(n)

! f0; 1g

poly(n)

.
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In fact, it su�ces to have collision-intractable family of hashing function, provided it carries trapdoors and is

strong with respect to sub-exponential circuits.
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The protocol itself is an adaptation of the resettable witness indistinguishable proof system of

Section 4, with Step (P1) being replaced (or rather implemented) by current Steps (1) and (3).

Another important change is the replacement of former Step (V1) by current Step (2); the di�erence

being that commitment via a standard commitment scheme (with perfect binding) is replaced by

a commitment relative to a (perfect secrecy) scheme that is only computationally-binding.

(1) The veri�er sends an index i to prover, who checks that it appears in the public-�le. (Otherwise

the prover aborts.)

Note that this step may be viewed as transcendental to the protocol, since it amount to the

veri�er telling the prover its identity. [Indeed, a cheating veri�er may lie about its identity;

we merely rely on the fact that somebody knows the trapdoor to the index i if indeed it is

in the public �le. Since we view the adversary as controlling the entire \world outside the

prover" it really does not matter who knows the trapdoor.]

(2) This step is analogous to Step (V1) in the protocol of Section 4: The veri�er commits to a

sequence of t

def

= n � jEj uniformly and independently chosen edges. The commitment is done

using the constant-round perfectly-hiding commitment scheme PC2, in which the veri�er

plays the role of the sender and the prover plays the role of the receiver. The scheme PC2

is invoked while setting the security parameter to k = K

�

=2, where � > 0 is as speci�ed in

the strong binding feature of PC1. The randomization required for the actions of the receiver

in PC2 is determined by applying the pseudorandom function f to (G; �; history), where

history is the transcript of all messages received by the prover so far.

Thus, the prover gets no information on the committed edges, while it is infeasible for the

veri�er to \de-commit" in two di�erent ways.

[The analysis makes heavy use of the setting of the security parameter k = K

�

=2. On one

hand, this setting guarantees that a quantity that is polynomial in K is also polynomial in

k. On the other hand, time 2

k

which su�ces to violate the computational-binding property

of PC2 when run on security parameter k, is insu�cient to violate the strong computational-

binding property of PC1 when run on security parameter K (since 2

k

= 2

K

�

=2

� 2

K

�

).]

(3) This step is analogous to Step (P1) in the protocol of Section 4: The prover uses PC1 with

index i in order to commit to a sequence of t random colorings. That is, the prover invokes

t instances of protocol PC1 playing the sender in all of them, and acts as if it has received i

(the index) in all these instances.

Recall that the prover wishes to commit to t � n values, the (jn+ v)

th

value being the color

assigned to vertex v by the j

th

random coloring (i.e., the j

th

random relabeling of �, selected

among the six permutations of the colors f1; 2; 3g). All randomizations (i.e., the choice of the

random coloring as well as randomization required by PC1) are determined by applying the

pseudorandom function f to (G; �; history), where history is the transcript of all messages

received by the prover so far.

(4) The veri�er decommits to the edge-sequence it has committed to in Step (2). That is, it

reveals the sequence of t edges, as well as the necessary information required to determine

the correctness of the revealed values. [This step is analogous to Step (V2).]

(5) In case the values revealed (plus the \de-commitment" information) in Step (4) match the

commitments sent in Step (2), and in case all queries are edges, the prover reveals the corre-

sponding colors and provides the corresponding de-commitment. [This step is analogous to

Step (P2).]
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(6) In case the values revealed (plus the \de-commitment") in Step (5) match the commitments

sent in Step (3), and in case they look as part of legal 3-colorings (i.e., each corresponding

pair is a pair of di�erent elements from the set f1; 2; 3g), the veri�er accepts. Otherwise it

rejects. [This step is analogous to Step (V3).]

We note that, in the above description of the protocol, the veri�er does not use the trapdoor

(i.e., trap(i)). The fact that the veri�er (or rather an adversary controlling all possible veri�ers)

knows the trapdoor will be used by the simulator which is rather straightforward: In contrast

to standard constructions of simulators (cf., [32, 28]), the current simulator does not \rewind"

the veri�er. Instead, it simulates an execution of the protocol by emulating the actions of the

prover in Steps (1){(4), using some dummy sequence (rather than a sequence of colorings) in

Step (3). However, when getting to Step (5), and in case the veri�er has decommitted properly, the

simulator uses trap(i) in order to decommit to the corresponding edge queries in a random legal-

looking way (i.e., it decommits to a uniformly and independently chosen pair of distinct colors,

for each such edge). This uses the trapdoor feature of PC1 and the hypothesis that the veri�er

(and so the simulator) knows this trapdoor. The above description corresponds to simulation of

the �rst session with the prover. Subsequent sessions are simulated in the same way assuming

that the execution of Steps (1){(2) of the current session is di�erent than in all previous sessions.

Otherwise, we simulate Steps (3) and (5) by copying the values used in the previous session. A last

issue to be addressed is the possibility that in two executions of the protocol the veri�er may send

the same messages in Step (2) but latter decommit in two di�erent ways in Step (5), in which case

the output of the simulator may be noticeably di�erent from the output in real executions. Using

the computational-binding property of the scheme PC2, we argue that this event may only occur

with negligible probability. This establishes the resettable zero-knowledge property of the above

protocol (in the preprocessing model).

Observe that the computational-binding property of PC1 allows computationally-unbounded

provers to successfully fool the veri�er, and hence the above protocol does not constitute an inter-

active proof. However, one can show that computationally-bounded provers can fool the veri�er

only with negligible probability, and so that the protocol is computationally-sound.

Proposition 16 (informal): The above protocol is computationally sound.

Proof Sketch: Intuitively, one would like to argue that the computational-binding property

of PC1 does not allow to decommit to two di�erent values in Step (5). The problem is that the

prover commits to colors in Step (3) after obtaining the veri�er's commitment to queries, and

that the prover decommits only after the veri�er decommits. How can we rule out the (intuitively

unlikely) possibility that the veri�er's decommitment allows the prover to decommit accordingly

(in a way it could not have done before getting the veri�er's decommitment)? Here we use the

strong computational-binding property of PC1 (relative to security parameter K); that is, the fact

that it holds also with respect to circuits of size 2

K

�

= 2

2k

. We also use the fact that commitments

with PC2 were done while setting the security parameter to k, and so we can decommit any way

we want while using time 2

k

. Thus, the binding property of PC1 has to be maintained in Step (5);

i.e., it should be infeasible to decommit \at will" in Step (5) also after obtaining the decommitment

of the veri�er at Step (4).

In the actual proof we consider what happens in Step (5) when the prover interacts with an

imaginary veri�er that at Step (4) uniformly selects new queries and decommits according to these

values. Observe that such an imaginary veri�er can be implemented within time poly(n) �2

k

. Thus,

if we consider the mental experiment in which Steps (4)-(5) are repeated T = 2

k=3

times, after a
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single execution of Steps (1)-(3), then all proper decommits by the prover must be for the same

value (or else the binding property of PC1 is violated in time T � poly(n) � 2

k

� 2

2k

). Furthermore,

the above should hold for at least 1 � T

�1

fraction of random executions of Steps (1)-(3). Thus,

if we consider a computationally-bounded prover that fools the veri�er, only a term of O(2

�k=3

)

in its success probability may be attributed to \ambiguous decommitment". The computational-

soundness of the protocol follows by noting that (1 � jEj

�1

)

t

) � e

�n

is an upper bound on the

probability of fooling the veri�er in case commitments are non-ambiguous. This establishes the

computationally-soundness of the above protocol.

6.3.2 Back to the (bare) public-key model

Given the above, all that is needed in order to adapt the protocol to the public-key model is to re-

place the assumption that the veri�er knows the trapdoor by a (zero-knowledge) proof-of-knowledge

of this claim. We stress that the veri�er in the above protocol will play the role of knowledge-prover,

whereas the main prover will play the role of a knowledge-veri�er. This protocol has to maintain

its soundness also when the knowledge-veri�er undergoes \rewinding". Furthermore, it should be

constant-round. (We comment that we are not aware of a known protocol satisfying these strong

requirements.) On the other hand, we don't need \full-edged" zero-knowledge property; simu-

latability in sub-exponential time will su�ce (as it is merely used for the computational-soundness

property which is established based on the strong computational-binding property of PC1, which

in turn accounts for such running times too). Thus, Step (1) in the above protocol is augmented

by a constant-round proof-of-knowledge (POK) which proceeds as follows:

The parties: A knowledge-veri�er, denoted KV, played by the main prover, and a knowledge-

prover, denoted KP, played by the main veri�er.

Inputs: Common input i 2 f0; 1g

K

.

Furthermore, KP gets as auxiliary input the randomness used to generate i (equiv., to generate

(i; trap(i))).

Goal: KP wants to prove that it knows trap(i).

High level: We present a proof of knowledge (POK) of the relevant NP-witness; that is, POK of

the randomness used to generate i. (Such knowledge yields knowledge of trap(i).) The POK

is via the standard reduction of this NP-relation to the NP-relation corresponding to Hamil-

tonicity (which is NP-Complete). We stress that the standard reduction comes with e�cient

transformation of NP-witnesses from the original relation to the target Hamiltonicity relation

and vice versa. Thus, the auxiliary-input of KP allows to e�ciently compute a Hamiltonian

cycle in the target graph, and from any such Hamiltonian cycle one may e�ciently retrieve

trap(i).

The proof of knowledge (POK) of Hamiltonicity is based on Blum's proof system for this

language, which is reproduced in Appendix B. An important property of Blum's basic proto-

col is that it is a \challenge{response" game in which the challenge consists of a single bit.

Furthermore, responding correctly to both possible challenges allows to extract a Hamilto-

nian cycle (i.e., the knowledge claimed).

32

This property simpli�es the knowledge extraction

argument in case many copies are played in parallel: Ability to respond to any two di�erent

32

This property holds also for other protocols for NP, but not for the 3-Colorability protocol of [28]. Any protocol

having the property will do.
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sequences of challenges yields a Hamiltonian cycle. Below we run the protocol k times in

parallel, where k = K

�

=3. The resulting protocol will have negligible knowledge-error

33

(i.e.,

error of 2

�k

), and will be simulatable in time poly(K) � 2

k

. Furthermore, the simulation will

be indistinguishable from the real interaction by any 2

K

�

-size circuits. As stated above, we

are not concerned of the fact that the protocol may not be zero-knowledge (i.e., simulatable

in poly(K)-time).

The protocol uses a perfectly-binding commitment scheme with strong computational-secrecy; that

is, circuits of size 2

K

�

cannot distinguish commitments to two di�erent known values (with distin-

guishing gap better than 2

�K

�

). Such a scheme can be constructed based on the DLP assumption

utilized above.

(pok1) Using the perfectly-binding commitment scheme, KP commits to each of the entries of

k = K

�

=3 matrices, each generated as in Blum's basic protocol. (That is, each matrix is the

adjacency matrix of a random isomorphic copy of the graph obtained from the reduction.

In case the output of the reduction is a graph with N vertices, the commitment scheme is

applied k �N

2

times.) The commitment scheme is run with security parameter K.

(pok2) KV \randomly" selects a sequence c = c

1

� � � c

k

2 f0; 1g

k

of k challenges. Actually, the

sequence c is determined by applying the pseudorandom function f to the input (i.e., the

index i) and the history so far (of the POK protocol).

(pok3) KP answers each of the k bit queries as in Blum's basic protocol. (That is, if c

j

= 0 then

KP decommits to all entries of the j

th

matrix and also reveals the isomorphism; otherwise, KP

decommits only to the entries corresponding to the Hamiltonian cycle. Note that the location

of the latter entries is determined by applying the isomorphism to the original cycle.)

(pok4) KV accepts if and only if all answers are valid. Speci�cally, in case c

j

= 0, KV checks

that the revealed matrix is indeed isomorphic (via the provided isomorphism) to the matrix

representing the reduced graph. In case c

j

= 1, KV checks that all revealed entries are indeed

1's. (In both cases, for each revealed value, KV checks that the decommitment is valid.)

The weak zero-knowledge property is easy to establish. That is, we need and do show that the

interaction with any (possibly dishonest but computationally-bounded) knowledge-veri�er can be

simulated in time poly(k) � 2

k

. This follows by merely using the standard simulator procedure

(cf., [32, 28]), which merely selects a random string c 2 f0; 1g

k

and \simulates" Step (pok1) so

that it can answer the challenge c (but not any other challenge). The strong computational-secrecy

of the commitment scheme (used with security parameterK) guarantees that the knowledge-veri�er

cannot guess c better than with probability approximately 2

�k

, and so we will succeed with over-

whelming probability after at most k �2

k

tries. Standard arguments will also show that the output of

the simulator cannot be distinguish from the real interaction by circuits of size 2

K

�

�1

> 2

2k

. Thus,

this simulator can be plugged into the argument given above for computational-soundness in the

case of preprocessing, and yield that the augmented protocol maintains computational-soundness:

The potentially cheating prover in the main protocol induces a cheating knowledge-veri�er, and

what the simulation says is that in case the veri�er (playing the knowledge-prover) follows the

protocol then whatever the knowledge-veri�er can compute after interacting with it, can also be

computed with overhead of at most poly(k) � 2

k

on input the index i. Thus, we have

33

Loosely speaking, the knowledge-error is the probability that the veri�er may get convinced by a cheating prover

who does not know a Hamiltonian cycle. For a precise de�nition, see Appendix B.
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Proposition 17 (informal): The modi�ed main protocol is computationally sound.

We now turn to establish the resettable zero-knowledge property of the entire protocol. As

a �rst step towards this goal, we establish that the above sub-protocol is indeed a POK with

knowledge-error 2

�k

(see Def. 25 in Appendix B). In other words, we analyze a single execution of

the sub-protocol, and thus we may assume that Step (pok2) is replaced by sending a truly random

string c. This assumption is not valid when the sub-protocol is run many times, and this is why

the simpli�ed analysis provided here does not su�ce. However, it does provide a good warm-up.

Without loss of generality, consider a deterministic cheating knowledge-prover, and let C be

the message sent by it in Step (pok1). Consider the probability space of all 2

k

possible challenges

c 2 f0; 1g

k

that KV may send in Step (pok2). Say that a challenge c 2 f0; 1g

k

is successful for

this knowledge-prover if its answer in Step (pok3) is accepted by KV in Step (pok4). The key

observation is that given the knowledge-prover's answer to any two di�erent successful challenges

we can easily reconstruct the Hamiltonian cycle (and from it easily reconstruct the trapdoor).

34

To

extract the Hamiltonian cycle we just invoke the knowledge-prover many times, each time it answers

with the same Step (pok1) message but then we challenge it with a new randomly chosen c (i.e.,

chosen independently of all prior attempts). If we ever obtain its answer to two successful challenges

then we are done. Denoting by p the probability that a uniformly chosen challenge is successful, we

conclude that if p > 2

�k

then given oracle access to the knowledge-prover (played by the adversary)

we can (with overwhelmingly high probability) �nd the trapdoor in time poly(k)=(p � 2

�k

). By

a trivial modi�cation, we obtain a knowledge extractor which for any p > 0 with overwhelming

probability runs for time poly(k)=p, and in case p > 2

�k

also retrieves the trapdoor.

35

The above argument would have su�ces if we were guaranteed that the adversary, when playing

the role of KP, never repeats the same Step (pok1) message (in two di�erent sessions of the entire

protocol). Let use assume so and see how, under this unjusti�ed assumption (which will be removed

later), the resettable zero-knowledge property follows.

Consider a sequence of invocations (sessions) of the main protocol. The simulator will proceed

by simulating one session after the other, where a single session is simulated as follows. The

simulator starts by playing the role of KV in Step (1). In case KV rejects then the simulator

complete the simulation of the current session by announcing that the prover aborts it. Note

that this is exactly what would have happened in the real interaction. In case KV accepts, the

simulator will use the knowledge-extractor described above in order to extract the trapdoor of the

index i sent in Step (1). Here is where we use the assumption that the adversary does not repeat

the same Step (pok1) message. The point is that the knowledge-extractor described above will

try many di�erent challenges for Step (pok2). Since the challenge is determined as a \random"

function evaluated at a new point (here is where we use the \no repeat" clause), we may view this

challenge as random. Thus, the above analysis applies. The conclusion is as follows. Suppose that

the cheating veri�er convinces KV with probability p, We distinguish three cases. In case p = 0,

the simulator will always construct an aborting execution (just as in the real interaction). In case

p > 2

�k

, with probability 1� p the simulator will construct an aborting execution (just as in the

real interaction), and otherwise using time poly(k)=p it �nds the trapdoor of the index i sent in

Step (1), which allows it to complete the simulation of Steps (2){(6) just as done above (in the case

of preprocessing). Note that the expected number of steps required for the simulation in this case

is (1� p) �poly(k)+ p � (poly(k)=p) = poly(k). The only case left is the one where p = 2

�k

. In this

34

This is the case since each such pair of challenges di�ers at some location, and from the two answers to this

location we may reconstruct the Hamiltonian cycle.

35

This can be done by using a time-out mechanism invoked when poly(k) � 2

k

steps are completed, and observing

that if p > 2

�k

then in fact p � 2 � 2

�k

and so (p� 2

�k

)

�1

� 2=p.
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case, the simulator fails with probability p, which is negligible, and so its output is computationally

indistinguishable from a real interaction. We stress that in all cases the simulator runs in expected

time poly(k).

Having concluded all these warm-ups, we are now ready to deal with reality. The di�culty occurs

when the adversary uses the same index and same Step (pok1) message in two di�erent sessions

with the prover. Furthermore, suppose that in the �rst session it fails to convince KV played by

the prover, but in the second session it succeeds. The problem (avoided by the assumptions above)

is that we cannot use a di�erent challenge (i.e., message for Step (pok2)) in the second session,

since the challenge is determined already by the �rst session. Thus, the simulator cannot complete

the simulation of the second session, unless it \rewinds" up to the �rst session in which the same

Step (pok1) message is used.

36

This need to \rewind" sessions that were already completed may

lead to exponential blow-ups as discussed by Dwork, Naor and Sahai [15]. What saves us here is

that the number of times we possibly need to \rewind" is a-priori bounded by the total number of

indices in the public �le. (This is the key and only place where we use the assumption underlying

the public-key model.)

The heart of the analysis { a sketch: Let us reproduce and further abstract the problem we

need to analyze. Recall that we will consider only non-interleaving (i.e., sequential) adversaries.

We are dealing with a game consisting of multiple (history dependent) iterations of the following

steps, which depends on a random function f �xed once and for all.

(a) The veri�er sends a pair (i; C), where i belongs to some �xed set I and C is arbitrary. This pair

is determined by applying the veri�er's strategy, V

�

, to the history of all previous iterations

(of these steps).

[Indeed, i corresponds to the index sent in Step (1), I to the public �le, and C to the message

of Step (pok1).]

(b) The prover determines a k-bit string, c = f(i; C), by applying f to the pair (i; C).

[This corresponds to Step (pok2) of KV played by the prover.]

(c) The veri�er either succeeds in which case some additional steps (of both prover and veri�er)

take place or it fails in which case the current execution is completed.

[This corresponds to whether the veri�er, playing KP, has provided a valid decommitment in

Step (pok3), and to the continuation of the main protocol which takes place only in case the

veri�er has done so.]

We want to simulate an execution of this game, while having oracle access to the veri�er's strategy

(but without having access to the prover's strategy, which enables the further steps referred to in

Step (c) above). Towards this goal we are allowed to consider corresponding executions with other

random functions, f

0

; f

00

; :::, and the rule is that whenever we have two di�erent successes (i.e.,

with two di�erent challenges c) for the same pair (i; C) we can complete the extra steps referred to

in Step (c). [This corresponds to extracting the trapdoor of i, which allows the simulation of the

rest of the steps in the current interaction of the main protocol.]

Thus, problems in simulating the above game occur only when we reach a successful Step (c).

In such a case, in order to continue, we need a di�erent success with respect to the same pair (i; C).

In order to obtain such a di�erent success, we will try to run related simulations of the game. Once
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We comment that in general, a simulator for resettable zero-knowledge may not proceed by generating the

sessions one after the other without \rewinding" between di�erent sessions.
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we �nd two successes for the same pair (i; C), we say that i is covered, and we may proceed in the

simulation temporarily suspended above. That is, a natural attempt at a simulation procedure is

as follows. We simulate the iterations of the game one after the other, using a random function

f selected by us. Actually, the random function f is de�ned iteratively { each time we need to

evaluate f at a point in which it is unde�ned (i.e., on a new pair (i; C)) we randomly de�ne f

at this point. As long as the current iteration we simulate fails, we complete it with no problem.

Similarly, if the current iteration is successful relative to the current pair (i; C) and i is already

covered, then we can complete the execution. We only get into trouble if the current iteration

is successful relative to (i; C) but i is not covered yet. One natural thing to do is to try to get i

covered and then proceed. (Actually, as we shall see, covering any new element of I , not necessarily

i, will do.)

Starting with all I uncovered, let us denote by p the probability that when we try to simulate

the game a success occurs. Conditioned on such a success occurring, our goal is to cover some

element of I within expected time poly(k)=p. Suppose we can do this. So in expected time

(1 � p) � poly(k) + p � (poly(k)=p) = poly(k) we either completed a simulation of the entire game

or got some i 2 I covered. In the �rst case, we are done. In the second case, we start again in an

attempt to simulate the game, but this time we have already i covered. Thus, we get into trouble

only if we reach a success relative to (i

0

; C) with i

0

2 I

0

def

= I n fig. Again, we may denote by p

0

the

probability that when we try to simulate the game a success occurs with respect to some i

0

2 I

0

. In

such a case, we try to cover some element of I

0

, and again the same analysis holds. We may proceed

this way, in up to jI j+ 1 phases, where in each phase we either complete a random simulation of

the game or we get a new element of I covered in each iteration. Eventually, we do complete a

random simulation of the game (since there are more phases than new elements to cover). So,

pending on our ability to cover new elements within time inversely proportional to the probability

that we encounter a success relative to a yet uncovered element, each phase requires poly(k) steps

on the average. Thus, pending on the above, we can simulate the game within expected time

poly(k) � jI j = poly(k) (by the hypothesis regarding I).

We now consider the task of covering a new element. Let us denote the set of currently uncovered

elements by U . Let H denote the pre�x of completed executions of the simulated game and let

(i; C) = V

�

(H) be the current pair which is related to the current success, where i 2 U . To get i

covered we do the following:

1. Let H

0

be the maximal sequence of executions which does not contain (i; C) as a Step (a)

message. Note that H

0

= H in case the current pair (i; C) does not appear as a Step (a)

message in some (prior) execution in H .

2. Rede�ne f

0

(i; C) uniformly at random, and try to extend H

0

(with respect to to the function

f

0

) just as we do in the main simulation (where we currently try to extend H with respect

to to the function f). If during an attempt to extend H

0

we encounter a new (i.e., di�erent

than above) success with respect to the same pair (i; C) then i itself gets covered, and we

have ful�lled our goal. Otherwise, we repeat the attempt to extend H

0

(with a new random

choice for f

0

(i; C)) as long as we did not try more than k � 2

k

times. In case all attempts fail,

we abort the entire simulation.

We will show that, for p > 2

�k

, we will get a new element covered while making (p� 2

�k

)

�1

tries, on the average.

3. If during the current attempt to extend H

0

we encounter a success relative to some other pair

(i

0

; C

0

) 6= (i; C), where i

0

(possibly equals i) is also currently uncovered, then we abort the

current extension of H

0

(and try a new one { again as long as k � 2

k

tries are made).
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Thus, we have

Proposition 18 (informal): The above game can be simulated within expected poly(k)-time.

The procedure has oracle access to the adversary V

�

, and calls the procedure Extend.

(M1) Initialization: U  ;.

(M2) Repeat up to jI j+ 1 times

(M3) Initialization: H  x and f is totally unde�ned.

(M4) Let answer Extend

f

V

�

(U;H).

(M5) If answer constitute a full simulation transcript then halt with output answer.

[Comment: Otherwise answer = (H; (i; C); f(i; C)), with i =2 U ,

and V

�

(H; (i; C); f(i; C)) is successful. Our aim now is to cover i]

(M6) Let H

0

be the maximal pre�x of H satisfying V

�

(H

0

) = V

�

(H), and let r = f(i; C).

(M7) Repeat up to k � 2

k

times

(M8) Rede�ne f(i; C) at random di�erent than r:

That is, select r

0

uniformly in f0; 1g

k

n frg and let f(i; C) r

0

.

(M9) Let answer Extend

f

V

�

(U;H

0

).

[Comment: answer is an extension of H

0

.]

(M10) If answer contains a success with respect to (i; C) then U  U [ fig and goto (M2).

[Comment: In this case we have two di�erent successes w.r.t (i; C),

since f(i; C) = r

0

6= r. Thus, i got covered.]

[Comment: Otherwise we proceed to the next iteration of (M7).]

(M11) End [of inner repeat loop]

(M12) In case all attempts have failed, the procedure aborts with an error message.

(M13) End [of outer repeat loop]

Figure 2: The main simulation procedure

A more precise description is provided in Figures 2 and 3, and the actual analysis presented below

refers to this formal description. The main procedure (of Figure 2) attempts jI j+1 times to generate

a full transcript, while constructing the random function, f , on the y. Typically, each attempt

which fails to generate a full transcript provides \progress" in the form of a new element being

covered. The non-typical case, which (as we will show) occurs with negligible probability, is that

neither happens. Another thing to be proven is that the expected number of times that the main

procedure repeats (M8){(M10) is inversely proportion to the probability that for uniformly chosen

r 2 f0; 1g

k

it holds that V

�

(H

0

; (i; C); r) succeeds, where H

0

and (i; C) are as de�ned in (M6). The

extension of transcripts, either initial ones as in (M4) or partial ones as in (M9), is performed (in a

straightforward manner) by the Extend procedure depicted in Figure 3. In particular, once Extend

\gets into trouble" (reaches a success w.r.t (i

0

; C

0

) where i

0

is uncovered) it returns control to the

main procedure. In case Extend is invoked in (M4), we next try to get i covered. In case Extend is

invoked in (M9), if (i

0

; C

0

) = (i; C) then we obtain a di�erent success to the one obtained already,

and consequently i gets covered.

Proposition 19 (Analysis of the main procedure): We consider a single execution of the outer

loop in the main procedure.

1. The total expected time spent in such an execution is poly(k).
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The procedure is invoked with some set U � I , partial transcript H and partially de�ned

function f . Speci�cally, it is either invoked with a trivial partial transcript (i.e., H = x) or

with H so that (i; C)

def

= V

�

(H) and i =2 U . In the latter case, f is de�ned on (i; C), and

V

�

(H; (i; C); f(i; C)) succeeds.

Extend

f

V

�

(U;H)

(E1) Repeat till V

�

(H) halts

(E2) (i

0

; C

0

) V

�

(H) (assuming V

�

(H) does not halt).

(E3) If f is not de�ned on (i

0

; C

0

) then select r

0

uniformly in f0; 1g

k

and let f(i

0

; C

0

) r

0

.

(E4) If V

�

(H; (i

0

; C

0

); f(i

0

; C

0

)) fails then H  (H; (i

0

; C

0

); f(i

0

; C

0

);?) and goto (E1).

[Comment: Otherwise V

�

(H; (i

0

; C

0

); f(i

0

; C

0

)) succeeds.]

(E5) If i

0

is covered (i.e., i

0

2 I nU) then complete H as in Step (c) and goto (E1).

[Comment: Otherwise i

0

is not covered, and we return a partial transcript.]

(E6) return(H; (i

0

; C

0

); f

0

(i

0

; C

0

)).

[Comment: If (i

0

; C

0

) = (i; C) we return a transcript containing a success w.r.t (i; C).]

(E7) End [of repeat loop]

[Comment: Reaching this point means completion of simulation.]

(E8) return(H).

Figure 3: The Extend procedure

2. The probability that the the execution aborts with an error message is at most poly(k) � 2

�k

.

Recall that, unless the execution aborts with an error message, it either completes a simulation of

the game or provides a new covered element. Incorporating the abort event into the deviation of

the simulator, we obtain a simulation of the game within expected time jI j � poly(k) = poly(k) and

deviation poly(k) � 2

�k

.

Proof Sketch: The running-time of Extract is bounded by the running time of an execution of

the real game, which in turn is polynomial in k. Thus, we may charge each invocation of Extract

as unit cost. Our aim is to show that the expected charge accumulated in a single execution of the

outer loop in the main procedure is poly(k).

For every partial transcript H (and every U � I), denote by p

H

the probability that H appears

as a pre�x of a transcript generated by Extend

V

�

(U; x). By disjointness of the events corresponding

to pre�xes of equal length we have

P

H

p

H

= poly(k).

Let us call H

0

interesting if the following two conditions hold: (1) V

�

(H

0

) = (i; C) with i 2 U ,

and (2) for every pre�x H

00

of H

0

, it holds that V

�

(H

00

) 6= V

�

(H

0

). For every interesting H

0

,

denote by q

H

0
the probability that Extend

V

�

(U;H

0

) contains a success with respect to V

�

(H

0

) and

furthermore that this is the �rst success in the extension ofH

0

. Note that q

H

0

equals the probability

that a single execution of the outer loop of the main procedure determines H

0

as a maximal pre�x

in (M6), conditioned on H

0

being a pre�x of Extend

V

�

(U; x). Thus, conditioned on the latter event,

the inner loop is executed with probability q

H

0

. In case q

H

0

> 2

�k

(i.e., q

H

0

� 2 �2

�k

), each iteration

of the inner loop covers i with probability

2

k

� q

H

0
� 1

2

k

� 1

> q

H

0

� 2

�k

Thus, the expected number of iteration of the inner loop is less than (q

H

0

� 2

�k

)

�1

� 2=q

H

0

.

Furthermore, with probability at least 1 � 2

�k

, the inner loop is not repeated more than 2k=q

H

0
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times. In case q

H

0

= 2

�k

, the number of iteration of the inner loop equals k � 2

k

= k=q

H

0

. We

conclude that the expected running time of a single iteration of the outer loop is at most

X

H

0

:q

H

0

=0

p

H

0

� 1 +

X

H

0

:q

H

0

>0

p

H

0

�

�

q

H

0

�

O(k)

q

H

0

+ (1� q

H

0

) � 1

�

= poly(k)

and Part 1 of the proposition follows.

Part 2 follows easily by observing that the execution (of the outer loop) may be aborted only

in two cases (relative to the current H

0

determined in (M6)). The �rst case is when q

H

0
> 2

�k

, but

(as mentioned above) in this case abort happens with probability at most (1� (q

H

0
=2))

k2

k

< 2

�k

,

since k � 2

k

� 2k=q

H

0

. The second case is when q

H

0

= 2

�k

, but in this case we reach (M6) with

probability p

H

0

� q

H

0

. Summing over all H

0

's, the probability of abort is bounded above by

X

H

0

:q

H

0

=2

�k

p

H

0
� q

H

0
+

X

H

0

:q

H

0

>2

�k

p

H

0
� q

H

0
� 2

�k

�

X

H

0

p

H

0
� 2

�k

= poly(k) � 2

�k

and Part 2 of the proposition follows.

6.4 Almost constant-round rZK under weaker assumptions

Using a perfectly-hiding commitment scheme which enjoys the trapdoor feature but not necessarily

the strong computational-binding feature, one may obtain resettable zero-knowledge computationally-

sound proof system for NP in the public-key model. These protocols, however, have an unbounded

number of rounds. The idea is to use sequential repetitions of the basic protocols (both for Steps (2){

(6) of the main protocol as well as for the POK sub-protocol) rather that parallel repetitions. That

is, both Steps (2){(6) of the main protocol and the POK sub-protocol consists of parallel executions

of a basic protocol, and what we suggest here is to use sequential repetitions instead. The number

of (sequential) repetitions can be decreased by using Blum's protocol (rather than the one of [28])

also as a basis for the main proof system (i.e., in Steps (2){(6)). To minimize round complexity, one

may use a parallel-sequential hybrid in which one performs s(n) sequential repetitions of a protocol

composed of parallel execution of p(n) = O(logn) copies of the basic protocol (of Blum). This

yields a O(s(n))-round resettable zero-knowledge computationally-sound proof system for NP in

the public-key model, for any unbounded function s : N!N. In particular, we obtain

Theorem 20 Let r : N! N be any unbounded function which is computable in polynomial-time,

and suppose that for every polynomial p and all su�ciently large n's, any circuit of size p(n) solves

DLP correctly only on a negligible fraction of the inputs of length n. Then every language in NP

has a r(�)-round resettable zero-knowledge computationally-sound proof system in the public-key

model.

Alternatively, we note that by using the perfectly-hiding commitment scheme PC1 also in role

of the (\weaker") scheme PC2, we obtain resettable zero-knowledge property also against sub-

exponential adversaries. Speci�cally, even adversaries of running-time bounded by 2

k

�

= 2

K

�

2

gain

nothing from the interaction, where K (the primary security parameter), k = K

�

(the secondary

security parameter) and � (the exponent in the strong computational-binding feature) are as above.

6.5 An alternative presentation of resettable zero-knowledge systems

An alternative presentation of the above protocol may proceed as follows: Rather than relying

on general proofs of knowledge we introduce an additional requirement from the PC1 commit-

ment scheme. The new feature referred to as One-Or-All asserts that obtaining two di�erent
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decommitments to the same commitment allows to (feasibly) decommit any way one wants. In

our application, the veri�er is supposed to know the trapdoor to an instance of the PC1 scheme,

allowing it to decommit any way it wants. Thus, if the veri�er demonstrates ability to decom-

mit at will then this e�ectively yields a proof of knowledge of the trapdoor. Put in other words,

if the simulator may obtain from the veri�er (by rewinding, which is not possible for the actual

prover) two di�erent decommitments to the same commitment then it can later decommit at will.

Of course, the veri�er's demonstration of ability to decommit at will should be performed in a

\zero-knowledge" manner. The natural protocol is to have the veri�er commit to a k-bit string,

and later decommit any way as required by the prover. The natural way to (weakly) simulate this

is to select at random a single k-bit string, commit to it and hope that the prover will require to

decommit to this value.
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A Constructing rZK and rWI proof-systems in the single-incarnation

model

This appendix shows that Construction 7 is su�cient for transforming any WI (ZK) proof-system

in the concurrent model into an rWI (rZK) proof-system. The proof of this case is simpler than that
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of the multiple-incarnation case (i.e., Theorem 8) and can serve as a warm-up for the proof there.

For the purpose of this warm-up we further simplify the analysis by assuming (unrealistically!)

37

that the �rst message of prover P is a �xed string, independent of r

1

. This simplifying assumption

allows us to focus here on the main ideas underlying the analysis of the protocol transformation.

Speci�cally, we show:

Proposition 21 (for warm-up purposes only): Suppose that (P; V ) is admissible and that the �rst

message of P is a �xed string. Let P be the prover strategy obtained from P by applying Construction

7, assuming that pseudorandom functions exist. Then for every probabilistic polynomial-time V

�

in the single-incarnation resettable model, there exists a probabilistic polynomial-time W

�

in the

concurrent model so that hP (y);W

�

i(x) is computationally indistinguishable from hP(y); V

�

i(x).

It follows that if P is concurrent zero-knowledge (resp., witness-indistinguishable) then P is reset-

table zero-knowledge (resp., witness-indistinguishable) in the single-incarnation model.

Proof Sketch: By Theorem 2, it su�ces to consider the sequential variant of the resettable

model. Thus, V

�

proceeds in rounds, where in each round it initiates a new session with the single

incarnation of P, and carries it out till completion. Our analysis will refer to a mental experiment

in which P utilizes a truly random function rather than a pseudorandom one. As usual, the

corresponding views of the veri�er V

�

in the two cases (i.e., random versus pseudorandom function)

are computationally indistinguishable. From this point on, we identify the random-tape of P with

a truly random function.

Working in the concurrent model, W

�

handles the messages of V

�

as follows:

1. V

�

initiates a new session: In this case W

�

initiates a new session with the prover P , obtains

its �rst message, denoted msg, and forwards msg to V

�

.

(Here we capitalize on the fact that, by our hypothesis, independent sessions of P yield

the very same �rst prover-message. This is important because V

�

always initiates the same

incarnation of P, and hence expects to always obtain the same �rst prover-message.)

2. V

�

sends a new �rst-message: That is, we refer to the case where the current message sent

by V

�

is the �rst veri�er-message in the current session (carried out by V

�

with P), and

assume that this message is di�erent from all �rst-veri�er-messages sent in prior sessions. Let

msg

0

denote the message sent by V

�

. Then W

�

sends msg

0

to one of the sessions (which it

carries out with P ) that still awaits a �rst-veri�er-message,

38

obtains the prover's response,

and forwards it to V

�

. Finally, W

�

designates this session (with P ) as the active session of

msg

0

, and stores the prover's response.

(All subsequent sessions of V

�

in which the �rst-veri�er-message equals msg

0

will be \served"

by the single session of W

�

designated as the active session of msg

0

. Non-active sessions will

not be used (i.e., W

�

does not send any message in them).)

3. V

�

repeats a �rst-message: That is, we refer to the case where the current message sent by

V

�

is the �rst veri�er-message in the current session, and assume that this message equals a

37

Unfortunately, this assumption does not hold in the protocols to which we want to apply the transformation. In

fact, in some sense, this assumption cannot possibly hold when one considers (as we do) adversaries V

�

that may be

non-uniform polynomial-size circuits.

38

Such a session exists since W

�

initiates a new session per each new session initiated by V

�

, whereas W

�

sends

at most one �rst veri�er-message per each such message sent by V

�

.
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�rst-veri�er-message, msg

0

, sent in a prior session. In this case, W

�

retrieves from its storage

P 's answer in the active session of msg

0

, and forwards it to V

�

.

We stress that W

�

does not communicate with any session of P in this case. (Note that if

W

�

were to send the same message msg

0

to two sessions of P then the responses could have

di�ered, whereas V

�

expects to see exactly the same answer in sessions in which it sends the

same msg

0

.)

4. V

�

sends a valid non-�rst-message: That is, we refer to the case where V

�

sends a non-�rst-

message in the current session and this message is valid; that is, P accepts it as valid as per

De�nition 5. (In this case, the message is essentially determined by the �rst-veri�er-message

in that session.)

We stress that it is universally veri�able whether the current message of V

�

is valid or not

(i.e., this depends only on the current and �rst veri�er-messages, and on all prover-messages

in the current session).

We distinguish two cases, depending on whether this is the �rst time that a valid veri�er-

message of the current round was sent in a session of V

�

in which the �rst veri�er-message

equals msg

0

, where msg

0

is the �rst veri�er-message sent by V

�

in the current session. Let

� > 1 denote the index of the current message sent by V

�

.

(1) The current session is the �rst session in which the �rst veri�er-message equals msg

0

and the �

th

veri�er-message is valid: In this case W

�

forwards the current message to

the active session of msg

0

(with P ), obtains P 's response, stores it, and forwards it to

V

�

.

(2) The current session is not the �rst session in which the �rst veri�er-message equals

msg

0

and the �

th

veri�er-message is valid: In this case W

�

does not communicate with

any session of P . Instead, it merely retrieve the corresponding prover response from

its storage, and forwards it to V

�

. Note that the corresponding answer is stored in the

history of the active session of msg

0

.

(Note that by De�nition 5, it is infeasible for V

�

to send, in two sessions starting with

any �xed veri�er-message, valid messages for the same round that di�er in their main

part. Thus, the responses of P to valid �

th

messages, in sessions starting with any

�xed veri�er-message, are identical. It follows that V

�

will be content with the identical

responses supplied to it by W

�

.)

5. V

�

sends an invalid non-�rst-message: That is, we refer to the case where V

�

sends a non-

�rst-message in the current session and this message is invalid. In this case, W

�

just forwards

P 's standard abort message to V

�

.

We stress that W

�

does not forward the invalid message of V

�

to any session of P , most

importantly not to an active session. This allowsW

�

to handle a corresponding valid message

that may be sent by V

�

in a future session.

6. V

�

terminates: When V

�

sends a termination message, which includes its output, W

�

just

outputs this message and halts.

We stress that W

�

is de�ned to operate in the concurrent model. That is, in every session it

invokes with P , the action of the latter are independent of other sessions. In contrast, V

�

that

operates in the (stronger) resettable model interacts with a single incarnation of P, and so the

actions of P in various sessions are potentially related. Nevertheless, we claim that the output of

54



W

�

is computationally indistinguishable from the output of V

�

. The key observations justifying

this claim refer to the actions of P in the various sessions invoked by V

�

:

� In sessions having di�erent �rst-veri�er-messages, the actions of P are independent. This is

because P determines its actions by applying a random function on the �rst-veri�er-message,

and in this case the results are independent random-tapes.

� In sessions having the same �rst-veri�er-message, the actions of P are practically determined

by that �rst message. This is because in this case P determines the same random-tape, and the

only freedom of V

�

is essentially to choose at each message whether to send a predetermined

(by the �rst-veri�er-message) value or to abort. Thus, the transcripts of all these sessions

correspond to various augmented pre�xes of one predetermined transcript, where each pre�x

is either the complete transcript or a strict pre�x of it augmented by an abort message.

The corresponding transcripts (of imaginary sessions with P) are generated by W

�

by merely

copying from real sessions it conducts with P . Each set of P-sessions sharing the same �rst-

veri�er-message, is generated from a single (distinct) session with P (called the active session of

that message). The way in which W

�

handles invalid messages of V

�

guarantees that it never

aborts an active session, and so such a session can always be extended (up-to completion) to allow

the generation of all P-sessions sharing that �rst-veri�er-message. We stress again that W

�

does

not need to (and in fact does not) abort a session in order to produce P's abort message; it merely

determines whether P aborts and, if so, generates the standard abort message by itself.

Comment: We emphasize the concurrent nature of the adversary W

�

constructed in the proof

above. If V

�

�rst abort a session with �rst-veri�er-message msg

0

, and later sends a corresponding

valid message in a later session with the same �rst-veri�er-message, then W

�

answers V

�

by ob-

taining a response from the active session of msg

0

. However, the latter session was initiated at the

time when msg

0

was �rst sent, and other sessions could have been initiated between the two times

in which V

�

sent msg

0

as a �rst message. Thus, W

�

conducts concurrent sessions with P , although

V

�

only interacts sequentially with P.

B Commitment Schemes

We formally de�ne the various types of commitment schemes used in the main text. We start with

the more standard notion of a commitment scheme in which secrecy is preserved only w.r.t compu-

tationally bounded adversaries, and later pass to the dual notion of a perfectly-hiding commitment

scheme (in which secrecy is preserved in an information theoretic sense). Recall that the binding

property in standard schemes is absolute (i.e., information theoretical), whereas in perfectly-hiding

commitment schemes it holds only w.r.t computationally bounded adversaries. But before de�ning

any of these, let use de�ne a su�cient condition for the existence of all these schemes { a strong

DLP assumption.

B.1 The Strong DLP Intractability Assumption

The Discrete Logarithm Problem (DLP) is de�ned as follows. On input p; g; y, where p is a prime, g

is a primitive element in the multiplicative group modulo p, and y 2 Z

�

p

, one has to �nd x such that

g

x

� y (mod p). We assume that this task is intractable also in the special case where p = 2q+1

and q is a prime too. Such p's are often called safe primes, and the above assumption is quite
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standard. It follows that the same would hold when g is of order q and so is y. Finally, we assume

that intractability refers to sub-exponential size circuits rather merely to super-polynomial ones.

Thus we assume the following:

The Strong DLP Assumption: For some � > 0, for every su�ciently large n, and

every circuit C of size at most 2

n

�

Pr[C(p; g; g

x

mod p) = x] < 2

�n

�

where the probability is taken uniformly over all n-bit long safe primes p, elements g of

order q

def

= (p� 1)=2, and x 2 Z

�

q

.

We comment that, although stronger than the standard assumption, the above Strong DLP As-

sumption seems very reasonable.

B.2 Standard Commitment Schemes

By a standard commitment scheme we refer to one providing computational-secrecy and absolute

(or perfect) binding. For simplicity, we consider here only one-round commitment schemes.

De�nition 22 (standard commitment scheme): A standard commitment scheme is a probabilistic

polynomial-time algorithm, denoted C satisfying:

(Computational) Secrecy: For every v; u of equal poly(n)-length, the random variables C(1

n

; v)

and C(1

n

; u) are computationally indistinguishable by circuits. That is, for every two polyno-

mials p; q, all su�ciently large n's and all v; u 2 f0; 1g

p(n)

and every distinguishing circuit D

of size q(n),

jPr[D(C(1

n

; v)) = 1] � Pr[D(C(1

n

; u)) = 1]j <

1

q(n)

(Perfect) Binding: For every v; u of equal poly(n)-length, the random variables C(1

n

; v) and

C(1

n

; u) have disjoint support. That is, for every v; u and �, if Pr[C(1

n

; v) = �] and

Pr[C(1

n

; u) = �] are both positive then u = v.

The way such a commitment scheme is used should be clear: To commit to a string v, under security

parameter n, the sender invokes C(1

n

; v) and sends the result as its commitment. The randomness

used by C during this computation, is to be recorded and can latter be used as a decommitment.

A commitment scheme as above can be constructed based on any one-way permutation: Loosely

speaking, given a permutation f : D ! D with a hard-core predicate b (cf., [27]), one commits to

a bit � by uniformly selecting x 2 D, and sending (f(x); b(x)� �) as a commitment.

A strong version of the standard commitment scheme requires computational-secrecy to hold

also with respect to sub-exponential-size circuits (i.e., replace the polynomial q above by a function

f of the form f(n) = 2

n

�

, for some �xed � > 0). This is analogous to the strong computational-

binding feature discussed below. The Strong DLP Assumption implies the existence of such strong

computational-secrecy commitment schemes.
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B.3 Perfectly-hiding Commitment Schemes

We start by de�ning two-round perfectly-hiding commitment schemes. In such schemes the party's

strategies may be represented by two algorithms, denoted (S;R), for sender and receiver. The

sender has a secret input v 2 f0; 1g

�

and both parties share a security parameter n. Thus, the �rst

message sent (by an honest receiver) is R(1

n

), and the response by a sender wishing to commit

to a value v (of length bounded by a polynomial in n) is S(1

n

; v; msg), where msg is the message

received in the �rst round. To \de-commit" to a value v, the sender may provide the coin tosses

used by S when committing to this value, and the receiver may easily verify the correctness of the

de-committed value.

De�nition 23 (perfectly-hiding two-round commitment scheme): A perfectly-hiding two-round

commitment scheme is a pair of probabilistic polynomial-time algorithms, denoted (S;R) satisfy-

ing:

(Perfect) Secrecy: For every mapping R

�

(representing a computationally-unbounded cheating

receiver), and for every v; u of equal poly(n)-length, the random variables S(1

n

; v; R

�

(1

n

)) and

S(1

n

; u; R

�

(1

n

)) are statistically close. That is, for every two polynomials p; q, all su�ciently

large n's and all v; u 2 f0; 1g

p(n)

X

�

jPr[S(1

n

; v; R

�

(1

n

)) = �]� Pr[S(1

n

; u; R

�

(1

n

)) = �] j <

1

q(n)

(Computational) Binding: Loosely speaking, it should be infeasible for the sender, given the

message sent by the honest receiver, to answer in a way allowing it to later de-commit in two

di�erent ways.

In order to formulate the above, we rewrite the honest sender move, S(1

n

; v; msg), as con-

sisting of uniformly selecting s 2 f0; 1g

poly(n;jvj)

, and computing a polynomial-time function

S

0

(1

n

; v; s; msg), where msg is the receiver's message. A cheating sender tries, given a receiver

message msg, to �nd two pairs (v; s) and (v

0

; s

0

) so that v 6= v

0

and yet S

0

(1

n

; v; s; msg) =

S

0

(1

n

; v

0

; s

0

; msg). This should be infeasible; that is, we require that for every polynomial-size

circuit S

�

(representing a cheating sender invoked as part of a larger protocol), for every

polynomial p, all su�ciently large n's

Pr[V

n

6= V

0

n

& S

0

(1

n

; V

n

; S

n

; R(1

n

)) = S

0

(1

n

; V

0

n

; S

0

n

; R(1

n

)) ] <

1

q(n)

where (V

n

; S

n

; V

0

n

; S

0

n

) = S

�

(1

n

; R(1

n

)).

A perfectly-hiding two-round commitment scheme can be constructed using any claw-free collection

(cf., [25]). In particular, it can be constructed based on the standard assumption regarding the

intractability of DLP (as the latter yields a claw-free collection). Combing the two constructions, we

get the following perfectly-hiding two-round commitment scheme: On input a security parameter

n, the receiver selects uniformly an n-bit prime p so that q

def

= (p � 1)=2 is prime, a element g of

order q in Z

�

p

, and z in the multiplicative subgroup of Z

�

p

formed by g, and sends the triple (p; g; z)

over. To commit to a bit �, the sender �rst checks that (p; g; z) is of the right form (otherwise it

halts announcing that the receiver is cheating

39

), uniformly selects s 2 Z

q

, and sends g

s

z

�

mod p

as its commitment.

39

Actually, to �t the de�nition, the sender should commit via a special symbol which allows arbitrary decommit.

Surely, such a commitment-decommit pair will be rejected by the honest receiver, which never cheats.
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Additional features: The additional requirements assumed of the perfectly-hiding commitment

schemes in Section 6.3 can be easily formulated. The strong computational binding feature is formu-

lated by extending the Computational Binding Property (of Def. 23) to hold for sub-exponential

circuits S

�

. Again, the Strong DLP Assumption yields such a stronger binding feature. The trap-

door feature requires the existence of a probabilistic polynomial-time algorithm R that outputs pairs

of strings so that the �rst string is distributed as in R (above), whereas the second string allows

arbitrary decommitting. That is, there exists a polynomial-time algorithm A so that for every

(msg; aux) in the range of R(1

n

), every v; u 2 f0; 1g

poly(n)

, and every s 2 f0; 1g

poly(n;jvj)

, satis�es

S

0

(1

n

; v; s; msg) = S

0

(1

n

; u; A(aux; (v; s); u);msg)

That is, a = A(aux; (v; s); u) is a valid decommit of the value u to the sender's commitment to

the value v (i.e., the message S

0

(1

n

; v; s; msg)). Thus, one may generate random commitments c

(by uniformly selecting s and computing S

0

(1

n

; 0

poly(n)

; s; msg)) so that later, with knowledge of

aux, one can decommit to any value u of its choice (by computing a = A(aux; (0

poly(n)

; s); u)).

The DLP construction (of above) can be easily modi�ed to satisfy the trapdoor feature: Actually,

the known implementation for the random selection of z (in the subgroup generated by g) is to

select r uniformly in Z

�

q

and set z = g

r

mod p. But in this case r is the trapdoor we need, since

g

s

z

v

� g

s+(v�u)r

z

u

(mod p), and so we may decommit to u by presenting s+ (v � u)r mod q.

C Blum's Proof of Knowledge

For sake of self-containment, we �rst recall the de�nition of a proof of knowledge. The following

text is reproduced from [22].

C.1 Proofs of Knowledge

Preliminaries

Let R � f0; 1g

�

� f0; 1g

�

be a binary relation. Then R(x)

def

= fs : (x; s) 2 Rg and L

R

def

= fx :

9s s.t. (x; s) 2 Rg. If (x; s) 2 R then we call s a solution for x. We say that R is polynomially

bounded if there exists a polynomial p such that jsj � p(jxj) for all (x; s) 2 R. We say that R

is an NP relation if R is polynomially bounded and, in addition, there exists a polynomial-time

algorithm for deciding membership in R (i.e., L

R

2 NP). In the sequel, we con�ne ourselves to

polynomially bounded relations.

We wish to be able to consider in a uniform manner all potential (knowledge) provers, without

making distinction based on their running-time, internal structure, etc. Yet, we observe that these

interactive machine can be given an auxiliary-input which enables them to \know" and to prove

more. Likewise, they may be lucky to select a random-input which enables more than another.

Hence, statements concerning the knowledge of the prover refer not only to the prover's program

but also to the speci�c auxiliary and random inputs it has. Hence, we �x an interactive machine

and all inputs (i.e., the common-input, the auxiliary-input, and the random-input) to this machine,

and consider both the corresponding accepting probability (of the veri�er) and the usage of this

(prover+inputs) template as an oracle to a \knowledge extractor". This motivates the following

de�nition.

De�nition 24 (message speci�cation function): Denote by P

x;y;r

(m) the message sent by machine

P on common-input x, auxiliary-input y, and random input r, after receiving messages m. The

function P

x;y;r

is called the message speci�cation function of machine P with common-input x,

auxiliary-input y, and random input r.
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An oracle machine with access to the function P

x;y;r

will represent the knowledge of machine P on

common-input x, auxiliary-input y, and random input r. This oracle machine, called the knowledge

extractor, will try to �nd a solution to x (i.e., an s 2 R(x)). (As postulated below, the running time

of the extractor is inversely related to the corresponding accepting probability (of the veri�er).)

Knowledge veri�ers

Now that all the machinery is ready, we present the de�nition of a system for proofs of knowledge.

At �rst reading, the reader may set the function � to be identically zero.

De�nition 25 (System of proofs of knowledge): Let R be a binary relation, and � : N ! [0; 1].

We say that an interactive machine V is a knowledge veri�er for the relation R with knowledge error

� if the following two conditions hold.

� Non-triviality: There exists an interactive machine P so that for every (x; y) 2 R all possible

interactions of V with P on common-input x and auxiliary-input y are accepting.

� Validity (with error �): There exists a probabilistic oracle machine K such that for every

interactive machine P , every x 2 L

R

and every y; r 2 f0; 1g

�

, on input x and access to P

x;y;r

machine K �nds a solution s 2 R(x) within expected time inversely proportional to p��(jxj),

where p is the probability that V accepts x when interacting with P

x;y;r

. More precisely:

Denote by p(x; y; r) the probability that the interactive machine V accepts, on input x, when

interacting with the prover speci�ed by P

x;y;r

. Then if p(x; y; r)> �(jxj) then, on input x and

access to oracle P

x;y;r

, machine K outputs a solution s2R(x) within an expected number of

steps bounded above by

poly(jxj)

p(x; y; r)� �(jxj)

The oracle machine K is called a universal knowledge extractor.

When �(�) is identically zero, we just say that V is a knowledge veri�er for the relation R. An

interactive pair (P; V ) so that V is a knowledge veri�er for a relation R and P is a machine

satisfying the non-triviality condition (with respect to V and R) is called a system for proofs of

knowledge for the relation R.

C.2 Blum's Protocol

In the main text, we consider k parallel repetitions of the following basic proof system for the Hamil-

tonian Cycle (HC) problem which is NP-complete (and thus get proof systems for any language in

NP). We consider directed graphs (and the existence of directed Hamiltonian cycles).

Construction 26 (Basic proof system for HC):

� Common Input: a directed graph G = (V;E) with n

def

= jV j.

� Auxiliary Input to Prover: a directed Hamiltonian Cycle, C � E, in G.

� Prover's �rst step (P1): The prover selects a random permutation, �, of the vertices V , and

commits to the entries of the adjacency matrix of the resulting permuted graph. That is, it

sends an n-by-n matrix of commitments so that the (�(i); �(j))

th

entry is a commitment to

1 if (i; j) 2 E, and is a commitment to 0 otherwise.
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� Veri�er's �rst step (V1): The veri�er uniformly selects � 2 f0; 1g and sends it to the prover.

� Prover's second step (P2): If � = 0 then the prover sends � to the veri�er along with the

revealing (i.e., preimages) of all commitments. Otherwise, the prover reveals to the veri�er

only the commitments to entries (�(i); �(j)) with (i; j) 2 C. In both cases the prover also

supplies the corresponding decommitments.

� Veri�er's second step (V2): If � = 0 then the veri�er checks that the revealed graph is indeed

isomorphic, via �, to G. Otherwise, the veri�er just checks that all revealed values are 1 and

that the corresponding entries form a simple n-cycle. In both cases the veri�er checks that the

decommitments are proper (i.e., that they �ts the corresponding commitments). The veri�er

accepts if and only if the corresponding condition holds.

We stress that the above protocol uses a standard commitment scheme.

Proposition 27 The protocol which results by k parallel repetitions of Construction 26 is a proof of

knowledge of Hamiltonicity with knowledge error 2

�k

. Furthermore if, for every positive polynomial

p, the commitment scheme used in Step (P1) maintain secrecy with respect to circuits of size p(n)�2

3k

and distinguishing gap of 2

�3k

=p(n) then, for every positive polynomial q, the interaction can be

simulated in time poly(n) �2

k

so that no circuit of size q(n) �2

2k

can distinguish the simulation from

the real interaction with gap of 2

�2k

=q(n) or more.
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