
On Security Preserving Reductions { Revised Terminology

Oded Goldreich

Department of Computer Science

Weizmann Institute of Science

Rehovot, Israel.

oded@wisdom.weizmann.ac.il

January 20, 2000

Abstract

Many of the results in Modern Cryptography are actually transformations of a basic compu-

tational phenomenon (i.e., a basic primitive, tool or assumption) to a more complex phenomenon

(i.e., a higher level primitive or application). The transformation is explicit and is always ac-

companied by an explicit reduction of the violation of the security of the former phenomenon

to the violation of the latter. A key aspect is the e�ciency of the reduction. We discuss and

slightly modify the hierarchy of reductions originally suggested by Levin.

Keywords: Foundations of Cryptography, Complexity, Reductions.

0



1 Introduction

Modern Cryptography is concerned with the construction of e�cient schemes for which it is in-

feasible to violate the security feature. Thus, we need a notion of e�cient computations as well

as a notion of infeasible ones. The computations of the legitimate users of the scheme ought be

e�cient; whereas violating the security features (via an adversary) ought to be infeasible. Our

notions of e�cient and infeasible computations are \asymptotic" (or rather functional):

1

They

refer to the running time as a function of the security parameter. This is done in order to avoid

cumbersome formulations which refer to the actual running-time on a speci�c model for speci�c

values of the security parameter. Still, one can easily derive such speci�c statements from the

asymptotic treatment.

E�cient computations are commonly modeled by computations that are polynomial-time in the

security parameter. The polynomial bounding the running-time of the legitimate user's strategy

is �xed and typically explicit and small (still in some cases it is indeed a valuable goal to make

it even smaller). Here (i.e., when referring to the complexity of the legitimate user) we are in

the same situation as in any algorithmic research. Things are di�erent when referring to our

assumptions regarding the computational resources of the adversary. A common approach is to

postulate that the latter are polynomial-time too, where the polynomial is not a-priori speci�ed. In

other words, the adversary is restricted to the class of e�cient computations and anything beyond

this is considered to be infeasible. Although many de�nitions explicitly refer to this convention, this

convention is inessential to all known results (in the area). In all cases, a more general (and yet

more cumbersome) statement can be made by referring to adversaries of running-time bounded by

any function (or class of functions). For example, for any function T :N 7!N (e.g., T (n) = 2

3

p

n

),

we may consider adversaries that on security parameter n run for at most T (n) steps. Doing so we

(implicitly) de�ne as infeasible any computation that (on security parameter n) requires more than

T (n) steps.

The results obtained in this area are in many cases conditional ones. That is, based on some

relatively simple intractability assumptions (e.g., the existence of one-way functions) one constructs

and establishes the security of more complex applications (e.g., existentially unforgeable signature

schemes). In many cases these results are stated in an oversimpli�ed way such as if the function

f cannot be inverted in polynomial-time then the scheme S

f

(which utilizes f) cannot be broken in

polynomial-time. However, what is actually proved in such papers is stronger. Typically, the proof

of security of S

f

speci�es, for any function T : N 7! N, a function T

0

: N 7! N so that if f cannot

be inverted on n-bit images in time T (n) then S

f

cannot be broken on inputs of length m in time

T

0

(m). Furthermore, typically, the relation between T

0

and T takes the form

T

0

(m) =

p

�1

2

(T (p

�1

1

(m)))

p

3

(m)

;

(1)

where p

1

; p

2

; p

3

are some �xed polynomials. Such a relation results from the fact that the proof

utilizes a reduction of inverting f on strings of length n to breaking S

f

on strings of length p

1

(n).

Thus, assuming on the contrary to the security claim that S

f

can be broken in time T

0

(m) on

inputs of length m = p

1

(n), one obtains an algorithm inverting f on inputs of length n in time

T (n) � p

3

(p

1

(n)) � p

2

(T

0

(p

1

(n))).

It should be clear (and is indeed well-known) that the relationship between T and T

0

(above)

determines the strength of the theoretical result and has a key impact on its practical applicability.

1

Actually, the term \asymptotic" is misleading since, from the functional treatment of the running-time (as a

function of the security parameter), one can derive statements for any value of the security parameter.

1



Speci�cally, almost in all cases the relation takes the form in Eq. (1), and then one is interested in

the speci�c polynomials p

1

; p

2

; p

3

.

The purpose of this note is to discuss a popular classi�cation of such reductions, attributed to

Levin and presented in [12]. We suggest to modify this classi�cation a little.

2 Preliminaries

Actually, the above discussion is over-simpli�ed as it refers only to the running-time of the violating

algorithms (and implicitly suggesting that we talk of algorithms that succeed always or almost

always). In many cases, the statements are more complex, referring both to the running-time of

algorithms and to a probabilistic measure of success. Two such common measures are

1. The success probability of easily veri�ed events. For example, the success probability of an

inverting algorithm (for a speci�c one-way function), or the success probability of a forging

algorithm (for a signature scheme).

2. The gap in probability between two experiments. An archetypical example is the notion of

computational indistinguishability. Here, for two distributions ensembles, fX

n

g and fY

n

g,

we consider the gap between the probability that an algorithm A outputs 1 on input X

n

and the probability A does so on input Y

n

. Thus, de�nitions such as security of encryption

schemes [7], pseudorandomness [1, 13, 4], and (computational) zero-knowledge [8] fall into

this category.

The distinction between the above two types is crucial for Levin's suggestion to incorporate running-

time and success measure into a single measure (see below). Note that in order to succeed with

probability at least 2=3 in an attempt of the �rst type one has to repeat trying for �(1=�(n)) times,

where �(n) is the success probability in a single attempt. On the other hand, in order to amplify

a distinguishing gap of �(n) into a gap of 2=3 we need to repeat the experiment(s) for �(1=�(n)

2

)

times.

2

Before presenting Levin's approach, let us present the general form which most results take.

Typically, one starts with a basic primitive, denoted f (for sake of uniformity with the above), and

constructs a scheme S

f

. (Each of the two is coupled with its own notion of violation, determining

the measure of success.) The proof of security of S

f

is by a reduction to violation of security of

f . That is, such a proof shows, for any t

0

: N 7! N and e

0

: N 7! R, how to convert an algorithm

violating S

f

with time complexity t

0

and success measure e

0

into an algorithm for violating f with

time complexity t and success measure e. Calling the former an S

f

-violator and the latter an

f -violator, the conversion is by a reduction that typically speci�es polynomials p

1

; p

2

; :::; p

7

so that

on input of length n the f -violator invokes the S

f

-violator on inputs of length m = p

1

(n), and

t(n) = p

2

(t

0

(m)) � p

3

(1=e

0

(m)) � p

4

(m) as well as e(n) = p

5

(e

0

(m)) � p

6

(1=t(m)) � p

7

(1=m). It follows

that, for any function T :N 7!N and � :N 7!R, if f cannot be violated on n-bit inputs in time T (n)

with success measure �(n) then S

f

cannot be violated on m-bit inputs in time T

0

(m) with success

measure �

0

(m), where T

0

and �

0

may be any pair of functions satisfying

T (p

�1

1

(m)) = p

2

(T

0

(m)) � p

3

(1=�

0

(m)) � p

4

(m) (2)

�(p

�1

1

(m)) =

p

5

(�

0

(m))

p

6

(T (m)) � p

7

(m)

(3)

2

The above discussion refers to an abstract experiment (or pair of experiments). When applied to the examples

given above, repeating the experiment means things like inverting a one-way function on one of several independently

selected images, or distinguishing between multiple samples of two ensembles.

2



where p

1

; p

2

; :::; p

7

are the polynomials speci�ed above. (Assuming, on the contrary, that S

f

can be

violated on m-bit inputs in time T

0

(m) with success measure �

0

(m), implies { via the reduction {

violation of f on n-bit inputs in time T (n) with success measure �(n).)

Levin's notion of work: In order to simplify treatments as above, Levin suggested to incorporate

the running-time and success-measure of each violating algorithm into a single measure called work.

Crucial to his suggestion is the above distinction between easily veri�able and non-veri�able success

measures. For a veri�able success measure, the work of an algorithm A with running-time t

A

:N 7!N

and success measure �

A

:N 7!R is de�ned as w

A

(n)

def

= t

A

(n)=�

A

(n). For a (non-veri�able) success

measure of the gap type, the work of an algorithm A with running-time t

A

: N 7! N and success

measure �

A

:N 7!R is de�ned as w

A

(n)

def

= t

A

(n)=�

2

A

(n). (We stress that the de�nition of work is

problem speci�c and ad-hoc in nature.)

3

In the sequel, we shall adopt Levin's simpli�cation. A reader feeling uncomfortable with this,

may consider only algorithms with constant success measure, in which case work is identical to

time (up-to a constant factor). Security will be de�ned as a (possibly postulated) lower bound on

the work of violating algorithms. For example, one may assume that the security of factoring is

exp(n

1=3

), and one may infer (based on this assumption) that pseudorandom generators of security

exp(n

1=3

) exist.

De�nition 1 (security): Let � be some primitive with an associated notion of violation that speci-

�es a notion of success measure and induces a notion of work of violating algorithms. Let S :N 7!N.

We say that � has security S if any algorithm A violating � has work function that grows faster

than S.

3 Levin's Hierarchy of Reductions (revisited)

In order to demonstrate the di�erent quality of certain reductions, Levin has suggested three types

of reductions, which were later canonized in Luby's book [12]. Letting S :N 7!N denote the security

of the basic primitive, and S

0

:N 7!N the security of the complex primitive constructed from the

former the three types of reductions are:

(L1) A reduction is linearly preserving if it guarantees S

0

(n) � S(n)=poly(n).

(L2) A reduction is polynomially-preserving if it guarantees S

0

(n) � (S(n))

e

=poly(n), for some

constant e > 0.

(L3) A reduction is weakly-preserving if it guarantees S

0

(n) � (S(n

d

))

e

=poly(n), for some constants

d; e > 0.

Levin has frequently noted that, for nicely-behaved security measures, a reduction that guarantees

S

0

(n) � (S(n=d))

e

=poly(n), for some constants d; e > 0, is also polynomially-preserving. The

argument is based on the fact that in our context all primitives are breakable within exponential time

(i.e., time 2

n

on input length n), and so one may assume without loss of generality that S(n) � 2

n

.

Furthermore, for \nicely-behaved" functions S, which are exponentially bounds, and for c > 1 one

may expect that S(cm) � S(m)

c

holds. Thus, S

0

(n) � (S(n=d))

e

=poly(n) � (S(n))

ed

=poly(n).

Still, it seems inappropriate to identify the e�ect of e and d in a guarantee such as (L2) above.

3

The abstract discussion above does not fully justify the de�nition (see Footnote 2). Furthermore, other func-

tionalities of running-time and success-measure may make sense too.

3



Furthermore, we lose an important distinction represented in the gap between Types (T2) and (T3)

below.

(T1) A reduction is strongly preserving if it guarantees S

0

(n) � S(n)=poly(n).

(This is identical to (L1) above.)

(T2) A reduction is linearly-preserving if, for some constant c � 1, it guarantees

S

0

(n) �

S(n=c)

poly(n)

(This extends (T1), where c = 1, in an important way.)

(T3) A reduction is polynomially-preserving if, for some constants c � 1 and e > 0, it guarantees

S

0

(n) �

(S(n=c))

e

poly(n)

(Formally, (T3) extends (L2), where c = 1; but, for \nicely behaved security measures" (see

above discussion), type (T3) is equivalent to type (L2).)

(T4) A reduction is weakly-preserving if, for some constants c; d; e > 0, it guarantees

S

0

(n) �

(S(cn

d

))

e

poly(n)

(This is equivalent to (L3) above.)

Thus, we replace (L2) by the two distinct categories (T2) and (T3).

Comment 1: On the relation between (T2), (T3) and (L2). Levin's category (L2) is a

special case of our (T3). In light of the discussion about, we believe that Levin himself would not

care much about the extension of (L2) to (T3). In contrast, we believe that the distinction between

Types (T2) and (T3) is very important.

We note that many claims made by Luby [12] regarding (L2) actually refer to either (T2) or (T3),

and are valid for (L2) only under the above assumption (i.e., S(cn) � S(n)

c

, 8c > 1) which collapses

(T3) into (L2). Furthermore, in referring to (L2) one losses the important distinction between

Types (T2) and (T3). For example,

1.

P

n

i=1

r

i

x

i

mod 2 in a hard-core of f(x; r) = (f

0

(x); r), for any one-way f

0

[6]:

4

The original

reduction of [6] (as well as the reduction as presented in [12, 2, 3]) is of Type (T3).

5

In

contrast, the improved reduction of Levin [11] (see also [3, C.2.3]) is of Type (T2).

4

Here, x = x

1

� � �x

n

(resp., r = r

1

� � � r

n

). Work for the two primitives is de�ned as follows: for predicting

the hard-core, work is de�ned as running-time over the square of the success-measure (i.e., advantage in predicting

beyond 1=2); and for inverting the function work is de�ned as running-time over the success-measure.

5

The claim in [12] by which the reduction is of type (L2) is correct only for \nicely behaved security measures"

(see above discussion).

4



2. Security-preserving ampli�cation of one-way function [5]: The reduction demonstrating this

result for the case of one-way permutations is of Type (T2). In contrast, the known reduction

(of [5]) for the case of regular one-way functions is only of Type (T3), for some range of

parameters.

6

Thus, the distinctions between the strengths of the results are re
ected in the distinction be-

tween (T2) and (T3), but are not re
ected by Levin's Hierarchy (since these results are of type (L2)).

We chose these examples since they are famous cases in which the entire point of the paper is im-

provement in quality of reductions among primitives. Thus, the distinction between (T2) and (T3)

is essential for making the point (as demonstrated above).

Comment 2: Beyond (T4). With the exception of a single case, all results we are aware of

(in the �eld) are proven by a reduction of Type (T4), or lower. The only exception is Levin's

observation regarding the existence of a universal one-way function (cf., [10] and [2, Sec. 2.4.1]).

Comment 3: A warning. It should be clear that the above classi�cation (as well as the one

suggested in [12]) is ad-hoc in nature. Namely, it only represents our knowledge of the current

reductions, and an attempt to classify them in a way that re
ects their theoretical strength and

practical applicability. Each type may be further re�ned according to the constants (and/or poly-

nomials) appearing in its de�nition. Furthermore, in some cases (depending on such re�nements), a

reduction with higher type may be preferable (in practice) to one with lower type (e.g.,. 2

p

n

< n

100

for n < 10

6

).

An out of scope comment: As discussed in Footnote 6, some results are proven by a con-

struction that depend on the security of the basic scheme; that is, for every security function S, a

di�erent construction of a complex primitive is presented (assuming that the basic one has security

S). One should prefer results proven via a single construction, which is oblivious of the security of

the basic scheme. The security of the resulting construct will depend on the security of the basic

one, but the latter need not be known a-priori. In practical terms this means that one may make a

weak assumption regarding the basic scheme so that this assumption guarantees su�cient security

for the construct. If the basic scheme turns out to be more secure than originally assumed then

the resulting construct will bene�t in security. (as per the security guarantee given with the reduc-

tion). In contrast, when the construction depends on the assumed security, better than postulated

security of the basic scheme may not translate to better security of the construct.

Acknowledgments

We are grateful to Mihir Bellare for helpful comments.

6

Actually, in the regular case the construction in [5] depends on the security of the basic (weak) one-way function,

and so we have a family of reductions one per each security function S (which needs to be e�ciently computable).

These reductions are of Type (T3), provided that, for some d < 1, S(n) < 2

n

d

. Otherwise they are only of Type (T4).

5



References

[1] M. Blum and S. Micali. How to Generate Cryptographically Strong Sequences of Pseudo-

Random Bits. SIAM J. on Comput., Vol. 13, pages 850{864, 1984. Preliminary version

in 23rd FOCS, 1982.

[2] O. Goldreich. Foundation of Cryptography { Fragments of a Book. Febru-

ary 1995. Revised version, January 1998. Both versions are available from

http://theory.lcs.mit.edu/�oded/frag.html.

[3] O. Goldreich. Modern Cryptography, Probabilistic Proofs and Pseudorandomness. Algo-

rithms and Combinatorics series (Vol. 17), Springer, 1998.

[4] O. Goldreich, S. Goldwasser, and S. Micali. How to Construct Random Functions. J. of

the ACM, Vol. 33, No. 4, pages 792{807, 1986.

[5] O. Goldreich, R. Impagliazzo, L.A. Levin, R. Venkatesan, and D. Zuckerman. Security

Preserving Ampli�cation of Hardness. In 31st FOCS, pages 318{326, 1990.

[6] O. Goldreich and L.A. Levin. Hard-core Predicates for any One-Way Function. In 21st

STOC, pages 25{32, 1989.

[7] S. Goldwasser and S. Micali. Probabilistic Encryption. J. of Comp. and Sys. Sci., Vol. 28,

No. 2, pages 270{299, 1984. Preliminary version in 14th STOC, 1982.

[8] S. Goldwasser, S. Micali and C. Racko�. The Knowledge Complexity of Interactive Proof

Systems. SIAM J. on Comput., Vol. 18, pages 186{208, 1989. Preliminary version in 17th

STOC, 1985. Earlier versions date to 1982.

[9] S. Goldwasser, S. Micali, and R.L. Rivest. A Digital Signature Scheme Secure Against

Adaptive Chosen-Message Attacks. SIAM J. on Comput., April 1988, pages 281{308.

[10] L.A. Levin. One-Way Function and Pseudorandom Generators. Combinatorica, Vol. 7,

pages 357{363, 1987.

[11] L.A. Levin. Randomness and Non-determinism. J. Symb. Logic, Vol. 58(3), pages 1102{

1103, 1993.

[12] M. Luby. Pseudorandomness and Cryptographic Applications. Princeton University Press,

1996.

[13] A.C. Yao. Theory and Application of Trapdoor Functions. In 23rd FOCS, pages 80{91,

1982.

6


