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Abstract

In order to protect copyrighted material, codes may be embedded in the content or

codes may be associated with the keys used to recover the content. Codes can o�er pro-

tection by providing some form of traceability for pirated data. Several researchers have

studied di�erent notions of traceability and related concepts in recent years. \Strong"

versions of traceability allow at least one member of a coalition that constructs a \pi-

rate decoder" to be traced. Weaker versions of this concept ensure that no coalition

can \frame" a disjoint user or group of users. All these concepts can be formulated as

codes having certain combinatorial properties.

In this paper, we study the relationships between the various notions, and we discuss

equivalent formulations using structures such as perfect hash families. We use methods

from combinatorics and coding theory to provide bounds (necessary conditions) and

constructions (su�cient conditions) for the objects of interest.

1 Introduction

In this paper, we are interested in combinatorial methods to allow tracing of illegally \pi-

rated" data. We present two scenarios to motivate the problems we consider. The �rst

example concerns decoder boxes for decrypting broadcast messages; the second concerns

variants of pay-per-view movies.

In the broadcast encryption scheme suggested by Chor, Fiat and Naor in [6], a decoder

box consists of N keys, where each key takes on one of q possible values. The set of possible

values for the ith key is, in general, di�erent from the set of possible values for the jth key,

if i 6= j. A decoder box x can be represented as an N -tuple (x

1

; � � � ; x

N

), where 1 � x

i

� q

for 1 � i � N . A coalition might create a pirate decoder in which, for each 1 � i � N ,

the ith key is selected from one of the decoder boxes held by the coalition. From the point

of view of the company that distributes decoder boxes, it would be useful to be able to
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identify one or more of the members of a coalition that produced a pirate decoder, once a

pirate decoder is con�scated.

The second example, described in Fiat and Tassa [10], concerns pay-per-view movies.

Suppose a pay-per-view movie is divided into N segments, and each segment has q possible

variations. The possible variations of a segment could have the same \content", but be

\marked" in some not easily detected manner. A di�erent variation of the movie is broadcast

to each subscriber. A copy of the movie, denoted x, can therefore be represented as an N -

tuple (x

1

; � � � ; x

N

), where 1 � x

i

� q for 1 � i � N . A coalition might try to create a pirate

copy of the movie by copying segments from the versions broadcast to them, in much the

same way as a coalition produced a pirate decoder box in the example described above.

The cable company would like to design a scheme that enables the identi�cation of one or

more of the members of a coalition that produced a pirated movie.

1.1 Related Work

This paper studies codes with the independent parent property (IPP), traceability (TA)

codes, frameproof (FP) codes and secure-frameproof (SFP) codes. IPP codes are introduced

in [12]. In [12], IPP codes are studied for coalitions of pirate users of size two or less. One

of the main goals of our work is to study and provide context for IPP codes when coalitions

are of arbitrary size.

TA codes are discussed in [6, 17]. In [17], TA codes are studied in a more general setting,

where codewords are replaced by N -subsets of a q-set. This setting is appropriate for the

\decoder box" application, but not for the \pirated movie" application. More recently,

traceability codes have been generalized to \dynamic traitor tracing" schemes in [10].

Frameproof codes are introduced in [5]. A stronger form of frameproof codes, secure-

frameproof codes, is introduced in [16] In this paper, we demonstrate that both types of

codes are weaker than IPP codes and TA codes. Hence, all of our constructions of IPP and

TA codes are also examples of FP and SFP codes.

1.2 De�nitions

Both of the examples from the previous section can be modeled using similar mathematical

notation and de�nitions. As well there is weaker version of this concept ensuring that no

coalition can \frame" a disjoint user or group users, introduced in [5] and [16]. Now we use

a uniform notation to give several de�nitions, as follows.

Consider a code C of length N on an alphabet Q with jQj = q. Then C � Q

N

and we

will call it an (N; n; q)-code if jCj = n. The elements of C called codewords; each codeword

x = (x

1

; � � � ; x

N

), where x

i

2 Q, 1 � i � N .

For any subset of codewords C

0

� C, we de�ne the set of descendants of C

0

, denoted

desc(C

0

) by

desc(C

0

) = fx 2 Q

N

: x

i

2 fa

i

: a 2 C

0

g; 1 � i � Ng:

The set desc(C

0

) consists of the N -tuples that could be produced by a coalition holding the

codewords in the set C

0

.

Now, let w be a positive integer. For a code C, de�ne the w-descendant code of C,

denoted desc

w

(C), as follows:

desc

w

(C) =

[

C

0

�C;jC

0

j�w

desc(C

0

):
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The set desc

w

(C) consists of the N -tuples that could be produced by some coalition of

size at most w.

We now give the following de�nitions concerning traceability properties of codes.

De�nition 1.1 Suppose C is an (N; n; q)-code and w � 2 is an integer. Let C

i

� C; i =

1; 2; � � � ; t, be all the subsets of C such that jC

i

j � w. (Hence t =

P

w

j=1

�

n

j

�

.)

1. C is a w-FP (frameproof) code provided that for all x 2 desc

w

(C), x 2 desc(C

i

) \ C

implies x 2 C

i

.

2. C is a w-SFP (secure-frameproof) code provided that for all x 2 desc

w

(C), x 2

desc(C

i

) \ desc(C

j

) implies that C

i

\ C

j

6= ;, where i 6= j.

3. C is a w-IPP (identi�able parent property) code provided that for all x 2 desc

w

(C), it

holds that

\

fi:x2desc(C

i

)g

C

i

6= ;:

4. For x; y 2 Q

N

, de�ne I(x; y) = fi : x

i

= y

i

g: C is a w-TA (traceability) code provided

that, for all x 2 desc

w

(C), x 2 desc(C

i

) implies that there is at least one codeword

y 2 C

i

such that jI(x; y)j> jI(x; z)j for any z 2 CnC

i

.

The \meaning" of the above de�nitions is as follows:

� A code is w-frameproof if no coalition of size at most w can frame another user not

in the coalition by producing the codeword held by that user. A code is w-secure

frameproof if no coalition of size at most w can frame a disjoint coalition of size

at most w by producing an N -tuple that could have been produced by the second

coalition. w-frameproof and w-secure-frameproof codes are discussed in [5, 17, 16] for

binary codes. Our de�nitions here extend these concepts to the non-binary case. Note

that, in our model, we do not allow \unreadable" bits in the N -tuples (see [5, 16]).

� A code has the w-identi�able parent property if no coalition of size at most w can

produce anN -tuple that cannot be traced back to at least one member of the coalition.

� w-traceability codes are also w-IPP codes (see Lemma 1.3 below). The advantage

of the w-TA property is that it allows an e�cient (i.e., linear-time) algorithm to

determine an identi�able parent.

Example 1.2 We present a (5; 16; 4) 2-TA code, which is an application of a general con-
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struction to be presented later (see Theorem 4.5):

c

1

= 1 1 1 1 1

c

2

= 1 2 2 2 2

c

3

= 1 3 3 3 3

c

4

= 1 4 4 4 4

c

5

= 2 1 2 3 4

c

6

= 2 2 1 4 3

c

7

= 2 3 4 1 2

c

8

= 2 4 3 2 1

c

9

= 3 1 4 2 3

c

10

= 3 2 3 1 4

c

11

= 3 3 2 4 1

c

12

= 3 4 1 3 2

c

13

= 4 1 3 4 2

c

14

= 4 2 4 3 1

c

15

= 4 3 1 2 4

c

16

= 4 4 2 1 3

1.3 Fundamental Results

It is easy to see that w-IPP implies w-SFP and w-SFP implies w-FP. The following lemma

shows that w-TA implies w-IPP.

Lemma 1.3 A w-TA code is a w-IPP code.

Proof. Suppose C is a w-TA code. If x 2 desc

w

(C), then there is a subset C

i

� C, where

jC

i

j = w, such that x 2 desc(C

i

). Let y 2 C

i

such that jI(x; y)j � jI(x; z)j for all z 2 C

i

.

Thus jI(x; y)j � jI(x; z)j for any z 2 C by the de�nition of a w-TA code. We will show that,

for any C

j

� C with jC

j

j � w, x 2 desc(C

j

) implies y 2 C

j

. In fact, if y 62 C

j

, then there is

w 2 C

j

such that jI(x; w)j > jI(x; y)j by the de�nition of a w-TA code. This contradicts

the fact that jI(x; y)j � jI(x; z)j for any z 2 C.

The following example shows that a code having the IPP property does not necessarily

have the TA property.

Example 1.4 A 4-IPP (3; 4; 4)-code which is not a 2-TA code.

Let C = f011; 123; 211; 332g. Then C is 4-IPP, since the symbols in the �rst position of

all the codewords are di�erent. But it is not a 2-TA code. For example, let x = 111. Then x

is a descendant of f123; 011g. However, jI(x\ 123)j= 1 and jI(x\ 011)j = jI(x\ 211)j= 2.

Thus the code is not a 2-TA code.

Remark. Several explicit constructions for 2-IPP codes are given in [12]. It can be veri�ed

that the majority of these codes are not 2-TA codes. So the above example is not unusual.

Remark. It is easy to see that there are w-FPC codes that are not w-IPP codes. For

example, constructions are given in [16] for w-FPC codes on a binary alphabet, for all
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w � 2. However, we will show that a w-IPP code cannot exist on an alphabet of size less

than w.

The purpose of all the types of codes studied in this paper is to discourage a possible

coalition from constructing illegal N -tuples. If an illegal N -tuple is constructed by a coali-

tion of size at most w, then it is possible to identify at least one of the traitors if the code

is w-IPP or w-TA. The following lemma shows that we cannot expect to identify all the

traitors, except for certain \trivial" codes.

Lemma 1.5 Suppose C is any (N; n; q) code with n > q. Then there exist three codewords

y; z; z

0

and x 2 Q

N

such that x 2 desc(fy; zg) \ desc(fy; z

0

g).

Proof. There exists a coordinate k such that z

k

= z

0

k

6= y

k

. For convenience, assume that

k = 1. Then de�ne x = (x

1

; � � � ; x

N

) 2 Q

N

as follows:

x

1

= z

1

(= z

0

1

)

x

i

= y

i

for 2 � i � N:

Clearly, x 2 desc(fy; zg)\ desc(fy; z

0

g).

Note that there is always a trivial (N; q; q) code which is \totally traceable": the code-

words are (1; : : : ; 1), : : : , (q; : : : ; q). In this paper, we are interested only in codes with

n > q.

We now prove another impossibility result, which shows that w-IPP codes cannot exist

for certain parameter situations. This result is a generalization of [16, Theorem 2.1].

Lemma 1.6 Suppose C is any (N; n; q) code, and n� 1 � w � q. Then C is not a w-IPP

code.

Proof. Let z

1

; � � � ; z

w+1

2 C. For 1 � i � N , let y

i

be chosen such that jfj : z

j

i

=

y

i

gj � 2: (This can be done using the pigeonhole principle, because w + 1 > q.) Then

let y = (y

1

; � � � ; y

N

). Now, it is easy to see that y 2 desc(fz

1

; � � � ; z

w+1

gnfz

j

g) for any j,

1 � j � w + 1. Hence C is not w-IPP.

Finally, we notice that the case of w � N is very restrictive, as shown in the following

lemma.

Lemma 1.7 Suppose C is an (N; n; q) w-FP code, where w � N . Then q � n.

Proof. If q < n, then we can show that C is not w-FP. Let x 2 C. Since q < n, there is

a codeword x

1

6= x such that x

1

= x

1

1

. In a similar way, we can �nd x

2

; � � � ; x

N

such that

x

i

6= x and x

i

i

= x

i

for 1 � i � N . Thus x 2 desc(x

1

; � � � ; x

N

).

As mentioned above, codes with q � n exist trivially.

2 Connections between Hash Families and Traceability Codes

Perfect hash families have undergone considerable study due to their applications in in-

formation retrieval; see [7] for an extensive survey. More recently, perfect hash families

and related structures such as separating hash families (see [16]) have found applications in

cryptography. We will discuss some of these applications in this section; other applications

are given in [2].
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De�nition 2.1 Let n � m. An (n;m)-hash function is a function h : A ! B, where

jAj = n and jBj = m. An (n;m)-hash family is a �nite set H of (n;m)-hash functions

such that h : A ! B for each h 2 H, where jAj = n and jBj = m. We use the notation

HF(N ;n;m) to denote an (n;m)-hash family with jHj = N .

De�nition 2.2 Let n;m and w be integers such that n � m � w � 2. An (n;m;w)-perfect

hash family is an (n;m)-hash family, H, such that for any X � A with jX j = w, there

exists at least one h 2 H such that hj

X

is injective. We use the notation PHF(N ;n;m;w)

to denote an (n;m;w)-perfect hash family with jHj = N .

De�nition 2.3 Let n;m, w

1

and w

2

be positive integers such that n � m. An (n;m;w

1

; w

2

)-

separating hash family is an (n;m)-hash family, H, such that for any X

1

; X

2

� A with

jX

1

j = w

1

, jX

2

j = w

2

and X

1

\ X

2

= ;, there exists at least one h 2 H such that

fh(x) : x 2 X

1

g\fh(x) : x 2 X

2

g = ;. We use the notation SHF(N ;n;m;w

1

; w

2

) to denote

an (n;m; ; w

1

; w

2

)-separating hash family with jHj = N .

We can depict a (N; n; q)-code, C, as an n�N matrix on q symbols, where each row of the

matrix corresponds to one of the codewords. Similarly, we can represent an HF(N ;n;m),

H, as an N � n matrix on m symbols, where each row of the matrix corresponds to one of

the functions in H.

Given an (N; n; q)-code C, we de�ne H(C) to be the HF(N ;n; q) whose matrix represen-

tation is C

T

. Thus if C = fx

1

; x

2

; � � � ; x

n

g and 1 � j � N , then the hash function h

j

2 H(C)

is de�ned by the rule h

j

(i) = x

i

j

, 1 � i � n:

Connections between separating and perfect hash families on the one hand, and codes

with traceability properties, on the other hand, have been pointed out in several previous

papers. We summarize previous results of this nature now.

Theorem 2.4 [16] A (N; n; q)-code, C, is a w-FP code if and only ifH(C) is an SHF(N ;n; q;w; 1).

Theorem 2.5 [16] A (N; n; q)-code, C, is a w-SFP code if and only ifH(C) is an SHF(N ;n; q;w; w),

where n � 2w.

Theorem 2.6 [12, Lemma 1] A (N; n; q)-code, C, is a 2-IPP code if and only if H(C) is

simultaneously a PHF(N ;n; q; 3) and an SHF(N ;n; q; 2; 2).

We note that Theorems 2.4 and 2.5 are proved for binary alphabets in [17]. The extension

to nonbinary alphabets is straightforward.

A relationship between w-IPP codes and perfect and separating hash families is given

in the following theorem.

Theorem 2.7 Suppose C is an (N; n; q) w-IPP code. Then we have the following.

1. H(C) is a PHF(N ;n; q;w+ 1) if n � w + 1.

2. H(C) is an SHF(N ;n; q; w; w) if n � 2w.

Proof. Suppose H(C) is not a PHF(N ;n; q;w+ 1). Then there exists w + 1 codewords in

C such that in the ith position, for 1 � i � N , there are at least two codewords having the

same symbol x

i

. Let x = (x

1

; x

2

; � � � ; x

N

). Then it is easy to check that any w of these

w + 1 codewords can produce x. Thus C does not have the w-IPP property.

The second conclusion follows from Theorem 2.5.
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Corollary 2.8 An (N; n; q) w-IPP code does not exist if q � w.

We cannot prove that the converse of Theorem 2.7 holds for w > 2. However, we can

obtain w-IPP codes from certain perfect hash families, as follows.

Theorem 2.9 An (N; n; q)-code, C, is a w-IPP code ifH(C) is a PHF(N ;n; q; b(w+ 2)

2

=4c).

Proof. Suppose there is an x 2 desc

w

(C) such that

\

fi:x2desc(C

i

);jC

i

j�wg

C

i

= ;:

De�ne

D = fC

i

: x 2 desc(C

i

); jC

i

j � wg:

D is the set of all coalitions of size at most w, that could have produced x. Let

� = minfjD

0

j : D

0

� D;

\

C

i

2D

0

C

i

= ;g:

Without loss of generality, let D

1

= fC

1

; C

2

; � � � ; C

�

g be a collection of � distinct coali-

tions in D, such that no codeword is common to all the coalitions in D

1

and each coalition

in D

1

can produce x. Suppose

[

C

i

2D

1

C

i

= fy

1

; y

2

; � � � ; y

�

g:

Then, for 1 � i � �, there is a codeword

y

k

i

2

�

\

j=1;j 6=i

C

j

such that y

k

i

62 C

i

, since � is the minimum number of coalitions having an empty intersec-

tion. Thus there are at most w � (� � 1) codewords in C

i

that are not included in the set

fy

k

1

; y

k

2

; � � � ; y

k

�

g. Hence

� � �+ �(w � �+ 1) = (w+ 2� �)�:

� is an integer, so it follows that

� �

�

(w+ 2)

2

4

�

:

Now, since H(C) is a PHF(N ;n; q; �), there exists a j; 1 � j � N , such that the elements

y

i

j

are all distinct for 1 � i � �. Now consider x. There exists an r, 1 � r � �, such that

x

j

= y

r

j

. The codeword y

r

cannot be in every coalition in D

1

because no codeword is in

every coalition in D

1

. Let C

`

be a coalition in D

1

that doesn't contain y

r

. Since none of the

other codewords in

S

C

i

2D

1

C

i

agree with y

r

on the jth index, x 62 desc(C

`

), a contradiction.

In order for Theorem 2.9 to be applied, it must be the case that q � b(w + 2)

2

=4c. We

proved earlier that a w-IPP code does not exist if q � w. This leaves open the question of

the existence of w-IPP codes for w < q < b(w + 2)

2

=4c.

The relationships between the di�erent structures we have de�ned are summarized in

Figure 1. (Note that the term \CFF" (cover-free family) will be de�ned in the next section,

and \CFC" (cover-free code) will be de�ned in Section 4.)
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Figure 1: Relationships among di�erent types of codes and hash families

code with d > N(1� 1=w

2

)

+

(w; 1� 1=w)-CFC

+

w-TA

+

j

(w+2)

2

4

k

-PHF =) w-IPP =) (w+ 1)-PHF

+

(w;w)-SHF () w-SFP +

+

w-FP () (w; 1)-SHF

+

w-CFF

Key

CFC cover-free code

CFF cover-free family

PHF perfect hash family

SHF separating hash family

TA traceability code

IPP identi�able parent property code

FP frameproof code

SFP secure frameproof code
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3 Necessary Conditions

In our codes, we want the value of n to be as large as possible, given values for q, N and

w. In this section we discuss some upper bounds on the value of n, which yield necessary

conditions for the existence of the codes.

3.1 Bounds from Cover-Free Families

In order to obtain our �rst bound, we employ a type of set system called a cover-free family.

De�nition 3.1 A w-cover-free family is a pair (X;B), where X is a set of size q and B is

a set of subsets of X , such that for any B

0

� B with jB

0

j � w and for any A 2 BnB

0

, it

holds that

A 6�

[

B2B

0

B:

A w-cover-free family will be denoted as w-CFF(q; n) if jBj = n. A w-cover-free family is

said to be N -uniform if jBj = N for all B 2 B.

Cover-free families have been studied extensively in combinatorics, and also have various

applications in computer science, such as group testing algorithms to name one example.

There are numerous cryptographic applications of cover-free families; see, for example,

[5, 6, 8, 11, 13, 15, 17, 16]. Here we consider the relationship between cover-free families

and w-FP codes.

Lemma 3.2 Suppose C is an (N; n; q) code on an alphabet Q. De�ne X = f1; � � � ; Ng�Q,

and for each codeword c = (c

1

; � � � ; c

N

) 2 C, de�ne an N -subset of X as follows:

B

c

= f(i; c

i

) : 1 � i � Ng:

Finally, de�ne B = fB

c

: c 2 Cg. Then the set system (X;B) is an N -uniform w-

CFF(qN; n) if and only if C is a w-FP code.

Proof. Suppose (X;B) is an N -uniform w-CFF(qN; n). Let C

i

= fc

i

1

; c

i

2

; � � � ; c

i

w

g be any

w-subset of C. For any N -tuple x 2 desc(C

i

) \ C, it must be the case that B

x

� [

w

j=1

B

i

j

.

By the de�nition of w-CFF, B

x

= B

i

j

for some j; 1 � j � w. This means that x 2 C

i

. Thus

C is a w-FP code.

Conversely, suppose C is a w-FP code. For any B

0

= fB

c

1

; B

c

2

; � � � ; B

c

w

g � B and

B

x

2 BnB

0

, we must have B

x

6� [

B2B

0

B. Otherwise, we will have x 2 desc(C

i

) \ C, where

C

i

= fc

1

; c

2

; � � � ; c

w

g, but x 62 C

i

, which contradicts the de�nition of w-FP code.

There is an upper bound for uniform cover-free families, proved by Erd�os, Frankl and

F�uredi in [9], as follows.

Theorem 3.3 In any N -uniform w-CFF(q; n), it holds that

n �

�

q

t

�

�

N�1

t�1

�
;

where t = dN=we.
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Theorem 3.3, together with Lemma 3.2, gives an upper bound on n for all the structures

in Figure 1. For example, we can obtain the following bound, which is similar to [17,

Theorem 5.5].

Theorem 3.4 In an (N; n; q) w-TA, w-IPP, w-SFP, or w-FP code, the following bound

holds:

n �

�

qN

t

�

�

N�1

t�1

�

;

where t = d

N

w

e.

We can simplify the bound as follows.

�

qN

d

N

w

e

�

�

N�1

d

N

w

e�1

�

=

w

�

qN

d

N

w

e

�

�

N

d

N

w

e

�

< w

 

qN �

N

w

N �

N

w

!

N

w

= w

�

qw � 1

w � 1

�

N

w

� wq

N

w

:

Roughly speaking, n is bounded above by wq

N

w

.

3.2 Bounds from Separating Hash Families

Since we have proved some relationships between codes and separating hash families, bounds

on SHF will also give us bounds on codes. In this subsection, we investigate some bounds

on SHF. First, we state and prove a simple lemma from [4].

Lemma 3.5 Suppose A is an m � n matrix on q symbols. If n > q

m

, then there are at

most q

m

� 1 non-repeated columns in A .

Proof. There are at most q

m

di�erent columns in A, and at least one column is repeated

since n > q

m

.

For a matrix A, we use R

A

to denote the set of all non-repeated columns. The following

theorem gives a bound for SHF(N ;n; q; w; 1); the proof is identical to the proof of a bound

for PHF due to Blackburn and Wild [4].

Theorem 3.6 Suppose there is an SHF(N ;n; q;w; 1). If w � 2 and n > w(q

e

� 1), then

N > we.

Proof. Suppose N � we. Let A = (a

i;j

) be the N � n matrix obtained from the

SHF(N ;n; q; w; 1). DivideA intow submatrices of size e�n and denote them asA

1

; A

2

; � � � ; A

w

.

Thus A

1

= (a

i;j

), 1 � i � e, 1 � j � n; A

2

= (a

i;j

), e + 1 � i � 2e, 1 � j � n; etc.

From Lemma 3.5 we have

�

�

�

�

�

w

[

i=1

R

A

i

�

�

�

�

�

� w(q

e

� 1):

10



Since n > w(q

e

� 1), there is at least one column, say column j

0

, which is disjoint from

[

w

i=1

R

A

i

. This is a columnN -tuple, say (a

1

; a

2

; � � � ; a

N

)

T

. For each i such that 1 � i � w, we

can �nd a column in A

i

, say column j

i

, which is the same as (a

(i�1)e+1

; a

(i�1)e+2

; � � � ; a

ie

)

T

.

Let W = fj

1

; � � � ; j

w

g. Then there is no hash function separating fj

0

g and W .

Letting e = d

N

w

e, the above bound on separating hash families gives us a bound which

is slightly stronger than Theorem 3.4.

Theorem 3.7 In an (N; n; q) w-TA, w-IPP, w-SFP, or w-FP code, the following bound

holds:

n � w

�

q

d

N

w

e

� 1

�

:

Since a w-PHF is a (w � 1; 1)-SHF, we also have the following corollary that was �rst

proved in [4].

Corollary 3.8 [4, Theorem 1] Suppose there is a PHF(N ;n; q;w). If w � 3 and n >

(w � 1)(q

e

� 1), then N > (w� 1)e.

We now obtain a bound for SHF(N ;n; q; w; w), as follows.

Theorem 3.9 Suppose there is an SHF(N ;n; q;w; w). If w � 2 and n > q

e

+2w� 2, then

N > we.

Proof. Suppose N � we. Let A and A

1

; � � � ; A

w

be the same as in the proof of Theorem 3.6.

Then there are two identical columns in A

1

, say columns i

1

and j

1

. Let A

0

2

be the matrix

formed by deleting columns i

1

and j

1

from A

2

. Then there are two identical columns, say

columns i

2

and j

2

, in A

0

2

. In general, for h � w, we can �nd identical columns, say columns

i

h

and j

h

, in A

h

, where i

h

; j

h

62 fi

1

; j

1

; � � � ; i

h�1

; j

h�1

g. It is easily seen that there is no hash

function separating fi

1

; � � � ; i

w

g from fj

1

; � � � ; j

w

g, a contradiction.

Theorem 3.9 gives us a bound on w-SFP (and thus w-IPP and w-TA) as follows:

Theorem 3.10 In an (N; n; q) w-TA, w-IPP or w-SFP code, the following bound holds:

n � q

d

N

w

e

+ 2w � 2:

This bound is stronger than the previous bound obtained from cover-free families, The-

orem 3.7 (of course Theorem 3.7 provides a bound for w-FP codes while Theorem 3.10 does

not).

The above bound for w-FP, w-SFP, w-IPP and w-TA codes are the best bounds known

for w > 2. For 2-IPP codes, a stronger bound was shown in [12]:

Theorem 3.11 In an (N; n; q) 2-IPP code, it holds that n � 3q

dN=3e

.

We can use the same techniques to derive a new upper bound for (w

1

; w

2

)-SHF.

Theorem 3.12 Suppose there is an SHF(N ;n; q;w

1

; w

2

), where w

1

> w

2

� 2. If

n > maxf(w

1

� w

2

+ 1)(q

e

� 1); q

e

+ w

1

+ w

2

� 2g;

then N > w

1

e.

11



Proof. Suppose there exists an SHF(N ;n; q; w

1

; w

2

), where all the given conditions hold,

but N � w

1

e. Let A = (a

i;j

) be the N � n matrix obtained from the SHF(N ;n; q; w

1

; w

2

).

Divide A into two submatrices of sizes (w

1

� w

2

+ 1)e � n and (w

2

� 1)e� n, and denote

them as A

1

and A

2

, respectively. By Theorem 3.6, there is a set Z of (w

1

�w

2

+1) columns

of A

1

, and an additional column z of A

1

, such that no hash function in A

1

separates Z from

fzg.

Now, delete the columns Z [ fzg from A

2

. By Theorem 3.9, there are two disjoint sets

of w

2

� 1 columns of A

2

, say Y

1

and Y

2

, such that no hash function in A

2

separates Y

1

from

Y

2

.

Thus the hash functions in A cannot separate Y

1

[Z and Y

2

[fzg, a contradiction.

4 Su�cient Conditions

In this section, we consider su�cient conditions for the existence of the codes of interest.

These take two forms:

� explicit constuctions, utilizing error-correcting codes, and

� nonconstructive existence results that utilize the probabilistic method [1].

4.1 Constructions Using Error-correcting Codes

In [13], a stronger form of CFF was introduced in connection with a broadcast encryption

technique. It was also remarked in [13] that this stronger form of CFF could be used to

construct traitor tracing schemes. We pursue this theme now, adapting their de�nition to

the setting of codes that we use in this paper.

De�nition 4.1 Suppose that C is an (N; n; q) code. For any subset C

0

� C and any

x 2 Q

N

, de�ne I(x; C

0

) = fi : x

i

= y

i

for some y 2 C

0

g. Then C is called (w; �)-cover-free

code, denoted (w; �)-CFC, if jI(z; C

0

)j < (1��)N for any w-subset C

0

� C and any z 2 CnC

0

.

The following theorem shows that a CFC code is also a TA code.

Theorem 4.2 Suppose that an (N; n; q) code C is a (w; 1� 1=w)-CFC. Then C is a w-TA

code.

Proof. Suppose x 2 desc(C

0

), where C

0

� C; jC

0

j = w. Then there exists y 2 C

0

such that

jI(x; y)j � w=N . On the other hand, for any z 2 CnC

0

, jI(x; z)j � jI(z; C

0

)j < w=N , since

I(z; x) � I(z; C

0

). Thus C is a w-TA code.

Codes with large minimum distance are CFC codes. We prove the following simple

result.

Theorem 4.3 Suppose that C is an (N; n; q)-code having minimum distance d > N(1 �

1=w

2

). Then C is a (w; 1� 1=w)-CFC.

Proof. Suppose C

0

� C; jC

0

j = w and z 2 CnC

0

. Then for any y 2 C

0

, we have

jI(z; y)j< N �N(1� 1=w

2

) = N=w

2

:

Thus

jI(z; C

0

)j < N=w = (1� �)N;

where � = 1� 1=w.

12



The following result, stated in [6], is an immediate corollary of the two preceding theo-

rems.

Theorem 4.4 Suppose that C is an (N; n; q)-code having minimum hamming distance d >

N(1� 1=w

2

). Then C is a w-TA code.

In [17], an explicit construction for w-TA codes was presented that used orthogonal

arrays. This construction can be viewed as a corollary of Theorem 4.4 using Reed-Solomon

codes. Independently, Reed-Solomon codes were used in [12] to construct 2-IPP codes in a

similar fashion. These results are all contained in the following more general theorem.

Theorem 4.5 Suppose N; q and w are given, with q a prime power and N � q + 1. Then

there exists an (N; n; q) w-TA code in which n = q

dN=w

2

e

.

Proof. Suppose N; q and w are given, with q a prime power and N � q+1. Let t = dN=w

2

e.

Then there exists a q-ary Reed-Solomon code of length N and dimension t, say C. C is an

(N; q

t

; q)-code with minimum hamming distance d = N � t + 1. It is easy to check that

d > N(1� 1=w

2

), so Theorem 4.4 can be applied. Therefore C is an (N; n; q) w-TA code in

which n = q

dN=w

2

e

.

We note that [12, Theorem 4] is obtained as a corollary of Theorem 4.5 by setting w = 2.

Also, [17, Theorem 3.14] is obtained as a corollary by setting N = q + 1.

4.2 Nonconstructive Existence Results

The probabilistic method can be used to provide nonconstructive existence results for several

of the types of codes considered in this paper. This approach was �rst used for PHF by

Mehlhorn (see, for example, [14]), and a recent improvement using the Lov�asz Local Lemma

can be found in [3]. A uniform approach to probabilistic bounds for PHF, SHF, and CFF,

as well as a summary of known results, was given in [16].

The probabilistic method was used to prove an existence result for TA codes; the fol-

lowing theorem was proved in [6].

Theorem 4.6 [6] There exists an (N; n; q) w-TA code, where q = 2w

2

and N = 4w

2

logn.

An examination of the proof of Theorem 4.6 shows that the code produced is in fact

a (w; 1� 1=w)-CFC. However, Theorem 4.6 does not compare favourably with the explicit

construction presented in Theorem 4.5 | surprisingly, the explicit construction using Reed-

Solomon codes yields better TA codes than the probabilistic method of Theorem 4.6. This

in fact refutes the assertion made in [6], where it is claimed that no explicit constructions

are known that are as e�cient as Theorem 4.6. However, in the case of 2-IPP codes, the

probabistic method was used in [12] to prove a result that is an improvement over Theorem

4.5.

Theorem 4.7 [12] For every N and q, an (N; n; q) 2-IPP code exists in which n � c(q=4)

N

3

,

where c = (27=32)

1=3

.
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5 Open Problems

Here is a list of interesting open problems and work points.

1. Do there exist w-IPP codes with w < q < b(w + 2)

2

=4c?

2. Can we construct \interesting"w-TA codes with q < w

2

? (Note: If q < w

2

in Theorem

4.5, then the code obtained has n = q and hence is not interesting.)

3. It is not hard to construct examples of (w; 1� 1=w)-CFC that do not have minimum

distance d > N(1� 1=w

2

). Therefore the converse of Theorem 4.3 does not hold. On

the other hand, we do not know if the converse of Theorem 4.4 is true. Therefore we

ask if there exist w-TA codes that are not (w; 1� 1=w)-CFC.

4. Is there a \tight" characterization of w-IPP codes for w � 3. For example, if w = 3,

we only know that 6-PHF ) 3-IPP ) (4-PHF + (3; 3)-SHF).

5. Can we �nd nice explicit constructions for 2-SFPC and 2-FPC codes for arbitrary q,

for example by modifying constructions in [12, 3, 4]?

6. Scalability: Can codes be embedded in larger codes with the same properties, by

increasing N and n simultaneuosly? (Some constructions for embedding w-TA codes

are given in [17, x4].)

7. w-TA codes provide traceability in linear time (i.e., in time O(n).) In general, given a

w-IPP code, traceability can be done in time O(

�

n

w

�

). Can this be improved, perhaps

for certain subclasses of w-IPP codes?
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