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Abstract

It is proved that the maximal possible nonlinearity of n-variable m-resilient Boolean

function is 2

n�1

� 2

m+1

for

2n�7

3

� m � n � 2. This value can be achieved only for

optimized functions (i. e. functions with an algebraic degree n�m � 1). For

2n�7

3

� m �

n � log

2

n�2

3

� 2 it is suggested a method to construct an n-variable m-resilient function

with maximal possible nonlinearity 2

n�1

� 2

m+1

such that each variable presents in ANF

of this function in some term of maximal possible length n �m � 1. For n � 2 (mod 3),

m =

2n�7

3

, it is given a scheme of hardware implementation for such function that demands

approximately 2n gates EXOR and (2=3)n gates AND.

Keywords: stream cipher, Boolean function, nonlinear combining function, correlation-

immunity, resiliency, nonlinearity, algebraic degree, Siegenthaler's Inequality, hardware imple-

mentation, pseudorandom generator.

1 Introduction

One of the most general types of stream cipher systems is several Linear Feedback Shift Registers

(LFSRs) combined by nonlinear Boolean function. This function must satisfy certain criteria

to resist di�erent attacks (in particular, correlation attacks suggested by Siegenthaler [16] and

di�erent types of linear attacks). Besides this function must have su�ciently simple scheme

implementation in hardware (it is widely known that the main advantages of stream ciphers

over block ciphers are the cheapness and the speed). So, the following factors are considered as

important properties of Boolean functions for using in stream cipher applications.

1. Balancedness. A Boolean function must output zeroes and ones with the same probabil-

ities.

2. Good correlation-immunity (of order m). The output of Boolean function must be

statistically independent of combination of any m its inputs. A balanced correlation-immune

of order m Boolean function is called m-resilient.

3. Good nonlinearity. The Boolean function must be at the su�ciently big distance from

any a�ne function.
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4. High algebraic degree. The degree of Algebraic Normal Form (ANF) of Boolean function

must be su�ciently large.

5. High algebraic degree of each individual variable. Each variable of Boolean function must

appear in ANF of this function in some term of su�ciently large length.

6. Simple implementation in hardware. The Boolean function must have su�ciently simple

scheme implementation.

There are a lot of papers where only one of these criteria is studied. It was found that the

nonlinearity of a Boolean function does not exceed 2

n�1

�2

n

2

�1

[13]. The consideration of pairs

of these criteria gave some trade-o�s between them. So, the Boolean function with maximal

possible nonlinearity can not be balanced. Another result is Siegenthaler's Inequality: [15] if

the function f is a correlation-immune function of order m then deg(f) � n�m, moreover, if f

is an m-resilient, m � n� 2, then deg(f) � n�m� 1. Siegenthaler and other authors pointed

out that if the Boolean function is a�ne or depends linearly on a big number of variables then

this function has a simple implementation. But such function can not be considered as a good

for cryptographic applications because of another criteria, in particular, algebraic degrees of

linear variables are 1.

The variety of criteria and complicated trade-o�s between them caused the next approach:

to �x one or two parameters and try to optimize others. The most general model is when

researchers �x the parameters n (number of variables) and m (order of correlation-immunity)

and try to optimize some other criptographically important parameters. Here we can call the

works [14], [2], [6], [4] [7], [8], [10].

The present paper continues the investigations in this direction and gives new results. In

Section 2 we give preliminary concepts, notions and some simple lemmas. In Section 3 we

establish a new trade-o� between resiliency and nonlinearity, namely, we prove that the non-

linearity of n-variable m-resilient Boolean function does not exceed 2

n�1

� 2

m+1

. Moreover, it

is appears that this bound can be achieved only if Siegenthaler's Inequality is achieved too. In

Section 4 we discuss a concept of a linear variable and introduce a new important concept of a

pair of quasilinear variables which works in the following sections. We discuss the connection

of linear and quasilinear dependence with resiliency and nonlinearity of the function and give

a representation form for the function with a pair of quasilinear variables. In Section 5 we

present our main construction method. This method allows to construct recursively the func-

tions with good cryptographic properties using the functions with good cryptographic properties

and smaller number of variables. By means of this method for

2n�7

3

� m � n� 2 we construct

an m-resilient Boolean function of n variables with nonlinearity 2

n�1

� 2

m+1

, i. e. the function

that achieves the upper bound for the nonlinearity proven in Section 3. The combination of

this construction with upper bound gives the exact result: the maximal possible nonlinearity

of n-variable m-resilient Boolean function is 2

n�1

� 2

m+1

for

2n�7

3

� m � n � 2. This result

was known only for m = n� 2 (trivial), m = n� 3 [10] and some small values of n. In Section

6 we strengthen the previous construction and show that for

2n�7

3

� m � n � log

2

n�2

3

� 2 it

is possible to construct an n-variable m-resilient function with maximal possible nonlinearity

2

n�1

� 2

m+1

such that each variable presents in ANF of this function in some term of maximal

possible length n � m � 1 (i. e. each individual variable achieves Siegenthaler's Inequality).

In Section 7 we discuss how to implement in hardware the functions constructed in previous

sections. We suggest a concrete hardware scheme for n-variable, m-resilient function, n � 2

(mod 3), m =

2n�7

3

, that achives a maximal possible nonlinearity and a maximal possible alge-

braic degree for each variable simultaneously. It is given a scheme of hardware implementation

2



for such function. It is remarkably that this scheme has a circuit complexity linear on n. It

contains 2n� 4 gates EXOR and

2n�1

3

gates AND. This scheme has a strongly regular cascade

structure and can be used e�ciently in practical design. In Section 8 we establish a trade-o�

between nonlinearity and correlation-immunity of nonbalanced functions. We prove that the

nonlinearity of nonbalanced n-variable correlation-immune of order m Boolean function does

not exceed 2

n�1

� 2

m

and give some examples where this bound is achieved.

Summarizing, in the case

2n�7

3

� m � n � log

2

n�2

3

� 2 the problem is closed: for given

n and m provided these relations we construct a (balanced) m-resilient function of n variables

with maximal possible (for such n and m) nonlinearity, maximal possible (for such n and m)

algebraic degrees of this function in a whole as well as its individual variables. Moreover, we

implement this function in hardware with a circuit complexity linear on n.

2 Preliminary concepts and notions

We consider V

n

, the vector space of n tuples of elements from GF (2). A Boolean function is a

function from V

n

to GF (2). The weight wt(f) of a function f on V

n

is the number of vectors

e

�

on V

n

such that f(

e

�) = 1. A function f is said to be balanced if wt(f) = wt(f � 1). Obviously,

if a function f on V

n

is balanced then wt(f) = 2

n�1

. A subfunction of the Boolean function f is

a function f

0

obtained by substitution some constants for some variables in f . If we substitute

in the function f the constants �

i

1

; : : : ; �

i

s

for the variables x

i

1

; : : : ; x

i

s

respectively then the

obtained subfunction is denoted by f

�

i

1

;:::;�

i

s

x

i

1

;:::;x

i

s

. If a variable x

i

is not substituted by constant

then x

i

is called a free variable for f

0

.

It is well known that a function f on V

n

can be uniquely represented by a polynomial on

GF (2) whose degree is at most n. Namely,

f(x

1

; : : : ; x

n

) =

M

(a

1

;:::;a

n

)2V

n

g(a

1

; : : : ; a

n

)x

a

1

1

: : : x

a

n

n

where g is also a function on V

n

. The polynomial representation of f is called the algebraic

normal form (brie
y, ANF) of the function and each x

a

1

1

: : : x

a

n

n

is called a term in ANF of

f . The algebraic degree of f , denoted by deg(f), is de�ned as the number of variables in the

longest term of f . The algebraic degree of variable x

i

in f , denoted by deg(f; x

i

), is the number

of variables in the longest term of f that contains x

i

. If deg(f; x

i

) = 0 then the variable x

i

is

called �ctitious for the function f . If deg(f; x

i

) = 1, we say that f depends on x

i

linearly. If

deg(f; x

i

) � 2, we say that f depends on x

i

nonlinearly. The term of length 1 is called a linear

term. If deg(f) � 1 then f is called an a�ne function.

The Hamming distance d(

e

�

1

;

e

�

2

) between two vectors

e

�

1

and

e

�

2

is the number of components

where vectors

e

�

1

and

e

�

2

di�er. For two Boolean functions f

1

and f

2

on V

n

, we de�ne the distance

between f

1

and f

2

by d(f

1

; f

2

) = #f

e

� 2 V

n

jf

1

(

e

�) 6= f

2

(

e

�)g. The minimum distance between f

and the set of all a�ne functions is called the nonlinearity of f and denoted by nl(f).

A Boolean function f on V

n

is said to be correlation-immune of order m, with 1 � m �

n, if the output of f and any m input variables are statistically independent. This concept

was introduced by Siegenthaler [15]. In equivalent non-probabilistic formulation the Boolean

function f is called correlation-immune of order m if wt(f

0

) = wt(f)=2

m

for any its subfunction

f

0

of n � m variables. A balanced mth order correlation immune function is called an m-

resilient. In other words the Boolean function f is called m-resilient if wt(f

0

) = 2

n�m�1

for

any its subfunction f

0

of n �m variables. From this point of view we can consider formally
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any balanced Boolean function as 0-resilient (this convention is accepted in [1], [8], [10]) and

an arbitrary Boolean function as (�1)-resilient. The concept of an m-resilient function was

introduced in [3].

Siegenthaler's Inequality [15] states that if the function f is a correlation-immune func-

tion of order m then deg(f) � n � m. Moreover, if f is an m-resilient, m � n � 2, then

deg(f) � n�m�1. An m-resilient Boolean function f is called optimized if deg(f) = n�m�1

(m � n� 2).

The next two lemmas are well-known.

Lemma 2.1 Let f(x

1

; : : : ; x

n

) be a Boolean function on V

n

. Then deg(f) = n i� wt(f) is

odd.

Proof. The function f can be represented in the form

f(x

1

; : : : ; x

n

) =

M

(�

1

;:::;�

n

)2V

n

f(�

1

;:::;�

n

)=1

(x

1

� �

1

� 1) : : : (x

n

� �

n

� 1):

The number of terms in this sum is the weight of f . Therefore after the removing of the

parentheses and the reducing of similar terms the term of the length n will present in ANF of

f i� the weight of f is odd. ut

Lemma 2.2 Let f(x

1

; : : : ; x

n

) be a Boolean function represented in the form

f(x

1

; : : : ; x

n

) =

M

(�

1

;:::;�

l

)

(x

1

� �

1

) : : : (x

l

� �

l

)f(�

1

� 1; : : : ; �

l

� 1; x

l+1

; : : : ; x

n

):

Suppose that all 2

l

subfunctions f(�

1

� 1; : : : ; �

l

� 1; x

l+1

; : : : ; x

n

) are m-resilient. Then the

function f is an m-resilient too.

The Lemma 2.2 was proved in a lot of papers including (for l = 1) the pioneering paper of

Siegenthaler (Theorem 2 in [15]). General case follows immediately from the case l = 1.

3 Upper bound for the nonlinearity of resilient functions

Let m and m be integers, �1 � m � n. Denote my nlmax(n;m) the maximal possible

nonlinearity of m-resilient Boolean function on V

n

. It is well-known that the nonlinearity of a

Boolean function does not exceed 2

n�1

� 2

n

2

�1

[13]. Thus,

nlmax(n;�1) � 2

n�1

� 2

n

2

�1

; (1)

This value can be achieved only for even n. The functions with such nonlinearity are called

bent functions. Thus, for even n we have nlmax(n;�1) = 2

n�1

� 2

n

2

�1

. It is known [11, 12, 6]

that for odd n, n � 7, nlmax(n;�1) = 2

n�1

� 2

(n�1)=2

, and for odd n, n � 15, the inequality

nlmax(n;�1) > 2

n�1

� 2

(n�1)=2

holds. Bent functions are nonbalanced always, so, for balanced

(0-resilient) n-variable function f we have nl(f) < 2

n�1

� 2

n

2

�1

, and

nlmax(n;m) < 2

n�1

� 2

n

2

�1

for m � 0: (2)

If f is n-variable m-resilient function, m � n � 2, then by Siegenthaler's Inequality [15]

deg(f) � 1, so nlmax(n;m) = 0. In [10] it is proved that nlmax(n; n � 3) = 2

n�2

and it

is conjectured that nlmax(n; n � 4) = 2

n�1

� 2

n�3

. For some small values of parameters n

and m exact values of maximal nonlinearity are known. So, nlmax(4; 0) = 4, nlmax(5;�1) =
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nlmax(5; 0) = nlmax(5; 1) = 12, nlmax(6; 0) = 26 [5], nlmax(6; 1) = nlmax(6; 2) = 24 [10],

nlmax(7;�1) = 56 [9], nlmax(7; 0) = nlmax(7; 1) = 56 [2]. All these values are the combining

of the constructions of concrete functions with upper bounds (1), (2) or, maybe [5], [10], some

exhaustive search techniques.

In this section we present new upper bound for the nonlinearity of resilient functions.

Theorem 3.1 Let f(x

1

; : : : ; x

n

) be an m-resilient Boolean function, m � n� 2. Then

nl(f) � 2

n�1

� 2

m+1

: (3)

Proof. If m = n � 2 then by Siegenthaler's Inequality deg(f) � 1, therefore f is an a�ne

function and nl(f) = 0. If m � n�3 then without loss of generality we can assume that f is an

m-resilient but it is not an (m+ 1)-resilient (in opposite case we prove more strong inequality

nl(f) � 2

n�1

� 2

m+2

). Then f has a subfunction of n�m� 1 variables f

�

i

1

;:::;�

i

m+1

x

i

1

;:::;x

i

m+1

such that

wt

�

f

�

i

1

;:::;�

i

m+1

x

i

1

;:::;x

i

m+1

�

= h 6= 2

n�m�2

. We can assume that h < 2

n�m�2

because of

wt(f) =

X

(�

i

1

;:::;�

i

m+1

)

wt

�

f

�

i

1

;:::;�

i

m+1

x

i

1

;:::;x

i

m+1

�

= 2

n�1

;

where sum is taken over all binary vectors

e

� = (�

i

1

; : : : ; �

i

m+1

) of length m+ 1, and if this sum

contains a term greater than 2

n�m�2

then this sum contains also a term less than 2

n�m�2

.

Consider the function f

�

i

1

;:::;�

i

m+1

x

i

1

;:::;x

i

m+1

, where the vectors

e

� = (�

i

1

; : : : ; �

i

m+1

) and

e

� = (�

i

1

, . . . ,

�

i

m+1

) di�er only in one jth component. Then

wt

�

f

�

i

1

;:::;�

i

j�1

;�

i

j

;�

i

j+1

;:::;�

i

m+1

x

i

1

;:::;x

i

j�1

;x

i

j

;x

i

j+1

;:::;x

i

m+1

�

+ wt

�

f

�

i

1

;:::;�

i

j�1

;�

i

j

;�

i

j+1

;:::;�

i

m+1

x

i

1

;:::;x

i

j�1

;x

i

j

;x

i

j+1

;:::;x

i

m+1

�

=

wt

�

f

�

i

1

;:::;�

i

j�1

;�

i

j+1

;:::;�

i

m+1

x

i

1

;:::;x

i

j�1

;x

i

j+1

;:::;x

i

m+1

�

= 2

n�m�1

;

because of the function f is an m-resilient. Therefore,

wt

�

f

�

i

1

;:::;�

i

j�1

;�

i

j

;�

i

j+1

;:::;�

i

m+1

x

i

1

;:::;x

i

j�1

;x

i

j

;x

i

j+1

;:::;x

i

m+1

�

= 2

n�m�1

� h:

Arguing by the same way we prove that

wt

�

f

�

i

1

;:::;�

i

j�1

;�

i

j

;�

i

j+1

;:::;�

i

m+1

x

i

1

;:::;x

i

j�1

;x

i

j

;x

i

j+1

;:::;x

i

m+1

�

=

�

h; if d(

e

�;

e

�) is even,

2

n�m�1

� h; if d(

e

�;

e

�) is odd.

Consider the a�ne function l,

l =

m+1

M

j=1

x

i

j

� (j

e

�j (mod 2)) :

Then

d(f; l) =

X

(�

i

1

;:::;�

i

m+1

)

d

0

@

f

�

i

1

;:::;�

i

m+1

x

i

1

;:::;x

i

m+1

;

m+1

M

j=1

�

i

j

� (j

e

�j (mod 2))

1

A

=
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X

e�

d(e�;e�) is even

wt

�

f

�

i

1

;:::;�

i

m+1

x

i

1

;:::;x

i

m+1

�

+

X

e�

d(e�;e�) is odd

�

2

n�m�1

� wt

�

f

�

i

1

;:::;�

i

m+1

x

i

1

;:::;x

i

m+1

��

= h2

m

+ h2

m

= h2

m+1

:

Therefore,

nl(f) � d(f; l) = h2

m+1

� (2

n�m�2

� 1)2

m+1

= 2

n�1

� 2

m+1

:

ut

Corollary 3.1 nlmax(n;m) � 2

n�1

� 2

m+1

for m � n� 2.

If m �

n

2

� 2 the inequality (3) does not give us any new information because of well-known

inequality (1). But in the following sections we show that the inequality (3) is achieved for wide

spectrum of large m.

Theorem 3.2 Let f(x

1

; : : : ; x

n

) be an m-resilient nonoptimized Boolean function, m �

n� 3. Then

nl(f) � 2

n�1

� 2

m+2

:

Proof. As in the proof of the Theorem 3.1 let f

�

i

1

;:::;�

i

m+1

x

i

1

;:::;x

i

m+1

be a subfunction of f such

that wt

�

f

�

i

1

;:::;�

i

m+1

x

i

1

;:::;x

i

m+1

�

= h < 2

n�m�2

. The function f is not optimized. It follows that

deg

�

f

�

i

1

;:::;�

i

m+1

x

i

1

;:::;x

i

m+1

�

� deg(f) � n � m � 2. By Lemma 2.1 it follows that h is even. There-

fore, h � 2

n�m�2

� 2 and nl(f) � h2

m+1

� (2

n�m�2

� 2)2

m+1

= 2

n�1

� 2

m+2

. ut

Corollary 3.2 The inequality (3) can be achieved only for optimized functions.

Thus, the inequality (3) can be achieved only if Siegenthaler's Inequality is achieved too.

4 On linear and quasilinear variables

Recall that a variable x

i

is called a linear for a function f = f(x

1

; : : : ; x

i�1

, x

i

, x

i+1

; : : : ; x

n

) if

deg(f; x

i

) = 1. Also we say that a function f depends on a variable x

i

linearly. If a variable x

i

is linear for a function f we can represent f in the form

f(x

1

; : : : ; x

i�1

; x

i

; x

i+1

; : : : ; x

n

) = g(x

1

; : : : ; x

i�1

; x

i+1

; : : : ; x

n

)� x

i

:

Other equivalent de�nition of a linear variable is that a variable x

i

is linear for a function f if

f(

e

�

1

) 6= f(

e

�

2

) for any two vectors

e

�

1

and

e

�

2

that di�er only in ith component. By analogy with

the last de�nition we give a new de�nition for a pair of quasilinear variables.

De�nition 4.1 We say that a Boolean function f = f(x

1

; : : : ; x

n

) depends on a pair of its

variables (x

i

; x

j

) quasilinearly if f(

e

�

1

) 6= f(

e

�

2

) for any two vectors

e

�

1

and

e

�

2

of length n that

di�er only in ith and jth components. A pair (x

i

; x

j

) in this case is called a pair of quasilinear

variables in f .

Lemma 4.1 Let f(x

1

; : : : ; x

n

) be a Boolean function. Then (x

i

; x

j

), i < j, is a pair of

quasilinear variables in f i� f can be represented in the form

f(x

1

; : : : ; x

n

) = g(x

1

; : : : ; x

i�1

; x

i+1

; : : : ; x

j�1

; x

j+1

; : : : ; x

n

; x

i

� x

j

)� x

i

: (4)

6



Proof. If f is represented in the form (4) then, obviously, a pair (x

i

; x

j

) is quasilinear in f .

Suppose that a pair (x

i

; x

j

) is quasilinear in f . Then

A) variables x

i

and x

j

do not present in ANF of f in the same term. Indeed, assume the

converse. Consider the shortest term X in ANF of f that contains x

i

and x

j

simultaneously

(if there are some shortest terms chose one of them arbitrary). Substitute a constant 0 for all

variables that are not contained in X and a constant 1 for all variables that are contained in

X (excluding x

i

and x

j

). Then the term X is the only term in ANF of f that produces x

i

x

j

under such substitution. Thus, we obtain a nonlinear function of two variables, x

i

and x

j

. By

Lemma 2.1 the weight of this function is odd. Therefore there exist two vectors

e

�

1

and

e

�

2

of

length n that di�er only in ith and jth components such that f(

e

�

1

) = f(

e

�

2

). This contradiction

proves the proposition A.

B) exactly one of two linear terms x

i

and x

j

presents in ANF of f . Indeed, suppose that the

part of ANF that does not contain variables di�erent from x

i

and x

j

has the form c

0

�c

i

x

i

�c

j

x

j

(in the proposition A we have proved that the term x

i

x

j

is not contained in ANF of f). Let

e

� be a vector of length n where ith and jth components are ones and all another components

are zeroes, let

e

0 be a zero vector of length n. Then c

0

= f(

e

0) 6= f(

e

�) = c

0

� c

i

� c

j

. It follows

c

i

� c

j

= 1. This equality proves the proposition B.

C) let X be some conjunction x

i

1

x

i

2

: : : x

i

k

that does not contain neither x

i

nor x

j

. Then

the term x

i

X presents in ANF of f i� the term x

j

X presents in ANF of f . Indeed, suppose

that X is a shortest conjunction that does not satisfy to this proposition (if there are some

shortest terms chose one of them arbitrary). Substitute a constant 0 for all variables that are

not contained in X and a constant 1 for all variables that are contained in X (excluding x

i

and

x

j

). Then taking into account the propositions A and B we obtain the function x

i

� x

j

� c or

the constant function c, c 2 f0; 1g. Therefore there exist two vectors

e

�

1

and

e

�

2

of length n that

di�er only in ith and jth components such that f(

e

�

1

) = f(

e

�

2

). This contradiction proves the

proposition C.

A collection of the propositions A, B and C proves the representation (4). ut

Lemma 4.2 Let f(x

1

; : : : ; x

n

) be a Boolean function. If f depends on some variable x

i

linearly then f is balanced.

Proof. Combine all 2

n

vectors of the function f into pairs so that any pair (

e

�

1

;

e

�

2

) contains

vectors

e

�

1

and

e

�

2

that di�er in ith component and coincide in all other components. Then

f(

e

�

1

) 6= f(

e

�

2

). So, wt(f) = 2

n�1

and f is balanced. ut

Corollary 4.1 Let f(x

1

; : : : ; x

n

) be a Boolean function. If f depends on some variables

x

i

1

, x

i

2

, . . . , x

i

s

linearly then f is (s� 1)-resilient.

Note that the Corollary 4.1 agrees with our assumption that a balanced function is 0-resilient,

and an arbitrary Boolean function is (�1)-resilient. (In the last case s = 0.)

Lemma 4.3 Let f(x

1

; : : : ; x

n

) be a Boolean function. If f depends on some pair of variables

(x

i

; x

j

) quasilinearly then f is balanced.

Proof. Combine all 2

n

vectors of the function g into pairs so that any pair (

e

�

1

;

e

�

2

) contains

vectors

e

�

1

and

e

�

2

that di�er in ith and jth components and coincide in all other components.

Then f(

e

�

1

) 6= f(

e

�

2

). So, the function f is balanced. ut

Lemma 4.4 Let f(x

1

; : : : ; x

n

; x

n+1

) = f(x

1

; : : : ; x

n

) � cx

n+1

where c 2 f0; 1g. Then

nl(f) = 2nl(g).

Proof. The nonlinearity of the function f(x

1

; : : : ; x

n

; x

n+1

) is the minimum of the weights

7



of functions

f

e�

=

n

M

i=1

�

i

x

i

� �

n+1

x

n+1

� g(x

1

; : : : ; x

n

)� �

over all binary vectors

e

� = (�

1

; : : : ; �

n

; �

n+1

; �) of length n+ 2. If �

n+1

= 1 then the function

f

e�

is balanced by Lemma 4.2. So, in this case wt(f

e�

) = 2

n

. If �

n+1

= 0 then we have

wt(f

e�

) = 2wt

�

g(x

1

; : : : ; x

n

)

n

L

i=1

�

i

x

i

� �

�

� 2nl(f). The last inequality achieves for some

vector

e

�. Thus, nl(f) = minf2

n

; 2nl(g)g = 2nl(g). ut

Lemma 4.5 Let f(x

1

; : : : ; x

n

) be a Boolean function on V

n

and f depends on some pair

of variables (x

i

; x

j

) quasilinearly. Then nl(f) = 2nl(g) where g is a function used in the

representation of f in the form (4) in Lemma 4.1.

Proof. The nonlinearity of the function f is the minimum of the weights of functions

f

e�

= g(x

1

; : : : ; x

i�1

; x

i+1

; : : : ; x

j�1

; x

j+1

; : : : ; x

n

; x

i

� x

j

)�

n

M

i=1

�

i

x

i

� �

over all binary vectors

e

� = (�

1

; �

n

; �) of length n+1. If �

i

6= �

j

then by Lemma 4.2 the function

f

e�

is balanced. But for the function on V

n

the nonlinearity is always less than 2

n�1

. Therefore

we can exclude the case �

1

6= �

2

from our consideration. So, we suppose that �

1

= �

2

= �.

In this case f

e�

= g

0

(x

1

; : : : ; x

i�1

; x

i+1

; : : : ; x

j�1

; x

j+1

; : : : ; x

n

; x

i

� x

j

) for some function g

0

on

V

n�1

, nl(g

0

) = nl(g). It is easy to see that wt(f

e�

) = 2wt(g

0

) � 2nl(g), so, N(g) � 2N(f). On

the other hand, for some vector

e

� the weight of the correspondence function g

0

takes a minimum

of nonlinearity for g. Thus, nl(f) = 2nl(g). ut

5 A method of constructing

Theorem 3.1 shows that the nonlinearity of m-resilient Boolean function on V

n

can not exceed

2

n�1

�2

m+1

. Earlier in papers [14], [2], [7], [8] the authors developed methods for the construct-

ing of m-resilient Boolean functions of n variables with high nonlinearity, and, in particular, the

nonlinearity 2

n�1

�2

m+1

in these four papers can be achieved form+3 � 2

n�m�2

. The methods

suggested in these papers are quite di�erent but in the part of spectrum given by the inequal-

ity m + 3 � 2

n�m�2

these methods give really the same construction. Combination of these

results with our upper bound (3) from Theorem 3.1 proves that nlmax(n;m) = 2

n�1

� 2

m+1

for m + 3 � 2

n�m�2

. In this section we prove more strong result, namely, we prove that

nlmax(n;m) = 2

n�1

� 2

m+1

for

2n�7

3

� m � n� 2.

Lemma 5.1 Let n be a positive integer. Let f

1

(x

1

; : : : ; x

n

) and f

2

(y

1

; : : : ; y

n

) be m-resilient

Boolean functions on V

n

such that nl(f

1

) � N

0

, nl(f

2

) � N

0

. Moreover, there exist two

variables x

i

and x

j

such that f

1

depends on the variables x

i

and x

j

linearly, and f

2

depends on

a pair of the variables (x

i

; x

j

) quasilinearly. Then the function

f

0

1

(x

1

; : : : ; x

n

; x

n+1

) = (x

n+1

� 1)f

1

(x

1

; : : : ; x

n

)� x

n+1

f

2

(x

1

; : : : ; x

n

) (5)

is an m-resilient Boolean function on V

n+1

with nonlinearity nl(f

0

1

) � 2

n�1

+ N

0

, and the

function

f

0

2

(x

1

; : : : ; x

n

; x

n+1

; x

n+2

) = (x

n+1

� x

n+2

� 1)f

1

(x

1

; : : : ; x

n

)�

(x

n+1

� x

n+2

)f

2

(x

1

; : : : ; x

n

)� x

n+1

(6)

8



is an (m+1)-resilient Boolean function on V

n+2

with nonlinearity nl(f

0

2

) � 2

n

+2N

0

. Moreover,

f

0

2

depends on a pair of the variables (x

n+1

; x

n+2

) quasilinearly.

Proof. At �rst, consider the equation (5). Both subfunctions (f

0

1

)

0

x

n+1

= f

1

(x

1

; : : : ; x

n

) and

(f

0

1

)

1

x

n+1

= f

2

(x

1

; : : : ; x

n

) are m-resilient, hence by Lemma 2.2 f

0

1

is m-resilient too. Let l =

n+1

L

i=1

c

i

x

i

�c

0

be an arbitrary a�ne function on V

n+1

. Then d(f

0

1

; l) = d(f

1

; l

0

x

n+1

)+d(f

2

; l

1

x

n+1

) =

wt(f

1

�l

0

x

n+1

)+wt(f

2

�l

1

x

n+1

). We state that at least one of two functions f

1

�l

0

x

n+1

and f

2

�l

1

x

n+1

is balanced. Indeed, if c

i

= 0 or c

j

= 0 then the function f

1

� l

0

x

n+1

depends on x

i

or x

j

linearly,

hence, by Lemma 4.2 the function f

1

� l

0

x

n+1

is balanced. In the remained case c

i

= 1 and

c

j

= 1 it is easy to see from the representation (4) that the function f

2

� l

1

x

n+1

depends on a

pair of the variables (x

i

; x

j

) quasilinearly, therefore by Lemma 4.3 the function f

2

� l

1

x

n+1

is

balanced. Thus, d(f

0

1

; l) � 2

n�1

+ N

0

. An a�ne function l was chosen arbitrary, therefore,

nl(f

0

1

) � 2

n�1

+N

0

.

Next, consider the equation (6). By conctruction (6) and representation (4) we see that f

0

2

depends on a pair of the variables (x

n+1

; x

n+2

) quasilinearly. Now we want to prove that the

function f

0

2

is (m + 1)-resilient. Substitute arbitrary m + 1 variables by constants generating

the subfunction

^

f . If both variables x

n+1

and x

n+2

are free in

^

f then

^

f depends on a pair

(x

n+1

; x

n+2

) quasilinearly, therefore by Lemma 4.3 the function

^

f is balanced. If at least one

of two variables x

n+1

and x

n+2

was substituted by constant then we substituted by constants

at most m of �rst n variables x

1

, . . . , x

n

. But the functions

^

f

0

x

n+1;

0

x

n+2

= f

1

,

^

f

0

x

n+1;

1

x

n+2

= f

2

,

^

f

1

x

n+1;

0

x

n+2

= f

2

� 1,

^

f

1

x

n+1;

1

x

n+2

= f

1

� 1 are m-resilient, thus, by Lemma 2.2 the function

^

f is

balanced. A subfunction

^

f was chosen arbitrary. So, the function f

0

2

is (m+ 1)-resilient.

Finally, we need to prove the lower bound for the nonlinearity of f

0

2

. Let l =

n+2

L

i=1

c

i

x

i

� c

0

be an arbitrary a�ne function on V

n+2

. Then d(f

0

2

; l) = d(f

1

; l

0

x

n+1;

0

x

n+2

) + d(f

2

; l

0

x

n+1;

1

x

n+2

) +

d(f

2

� 1; l

1

x

n+1;

0

x

n+2

) + d(f

1

� 1; l

1

x

n+1;

1

x

n+2

) = wt(f

1

� l

0

x

n+1;

0

x

n+2

) +wt(f

2

� l

0

x

n+1;

1

x

n+2

) +wt(f

2

�

l

1

x

n+1;

0

x

n+2

� 1) +wt(f

1

� l

1

x

n+1;

1

x

n+2

� 1). By the same reason as it was given above at least one

of two functions f

1

� l

0

x

n+1;

0

x

n+2

and f

2

� l

0

x

n+1;

1

x

n+2

is balanced, and at least one of two functions

f

2

� l

1

x

n+1;

0

x

n+2

� 1 and f

1

� l

1

x

n+1;

1

x

n+2

� 1 is balanced. Thus, d(f

0

2

; l) � 2

n

+ 2N

0

. An a�ne

function l was chosen arbitrary, therefore, nl(f

0

2

) � 2

n

+ 2N

0

. ut

Lemma 5.2 Suppose that there exist an m-resilient Boolean function f

n;1

on V

n

, nl(f

n;1

) �

N

0

, and (m + 1)-resilient Boolean function f

n+1;2

on V

n+1

, nl(f

n+1;2

) � 2N

0

, besides the

function f

n+1;2

depends on some pair of its variables (x

i

; x

j

) quasilinearly. Then there exist

an (m + 2)-resilient Boolean function f

n+3;1

on V

n+3

, nl(f

n+3;1

) � 2

n+1

+ 4N

0

, and (m + 3)-

resilient Boolean function f

n+4;2

on V

n+4

, nl(f

n+4;2

) � 2

n+2

+8N

0

, besides the function f

n+4;2

depends on some pair of its variables quasilinearly.

Proof. We can assume that i < j. Denote

f

1

(x

1

; : : : ; x

n+2

) = f

n;1

(x

1

; : : : ; x

i�1

; x

i+1

; : : : ; x

j�1

; x

j+1

; : : : ; x

n+2

)� x

i

� x

j

;

f

2

(x

1

; : : : ; x

n+2

) = f

n+1;2

(x

1

; : : : ; x

n+1

)� x

n+2

:

By Lemmas 4.2 and 4.4 the functions f

1

and f

2

are (m+2)-resilient functions on V

n+2

, nl(f

1

) �

4N

0

, nl(f

2

) � 4N

0

. Moreover, f

1

depends on the variables x

i

and x

j

linearly, and f

2

depends

on a pair of the variables (x

i

; x

j

) quasilinearly. Substituting f

1

and f

2

to (5) and (6) (we shift

9



n! n+ 2) we have

f

0

1

(x

1

; : : : ; x

n

; x

n+3

) = (x

n+3

� 1)f

1

(x

1

; : : : ; x

n+2

)� x

n+3

f

2

(x

1

; : : : ; x

n+2

)

and

f

0

2

(x

1

; : : : ; x

n

; x

n+4

) = (x

n+3

� x

n+4

� 1)f

1

(x

1

; : : : ; x

n+2

)�

(x

n+3

� x

n+4

)f

2

(x

1

; : : : ; x

n+2

)� x

n+3

:

By Lemma 5.1 we have constructed an (m + 2)-resilient Boolean function f

n+3;1

= f

0

1

on

V

n+3

, nl(f

n+3;1

) � 2

n+1

+ 4N

0

, and an (m + 3)-resilient Boolean function f

n+4;2

= f

0

2

on

V

n+4

, nl(f

n+4;2

) � 2

n+2

+ 8N

0

, besides the function f

n+4;2

depends on a pair of its variables

(x

n+3

; x

n+4

) quasilinearly. ut

Corollary 5.1 Suppose that for m � n�2 there exist an m-resilient Boolean function f

n;1

on

V

n

, nl(f

n;1

) = 2

n�1

�2

m+1

, and (m+1)-resilient Boolean function f

n+1;2

on V

n+1

, nl(f

n+1;2

) =

2

n

�2

m+2

, besides the function f

n+1;2

depends on some pair of its variables (x

i

; x

j

) quasilinearly.

Then there exist an (m+2)-resilient Boolean function f

n+3;1

on V

n+3

, nl(f

n+3;1

) = 2

n+2

�2

m+3

,

and (m + 3)-resilient Boolean function f

n+4;2

on V

n+4

, nl(f

n+4;2

) = 2

n+3

� 2

m+4

, besides the

function f

n+4;2

depends on some pair of its variables quasilinearly.

Proof. The hypothesis of Corollary 5.1 is the hypothesis of Lemma 5.2 for N

0

= 2

n�1

�2

m+1

.

By Lemma 5.2 we can construct the functions f

n+3;1

and f

n+4

with required properties and

nonlinearities nl(f

n+3;1

) � 2

n+1

+4N

0

= 2

n+2

� 2

m+3

, nl(f

n+4;2

) � 2

n+2

+8N

0

= 2

n+3

� 2

m+4

.

By Theorem 3.1 the right parts of the last inequalities are also upper bounds. So, we have

equalities nl(f

n+3;1

) = 2

n+2

� 2

m+3

, nl(f

n+4;2

) = 2

n+3

� 2

m+4

. ut

Theorem 5.1 nlmax(n;m) = 2

n�1

� 2

m+1

for

2n�7

3

� m � n� 2.

Proof. If m = n�2 then by Siegenthaler's Inequality any (m�2)-resilient function on V

n

is

a�ne. So, nlmax(n; n�2) = 0. Next, take f

2;1

= x

1

x

2

, f

3;2

= x

1

(x

2

�x

3

)�x

2

. These functions

satisfy to the hypothesis of Corollary 5.1 with n = 2, m = �1. By Corollary 5.1 we construct

the functions f

5;1

and f

6;2

such that the function f

5;1

is an 1-resilient Boolean function on V

5

,

nl(f

5;1

) = 2

4

� 2

2

, the function f

6;2

is a 2-resilient Boolean function on V

6

, nl(f

6;2

) = 2

5

� 2

3

,

besides f

6;2

depends on a pair of the variables (x

5

; x

6

) quasilinearly. Substitute the functions

f

5;1

and f

6;2

to the hypothesis of Corollary 5.1, and so on. By this way, for each integer k,

k � 3, we construst an m-resilient Boolean function f

n;1

on V

n

with nonlinearity 2

n�1

� 2

m+1

where n = 3k � 7, m = 2k � 7. Let

2n�7

3

� m � n� 3. Put

f(x

1

; : : : ; x

n

) = f

3(n�m)�7;1

(x

1

; : : : ; x

3(n�m)�7

)

n

M

i=3(n�m)�6

x

i

:

By the hypothesis of Theorem 5.1 we have 3(n � m) � 7 � n. The resiliency of the func-

tion f is (2(n � m) � 7) + (n � (3(n � m) � 7)) = m, the nonlinearity of the function f is

2

n�(3(n�m)�7)

�

2

(3(n�m)�7)�1

� 2

(2(n�m)�7)+1

�

= 2

n�1

� 2

m+1

. Thus, for

2n�7

3

� m � n� 2 we

have constructed an m-resilient Boolean function on V

n

with nonlinearity 2

n�1

� 2

m+1

. Taking

into account the upper bound (3) from Theorem 3.1 we complete the proof. ut

Note that a recent conjecture nlmax(n; n� 4) = 2

n�1

� 2

n�3

(for n � 5) in [10] is a special

case of our Theorem 5.1.

Examples. It was noted that we take f

2;1

= x

1

x

2

, f

3;2

= x

1

(x

2

�x

3

)�x

2

= x

1

x

2

�x

1

x

3

�x

2

.

Next, f

5;1

= (x

5

�1)(x

1

x

4

�x

2

�x

3

)�x

5

(x

1

x

2

�x

1

x

3

�x

2

�x

4

) = x

1

x

2

x

5

�x

1

x

3

x

5

�x

1

x

4

x

5

�x

1

x

4

�

x

3

x

5

�x

4

x

5

�x

2

�x

3

, f

6;2

= (x

5

�x

6

�1)(x

1

x

4

�x

2

�x

3

)�(x

5

�x

6

)(x

1

x

2

�x

1

x

3

�x

2

�x

4

)�x

5

=

10



x

1

x

2

x

5

� x

1

x

2

x

6

� x

1

x

3

x

5

� x

1

x

3

x

6

� x

1

x

4

x

5

� x

1

x

4

x

6

� x

1

x

4

� x

3

x

5

� x

3

x

6

� x

4

x

5

� x

4

x

6

�

x

2

� x

3

� x

5

.

At the next step we have f

8;1

= (x

8

�1)(x

1

x

2

x

7

�x

1

x

3

x

7

�x

1

x

4

x

7

�x

1

x

4

�x

3

x

7

�x

4

x

7

�x

2

�

x

3

�x

5

�x

6

)�x

8

(x

1

x

2

x

5

�x

1

x

2

x

6

�x

1

x

3

x

5

�x

1

x

3

x

6

�x

1

x

4

x

5

�x

1

x

4

x

6

�x

1

x

4

�x

3

x

5

�x

3

x

6

�

x

4

x

5

� x

4

x

6

� x

2

� x

3

� x

5

� x

7

) = x

1

x

2

x

5

x

8

� x

1

x

2

x

6

x

8

� x

1

x

2

x

7

x

8

� x

1

x

3

x

5

x

8

� x

1

x

3

x

6

x

8

�

x

1

x

3

x

7

x

8

� x

1

x

4

x

5

x

8

� x

1

x

4

x

6

x

8

� x

1

x

4

x

7

x

8

� x

1

x

2

x

7

� x

1

x

3

x

7

� x

1

x

4

x

7

� x

3

x

5

x

8

� x

3

x

6

x

8

�

x

3

x

7

x

8

� x

4

x

5

x

8

� x

4

x

6

x

8

� x

4

x

7

x

8

� x

1

x

4

� x

3

x

7

� x

4

x

7

� x

6

x

8

� x

7

x

8

� x

2

� x

3

� x

5

� x

6

.

The function f

8;1

is a 3-resilient function of 8 variables with nonlinearity 112. Note that

until now the maximal known value for the nonlinearity of a 3-resilient function on V

8

was 96

[2],[8],[10]. Note that now it is unknown even 1-resilient function on V

8

with better nonlinearity

than 112.

The constructing of 29-resilient Boolean functions on V

50

is quite popular in the literature.

Note that the method in [2] allows to construct a 29-resilient Boolean function on V

50

with

nonlinearity 2

49

� 2

34

with an algebraic degree 16. In [7] and [8] the optimized functions are

studied, i. e. the functions that achieve Siegenthaler's Inequality. In [7] it is constructed a 29-

resilient Boolean function on V

50

with an algebraic degree 20 and nonlinearity 2

49

� 2

39

� 2

30

,

and in [7] it is constructed such function with the nonlinearity 2

49

� 2

37

� 2

30

. Note that by

means of the method developed in this section it is possible to construct the function f

50;1

.

This function is 31-resilient function on V

50

with an algebraic degree 18 and the nonlinearity

2

49

� 2

32

(we proved that this nonlinearity is maximal possible). Of course, this function can

be considered as a 29-resilient too (in any case the function f

50;1

� x

1

� x

2

is a 29-resilient

because of spectral properties of correlation-immune functions, see [17]). If we are interested

in optimized functions then we can take the function f

47;1

. This function is a 29-resilient

function on V

47

with an algebraic degree 17 and the nonlinearity 2

46

�2

30

. Put f(x

1

; : : : ; x

50

) =

L

(�

48

;�

49

;�

50

)

(x

48

��

48

)(x

49

��

49

)(x

50

��

50

)f

�

48

;�

49

;�

50

47;1

(x

1

; : : : ; x

47

), where f

�

48

;�

49

;�

50

47;1

(x

1

; : : : ; x

47

)

are the functions obtained from f

47;1

(x

1

; : : : ; x

47

) by some permutations of the variables. It is

easy to provide an algebraic degree of f equal to 20 (for example, if some term of the length

17 will be contained in ANF of only one of eight functions f

�

48

;�

49

;�

50

47;1

(x

1

; : : : ; x

47

)). Thus, the

constructed function f is a 29-resilient optimized Boolean function on V

50

with the nonlinearity

at least 8(2

46

�2

30

) = 2

49

�2

33

. Thus, our method allows to construct the functions with better

parameters than in [2],[8],[10].

6 Optimization of Siegenthaler's Inequality for each individual

variable

Some lack of the construction given in the proof of Theorem 5.1 is that for

2n�7

3

< m the

constructed function depends on some variables linearly. Note that the functions with the

nonlinearity 2

n�1

�2

m+1

constructed in [14], [2], [7], [8] (form+3 � 2

n�m�2

) depends nonlinearly

on all its variables only in some cases when m + 3 = 2

n�m�2

or m+ 2 = 2

n�m�2

. In general,

those functions depends nonlinearly on 2

n�m�2

+n�m�4 or 2

n�m�2

+n�m�3 variables. In

this section for

2n�7

3

� m � n� log

2

n�2

3

� 2 we suggest a method to construct an m-resilient

Boolean function on V

n

that achieves Siegenthaler's Inequality for each its individual variable

(i. e. deg(f; x

i

) = n�m� 1 for all variables x

i

). Simultaneously we give a more general way of

constructing than it was done in previous section.

We say that a variable x

i

is a covering for a function f if each other variable of f is contained

11



together with x

i

in some term of maximal length in ANF of f . We say that a quasilinear pair of

variables (x

i

; x

j

) is a covering for a function f if each other variable of f is contained together

with x

i

in some term of maximal length in ANF of f (and consequently together with x

j

in

some term of maximal length in ANF of f).

Lemma 6.1 For integers k and n provided k � 3, 3k � 7 � n < 3 � 2

k�2

� 2, there exists a

Boolean function f

k

n;1

on V

n

satis�ed to the next properties:

(1 i) f

k

n;1

is an (n� k)-resilient;

(1 ii) nl(f

k

n;1

) = 2

n�1

� 2

n�k+1

;

(1 iii) deg(f

k

n;1

; x

i

) = k � 1 for each variable x

i

;

(1 iv) f

k

n;1

has a covering variable.

For integers k and n provided k � 3, 3k � 7 < n � 3 � 2

k�2

� 2, there exists a Boolean

function f

k

n;2

on V

n

satis�ed to the next properties:

(2 i) f

k

n;2

is an (n� k)-resilient;

(2 ii) nl(f

k

n;2

) = 2

n�1

� 2

n�k+1

;

(2 iii) deg(f

k

n;2

; x

i

) = k � 1 for each variable x

i

;

(2 iv) f

k

n;2

has a quasilinear pair of covering variables.

Proof. The proof is by induction on k. For k = 3 we can take f

3

2;1

= x

1

x

2

, f

3

3;1

= f

3

3;2

=

x

1

(x

2

� x

3

) � x

2

, f

3

4;2

= (x

1

� x

2

)(x

3

� x

4

) � x

1

� x

3

. It is easy to check that these functions

satisfy to all required conditions.

Suppose that the statement is valid for k. We want to prove it for k + 1. We search the

functions f

k+1

n;1

and f

k+1

n;2

in the form

f

k+1

n;1

= (x

n

� 1)

 

f

k

n

1

(x

1

; : : : ; x

n

1

)

n�1

L

i=n

1

+1

x

i

!

�x

n

 

n�1�n

2

L

i=1

x

i

� f

k

n

2

;2

(x

n�n

2

; : : : ; x

n�1

)

!

;

n

1

+ n

2

� n� 1; n

1

� n� 3; n

2

� n� 2;

(7)

and

f

k+1

n;2

= (x

n�1

� x

n

� 1)

 

f

k

n

1

(x

1

; : : : ; x

n

1

)

n�2

L

i=n

1

+1

x

i

!

�(x

n�1

� x

n

)

 

n�2�n

2

L

i=1

x

i

� f

k

n

2

;2

(x

n�n

2

�1

; : : : ; x

n�2

)

!

� x

n�1

;

n

1

+ n

2

� n� 2; n

1

� n� 4; n

2

� n� 3;

(8)

where f

k

n

1

(x

1

; : : : ; x

n

1

) is f

k

n

1

;1

(x

1

; : : : ; x

n

1

) or f

k

n

1

;2

(x

1

; : : : ; x

n

1

) (if f

k

n

1

= f

k

n

1

;2

then n

2

6= n� 2

in (7) and n

2

6= n � 3 in (8)). Besides we suppose that a covering variable in f

k

n

1

is x

1

(or a

quasilinear pair of covering variables in f

k

n

1

;2

is (x

1

; x

2

)), and we suppose that a quasilinear pair

of covering variables in f

k

n

2

;2

is (x

n�2

; x

n�1

) in (7) or (x

n�3

; x

n�2

) in (8).

The functions f

k+1

n;1

and f

k+1

n;2

satisfy to all required properties. Indeed:

(1 i) The resiliency of the function f

k

n

1

(x

1

; : : : ; x

n

1

)

n�1

L

i=n

1

+1

x

i

is (n

1

�k)+(n�1�n

1

) = n�k�1,

the resiliency of the function

n�1�n

2

L

i=1

x

i

�f

k

n

2

;2

(x

n�n

2

, . . . , x

n�1

) is n�1�n

2

+(n

2

�k) = n�k�1.

So, by Lemma 5.1 the resiliency of the function f

k+1

n;1

is n� (k + 1).

12



(2 i) The resiliency of the function f

k

n

1

(x

1

; : : : ; x

n

1

)

n�2

L

i=n

1

+1

x

i

is (n

1

�k)+(n�2�n

1

) = n�k�2,

the resiliency of the function

n�2�n

2

L

i=1

x

i

�f

k

n

2

;2

(x

n�n

2

�1

, . . . , x

n�2

) is n�2�n

2

+(n

2

�k) = n�k�2.

So, by Lemma 5.1 the resiliency of the function f

k+1

n;1

is n� (k + 1).

(1 ii) The nonlinearity of the function f

k

n

1

(x

1

; : : : ; x

n

1

)

n�1

L

i=n

1

+1

x

i

is (2

n

1

�1

�2

n

1

�k+1

)2

n�1�n

1

=

2

n�2

�2

n�k

, the nonlinearity of the function

n�1�n

2

L

i=1

x

i

�f

k

n

2

;2

(x

n�n

2

, . . . , x

n�1

) is 2

n�1�n

2

(2

n

2

�1

�

2

n

2

�k+1

) = 2

n�2

� 2

n�k

. The function f

k

n

1

(x

1

; : : : ; x

n

1

)

n�1

L

i=n

1

+1

x

i

depends on variables x

n�2

and

x

n�1

linearly whereas the function

n�1�n

2

L

i=1

x

i

� f

k

n

2

;2

(x

n�n

2

, . . . , x

n�1

) depends on a pair of

variables (x

n�2

; x

n�1

) quasilinearly. So, by Lemma 5.1 the nonlinearity of the function f

k+1

n;1

is

2

n�2

+ (2

n�2

� 2

n�k

) = 2

n�1

� 2

n�(k+1)+1

.

(2 ii) The nonlinearity of the function f

k

n

1

(x

1

; : : : ; x

n

1

)

n�2

L

i=n

1

+1

x

i

is (2

n

1

�1

�2

n

1

�k+1

)2

n�2�n

1

=

2

n�3

� 2

n�k�1

, the nonlinearity of the function

n�2�n

2

L

i=1

x

i

� f

k

n

2

;2

(x

n�n

2

�1

, . . . , x

n�2

) is equal

to 2

n�2�n

2

(2

n

2

�1

� 2

n

2

�k+1

) = 2

n�3

� 2

n�k�1

. The function f

k

n

1

(x

1

; : : : ; x

n

1

)

n�2

L

i=n

1

+1

x

i

depends

on variables x

n�3

and x

n�2

linearly whereas the function

n�1�n

2

L

i=1

x

i

� f

k

n

2

;2

(x

n�n

2

, . . . , x

n�1

)

depends on a pair of variables (x

n�3

; x

n�2

) quasilinearly. So, by Lemma 5.1 the nonlinearity of

the function f

k+1

n;2

is 2

n�2

+ 2(2

n�3

� 2

n�k�1

) = 2

n�1

� 2

n�(k+1)+1

.

(1 iii), (1 iv) Each variable from the set fx

2

; x

3

; : : : ; x

n

1

g is contained together with x

1

in

some term of length k�1 in ANF of the function f

k

n

1

;1

(x

1

; : : : ; x

n

1

) if f

k

n

1

= f

k

n

1

;1

or each variable

from the set fx

3

; x

4

; : : : ; x

n

1

g is contained together with x

1

in some term of length k � 1 (and

also together with x

2

in some term of this length) in ANF of the function f

k

n

1

;2

(x

1

; : : : ; x

n

1

) if

f

k

n

1

= f

k

n

1

;2

. The function

n�1�n

2

L

i=1

x

i

�f

k

n

2

;2

(x

n�n

2

, . . . , x

n�1

) depends on the variable x

1

linearly

(and also on the variable x

2

if f

k

n

1

= f

k

n

1

;2

). So, after the removing of the parentheses and

the reducing of similar terms each variable from the set fx

1

; x

2

; x

3

; : : : ; x

n

1

g will be contained

together with x

n

in some term of length k in ANF of the function f

k+1

n;1

. Analogously, each

variable from the set fx

n�n

2

; : : : ; x

n�3

g is contained together with x

n�2

in some term of length

k � 1 (and also together with x

n�1

in some term of such length) in ANF of the function

f

k

n

2

;2

(x

n�n

2

; : : : ; x

n�1

). The function f

k

n

1

(x

1

; : : : ; x

n

1

)

n�1

L

i=n

1

+1

x

i

depends on the variables x

n�2

and x

n�1

linearly. So, after the removing of the parentheses and the reducing of similar terms

each variable from the set fx

n�n

2

; : : : ; x

n�1

g will be contained together with x

n

in some term

of length k in ANF of the function f

k+1

n;1

. Bu condition n

1

+ n

2

� n � 1, therefore the union

of the sets fx

1

; x

2

; x

3

; : : : ; x

n

1

g and fx

n�n

2

; : : : ; x

n�1

g is the set fx

1

; : : : ; x

n�1

g. Thus, x

n

is a

covering variable in f

k

n;1

.

The proof of properties (2 iii) and (2 iv) is analogous.

Finally, we note that according to (7) we can construct the function f

k

n;1

if n � n

1

+ 3 �

(3k � 7) + 3 = 3(k + 1)� 7 and if n � n

1

+ n

2

+ 1 � 2(3 � 2

k�2

� 2) + 1 � 3 � 2

(k+1)�2

� 3, and

13



according to (8) we can construct the function f

k

n;2

if n � n

1

+ 4 � (3k � 7) + 4 = 3(k + 1)� 4

and if n � n

1

+ n

2

+ 2 � 2(3 � 2

k�2

� 2) + 2 � 3 � 2

(k+1)�2

� 2. So, the step of induction is

completely proven. ut

Theorem 6.1 For integers m and n provided

2n�7

3

� m � n� log

2

n�2

3

� 2, there exists an

m-resilient Boolean function on V

n

with nonlinearity 2

n�1

� 2

m+1

that achieves Siegenthaler's

Inequality for each individual variable.

Proof. Straightforword corollary from Lemma 6.1. ut

Examples. Let n = 7, m = 3. We chose n

1

= 3, n

2

= 4, and construct according to (7):

f

4

7;1

= (x

7

� 1)

�

f

3

3;1

(x

1

; x

2

; x

3

)

6

L

i=4

x

i

�

� x

7

�

2

L

i=1

x

i

� f

3

4;2

(x

3

; x

4

; x

5

; x

6

)

�

=

(x

7

� 1)(x

1

x

2

� x

1

x

3

� x

2

� x

4

� x

5

� x

6

)�

x

7

(x

1

� x

2

� x

3

x

5

� x

3

x

6

� x

4

x

5

� x

4

x

6

� x

3

� x

5

) =

x

1

x

2

x

7

� x

1

x

3

x

7

� x

3

x

5

x

7

� x

3

x

6

x

7

� x

4

x

5

x

7

� x

4

x

6

x

7

�

x

1

x

2

� x

1

x

3

� x

1

x

7

� x

3

x

7

� x

4

x

7

� x

6

x

7

� x

2

� x

4

� x

5

� x

6

:

The function f

4

7;1

is a 3-resilient Boolean function on V

7

with nonlinearity 2

6

� 2

4

= 48 and an

algebraic degree of each variable in f

4

7;1

is 3.

Let n = 10, m = 6. We chose n

1

= 4, n

2

= 4, and construct according to (8):

f

4

10;2

= (x

9

� x

10

� 1)

�

f

3

4;2

(x

1

; x

2

; x

3

; x

4

)

8

L

i=5

x

i

�

�

(x

9

� x

10

)

�

4

L

i=1

x

i

� f

3

4;2

(x

5

; x

6

; x

7

; x

8

)

�

� x

9

=

(x

9

� x

10

� 1)(x

1

x

3

� x

1

x

4

� x

2

x

3

� x

2

x

4

� x

1

� x

3

� x

5

� x

6

� x

7

� x

8

)�

(x

9

� x

10

)(x

1

� x

2

� x

3

� x

4

� x

5

x

7

� x

5

x

8

� x

6

x

7

� x

6

x

8

� x

5

� x

7

)� x

9

=

x

1

x

3

x

9

� x

1

x

3

x

10

� x

1

x

4

x

9

� x

1

x

4

x

10

� x

2

x

3

x

9

� x

2

x

3

x

10

� x

2

x

4

x

9

�

x

2

x

4

x

10

� x

5

x

7

x

9

� x

5

x

7

x

10

� x

5

x

8

x

9

� x

5

x

8

x

10

� x

6

x

7

x

9

� x

6

x

7

x

10

�

x

6

x

8

x

9

� x

6

x

8

x

10

� x

1

x

3

� x

1

x

4

� x

2

x

3

� x

2

x

4

� x

2

x

9

� x

2

x

10

� x

4

x

9

�

x

4

x

10

� x

6

x

9

� x

6

x

10

� x

8

x

9

� x

8

x

10

� x

1

� x

3

� x

5

� x

6

� x

7

� x

8

� x

9

:

The function f

4

10;2

is a 6-resilient Boolean function on V

10

with nonlinearity 2

9

� 2

7

= 384 and

an algebraic degree of each variable in f

4

10;2

is 3.

7 Implementation

The problem of the implementation of Boolean functions in hardware is very important. Even

if some function has a complex of best cryptographic properties but tries too many gates for

its impementation the practical using of such function can be too expensive. Note that the

circuit complexity of straightforword implementation of the functions constructed by usual

methods, in general, is exponential on n. In [8] the authors discuss the circuit complexity of the

implementation of functions constructed by their methods and give an exponential estimation.

It is remarkably that the functions constructed by the methods developed in this paper have a

circuit complexity of its implementation in hardware linear on n.
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Fig 1. Scheme of block B
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Fig 2. Stream cipher based on the function f

n

Now we give concrete details of such implementation. Put

f

0

n+3

= (x

n+1

� 1)f

0

n

� x

n+1

f

00

n

� x

n+2

� x

n+3

;

f

00

n+3

= (x

n+2

� x

n+3

� 1)f

0

n

� (x

n+2

� x

n+3

)f

00

n

� x

n+1

� x

n+2

(9)

By Lemma 5.1 if f

0

n

and f

00

n

are m-resilient Boolean functions on V

n

with maximal possible

nonlinearity (2

n�1

� 2

m+1

), f

0

n

depends on its last two variables linearly and f

00

n

depends on a

pair of its last variables quasilinearly then f

00

n+3

and f

00

n+3

are (m+2)-resilient Boolean functions
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on V

n+3

with maximal possible nonlinearity (2

n+2

�2

m+3

), f

0

n

depends on its last two variables

linearly and f

00

n

depends on a pair of its last variables quasilinearly.

It is a little more convenient to rewrite the relations (9) in the form

f

0

n+3

= x

n+1

(f

0

n

� f

00

n

)� f

0

n

� x

n+2

� x

n+3

;

f

0

n+3

� f

00

n+3

= (x

n+1

� x

n+2

� x

n+3

)(f

0

n

� f

00

n

)� x

n+1

� x

n+3

:

(10)

The relations (10) allow to realize f

0

n+3

and f

0

n+3

� f

00

n+3

as two functions of �ve values f

0

n

,

f

0

n

� f

00

n

, x

n+1

, x

n+2

, x

n+3

by means of the block B (see Figure 1). The block B contains 8

two-input gates. Initial functions can be chosen as

f

0

4

= x

1

x

2

� x

3

� x

4

;

f

00

4

= x

2

� x

1

(x

3

� x

4

)� x

3

;

f

0

4

� f

00

4

= x

1

(x

2

� x

3

� x

4

)� x

2

� x

4

:

Comparison with (10) shows that we can take f

0

1

= 0, f

00

1

= x

1

. Finally, we put

f

n

= x

n

(f

0

n�1

� f

00

n�1

)� f

0

n�1

; n � 2 (mod 3):

In fact, the function f

n

is the function f

n;1

in Section 5 (up to some permutation of the vari-

ables). By Section 5 the function f

n

is

2n�7

3

-resilient function on V

n

, n � 2 (mod 3), with the

nonlinearity 2

n�1

� 2

2n�4

3

and an algebraic degree of each variable in f

n

is

n+4

3

. A complete

scheme of pseudorandom generator for stream cipher based on the function f

n

is shown in Figure

2 (one gate in the �rst block B that receives 0 can be omitted). The scheme of the function f

n

contains 2n�4 gates EXOR and

2n�1

3

gates AND. Note that this scheme has a strongly regular

cascade structure. For practical using it is su�ciently to stamp the block B, and varying the

number of these blocks in the scheme we obtain the functions of di�erent number of variables

depending on our requirements.

If

2n�7

3

< m we can add to previous construction some variables linearly as it was done in

the proof of Theorem 5.1. If

2n�7

3

< m � n�log

2

n�2

3

�2 and we need to implement the function

with maximal possible nonlinearity that achieves Siegenthaler's Inequality for each individual

variable then we are able also to construct a scheme for this function with a circuit complexity

linear on n following the technique developed in Section 6 but the lack of space forces us to

omit the details of this construction.

8 Some words on the maximal nonlinearity for nonbalanced

correlation-immune functions

In this section we consider the problem of maximal nonlinearity for nonbalanced correlation-

immune function.

Theorem 8.1 Let f(x

1

; : : : ; x

n

) be a nonbalanced correlation-immune of order m Boolean

function, m < n. Then

nl(f) � 2

n�1

� 2

m

: (11)

Proof. Obviously, nl(f) = nl(f � 1). So, without loss of generality we can assume that

wt(f) < 2

n�1

. The weight of f can be calculated as

wt(f) =

X

(�

1

;:::;�

m

)

wt

�

f

�

1

;:::;�

m

x

1

;:::;x

m

�

:
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But the weights of all functions f

�

1

;:::;�

m

x

1

;:::;x

m

are the same. Therefore,

nl(f) � wt(f) = 2

m

wt

�

f

0;:::;0

x

1

;:::;x

m

�

� 2

m

(2

n�m�1

� 1) = 2

n�1

� 2

m

:

ut

The upper bound (11) in the Theorem 8.1 is weaker than the correspondent upper bound

(3) in the Theorem 3.1. Nevertheless this bound is achieved for some functions.

Examples. If m = n � 1 then by Siegenthaler's Inequality deg(f) � 1, therefore nl(f) = 0

and the bound (11) is achieved. But if deg(f) = 1 then f is balanced. The only remained case

f � const can be considered as degenerated.

n = 2, m = 0. Take g

2

(x

1

; x

2

) = x

1

x

2

. Note that we considered g

2

as (�1)-resilient

function but also g

2

can be considered as a nonbalanced correlation-immune function of order

0. nl(g

2

) = 1, so, g

2

achieves the bound (11).

n = 3, m = 1. Take g

3

(x

1

; x

2

; x

3

) =

L

1�i<j�3

x

i

x

j

�

L

1�i�3

x

i

� 1. The function g

3

is a

nonbalanced correlation-immune of order 1, nl(g

3

) = 2

2

� 2

1

= 2, so, g

3

achieves the bound

(11). Note that g

2

= (g

3

)

1

x

3

.

n = 6, m = 3. Take g

6

(x

1

; x

2

; x

3

; x

4

; x

5

; x

6

) =

L

1�i<j<k�6

x

i

x

j

x

k

� x

1

x

2

� x

2

x

3

� x

3

x

4

�

x

4

x

5

� x

1

x

5

�

5

L

i=1

x

i

� 1. The function g

6

is a nonbalanced correlation-immune of order 3,

nl(g

6

) = 2

5

� 2

3

= 24, thus, g

6

achieves the bound (11).

n = 5, m = 2. Take g

5

(x

1

; x

2

; x

3

; x

4

; x

5

; x

5

) = (g

6

)

�

x

i

for arbitrary i 2 f1; : : : ; 6g, � 2 f0; 1g.

It is obviously, that the function g

5

is a nonbalanced correlation-immune of order 2, it is possible

to calculate straightforwordly that nl(g

5

) = 2

4

� 2

2

= 12, thus, g

5

achieves the bound (11).

The examples given above are the only known functions that achieve the inequality (11) (up

to permutations of variables and linear transformations). The existence of the functions that

achieve the bound (11) with n � 7 is the open problem.
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