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Abstract

We present a general probabilistic lemma that can be applied to upper bound the advantage of

an adversary in distinguishing between two families of functions. Our lemma reduces the task of

upper bounding the advantage to that of upper bounding the ratio of two probabilities associated to

the adversary, when this ratio is is viewed as a random variable. It enables us to obtain signi�cantly

tighter analyses than more conventional methods.

In this paper we apply the technique to the problem of PRP to PRF conversion. We present a

simple, new construction of a PRF from a PRP that makes only two invocations of the PRP and

has insecurity linear in the number of queries made by the adversary. We also improve the analysis

of the truncation construction.
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1 Introduction

In the \provable security" approach of Goldwasser and Micali [GM] one bases the security of a higher

level cryptographic primitive on a lower level one via security reduction of polynomial complexity.

This shows that the two securities are polynomially-related, which we interpret as saying that if the

lower level primitive is secure, so is the higher level one. A major e�ort in modern cryptography has

been to �nd designs of key cryptographic primitives with security polynomially related to as-weak-as-

possible an underlying primitive. Instances of this are the basing of pseudorandom bit generators and

signature schemes on one-way functions [HILL, Ro]. This line of work has been very successful, and

at this point such relations are known for the central primitives.

More recently, attention has been turning to the tightness of security reductions, that is, their

\concrete security". This natural second phase of research in complexity-based cryptography has

several motivations. An important one of these is that the complexity of the security reduction has a

direct impact on the e�ciency of the scheme in applications. Let us see why.

Suppose we have two di�erent schemes for solving a particular problem, for example, signature

schemes. Furthermore, suppose they have the same asymptotic running time; for example, both

schemes run in time cubic in the security parameter. That does not mean both are equally e�cient in

usage, because one must take into account the desired level of security. Suppose the �rst scheme has

security loosely related to that of the underlying primitive, while the security of the second scheme

is tightly related to that of the underlying primitive, whatever that primitive might be. This means

that to get a desired level of security, we must use the �rst scheme with a higher value of the security

parameter than we need for the second scheme. So although both algorithms are cubic, we may need

to set the security parameter in the �rst case to the square of the one in the second case for the same

level of security, so that the �rst algorithm e�ectively becomes O(k

6

) where k is the security paramter.

The e�ciency of security reductions has been treated by Goldreich et. al. [GILVZ] in the context

of one-way permutations. More recently, there has been much interest in this subject in the context

of pseudorandom functions [BCK, BGK]. The reason is that pseudorandom functions, introduced by

[GGM], are a useful tool in cryptographic protocol design for both theoretical and practical reasons.

However, experience has shown that given even quite a simple construction it is often not easy to

get a security analysis, let alone a precise and tight one. Analyses for known constructions tend to

be ad hoc and often there are signi�cant gaps between known upper and lower bounds on the loss of

security.

An instance is the problem of converting pseudorandom permutations (PRPs) [LR] into pseudo-

random functions. (A PRP is a family of functions that is indistinguishable from the family of random

permutations, while a PRF is a family of functions that is indistinguishable from the family of random

functions.) This problem, �rst considered in [BKrR], at �rst sounds paradoxical, since there seems

nothing to do; isn't any PRP itself a PRF? (Indeed, e�ort, beginning with [LR], usually goes into

turning PRFs into PRPs, not PRPs into PRFs.) This is true if we are only interested in polyno-

mial security relations, but not if we are interested in achieving optimal security. In that context the

problem is both non-trivial and well-motivated.

The motivation for this problem is that it is reasonable to assume that block ciphers behave like

PRPs. Yet, experience with scheme design has shown that PRFs are the more useful tool. Many

designs using PRPs simply view them as PRFs, and hence incur a loss of security. For the e�ciency

and other reasons mentioned above, we would like transformations of PRPs to PRFs that are as

optimal as possible, meaning losing very little security.

The loss of security in simply regarding a PRP as a PRF comes from the \birthday attack" which

can distinguish a random permutation from a random function in time 2

n=2

where n is the block-length

of the function. To prevent such attacks it has been suggested to �rst convert the block cipher into a

pseudorandom function [BKrR]. It is easy to think of a variety of transformations of pseudorandom
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permutations (block ciphers) into pseudorandom functions. However for the intended application it

is important that the transformation looses very little security even when the adversary is allowed

time greater more than 2

n=2

queries to the function. In particular a quantitative loss of security of

q

2

=2

n

after q queries is practically meaningless in this context, although considered reasonable in other

contexts. Of course the smaller the loss in security, the better, even in constructions not subject to

birthday attacks. Several transformations of PRPs into PRFs are known [BKrR, HWKS] but none

achieving an optimal security.

In this paper we present a general tool for obtaining improved security analyses of constructions of

pseudorandom functions of various kinds. The analysis we obtain via our technique is often a quadratic

improvement over those obtained by more standard techniques. The technique is very general, reducing

the task of computing the statistical distance between two function families to estimating the ratio of

certain probabilities associated to the adversary. It is described in Section 3.

In this paper we limit ourselves to applying it to constructions of pseudorandom functions from

pseudorandom permutations. We analyze two constructions. The �rst is a new construction which we

show has a loss of security which is only linear in the number of queries. Thus our new construction is

provably superior to the truncation one for large numbers of queries. The construction is quite simple

and e�cient: it consists simply of taking the value of the given PRP at two points and XORing the

results. See Section 4. The second construction we analyze is the truncation construction of [HWKS].

We improve their analysis. Our analysis is tight for certain ranges of the parameters, in particular

when the adversary makes a large number of queries.

Our main theorem is a very general analysis of the statistical distance of two distributions on

q-element sequences. We show that if with high probability the conditional distributions on the i-th

element given the previous elements are close in the sense of having a ratio whose di�erence from

1 is bounded by a quantity � < 1 then the statistical distance between the original distributions is

bounded by roughly �q

1=2

. The bound obtained by a more conventional argument would be �q.

We start by presenting some de�nitions. The main theorem is in Section 3. In that section we state

the main lemmas and prove the theorem given them. The proofs of the lemmas are in the appendices.

The applications to PRP to PRF conversion are in Section 4. The main theorem is the technical brunt

of the paper and is proved in full. Proofs of the applications are sketched.

Bellare, Goldreich and Krawczyk [BGK] show that using the XOR of the values of PRF on a

number of random points can increase security of several applications relative to using the value on a

single point. Their motivation was to avoid the use of state information, like counters, in applications.

However, they assumed they were in possession of PRFs with good security. An application of our

techniques is to be able to start with PRPs, use them to implement high-security PRFs, and then plug

these into the constructions of [BGK], achieving their goals from the more practical starting primitive

of a PRP.

2 Some de�nitions

Let D: R

q

! [0; 1] be a probability distribution on the set R

q

of all n-element sequences over some

base set R. For any i 2 [q� 1] we extend D to R

i

in the obvious say, namely for any b

1

; : : : ; b

i

2 R we

let

D(b

1

; : : : ; b

i

) = Pr

(a

1

;:::;a

q

) D

[ (a

1

; : : : ; a

i

) = (b

1

; : : : ; b

i

) ] :

For any i 2 [q] we then set Supp(D; i) = f (b

1

; : : : ; b

i

) 2 R

i

: D(b

1

; : : : ; b

i

) > 0 g. Note that

Supp(D; i) � R

i

, and Supp(D; q) � R

q

is the support of the distribution D. For any i 2 [q � 1], any

b

1

; : : : ; b

i�1

2 R and any b 2 R we let

D(b

1

; : : : ; b

i�1

; b) = Pr

(a

1

;:::;a

q

) D

[ a

i

= b j (a

1

; : : : ; a

i�1

) = (b

1

; : : : ; b

i�1

) ]
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be the probability of obtaining b upon drawing a sequence (a

1

; : : : ; a

q

) randomly according to D

conditional on the �rst i� 1 elements of the drawn sequence equaling b

1

; : : : ; b

i�1

respectively. Notice

that this conditional probability is only well de�ned if D(b

1

; : : : ; b

i�1

) > 0. We adopt the convention

that D

i

(b

1

; : : : ; b

i�1

; b) =1 if D(b

1

; : : : ; b

i�1

) = 0.

Function families. A family of functions is a map F : Keys(F )�Dom(F )! Range(F ). Each key

K 2 Keys(F ) speci�es a speci�c function F

K

def

= F (K; �): Dom(F ) ! Range(F ) in the family. A

family of permutations is a family of functions F in which Dom(F ) = Range(F ) and each individual

function is a permutation on this set. The key set is equipped with some underlying distribution, and

the notation f  F is shorthand for K  Keys(F ) ; f  F

K

. If FT ;FB are families of functions and

A is an adversary that is given an oracle f , its advantage in distinguishing FT from FB is de�ned as

per [GGM] by

Adv(A;FT ;FB) =

�

�

�

Pr

f FT

h

A

f

= 1

i

� Pr

f FB

h

A

f

= 1

i

�

�

�

:

A PRP is a family of permutations, and a PRF is a family of functions. Concrete security de�nitions

for these following [BKrR] will be given in Section 4.

3 Ratio based comparison theorem

In this section we state and prove the theorem which provides a general way of determining the

statistical distance between two function families. Later, we will apply it to the problem of PRP to

PRF conversion. Let us begin by motivating the theorem in terms of applications to estimating the

distance between function families.

3.1 Application setting

Suppose we �x two families of functions, FT : Keys(FT ) � D ! R and FB : Keys(FB) � D ! R,

having the same domain D and range R. Consider an adversary A that is given an oracle f . Suppose

A makes q queries of its oracle. We are interested in upper bounding Adv(A;FT ;FB) as a function of

q and the parameters of the families.

This setting is purely information-theoretic; we put no restrictions on the running time of A,

but only on the number of queries it makes. This is because in analyses of pseudorandom func-

tion/permutation based constructions, the main technical content is usually in such an information

theoretic question. Translation to the computational setting is then a standard argument.

Typical analyses try to isolate some \bad event" such that conditioned on this not happening, the

view of the adversary is the same in both games. Bounding the advantage then reduces to bounding

the probability of the bad event. This kind of approach, however, will not always work, because in

some constructions, there is no such bad event. Rather, the two games di�er continuously.

Our �rst step is to consider two associated distributions, B and T . Given that the adversary is

�xed and can be assumed deterministic, a given set of responses to oracle queries uniquely determines

the next query. Now consider a sequence a

1

; : : : ; a

q

of values in the range R. We let T (a

1

; : : : ; a

q

)

(respectively B(a

1

; : : : ; a

q

)) be the probability that a

1

; : : : ; a

q

is the sequence of answers from the

oracle when A is run with an oracle f chosen at random from FT (respectively FB). Our goal is now

to upper bound the statistical distance between B and T . We consider the quantity

T (a

1

; : : : ; a

i�1

; a

i

)

B(a

1

; : : : ; a

i�1

; a

i

)

;

with the notation being as de�ned above in Section 2. Namely it is the ratio of two conditional

probabilities. Our ratio based comparison theorem says, roughly, that bounding Adv(A;FT ;FB)

reduces to analyzing the above ratio as a random variable over the choices of a

1

; : : : ; a

i�1

drawn
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according to B. In the formalization below, we don't look explicitly at such a ratio because of

technicalities like the fact of the denominator being zero and the ratio being unde�ned, but look

instead at a di�erence measure. The theorem below gives a bound in terms of this measure. In

applications, we are left with the task of estimating this measure.

3.2 Statement of the ratio based comparison theorem

The general statement does not refer to function families; it considers two arbitrary probability dis-

tributions. Namely let B;T : R

q

! [0; 1] be two probability distributions on the set R

q

of q-element

sequences over a base set R. We want to de�ne a measure of how they compare to each other. For

any real number � 2 [0; 1] we set

Di�

B;T

(a

1

; : : : ; a

i�1

; �)

= max

a

i

2R

f j T (a

1

; : : : ; a

i�1

; a

i

)�B(a

1

; : : : ; a

i�1

; a

i

) j � � � B(a

1

; : : : ; a

i�1

; a

i

) g :

This quantity must be appropriately interpreted when some of the quantities involved are 1. It

turns out (below) that we will only be looking at this when B(a

1

; : : : ; a

i�1

; a

i

) is well de�ned, so

the only question is what happens when T (a

1

; : : : ; a

i�1

; a

i

) = 1. In that case, the entire quantity

Di�

B;T

(a

1

; : : : ; a

i�1

; �) has value 1, and in particular is positive, which is what counts below.

We are interested in how this di�erence behaves when a

1

; : : : ; a

q

are drawn according to B. We

set

Dev(B;T ; �) = Pr

(a

1

;:::;a

q

) B

[9i 2 [q] : Di�

B;T

(a

1

; : : : ; a

i�1

; �) > 0 ] :

Let Dist(B;T ) denote the statistical distance between distributions B and T .

Theorem 3.1 Let B;T : R

q

! [0; 1] be two probability distributions on the set R

q

of all q-element

sequences over a base set R. Suppose 0 � � < 1. Then for any � > 0 we have

Dist(B;T ) � Dev(B;T ; �) +

e� 1

2

�

�

�

2

q + 3�q

1=2

�

�

+ 2e

��

2

=2

: (1)

In other words, the statistical distance between B and T can be bounded in terms of the deviation

Dev(B;T ; �) and O(�

2

q + �q

1=2

�). It will be enough that � is logarithmic, so that the last term of

the bound is small. The following corollary is obtained simply by optimizing, namely plug in an

appropriate value of � and simplify.

Corollary 3.2 Let B;T : R

q

! [0; 1] be two probability distributions on the set R

q

of all q-element

sequences over a base set R. Suppose 0 � � < 1 and de�ne

�(�; q) = max

"

1;

s

2 lg

1

�q

1=2

#

:

Then

Dist(B;T ) � Dev(B;T ; �) + [4:3 � �(�; q)] � �q

1=2

:

Proof: We set � = �(�; q) and apply Theorem 3.1. The value of the last term in Equation (1) is

2e

��

2

=2

� 2e

2 lg(�q

1=2

)=2

= 2�q

1=2

=2 = �q

1=2

:

Hence from Equation (1) we get

Dist(B;T ) � Dev(B;T ; �) +

e� 1

2

�

�

�

2

q + 3�q

1=2

�

�

+ �q

1=2

� Dev(B;T ; �) +

�

5(e� 1)

2

�

�

� �q

1=2

:
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However the constant above is less than 4:3.

The key improvement. It is trivial to obtain a bound of the form Dist(B;T ) � Dev(B;T ; �)+O(�q).

The key improvement, as evidenced by the above corollary, is that the additional term for us is

proportional to �q

1=2

as opposed to �q. (The �(�; q) term is negligible, since it is logarithmic.)

3.3 Probabilistic lemmas

The proof of Theorem 3.1 will make use of three general probability lemmas which are summarized

here, with the proofs in appendices.

Statistical distance from ratios. We will reduce the problem of bounding the statistical distance

between two distributions B and T to the problem of bounding the probability that B;T have a small

comparative ratio, via the following lemma.

Lemma 3.3 Let B;T : S ! [0; 1] be probability distributions on a set S, and �; 
 2 [0; 1]. Assume

Pr

x B

�

1� � �

T (x)

B(x)

� 1 + �

�

� 1� 
 :

Then Dist(B;T ) � �+ 
.

The proof of this lemma is in Appendix A.1.

Almost Martingale tail inequality. A standard version of Azuma's inequality considers a

sequence of bounded random variables having zero conditional expectation, and provides a bound on

the probability of their sum being large. We will need a generalization of this inequality.

De�nition 3.4 Let �: R

n

! [0; 1] be a probability distribution on the set R

n

of all n-element se-

quences over a set R. Let L

i

: Supp(�; i) ! R [ f�1g for i = 1; : : : ; n be functions. Let �

1

; �

2

2 R

and let m 2 [n]. We say that (b

1

; : : : ; b

n

) 2 R

n

is (�

1

; �

2

;m)-good for L

1

; : : : ; L

m

over � if the following

two conditions hold{

(1) Bounded conditional expectation: For all i 2 [m]{

�

�

�

E

(a

1

;:::;a

n

) �

[ L

i

(a

1

; : : : ; a

i

) j (a

1

; : : : ; a

i�1

) = (b

1

; : : : ; b

i�1

) ]

�

�

�

� �

1

(2) Bounded range: For all i 2 [m]{

Pr

(a

1

;:::;a

n

) �

[ j L

i

(a

1

; : : : ; a

i

) j > �

2

j (a

1

; : : : ; a

i�1

) = (b

1

; : : : ; b

i�1

) ] = 0 :

We say that (b

1

; : : : ; b

n

) 2 R

n

is (�

1

; �

2

)-good for L

1

; : : : ; L

n

over � if it is (�

1

; �

2

; n)-good for L

1

; : : : ; L

n

over �.

The following lemma says that the sum L

1

+ : : :+L

n

can be bounded in absolute value as in a standard

martingale tail inequality modulo a term accounting for the probability of a bad sequence.

Lemma 3.5 [Almost Martingale Tail Inequality] Let �: R

n

! [0; 1] be a probability distribution

on the set R

n

of all n-element sequences over a set R. Let L

i

: Supp(�; i)! R [ f�1g for i 2 [n] be

functions. Let �

1

; �

2

; � 2 R

�0

. Suppose

Pr

(b

1

;:::;b

n

) �

[ (b

1

; : : : ; b

n

) is (�

1

; �

2

)-good for L

1

; : : : ; L

n

over � ] � 1� � :

Then

Pr

(a

1

;:::;a

n

) �

h

j

P

n

i=1

L

i

(a

1

; : : : ; a

i

) j � �

1

n+ �

2

n

1=2

�

i

� � + 2e

��

2

=2

:
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The proof of Lemma 3.5 is in Section A.2.

Notice that L

1

; : : : ; L

n

are allowed to take the values �1. We adopt the convention that

j

P

n

i=1

L

i

(a

1

; : : : ; a

i

) j = 1

if any of the terms in the sum is �1. In particular when any term in the sum is �1 then the sum

cannot be bounded in absolute value by �

1

n+ �

2

n

1=2

�, so the lemma is implying that such terms are

covered by the failure probability.

Squared expectation bound. Consider two distributions �

1

; �

2

which are close in the sense that

j�

2

(x)=�

1

(x)j � (1 + �)�

1

(x) for all x. The next lemma says that if look at the expectation of the log

of the ratio of the two probabilities, then it will be signi�cantly smaller than �, in fact around �

2

.

Lemma 3.6 Let �

1

; �

2

: S ! [0; 1] be two probability distributions on a set S, and � 2 [0; 1], such

that j �

2

(x)� �

1

(x) j � � � �

1

(x) for all x 2 S. Then

�

�

�

�

E

x �

1

�

ln

�

2

(x)

�

1

(x)

�

�

�

�

�

�

�

2

2

:

The proof of Lemma 3.6 is in Appendix A.3.

3.4 Main lemma, and proof of theorem

We state the main lemma, and then prove the theorem assuming it. The proof of the lemma is given

in Section 3.5.

Lemma 3.7 Let B;T : R

q

! [0; 1] be two probability distributions on the set R

q

of all q-element

sequences over a base set R. Suppose 0 � � < 1. Let �

1

= �

2

=2 and �

2

= 3�=2, and suppose � > 0.

Let � = �

1

q + �

2

q

1=2

�. Then

Pr

(a

1

;:::;a

q

) B

"

�

�

�

�

�

ln

T (a

1

; : : : ; a

q

)

B(a

1

; : : : ; a

q

)

�

�

�

�

�

� �

#

� 1� 
 ; (2)

where 
 = Dev(B;T ; �) + 2e

��

2

=2

.

Put another way, say (a

1

; : : : ; a

q

) 2 Supp(B; q) is good if j ln[T (a

1

; : : : ; a

q

)=B(a

1

; : : : ; a

q

)] j � �. The

lemma is showing how to lower bound the probability of drawing a good sequence under B.

Notice that j ln[T (a

1

; : : : ; a

q

)=B(a

1

; : : : ; a

q

)] j might be1; this happens when T (a

1

; : : : ; a

q

) = 0. (It is

always the case that B(a

1

; : : : ; a

q

) > 0 since we are drawing (a

1

; : : : ; a

q

) according to B.) That is not

a problem; by de�nition such sequences are not good, so the lemma implies that their probability is

covered by 
.

Proof of Theorem 3.1: We prove Theorem 3.1 assuming Lemma 3.7. Note that if � � 1 then the

conclusion of Theorem 3.1 is trivially true, so we may assume � � 1. Let � = (e� 1)�. We claim that

Pr

(a

1

;:::;a

q

) B

"

1� � �

T (a

1

; : : : ; a

q

)

B(a

1

; : : : ; a

q

)

� 1 + �

#

� 1� 
 : (3)

Given this, the theorem follows from Lemma 3.3. It remains to establish Equation (3). We start from

Equation (2) and exponentiate the quantities in the probability expression to get

Pr

(a

1

;:::;a

q

) B

"

e

��

�

T (a

1

; : : : ; a

q

)

B(a

1

; : : : ; a

q

)

� e

�

#

� 1� 
 :

Now we can use the inequalities e

�x

� 1 � x and e

x

� 1 + (e � 1)x valid for all x 2 [0; 1]. Setting

x = � (recall � � 1 so the inequalities apply, and � = (e� 1)�) we get Equation (3) as desired.
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3.5 Proof of Lemma 3.7

For each i = 1; : : : ; n we de�ne a function L

i

: Supp(B; i)! R[f�1g as follows: for any (a

1

; : : : ; a

i

) 2

Supp(B; i) let

L

i

(a

1

; : : : ; a

i

) = ln

T (a

1

; : : : ; a

i�1

; a

i

)

B(a

1

; : : : ; a

i�1

; a

i

)

:

Notice that the denominator in the fraction is always non-zero due to the choice of the domain of the

function. On the other hand the numerator might be 1, in which case L

i

(a

1

; : : : ; a

i

) is itself 1; and

the numerator might be 0, in which case L

i

(a

1

; : : : ; a

i

) is �1.

We wish to apply Lemma 3.5 to L

1

; : : : ; L

q

viewed as random variables over the distribution � = B

on R

q

. The �rst step will be to lower bound the probability of (�

1

; �

2

)-good sequences for appropriate

values of �

1

; �

2

. For this purpose we let

G = f (b

1

; : : : ; b

q

) 2 Supp(B; q) : 8i 2 [q] we have Di�

B;T

(b

1

; : : : ; b

i�1

; �) � 0 g :

The following two claims together are saying that if (b

1

; : : : ; b

q

) 2 G then (b

1

; : : : ; b

q

) is (�

1

; �

2

)-good

for L

1

; : : : ; L

q

over B, where �

1

= �

2

=2 and �

2

= 3�=2.

Claim 3.8 If (b

1

; : : : ; b

q

) 2 G then for every i 2 [q] we have

�

�

�

E

(a

1

;:::;a

q

) B

[ L

i

(a

1

; : : : ; a

i

) j (a

1

; : : : ; a

i�1

) = (b

1

; : : : ; b

i�1

) ]

�

�

�

� �

1

(4)

where �

1

= �

2

=2.

Claim 3.9 If (b

1

; : : : ; b

q

) 2 G then for every i 2 [q] we have

Pr

(a

1

;:::;a

q

) �

[ j L

i

(a

1

; : : : ; a

i

) j > �

2

j (a

1

; : : : ; a

i�1

) = (b

1

; : : : ; b

i�1

) ] = 0 ;

where �

2

= 3�=2.

Based on these claims we can use Lemma 3.5 to prove Lemma 3.7. Let us do that and then return to

the proofs of the claims.

Proof of Lemma 3.7: We claim that for all (a

1

; : : : ; a

q

) 2 Supp(B; q) we have

�

�

�

�

�

ln

T (a

1

; : : : ; a

q

)

B(a

1

; : : : ; a

q

)

�

�

�

�

�

= j

P

q

i=1

L

i

(a

1

; : : : ; a

i

) j : (5)

To establish this we consider cases for (a

1

; : : : ; a

q

) 2 Supp(B; q). First if (a

1

; : : : ; a

q

) 2 Supp(T; q)

then by conditioning we have

ln

T (a

1

; : : : ; a

q

)

B(a

1

; : : : ; a

q

)

= ln

n

Y

i=1

T (a

1

; : : : ; a

i�1

; a

i

)

B(a

1

; : : : ; a

i�1

; a

i

)

=

n

X

i=1

L

i

(a

1

; : : : ; a

i

) ;

so Equation (5) is true in this case. Now suppose (a

1

; : : : ; a

q

) 2 Supp(B; q) � Supp(T; q), meaning

T (a

1

; : : : ; a

q

) = 0. Then ln[T (a

1

; : : : ; a

q

)=B(a

1

; : : : ; a

q

)] is �1. On the other hand, in the sum

P

q

i=1

L

i

(a

1

; : : : ; a

i

) there will be terms that are �1, and possibly also terms that are 1. Under the

convention that a sum of terms involving �1 has absolute value 1, Equation (5) is again true.

The proof of Lemma 3.7 is now concluded by showing that

Pr

(a

1

;:::;a

q

) B

[ j

P

n

i=1

L

i

(a

1

; : : : ; a

i

) j � � ] � 
 : (6)

We establish Equation (6) by applying Lemma 3.5 to L

1

; : : : ; L

q

with � = B. To do this, note

Pr

(b

1

;:::;b

q

) B

[ (b

1

; : : : ; b

q

) is (�

1

; �

2

)-good for L

1

; : : : ; L

q

over B ]

� Pr

(b

1

;:::;b

q

) B

[ (b

1

; : : : ; b

q

) 2 G ]

� 1� Dev(B;T ; �) :

7



The �rst inequality is by Claims 3.8 and 3.9. The second inequality is by the assumption in the

statement of Lemma 3.7. Now apply Lemma 3.5 with � = Dev(B;T ; �). That gives us Equation (6)

and concludes the proof of Lemma 3.7.

Proof of Claim 3.9: Let (b

1

; : : : ; b

q

) 2 G. Let i 2 [q] and let a 2 R be arbitrary. We will show that

j L

i

(b

1

; : : : ; b

i�1

; a) j � � ln(1� �) : (7)

Since a 2 R was arbitrary it follows that

Pr

(a

1

;:::;a

q

) �

[ j L

i

(a

1

; : : : ; a

i

) j > � ln(1� �) j (a

1

; : : : ; a

i�1

) = (b

1

; : : : ; b

i�1

) ] = 0 :

Note ln(1� �) � �� � �

2

=2, and this is at least �3�=2 since � < 1. So � ln(1� �) � 3�=2 = �

2

, which

proves the claim.

It remains to establish Equation (7). The de�nition of G tells us that for every i 2 [q] and every a 2 R

we have

j T (b

1

; : : : ; b

i�1

; a)�B(b

1

; : : : ; b

i�1

; a) j � � �B(b

1

; : : : ; b

i�1

; a) :

Since (b

1

; : : : ; b

q

) 2 G we also know that B(b

1

; : : : ; b

i�1

; a) 6= 0. So we can divide to get

�

�

�

�

T (b

1

; : : : ; b

i�1

; a)

B(b

1

; : : : ; b

i�1

; a)

� 1

�

�

�

�

� � ;

or, equivalently,

1� � �

T (b

1

; : : : ; b

i�1

; a)

B(b

1

; : : : ; b

i�1

; a)

� 1 + � :

Taking logs we get

ln(1� �) � ln

T (b

1

; : : : ; b

i�1

; a)

B(b

1

; : : : ; b

i�1

; a)

� ln(1 + �) :

The middle term is L

i

(b

1

; : : : ; b

i�1

; a). Also j ln(1 � �)j = � ln(1 � �) � ln(1 + �) so upon taking

absolute values we get Equation (7) as desired. This concludes the proof of Claim 3.9.

Proof of Claim 3.8: Let (b

1

; : : : ; b

q

) 2 G and let i 2 [q]. To establish Equation (4) we will use

Lemma 3.6. Let S = R. For x 2 R let

�

1

(x) = B(b

1

; : : : ; b

i�1

;x)

�

2

(x) = T (b

1

; : : : ; b

i�1

;x) :

To apply Lemma 3.6 we need to check that

8x 2 S : j �

2

(x)� �

1

(x) j � � � �

1

(x) : (8)

However since (b

1

; : : : ; b

q

) 2 G we know that Di�

B;T

(b

1

; : : : ; b

i�1

; �) � 0. From the de�nition of

Di�

B;T

(b

1

; : : : ; b

i�1

; �) we directly get Equation (8). Now Equation (4) follows from the conclusion of

Lemma 3.6.

4 PRP to PRF transforms

Definitions. We follow the concrete security treatment of [BKrR] and in particular use their notation.

If F is any family of functions we let InSec

prf

F

(q; t) be the insecurity of F as a PRF under q queries

and time t. This is the maximum possible value of the advantage Adv(A;F;R), where R is the family

of all functions mapping Dom(F ) to Range(F ), the maximum being taken over adversaries making

only q queries to the given oracle and running in time at most t. Similarly if P is any family of

8



permutations we let InSec

prf

P

(q; t) be the insecurity of F as a PRP under q queries and time t. This is

the maximum possible value of the advantage Adv(A;F;P), where P is the family of all permutations

over Dom(P ) = Range(P ), the maximum being taken over adversaries making only q queries to the

given oracle and running in time at most t.

Given. Let P : f0; 1g

k

� f0; 1g

n

! f0; 1g

n

be a PRP with key length k and block length n. We want

to build from it a PRF. We want to upper bound the insecurity of the PRF in terms of the given

insecurity of P .

4.1 Sum construction

This is our new proposal, which is very e�cient and achieves very high security. The simplest version

is to de�ne S: f0; 1g

2k

� f0; 1g

n

! f0; 1g

n

by

S

k1;k2

(x) = P

k1

(x)�P

k2

(x) : (9)

Namely the key consists of two keys for the PRP, which specify two individual permutations, whose

results are XORed together. A variant on this construction that uses just one key is S: f0; 1g

k

�

f0; 1g

n�1

! f0; 1g

n

de�ned by

S

k

(x) = P

k

(x k 0)�P

k

(x k 1) : (10)

Namely the input x is n� 1 bits long. Form from it the two n bit inputs x k 0 and x k 1, feed them to

the single permutation P

k

involved, and XOR the results. Since the analysis of the second is a little

more involved than that of the �rst, and it is also more practical, we concentrate on analyzing the

second.

Theorem 4.1 Let P : f0; 1g

k

� f0; 1g

n

! f0; 1g

n

be a PRP and de�ne S as per Equation (10). Let

N = 2

n

. Then for any 0 < q; t < N=4

InSec

prf

S

(q; t) � InSec

prp

P

(2q; t +O(q(n+ k))) +D(n; q) ;

where

D(n; q) =

q

N

+O(n) �

q

3=2

N

3=2

:

This bound is very good, in particular superior to those of any of the known constructions [BKrR,

HWKS]. Roughly it says the insecurity drops as q=2

n

modulo the insecurity of the given PRP.

Proof sketch. We concentrate on the information theoretic case; going from there to the computa-

tional statement of the theorem is a standard simulation argument. Thus we consider the construction

g(x) = f(x k 0)�f(x k 1) where f is a truly random permutation, and want to estimate how close to

a truly random function is g. We use the framework of Section 3.1 to reduce this question to one for

which we can apply our main theorem. Namely, de�ne the distributions B;T as there, with FB being

the family of random functions, meaning the family of all functions of n bits to n � 1 bits, and FT

being the family given by our construction when f is chosen as a random permutation of n bits to

n bits. To apply Theorem 3.2, we must compute a bound on Dev(B;T ; �) for an appropriate value

of �. Thus our task reduces to bounding the ratio of probabilities that is implicit in the de�nition of

Dev(B;T ; �).

We give only a very brief summary of how this works. First, we give to the adversary even more

information that it would normally receive, and show the bound holds even then. Namely, rather than

the XOR f(x k 0)�f(x k 1), the values f(x k 0) and f(x k 1) are individually given. The advantage of

the adversary can only increase. We also remove the value 0 from the range of the functions. This

can change the advantage by at most q=N and accounts for the q=N term in the bound. (Note that

the construction of Equation (10) can never output the value 0

n

. So the adversary can always get an

9



advantage of q=N . On the other hand comparing random functions to random functions with range

f0; 1g

n

� f0

n

g using the traditional analysis method of conditioning on some bad event (in this case,

outputting 0

n

) shows that q=N is also an upper bound on the statistical di�erence.) The de�nitions

of the distributions B;T are adapted to take these changes into account. In particular B corresponds

to the experiment of running the adversary with a random function from the class of functions with

this restricted range. We now apply Theorem 3.2 to this setting. We will show that it yields as bound

the second term in the expression D(n; q) in the theorem.

In estimating the ratio of conditional probabilities, de�ne S

i

to be the set of all elements of the

form f(x

j

k b) for j = 1; : : : ; i and b 2 f0; 1g. Note for f a random permutation, S

i

is a random set

of 2i distinct elements, no matter what is the adversary strategy. Let v 2 f0; 1g

n

� f0

n

g and let I be

the number of pairs fu; u�vg which are both in S

i

. Let E = 2q

2

=N , which approximates the expected

size of I. Let D = I � E. Then the number of ways that we could output v is N=2 � 2i + I. A

calculation then shows that the ratio between the probability of outputting v under T and that under

B is 1 + O(D=N). Using Cherno� bounds, we obtain that with probability 1� 1=N , for every i and

every v, we have jDj � max(n

2

; O(

p

nE)) = O(n

2

+

p

nq=

p

N). This gives a value of � = O(nq=N

3=2

)

if q > N

1=2

n

2

and � = n

2

=N

3=2

otherwise. Theorem 4.1 follows from Corollary 3.2 with this value of

�.

4.2 Truncation construction

The truncation construction [HWKS] associated to each integer 1 � m � n a family T

m

: f0; 1g

k

�

f0; 1g

n

! f0; 1g

m

de�ned as follows:

T

l

k

(x) = [P

k

(x)]

1:::m

: (11)

Namely, drop the last n�m bits of the output of P

k

and leave the rest intact.

(Note: In comparing with [HWKS, Section 2.4] note that the notation is di�erent. There, m is the

number of bits dropped, for us it is the number of bits kept. Furthermore they drop high order bits,

not low order, but that makes no di�erence.)

Theorem 4.2 Let P : f0; 1g

k

�f0; 1g

n

! f0; 1g

n

be a PRP and de�ne T

m

as per Equation (11). Let

N = 2

n

and M = 2

m

. Then for any 0 < q; t < N=2

InSec

prf

S

(q; t) � InSec

prp

P

(q; t+O(q(n+ k))) +D(n; q) ;

where

D(n; q) =

8

>

>

>

>

<

>

>

>

>

:

O(n) �

M �

p

q

N

if 0 < q �M

O(n) �

q �

p

M

N

if M < q < N=

p

M

Our bounds are better than those of [HWKS] in the region q > M

2=3

. The best overall bound is

obtained by combining the results of our paper with theirs. We omit the proof of Theorem 4.2 from

this abstract. It uses ideas similar to the proof of Theorem 4.1. Brie
y, the probability of an output

v depends on the number of times its been output before. We bound this using Cherno� bounds. For

q > M this reasoning can also yield an attack that basically matches our upper bound. The adversary

counts for each output v whether it has previously occurred more frequently or less frequently than

expected. If the majority of times it has occurred less frequently, the adversary predicts that the

function is from the truncation construction.
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A Proofs of Probabilistic Lemmas

We prove the three lemmas of Section 3.3.

A.1 Proof of Lemma 3.3

Let

G = f x 2 S : j T (x)�B(x) j � � � B(x) g

N = f x 2 S : j T (x)�B(x) j > � � B(x) g :

Claim A.1 Pr

x B

[x 2 G ] � 1� 
.

Proof: When x is drawn randomly according to B it will be true that B(x) > 0, and thus dividing

by B(x) is OK. This means that

Pr

x B

[x 2 G ] = Pr

x B

�

1� � �

T (x)

B(x)

� 1 + �

�

;

and so the claim follows from the assumption in the lemma statement.

11



Claim A.2 Pr

x T

[ x 2 G ] � 1� (�+ 
).

Proof: T (x) � (1� �)B(x) for all x 2 G so

Pr

x T

[ x 2 G ] =

P

x2G

T (x) �

P

x2G

(1� �)B(x) = (1� �)Pr

x B

[x 2 G ] :

Now by Claim A.1 the above is at least (1 � �)(1 � 
) � 1� �� 
, which concludes the proof.

We now complete the proof of the lemma. We have

Dist(B;T ) =

1

2

X

x2G

jB(x)� T (x) j +

1

2

X

x2N

jB(x)� T (x) j

�

1

2

X

x2G

� � B(x) +

1

2

X

x2N

(B(x) + T (x))

�

�

2

Pr

x B

[ x 2 G ] +

1

2

Pr

x B

[x 2 N ] +

1

2

Pr

x T

[x 2 N ]

�

�

2

� 1 +

1

2

� 
 +

1

2

� (�+ 
)

= �+ 
 :

Above we used the claims to do the bounding. This concludes the proof of Lemma 3.3.

A.2 Proof of Lemma 3.5

The proof is based on the standard Azuma inequality. The version of the latter stated below is taken

from Motwani and Raghavan [MR, Corollary 4.17].

Lemma A.3 [Azuma's inequality] Let �: S ! [0; 1] be a probability distribution over a set S,

and let X

0

;X

1

; : : : ;X

n

: S ! R be functions. For i 2 [n] and b 2 S let

S(i; b) = f a 2 S : (X

0

(a); : : : ;X

i�1

(a)) = (X

0

(b); : : : ;X

i�1

(b)) g :

Suppose the following two conditions hold{

(1) Martingale: For every i 2 [n] and every b 2 S{

E

a �

[X

i

(a) j a 2 S(i; b) ] = X

i�1

(b) :

(2) Bounded di�erences: jX

i

(b)�X

i�1

(b) j � c for all i 2 [n] and all b 2 S.

Then for any � > 0

Pr

a �

h

jX

n

(a)�X

0

(a) j � �cn

1=2

i

� 2e

��

2

=2

:

We now prove Lemma 3.5 assuming Lemma A.3. Let S = R

n

. Let i 2 [n] and b 2 S. We de�ne the

following sets:

P (i; b) = f a 2 S : (a

1

; : : : ; a

i�1

) = (b

1

; : : : ; b

i�1

) g

G(i) = f a 2 S : a is (�

1

; �

2

; i)-good for L

1

; : : : ; L

i

over � g

We now de�ne X

0

; : : : ;X

n

as follows. First we set X

0

(b) = 0 for all b 2 S. Then for each i 2 [n] and

each b 2 S set

X

i

(b) =

8

<

:

X

i�1

(b) + L

i

(b

1

; : : : ; b

i

)�

E

a �

[ L

i

(a

1

; : : : ; a

i

) j a 2 P (i; b) ] if b 2 G(i)

X

i�1

(b) otherwise :

The three lemmas stated below say thatX

0

; : : : ;X

n

satisfy the conditions necessary to apply Lemma A.3.

The �rst lemma notes that X

0

; : : : ;X

n

are �nite, meaning do not take values �1, even though

L

1

; : : : ; L

n

could take the values �1.
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Lemma A.4 X

0

; : : : ;X

n

take values in R.

The next lemma veri�es that X

0

; : : : ;X

n

satisfy the martingale condition.

Lemma A.5 For every i 2 [n] and every b 2 S{

E

a �

[X

i

(a) j a 2 S(i; b) ] = X

i�1

(b) : (12)

The last lemma says the bounded di�erence condition holds with c = �

1

+ �

2

{

Lemma A.6 jX

i

(b)�X

i�1

(b) j � c for all i 2 [n] and all b 2 S, where c = �

1

+ �

2

.

The proofs of these lemmas will be given below. Let us �rst use them to conclude the proof of

Lemma 3.5. We wish to upper bound

A = Pr

b �

h

j

P

n

i=1

L

i

(b

1

; : : : ; b

i

) j � �cn

1=2

+ �

2

n

i

:

We let

A

1

= Pr

b �

h

j

P

n

i=1

L

i

(b

1

; : : : ; b

i

) j � �cn

1=2

+ �

2

n j b 2 G(n)

i

:

We know that Pr

b �

[ b 62 G(n) ] � � so

A � A

1

� Pr

b �

[ b 2 G(n) ] + Pr

b �

[ b 62 G(n) ]

� A

1

� Pr

b �

[ b 2 G(n) ] + � :

To conclude the proof we need to show that A

1

� Pr

b �

[ b 2 G(n) ] � 2e

��

2

=2

. For b 2 G(n) let

M

i

(b) =

E

a �

[ L

i

(a

1

; : : : ; a

i

) j a 2 P (i; b) ]. We know that jM

i

(b) j � �

2

when b 2 G(n), so

A

1

� Pr

b �

h

j

P

n

i=1

L

i

(b

1

; : : : ; b

i

) j � �cn

1=2

+ j

P

n

i=1

M

i

(b) j j b 2 G(n)

i

� Pr

b �

h

j

P

n

i=1

L

i

(b

1

; : : : ; b

i

)�M

i

(b) j � �cn

1=2

j b 2 G(n)

i

:

Now notice that for b 2 G(n)

X

n

(b)�X

0

(b) =

n

X

i=1

X

i

(b)�X

i�1

(b) =

n

X

i=1

L

i

(b

1

; : : : ; b

i

)�M

i

(b) :

So we get

A

1

� Pr

b �

[ b 2 G(n) ] � Pr

b �

h

jX

n

(b)�X

0

(b) j � �cn

1=2

j b 2 G(n)

i

� Pr

b �

[ b 2 G(n) ]

� Pr

b �

h

jX

n

(b)�X

0

(b) j � �cn

1=2

i

� 2e

��

2

=2

:

This concludes the proof of Lemma 3.5. It remains to establish the above lemmas.

Proof of Lemma A.4: Suppose b 2 G(i), meaning b is (�

1

; �

2

; i)-good for L

1

; : : : ; L

i

over �. Then

E

a �

[ L

i

(a

1

; : : : ; a

i

) j a 2 P (i; b) ] <1 and L

i

(b

1

; : : : ; b

i

) <1 :

The �rst is true by the �rst condition in De�nition 3.4. The second is true because otherwise we would

contradict the second condition in De�nition 3.4. The claim that X

0

; : : : ;X

n

< 1 follows from the

de�nition of the random variables; a full proof would be by induction on i.

Notice that P (i; b) � S(i; b) for any b 2 S. We will prove Lemma A.5 by showing something stronger:

13



Claim A.7 For any i 2 [n] and any b 2 S we have

E

a �

[X

i

(a) j a 2 P (i; b) ] = X

i�1

(b) : (13)

We now prove Lemma A.5 given this claim, and will then prove the claim.

Proof of Lemma A.5: Let i 2 [n] and b 2 S. We break up S(i; b) as S(i; b) = P (i; z

1

)[� � �[P (i; z

m

)

where z

1

; : : : ; z

m

2 S(i; b) are some values such that the sets P (i; z

1

); : : : ; P (i; z

m

) are mutually disjoint.

Then

E

a �

[X

i

(a) j a 2 S(i; b) ]

=

m

X

j=1

E

a �

[X

i

(a) j a 2 P (i; z

j

) ] � Pr

x �

[ x 2 P (i; z

j

) j x 2 S(i; b) ] :

By Claim A.7 the conditional expectation in the above equation equals X

i�1

(z

j

). However z

j

2 S(i; b)

so X

i�1

(z

j

) = X

i�1

(b), so the above equals

X

z

j

2S(i;b)

X

i�1

(b) � Pr

x �

[ x 2 P (i; z

j

) j x 2 S(i; b) ] :

However we can now factor out X

i�1

(b), and the remaining sum equals one, so we have established

Equation (12) as desired.

Proof of Claim A.7: We begin by de�ning some sets. For any i 2 [n] and any a 2 S we set

N(i) = S �G(i)

G(i; a) = P (i; a) \G(i)

N(i; a) = P (i; a) \N(i)

We need some claims about these sets.

Claim 1. If a 2 G(i) then P (i; a) = G(i; a), and if a 2 N(i) then P (i; a) = N(i; a).

Proof. We observe that whether some y 2 S is in G(i) depends only on the values y

1

; : : : ; y

i�1

, by

de�nition of being (�

1

; �

2

; i)-good for L

1

; : : : ; L

i

over �, and the same is true for N(i). The claim

follows. 2

Claim 2. If a 2 G(i; b) then P (i; a) = G(i; b).

Proof. By assumption a 2 P (i; b), so P (i; a) = P (i; b). Then G(i; b) = G(i)\P (i; b) = G(i)\P (i; a) =

G(i; a). 2

Claim 3. If a 2 N(i; b) then X

i

(a) = X

i�1

(b).

Proof. By assumption a 2 N(i) so X

i

(a) = X

i�1

(a) by de�nition of X

i

. On the other hand a 2 P (i; b),

whence a 2 S(i; b). But if a 2 S(i; b) then X

i�1

(a) = X

i�1

(b). So X

i

(a) = X

i�1

(b) as desired. 2

We establish Equation (13) by considering separately the case of b 2 G(i) and b 2 N(i).

First suppose b 2 N(i). Then

E

a �

[X

i

(a) j a 2 P (i; b) ] =

E

a �

[X

i

(a) j a 2 N(i; b) ]

=

E

a �

[X

i�1

(b) j a 2 N(i; b) ]

= X

i�1

(b) ;

as desired. Here we �rst used Claim 1 to say that P (i; b) = N(i; b) and then used Claim 3 to say that

X

i

(a) = X

i�1

(b) in the conditional expectation.
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Next we establish Equation (13) in the case where b 2 G(i). By Claim 1 we have P (i; b) = G(i; b) so

we wish to show that

E

a �

[X

i

(a) j a 2 G(i; b) ] = X

i�1

(b) : (14)

By linearity of expectation and the de�nition of X

i

we have

E

a �

[X

i

(a) j a 2 G(i; b) ] = A+B �C

where

A =

E

a �

[ L

i

(a

1

; : : : ; a

i

) j a 2 G(i; b) ]

B =

E

a �

[X

i�1

(a) j a 2 G(i; b) ]

C =

E

a �

[

E

x �

[ L

i

(x

1

; : : : ; x

i

) j x 2 P (i; a) ] j a 2 G(i; b) ]

We �rst claim that B = X

i�1

(b). This is true because in the expectation we always have a 2 G(i; b) �

P (i; b) � S(i; b), so X

i�1

(a) = X

i�1

(b). Now we claim that C = A. Given this and the above, the

proof of Equation (14) will be complete.

Note that in the expression for C we have a 2 G(i; b). By Claim 2 we have P (i; a) = G(i; b) and hence

C =

E

a �

[

E

x �

[ L

i

(x

1

; : : : ; x

i

) j x 2 G(i; b) ] j a 2 G(i; b) ]

=

E

x �

[ L

i

(x

1

; : : : ; x

i

) j x 2 G(i; b) ]

= A :

This concludes the proof of Claim A.7.

Proof of Lemma A.6: Consider separately the cases of b 2 G(i) and b 2 N(i). If b 2 N(i) then

X

i

(b) = X

i�1

(b) so jX

i

(b)�X

i�1

(b) j = 0. If b 2 G(i) then

jX

i

(b)�X

i�1

(b) j = j L

i

(b

1

; : : : ; b

i

)�

E

a �

[ L

i

(a

1

; : : : ; a

i

) j a 2 P (i; b) ] j

� j L

i

(b

1

; : : : ; b

i

) j+ j

E

a �

[ L

i

(a

1

; : : : ; a

i

) j a 2 P (i; b) ] j

� �

2

+ �

1

:

The last inequality is true because b is (�

1

; �

2

; i)-good for L

1

; : : : ; L

i

over �.

A.3 Proof of Lemma 3.6

Let S

1

= f x 2 S : �

1

(x) > 0 g and S

2

= f x 2 S : �

2

(x) > 0 g.

Claim A.8 S

1

= S

2

.

Proof: It su�ces to show that for any x 2 S it is the case that �

1

(x) = 0 i� �

2

(x) = 0. So �rst

suppose �

1

(x) = 0. From the condition j�

2

(x) � �

1

(x)j � ��

1

(x) we directly get �

2

(x) = 0. Now

suppose �

2

(x) = 0. From the condition j�

2

(x) � �

1

(x)j � ��

1

(x) we get j�

1

(x)j � ��

1

(x). However

we assumed � < 1 so this possible only if �

1

(x) = 0.

Given the above we let P = S

1

= S

2

stand for the common support of the two distributions. Now

A

def

=

E

x �

1

�

ln

�

2

(x)

�

1

(x)

�

=

X

x2P

�

1

(x) � ln

�

2

(x)

�

1

(x)

=

X

x2P

�

1

(x) � ln

�

1 +

�

2

(x)� �

1

(x)

�

1

(x)

�

:
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To upper bound A we use the inequality ln(1 + y) � y and get

A �

X

x2P

�

1

(x) �

�

2

(x)� �

1

(x)

�

1

(x)

=

X

x2P

�

2

(x)� �

1

(x)

= 0 ;

the last equality being true by Claim A.8. To lower bound A we use the inequality ln(1+y) � y�y

2

=2.

Setting �

x

= �

2

(x)� �

1

(x) we get

A �

X

x2P

�

1

(x) �

"

�

x

�

1

(x)

�

�

2

x

2�

1

(x)

2

#

=

X

x2P

�

x

�

X

x2P

�

2

x

2�

1

(x)

= �

1

2

�

X

x2P

�

2

x

�

1

(x)

� �

1

2

�

X

x2P

�

2

�

1

(x)

2

�

1

(x)

= �

�

2

2

�

X

x2P

�

1

(x)

= �

�

2

2

:

That is, we have shown ��

2

=2 � A � 0 whence jAj � �

2

=2.
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