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Abstrat

There has been a reent upsurge of researh in the design of resilient Boolean funtions for use in stream

ipher systems. The existing researh onentrates on maximum degree resilient funtions and tries to

obtain as high nonlinearity as possible. In sharp ontrast to this approah, we identify the lass of funtions

with provably best possible trade-o� among the parameters: number of variables, resilieny, nonlinearity

and algebrai degree. We �rst prove a sharper version of MEliee theorem for Reed-Muller odes as

applied to resilient funtions, whih also generalizes the well known Xiao-Massey haraterization. As a

onsequene, a nontrivial upper bound on the nonlinearity of resilient funtions is obtained. This result

oupled with Siegenthaler's inequality naturally leads to the notion of provably best resilient funtions.

We further show that suh best funtions an be onstruted by the Maiorana-MFarland like tehnique.

In ases where this method fails, we provide new ideas to onstrut best funtions. We also briey disuss

eÆient implementation of these funtions in hardware.

Keywords: Boolean funtions, Balanedness, Algebrai Degree, Nonlinearity, Correlation Immunity, Re-

silieny, Stream Ciphers, Combinatorial Cryptography.

1 Introdution

Stream ipher ryptosystems are extensively used for defene omuniations worldwide and provide a reliable

and eÆient method of seure ommuniation. In the standard model of stream ipher the outputs of several

independent Linear Feedbak Shift Register (LFSR) sequenes are ombined using a nonlinear Boolean

funtion to produe the keystrem. This keystream is bitwise XORed with the message bitstream to produe

the ipher. The deryption mahinery is idential to the enryption mahinary.

Siegenthaler [24℄ was the �rst to point out that if the ombining funtion is not hosen properly then the

whole system is suseptible to a divide-and-onquer attak. He also de�ned the lass of funtions whih an

resist suh attaks [23℄. Later works on theory of stream iphers with memoryless Boolean funtions have

proeeded on two lines. In one diretion, Siegenthaler's attak has been suessively re�ned and sharpened

in a series of papers [13, 10, 9, 15℄. On the other hand, in another diretion, researhers have tried to design

better and better Boolean funtions for use in stream ipher systems. Here we onentrate on this seond

diretion of researh. We onviningly argue that ertain important questions regarding the design problem

have to date not been taken up by the researhers in this area. Our results provide satisfatory answers to

these questions.
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It is now generally aepted that for a Boolean funtion to be used in stream ipher systems it must

satisfy several properties - balanedness, high nonlinearity, high algebrai degree and high order of orrelation

immunity (see Setion 2 for de�nitions). Also a balaned orrelation immune funtion is alled a resilient

funtion. It is known that there are ertain trade-o� involved among these parameters. For example,

Siegenthaler showed [23℄ that for an n-variable funtion, of degree d and order of orrelation immunity m,

the following holds: m + d � n. Further, if the funtion is balaned then m + d � n � 1. However, the

exat nature of trade-o� between order of orrelation immunity and nonlinearity has not been previously

investigated.

A series of papers [1, 22, 3, 5, 12, 16, 20℄ have approahed the onstrution problem in the following

fashion. Fix the number of variables and the order of orrelation immunity (and possibly the degree) and

try to design balaned funtions with as high nonlinearity as possible. Many interesting ideas have been

used and suessively better results have been proved.

Thus, the natural question that arises is what is the maximum nonlinearity ahievable with a �xed

number of variables and a �xed order of orrelation immunity. More generally, the ruial question is

when an we say that a balaned Boolean funtion ahieves the best possible trade-o� among the following

parameters: number of variables, orrelation immunity, nonlinearity and algebrai degree. Of ourse just

identifying the best funtions is not enough. We need methods to onstrut and implement these funtions

eÆiently in hardware.

One of the main results we prove is that if f is an n-variable, m-resilient funtion, then W

f

(!) �

0 mod 2

m+2

, for all ! 2 f0; 1g

n

. (Here W

f

() is the Walsh transform of f). This is a generalization of the

famous Xiao-Massey haraterization of orrelation immune funtions. More importantly, the result has a

root in oding theory. From Siegenthaler's inequality it is known that any n-variable,m-resilient funtion has

degree at most n�m�1 and hene is in Reed-Muller odeR(n�m�1; n). The famous MEliee theorem [11,

Page 447℄ when applied to Reed-Muller ode R(n�m� 1; n) guarantees that W

f

(!) � 0 mod 2

1+b

n�1

n�m�1



.

The above mentioned result that we prove is muh sharper. From this result we obtain a nontrivial upper

bound on the nonlinearity of n-variable,m-resilient funtions. Further we introdue the notion of a (sequene

of) Boolean funtion with the best possible trade-o� among the parameters mentioned above (see Setion 4).

We believe this notion is important and serves as a benhmark for assessing the eÆay of past and future

onstrution methods.

We show that one of the existing onstrution methods (the Maiorana-MFarland like onstrution

tehnique) an provide all but �nitely many funtions of ertain in�nite sequenes of best funtions. We

disuss the implementation of best funtions and show that funtions of large number of variables (around

50) an be implemented in hardware (see Subsubsetion 4.1.1). However, the Maiorana-MFarland like

onstrution tehnique does not work in all ases. In suh ases, we introdue new sharper onstrution

methods to obtain best funtions. Funtions with these parameters were not known earlier. We also disuss

important issues on funtions with small number of variables in Setion 5.

Future work on resilient Boolean funtions should proeed along the following lines. It is not lear

whether the upper bounds on nonlinearity of resilient funtions obtained in Theorem 3.2 are tight. It will

be a major task to show that in ertain ases the upper bounds are not tight and to obtain sharper upper

bounds. However, in signi�antly many ases these upper bounds an be shown to be tight (for example

see Table in Page 6). Based on these upper bounds, we introdue onepts of Type-I and Type-II optimal

resilient funtions (see Setion 4). Type-II optimal resilient funtions ahieving the maximum possible

algebrai degree are naturally the best funtions for use in stream iphers. We have used existing and new

tehniques to onstrut suh best funtions. Also it seems that the onstrution of ertain best funtions are

diÆult. Either obtaining new onstrution methods for these best funtions or showing their non-existene

should be the main theme of any further work. On one hand these are ombinatorially hallenging problems

and on the other hand their answers have immediate pratial usefulness in designing seure stream ipher

systems.
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2 Preliminaries

In this setion we introdue a few basi onepts. By 


n

we denote the set of all n-variable Boolean funtions.

If we onsider a Boolean funtion as the output olumn of a truth table, then 


n

is the set of 2

2

n

distint

binary strings of length 2

n

. We denote the addition operator over GF (2) by �.

De�nition 2.1 For binary strings S

1

; S

2

of same length �, we denote by #(S

1

= S

2

) (respetively #(S

1

6=

S

2

)), the number of plaes where S

1

and S

2

are equal (respetively unequal). The Hamming distane between

S

1

; S

2

is denoted by d(S

1

; S

2

), i.e. d(S

1

; S

2

) = #(S

1

6= S

2

). The Walsh Distane wd(S

1

; S

2

), between S

1

and

S

2

, is de�ned as, wd(S

1

; S

2

) = #(S

1

= S

2

) � #(S

1

6= S

2

). Note that, wd(S

1

; S

2

) = � � 2 d(S

1

; S

2

). Also

the Hamming weight or simply the weight of a binary string S is the number of 1s in S. This is denoted

by wt(S). A funtion f 2 


n

is said to be balaned if its output olumn in the truth table ontains equal

number of 0's and 1's (i.e. wt(f) = 2

n�1

).

De�nition 2.2 An n-variable Boolean funtion f(X

n

; : : : ;X

1

) an be onsidered to be a multivariate poly-

nomial over GF (2). This polynomial an be expressed as a sum of produts representation of all dis-

tint k-th order produts (0 � k � n) of the variables. More preisely, f(X

n

; : : : ;X

1

) an be written as

a

0

� (

L

i=n

i=1

a

i

X

i

)� (

L

1�i 6=j�n

a

ij

X

i

X

j

)� : : :� a

12:::n

X

1

X

2

: : : X

n

where the oeÆients a

0

; a

ij

; : : : ; a

12:::n

2

f0; 1g. This representation of f is alled the algebrai normal form (ANF) of f . The number of variables in

the highest order produt term with nonzero oeÆient is alled the algebrai degree, or simply degree of f .

In the stream ipher model, the ombining funtion f must be so hosen that it inreases the linear om-

plexity [18℄ of the resulting key stream. High algebrai degree provides high linear omplexity [19, 4℄ and

hene it is desirable for f to have high algebrai degree. Another important ryptographi property for a

Boolean funtion is high nonlinearity. A funtion with low nonlinearity is prone to Best AÆne Approximation

(BAA) [4, Chapter 3℄ attak.

De�nition 2.3 Funtions of degree at most one are alled aÆne funtions. An aÆne funtion with onstant

term equal to zero is alled a linear funtion. The set of all n-variable aÆne (resp. linear) funtions is

denoted by A(n) (resp. L(n)). The nonlinearity of an n variable funtion f is nl(f) = min

g2A(n)

(d(f; g)),

i.e. the distane from the set of all n-variable aÆne funtions. Given an aÆne funtion l 2 A(n), by ndg(l)

we denote the number of variables on whih l is nondegenerate.

An important tool for the analysis of Boolean funtion is its Walsh transform, whih we de�ne next.

De�nition 2.4 Let X = (X

n

; : : : ;X

1

) and ! = (!

n

; : : : ; !

1

) both belong to f0; 1g

n

and X:! = X

n

!

n

�

: : : �X

1

!

1

. Let f(X) be a Boolean funtion on n variables. Then the Walsh transform of f(X) is a real

valued funtion over f0; 1g

n

that an be de�ned as W

f

(!) =

P

X2f0;1g

n

(�1)

f(X)�X:!

. The Walsh transform

is sometimes alled the spetral distribution or simply the spetra of a Boolean funtion.

Xiao and Massey [6℄ has provided a spetral haraterization of orrelation immune funtions using Walsh

transform. We use that as a de�nition of orrelation immunity here.

De�nition 2.5 A funtion f(X

n

; : : : ;X

1

) is m-th order orrelation immune (CI) i� its Walsh transform

W

f

satis�es W

f

(!) = 0; for 1 � wt(!) � m : Note that balaned m-th order orrelation immune funtions

are alled m-resilient funtions and if f is balaned then W

f

(0) = 0. Thus, a funtion f(X

n

; : : : ;X

1

) is

m-resilient i� its Walsh transform W

f

satis�es W

f

(!) = 0; for 0 � wt(!) � m .

The relationship between Walsh distane and Walsh transform is [12℄ W

f

(!) = wd(f;

L

i=n

i=1

!

i

X

i

).

A Boolean funtion should have balanedness, high nonlinearity, high order of resilieny and high algebrai

degree to be used in stream iphers. By an (n;m; d; x) funtion we mean an n-variable, m-resilient (balaned

m-th order CI) funtion with degree d and nonlinearity x. By (n; 0; d; x) funtion we mean a balaned n-

variable funtion with degree d and nonlinearity x. In the above notation the degree omponent is replaed

by a '�' (i.e., (n;m;�; x)), if we do not want to speify the degree.

3



Maiorana-MFarland like onstrution tehnique : There are several onstrution methods for resilient

Boolean funtions in the literature. Perhaps the most important of all these is the Maiorana-MFarland

like onstrution tehnique whih has been investigated in a number of previous papers [1, 22, 3, 2℄. Here

we briey desribe this method. Let � be a map from f0; 1g

r

to f0; 1g

k

, where for any X 2 f0; 1g

r

,

wt(�(X)) � m+ 1. Let f : f0; 1g

r+k

! f0; 1g be a Boolean funtion de�ned as f(X;Y ) = Y :�(X)� g(X),

where X 2 f0; 1g

r

, Y 2 f0; 1g

k

and Y :�(X) is the inner produt of Y and �(X). Then f is m-resilient. It is

possible to interpret f as a onatenation of 2

r

aÆne funtions l

0

; : : : ; l

2

r

�1

from F (k), the set of k-variable

aÆne funtions, where ndg(l

i

) � m + 1. Later we will use this method to onstrut ertain sequenes of

resilient funtions.

Next we need the following basi result, whih is known but we give a proof for the sake of ompleteness.

The notation f � g denotes the Boolean funtion h whose ANF is the produt (over GF (2)) of the ANFs

(whih are polynomials over GF (2)) of f and g, i.e., h(X

n

; : : : ;X

1

) = f(X

n

; : : : ;X

1

)� g(X

n

; : : : ;X

1

).

Lemma 2.1 Let f(X

n

; : : : ;X

1

) and g(X

n

; : : : ;X

1

) be two n-variable funtions. Then d(f; g) = wt(f) +

wt(g) � 2wt(f � g).

Proof : Let F

n

2

= f0; 1g

n

. The funtion f an be ompletely desribed by a subset A of F

n

2

, suh that

(b

n

; : : : ; b

1

) 2 F

n

2

is in A i� f(b

n

; : : : ; b

1

) = 1. This set A is usually alled the support of f . We an get a

similar support B for g. The support of f � g is A�B (symmetri di�erne) and the support of f � g is

A \B. The result follows from the fat that d(f; g) = wt(f � g) = j A�B j = j A j+ j B j � 2j A \B j.

3 Spetral Weights of CI and Resilient Funtions

In this setion we prove a ruial result on the divisibility properties of the spetral weights of orrelation

immune and resilient funtions. Suh a result has an analogue in the MEliee Theorem [11℄ for Reed-Muller

odes: the weight of any funtion in R(r; n) is divisible by 2

b

n�1

r



, where R(r; n) is the set of all n-variable

Boolean funtions of degree at most r. If f is an n-variable, m-resilient funtion, using Siegenthaler's

inequality we know that the degree of f is at most n �m � 1. Hene for any linear funtion l 2 L(n), we

have f� l is in R(n�m�1; n) and so wt(f � l) = d(f; l) is divisible by 2

b

n�1

n�m�1



. However, this result is not

sharp enough to prove a nontrivial upper bound on the nonlinearity of resilient funtions. In Theorem 3.1

we prove that for any n-variable, m-resilient funtion f and l 2 L(n), d(f; l) is divisible by 2

m+1

. This is

a muh stronger result. For example, if n = 7 and m = 3, MEliee Theorem guarantees that d(f; l) is

divisible by 2

2

. On the other hand Theorem 3.1 establishes that d(f; l) is divisible by 2

4

.

Theorem 3.1 also sharpens the Xiao-Massey haraterization [6℄ of orrelation immune funtions. A

Boolean funtion f is m-th order CI i� wd(f; l) = 0 for all l 2 L(n) with 1 � ndg(l) � m, i.e., l is

nondegenerate on 1 to m variables. However, this haraterization does not state anything about wd(f; l)

with ndg(l) > m. We show in Theorem 3.3 that 2

m+1

divides wd(f; l) for all l in L(n) with ndg(l) > m.

For resilient funtions the Xiao-Massey haraterization an only be extended to inlude the ondition that

Walsh distane between f and the all zero funtion is 0. However, Theorem 3.1 shows that 2

m+2

divides

wd(f; l) for all l in L(n) with ndg(l) > m.

Using Theorem 3.1 and Theorem 3.3 we prove nontrivial upper bounds on the nonlinearity of resilient

and orrelation immune funtions. We believe our results are the �rst major results on the maximum

nonlinearity of resilient funtions. These nonlinearity results have deep onsequenes.

1. These bounds set up a "benhmark" by whih one an measure the eÆay of any new onstrution

method for resilient funtions. It will also be a major task to show that in ertain ases the upper bound of

Theorem 3.2 is not tight.

2. Based on Theorem 3.2 and Siegenthaler's inequality, we are able to satisfatorily identify the lass

of Boolean funtions ahieving the best possible trade-o� among the parameters : number of variables,

resilieny, nonlinearity and algebrai degree.
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Maiorana-MFarland like onstrutions and its modi�ations in ertain ases an be used to onstrut

funtions with the best possible trade-o� between nonlinearity and resilieny (see Setion 4). However,

the existing onstrutions annot always be used to ahieve the upper bound of Theorem 3.2. This shows

the inadequay of the onstrution tehniques proposed so far. We provide new onstrutions of resilient

funtions whih ahieve the upper bound of Theorem 3.2.

Previous works related to upper bound on nonlinearity of resilient funtions were attempted in [3, 16℄.

In [3℄ an upper bound was obtained for a very small subset of resilient funtions. It was shown in [20℄, that

it is possible to onstrut resilient funtions, outside the subset of [3℄, with nonlinearity more than the upper

bound obtained in [3℄. In [16℄, the maximum nonlinearity issue for 6-variable resilient funtions has been

ompletely settled by exhaustive omputer searh tehnique. Corollary 3.1 provides a simple proof of the

same result.

Lemma 3.1 Let f be an n-variable funtion of even weight and l 2 L(n). Then d(f; l) (resp. wd(f; l)) is

ongruent to 0 mod 2 (resp. 0 mod 4).

Proof : From Lemma 2.1 we know that d(f; l) = wt(f) + wt(l) � 2wt(f � l). Sine all the terms on the

right are even it follows that d(f; l) is also even.

Lemma 3.2 Let f be an n-variable, 1-resilient funtion and l 2 L(n). Then d(f; l) (resp. wd(f; l)) is

ongruent to 0 mod 4 (resp. 0 mod 8).

Proof : Sine f is 1-resilient, by Siegenthaler's inequality we know that degree of f is at most n � 2.

If l is in L(n), then f � l is a funtion of degree at most n � 1 and hene wt(f � l) is even. Thus

d(f; l) = wt(f) + wt(l) � 2wt(f � l) � wt(f) mod 4. As f is balaned, wt(f) � 0 mod 4, and onsequently

d(f; l) � 0 mod 4.

Corollary 3.1 The maximum nonlinearity for a six variable 1-resilient funtion is 24.

Proof : Using Lemma 3.2, we know that for any l 2 L(6) and any 1-resilient funtion f , d(f; l) � 0 mod 4.

Thus the possible values for d(f; l) are 32 � 4k, for some k � 0. If for every l, k � 1, then f must be bent

and hene annot be resilient. So there must be some l, suh that d(f; l) = 32�8. But then the nonlinearity

is at most 24.

The above result was obtained in [16℄ using an essentially exhaustive omputer searh. Next we present

the major result on the spetral weights of resilient funtions.

Theorem 3.1 Let f be an n-variable, m-resilient (with n � 3 and m � n� 3) funtion and l 2 L(n). Then

d(f; l) (resp. wd(f; l)) is ongruent to 0 mod 2

m+1

(resp. 0 mod 2

m+2

).

Proof : There are three indutions invloved - on the number of variables n, on the order of resilieny m

and on the number of variables in the linear funtion l, whih we denote by k = ndg(l).

Base for indution on n: It is possible to verify the result for n = 3. Assume the result is true for all

funtions on less than n variables (with n � 4).

Indutive Step for indution on n: Let f be an n-variable funtion.

Now we use indution on m. The indution on m is arried out separately for odd and even values.

Base for indution on m: If m = 0, then f is a balaned funtion and Lemma 3.1 provides the base ase.

If m = 1, then Lemma 3.2 provides the base ase.

Next we make the indution hypothesis that if f is m� 2-resilient (with m� 2 � 0), and l 2 L(n), then

d(f; l) � 0 mod 2

m�1

.

Indutive Step for indution on m: Let f be m-resilient and let l be any funtion in L(n). We now use

indution on the number of variables k in l (i.e., l 2 L(n) is nondegenerate on exatly k variables).

Base for indution on k: k � m, sine f is m-resilient d(f; l) = 2

n�1

� 0 mod 2

m+1

.
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Indutive Step for indution on k: Let k > m and using Lemma 3.1 and Lemma 3.2 we an assume k � 2.

Without loss of generality assume X

n

and X

n�1

are present in l. Write l = X

n

� X

n�1

� �, where � is

nondegenerate on at most k � 2 variables. Also de�ne �

1

= X

n

� � and �

2

= X

n�1

� �. Using indution

hypothesis on k, we know d(f; �) � d(f; �

1

) � d(f; �

2

) � 0 mod 2

m+1

. Let g

00

; g

01

; g

10

; g

11

be (n�2)-variable

funtions de�ned by g

ij

(X

n�2

; : : : ;X

1

) = f(i; j;X

n�2

; : : : ;X

1

). Sine � has at most n� 2 variables, there is

a funtion � 2 L(n � 2) whih has the same set of variables as �. Denote by a

ij

the value d(g

ij

; �). Sine

�; �

1

; �

2

have less than k variables, using the indution hypothesis on k we have the following equations.

1. d(f; �) = a

00

+ a

01

+ a

10

+ a

11

= k

1

2

m+1

, 2. d(f; �

1

) = a

00

+ a

01

� a

10

� a

11

= k

2

2

m+1

,

3. d(f; �

2

) = a

00

� a

01

+ a

10

� a

11

= k

3

2

m+1

, and 4. d(f; l) = a

00

� a

01

� a

10

+ a

11

.

From the �rst three equations, we an express a

01

; a

10

and a

11

in terms of a

00

. This gives us

a

01

= (k

1

+ k

3

)2

m

� a

00

, a

10

= (k

1

+ k

2

)2

m

� a

00

and a

11

= �(k

2

+ k

3

)2

m

+ a

00

.

Now using equation 4, we get d(f; l) = 4a

00

� (k

1

+k

2

+k

3

)2

m+1

. Sine f is m-resilient and g is obtained

from f by setting two variables to onstant values, g is an (n� 2)-variable, (m� 2)-resilient funtion. First

assume m is even, then m�2 is also even. Using the indution hypothesis on n and the indution hypothesis

on even m we have a

00

= d(g; �) � 0 mod 2

m�1

. The argument is similar for odd m. (This is the reason for

hoosing the base ases separately for m = 0 and m = 1.) Hene d(f; l) � 0 mod 2

m+1

.

Using Theorem 3.1, it is possible to obtain an upper bound on the nonlinearity of an n-variable, m-

resilient funtion. Let nl(n;m) be the maximum possible for an n-variable, m-resilient funtion.

Theorem 3.2 1. If n is even and m+ 1 >

n

2

� 1, then nl(n;m) � 2

n�1

� 2

m+1

.

2. If n is even and m+ 1 �

n

2

� 1, then nl(n;m) � 2

n�1

� 2

n

2

�1

� 2

m+1

.

3. If n is odd and 2

m+1

> 2

n�1

� nlmax(n), then nl(n;m) � 2

n�1

� 2

m+1

.

4. If n is odd and 2

m+1

� 2

n�1

�nlmax(n), then nl(n;m) is the highest multiple of 2

m+1

whih is less than

or equal to 2

n�1

� nlmax(n).

Further in ases 1 and 3, the spetra of any funtion ahieving the stated bound must be three valued, i.e.

the values of the Walsh distanes must be 0;�2

m+2

.

Proof : We prove only ases 1 and 2, the other ases being similar.

1. Using Theorem 3.1 for any n-variable, m-resilient funtion f and l 2 L(n), we have d(f; l) � 0 mod 2

m+1

.

Thus d(f; l) = 2

n�1

� k2

m+1

for some k. Clearly k annot be 0 for l and hene the nonlinearity of f is at

most 2

n�1

� 2

m+1

.

2. As in 1, we have d(f; l) = 2

n�1

� k2

m+1

for some k. Let 2

n

2

�1

= p2

m+1

(we an write in this way as

m <

n

2

� 1). If for all l we have k � p, then f must neessarily be bent and hene annot be resilient. Thus

there must be some l suh that the orresponding k > p. This shows that the nonlinearity of f is at most

2

n�1

� 2

n

2

�1

� 2

m+1

.

The proof of the last statement follows from the fat that if the Walsh distanes are not three valued

0;�2

m+2

, then �2

m+i

must be a Walsh distane value for i � 3. The nonlinearity for suh a funtion is

learly less than the stated bound.

We state the boundary ase of Theorem 3.2 in the following orollary (see also [3, 16℄).

Corollary 3.2 For n � 4, nl(n; n� 3) = 2

n�2

.

Proof : From Theorem 3.2 it is lear that nl(n; n � 3) � 2

n�1

� 2

n�2

= 2

n�2

. Moreover, it is easy to

onstrut an (n; n� 3; 2; 2

n�2

) funtion by onatenating two distint linear funtions from L(n� 1), eah

of whih are nondegenerate on n� 2 variables.

We also need the following orollary whih will be used to de�ne the onept of saturated best funtion

in Setion 4.

Corollary 3.3 Let m > b

n

2

 � 2. Then, nl(n;m) � 2

n�1

� 2

m+1

� 2

n�1

� 2

b

n�1

2



. Further, the spetra of

any (n;m;�; 2

n�1

� 2

m+1

) funtion is neessarily three valued.
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The upper bound for nl(n;m) given by Theorem 3.2 is listed in Table 1 for the �rst few interesting ases.

The olumns represent the resilieny and the rows represent the number of variables. The entries with �

represent bounds whih has not yet been ahieved. Funtions an be onstruted with parameters satisfying

the other entries. In partiular, the entries with # represent funtions whih have been onstruted here for

the �rst time.

1 2 3 4 5 6 7 8

5 12 8 0

6 24 24 16 0

7 56 56

�

48 32 0

8 116

�

112 112

#

96 64 0

9 244

�

240 240

�

224

#

192 128 0

10 492

�

480 480 480

�

448 384 256 0

The set of n-variablem-th order orrelation immune funtions is a superset of n-variablem-resilient funtions.

The following two results are for orrelation immune funtions and are similar to Theorem 3.1, Theorem 3.2.

Theorem 3.3 Let f be an n-variable, m-th order orrelation immune (with n � 3 and m � n� 2) funtion

and l 2 L(n). Then d(f; l) (resp. wd(f; l)) is ongruent to 0 mod 2

m

(resp. 0 mod 2

m+1

).

Proof : We have to note that if a funtion f is 1st order orrelation immune (CI) then d(f; l) is even

(wd(f; l) � 0 mod 4) for any linear funtion l. Now given a 2nd order CI funtion, by Siegenthaler's

inequality we know that degree of f is at most n�2. Thus, similar to the proof of Lemma 3.2, we get d(f; l)

(resp. wd(f; l)) is ongruent to 0 mod 4 (resp. 0 mod 8). Using these as the base ases, the proof is similar

to the proof of Theorem 3.1.

Theorem 3.4 Let nl(n;m) denote the highest possible nonlinearity for an n-variable funtion whih is CI

of order m. Then we have the following.

1. If n is even and m >

n

2

� 1, then nl(n;m) � 2

n�1

� 2

m

.

2. If n is even and m �

n

2

� 1, then nl(n;m) � 2

n�1

� 2

n

2

�1

� 2

m

.

3. If n is odd and 2

m

> 2

n�1

� nlmax(n), then nl(n;m) � 2

n�1

� 2

m

.

4. If n is odd and 2

m

� 2

n�1

� nlmax(n), then nl(n;m) is the highest multiple of 2

m

whih is less than or

equal to 2

n�1

� nlmax(n).

Further in ases 1 and 3, the spetra of any funtion ahieving the stated bound must be three valued, i.e.

the values of the Walsh distanes must be 0;�2

m+1

.

4 Constrution of Resilient Funtions

Motivated by Theorem 3.2, we introdue a new notion of optimality for resilient funtions. An (n;m; d; x)

funtion is said to be Type-I optimal if x is the upper bound on nl(n;m) provided in Theorem 3.2. However,

there is a stronger notion of optimality. Given an n-variable funtion, there may be more than one possible

values of order of resilienym, suh that the upper bound on nl(n;m) is same using Theorem 3.2. We all an

n-variable, m-resilient funtion having nonlinearity x to be Type-II optimal if the funtion is Type-I optimal

and further for any p > m the upper bound on nl(n; p) in Theorem 3.2 is stritly less than x. These notions

of optimality an be further strengthened by requiring the degree to be the maximum possible. This an

be done by onsidering Siegenthaler's inequality for balaned funtions: m+ d � n� 1, for any n-variable,

m-resilient, degree d funtion. Thus (n;m; n�m� 1; x) Type-II optimal funtions ahieve the best possible

trade-o� among the parameters - number of variables, order of resilieny, degree and nonlinearity. We will

refer to suh funtions as best funtions.

Example 4.1 An (8; 2; 5; 112) funtion is Type-I optimal. Moreover, (8; 2;�; 112) funtions are not Type-II

optimal sine nl(8; 3) � 112. However, an (8; 3;�; 112) funtion is Type-II optimal sine nl(8; 4) � 96. Also

7



an (8; 3; 4; 112) funtion optimizes the degree and hene it is a best funtion. From Theorem 3.2, the spetra

of any (8; 3;�; 112) funtion is neessarily three valued. However, this may not neessarily be true for any

best funtion. For example, an (8; 1; 6; 116) funtion (if one exists) will be a best funtion, but its spetra

will not be three valued.

The way we have de�ned the notion of optimality it is not guaranteed whether it is possible to onstrut

funtions satisfying the notions of Type-I and Type-II optimality introdued above. The tightness of the

upper bounds in Theorem 3.2 is ontingent on the existene of suh funtions. However, we will show for

ertain sequenes of best funtions, it is possible to onstrut all but �nitely many funtions of any suh

sequene.

We all a best funtion to be saturated if its spetra is three valued aording to Corollary 3.3. Thus an

(n;m; n�m� 1; x)-funtion is alled saturated best (SB for short) if it is Type-II optimal and its spetra is

three valued. For suh a funtion we must neessarily have m >

n

2

� 2. Therefore, the (8; 3; 4; 112) Type-II

optimal funtions are saturated best. However, the (8; 1; 6; 116) Type-II optimal funtions (if at all exist)

an not have a three valued Walsh spetra. From Parseval's theorem, if it has a three valued Walsh spetra,

then 24

2

� z = 2

16

, whih is not possible for integer z. Thus, the (8; 1; 6; 116) Type-II optimal funtions are

best but not saturated best.

Lemma 4.1 If an (n;m; n�m�1; x) funtion f is an SB funtion, then so is an (n+1;m+1; n�m�1; 2x)

funtion g.

Proof : Sine f is SB, x = 2

n�1

� 2

m+1

and so 2x = 2

n

� 2

m+2

. From Corollary 3.3, nl(n + 1;m + 1) �

2

n

� 2

m+2

and hene the spetra of g is three valued.

This naturally leads to a notion of a sequene of Boolean funtions, eah of whih is an SB funtion.

More preisely, a saturated best funtion sequene (an SBS for short), is an in�nite sequene of Boolean

funtions f

0

; f

1

; : : :, where f

0

is an (n

0

;m

0

; n

0

�m

0

� 1; x

0

) funtion whih is SB and the upper bound on

nl(n

0

� 1;m

0

� 1) in Theorem 3.2 is stritly less than

x

0

2

. Also for j � 0, f

j+1

is an (n

j

+ 1;m

j

+ 1; n

j

�

m

j

� 1; 2x

j

) funtion (and hene is also SB from Lemma 4.1). Note that n

j

�m

j

� 1 = n

0

�m

0

� 1 and

so the degree of all the funtions in an SBS are same. Thus an SBS is ompletely de�ned by speifying the

parameters of a funtion f

0

. Note that the funtions whih form an SBS is not unique, i.e., there an be

more than one distint (n

0

;m

0

; n

0

�m

0

� 1; x

0

) funtions and all of them are possible representatives for

f

0

. Thus a partiular SBS is haraterized by several parameters and any sequene of funtions satisfying

these parameters is said to form the partiular SBS.

Example 4.2 The following seqenes are SBS's.

1. f

0

; f

1

; : : :, where f

0

is an (3; 0; 2; 2) funtion.

2. f

0

; f

1

; : : :, where f

0

is an (5; 1; 3; 12) funtion.

3. f

0

; f

1

; : : :, where f

0

is an (7; 2; 4; 56) funtion.

It is not known whether (7; 2; 4; 56) funtions exists. However, we show how to onstrut an

(8; 3; 4; 112) funtion, whih is f

1

in this SBS.

For i � 0 we de�ne SBS(i) as follows. An SBS(0) is a sequene f

0;0

; f

0;1

; : : :, where f

0;0

is a (3; 0; 2; 2)

funtion. For i > 0, an SBS(i) is a sequene f

i;0

; f

i;1

; : : :, where f

i;0

is a (3 + 2i; i; 2 + i; 2

2+2i

� 2

1+i

) SB

funtion. Note that all funtions in an SBS(i) have the same degree 2 + i. Constrution of SBS(0) and

SBS(1) are already known. Unfortunately, it is not known whether the initial funtions for an SBS(i) exist

for i > 1. In the next subsetion we show how to onstrut all but �nitely many initial funtions of any

SBS(i).

Now we will onentrate on the onstrution problem of SB funtions. In de�ning SBS we stated that

any funtion in an SBS must be an SB funtion. However, the onverse that given any SB funtion, it must

our in some SBS(i) is not immediate. The following result proves this and justi�es the fat that we an

restrit our attention to the onstrution problem for SBS(i) only.
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Lemma 4.2 Any SB funtion must our in some SBS(i).

Proof : First note that any funtion of SBS(i) has algebrai degree 2 + i. Any SB funtion f must be an

(n;m; n �m� 1; 2

n�1

� 2

m+1

) funtion having degree d = n�m� 1. Hene f must our in SBS(d� 2),

i.e., in SBS(n�m� 3).

4.1 Constrution of SBS(i)

Here we show that the Maiorana-MFarland like onstrution proedure an be used to onstrut all but

�nitely many funtions of any SBS(i). First we state the following result whih is easy to prove.

Lemma 4.3 Let f

i;j

be a j-th funtion of SBS(i). Then the funtion g = Y � f

i;j

(where the variable Y

does not our in f

i;j

) is an f

i;j+1

funtion of SBS(i). Consequently, if one an onstrut f

i;j

, then one an

onstrut f

i;k

for all k > j.

Proof : The proof follows from Lemma 4.1 and the fat that nl(f

i;j+1

) = 2nl(f

i;j

).

This shows that if one an onstrut any one of the funtions in SBS(i), then it is possible to onstrut

any funtion in the sueeding part of the sequene. Thus it is enough if we an onstrut the �rst funtion

of eah sequene. This is possible for SBS(0) and SBS(1) sine onstrution of (3; 0; 2; 2) and (5; 1; 3; 12)

funtions are known. However, the onstrution problem for the �rst funtion of SBS(i) for i > 1 is an

ongoing researh problem. Here we show that the Maiorana-MFarland like onstrution proedure an be

used to onstrut all but �nitely many funtions of any SBS(i). More preisely, if SBS(i) = f

i;0

; f

i;1

: : :, then

we show how to onstrut f

i;t

for all t � t

0

, where t

0

is suh that 2

1+i

= 3 + i + t

0

. For SBS(2), this gives

t

0

= 3. Moreover, in Subsetion 4.2, we show how to onstrut f

2;1

and f

2;2

. This leaves open the problem

of onstruting f

i;t

, with t < t

0

and i � 3 as a hallenging researh problem.

Theorem 4.1 For any SBS(i) = f

i;0

; f

i;1

; : : :, it is possible to onstrut f

i;t

for all t greater than or equal

to some t

0

.

Proof : The �rst funtion f

i;0

is a (3 + 2i; i; 2 + i; 2

2+2i

� 2

1+i

) funtion. We show that for some j, f

i;j

is onstrutible by Maiorana-MFarland like onstrution tehniques. Let j be suh that 2

1+i

= 3 + i + j.

A funtion f

i;j

is to be an (n = 3 + 2i + j; i + j; 2 + i; 2

2+2i+j

� 2

1+i+j

). We show how to onstrut suh

a funtion. Consider the set � of all k = 2 + i+ j-variable linear funtions whih are nondegenerate on at

least 1 + i + j variables. Clearly there are

�

2+i+j

2+i+j

�

+

�

2+i+j

1+i+j

�

= 3 + i + j suh linear funtions. Consider

an n-variable funtion f (a string of length 2

n

) formed by onatenating 2

n�k

funtions from �. Sine

2

n�k

= 2

1+i

= 3 + i+ j = j � j, we use eah of the funtions in � exatly one in the formation of f . Sine

eah funtion in � is nondegenerate on 1 + i + j variables eah of these funtions is (i + j)-resilient. Let

V = fX

2+i+j

; : : : ;X

1

g be the set of variables whih are involved in the linear funtions in �. Eah of the

variables in V our in 2

1+i

� 1 of the linear funtions in �. Thus eah variable ours an odd number of

times and hene the degree of f is n�k+1 = 2+ i. Sine eah linear funtion is used one, the nonlinearity

of f is 2

n�1

� 2

k�1

= 2

2+2i+j

� 2

1+i+j

. Thus f is a (3 + 2i + j; i + j; 2 + i; 2

2+2i+j

� 2

1+i+j

) funtion and

an be taken as f

i;j

. Take t

0

= j. Using Lemma 4.3 it is possible to onstrut f

i;t

for all t > t

0

= j.

In the proof of the above theorem we use Lemma 4.3 to onstrut f

i;t

for all t > j, given the funtion

f

i;j

. Thus f

i;t

(Y

t�j

; : : : ; Y

1

; X) = Y

t�j

� : : :�Y

1

�f

i;j

(X). This results in the funtion f

i;t

depending linearly

on the variables Y

t�j

; : : : ; Y

1

. This is not reommendable from ryptographi point of view. There are two

ways to avoid this situation.

(I) The above proof of Theorem 4.1 an be modi�ed so that Lemma 4.3 is not required at all. In fat, the

linear onatenation tehnique used to onstrut f

i;j

an diretly be used to onstrut f

i;t

. In f

i;j

, a total

of 2

1+i

slots were �lled up using the 3 + i + j di�erent linear funtions (eah exatly one) and this was

made possible by the fat that 2

1+i

= 3 + i + j. In onstruting f

i;t

diretly we will still have to �ll 2

1+i

slots but the number of linear funtions that an be used will inrease to 3+ i+ t. Hene no linear funtion
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need to be used more than one and as a result the nonlinearity obtained will ahieve the upper bound of

Theorem 3.2. The ANF of the resulting f

i;t

will depend nonlinearly on all the variables Y

t�j

; : : : ; Y

1

.

(II) After obtaining f

i;j

, instead of using Lemma 4.3 we an use a more powerful onstrution provided

in [12℄. The method of [12℄ shows that if f is an m-resilient funtion, then g de�ned as g(Y;X) = (1 �

Y )f(X)� Y (a� f(X ��)), is an (m+1)-resilient funtion, where � is an all one vetor and a = m mod 2.

This also guarantees that g does not depend linearly on Y . Hene if we use this tehnique repeatedly

to onstrut f

i;t

from f

i;j

, then the ANF of the resulting f

i;t

will depend nonlinearly on all the variables

Y

t�j

; : : : ; Y

1

.
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Figure 1: Hardware for Implementing SB funtions

4.1.1 Implementation issues

From an implementation point of view, both the above methods an be mapped eÆiently in hardware. We

briey disuss these possiblities.

If f is implemented using the sequene of onstrutors as desribed in [12℄ (disussed in item (II) above),

then it is possible to implement f using a pipelined store and forward arhiteture. In this ase the basi

funtion [12℄ is f

i;j

whih is onstruted in Theorem 4.1 by the Maiorana-MFarland like tehnique.

Now we desribe a simple hardware implementation strategy for the funtions onstruted in Theorem 4.1

and item (I) above. Suppose f is an n-variable funtion onstruted by the Maiorana-MFarland like

onstrution tehnique. Then we an write n = n

1

+ n

2

, where f is the onatenation of 2

n

1

suitable linear

funtions from L(n

2

). Eah linear funtion in L(n

2

) an be easily implemented using two input XOR gates.

Suppose we have bloks B

0

; : : : ; B

2

n

1

�1

where eah blok implements one linear funtion in L(n

2

). Further,

eah blok is required to have an enable signal, whih determines whether the blok should produe an output

or not. To implement the funtion f all that is required is a 1 � 2

n

1

demultimlexer, where the variables

X

n

; : : : ;X

n�n

1

+1

at as the selet variables of the demultiplexer. The input line of the demultiplexer is

always set to 1 and output line i serves as enable input for blok B

i

. Clearly suh a setup will ompute f .

The size of the demultiplexer is 2

n

1

and there are 2

n

1

bloks. The size of eah blok is bounded above by

n

2

. So the total size of the hardware is O(n

2

2

n

1

). If n

1

is not large, then implementation of suh funtions

is feasible. For example, using urrent tehnology it is possible to implement funtions where n

1

� 25 and

n

2

� 32.

4.2 A Sharper Constrution

For SBS(2) = f

2;0

; f

2;1

; f

2;2

; : : :, Theorem 4.1 an be used to onstrut f

2;t

for all t � 3. Here we show how to

onstrut f

2;1

((8; 3; 4; 112) Type-II optimal funtion). This requires a nontrivial spetral analysis leading to

a new onstrution methodology. However, the onstrution of f

2;0

((7; 2; 4; 56) Type-II optimal funtion) is

not yet known. Thus, we want to onstrut a 3-resilient funtion f 2 


8

with maximum possible algebrai

degree 4 and nonlinearity 112. For a Boolean funtion f , we de�ne NZ(f) = f! j W

f

(!) 6= 0g, where W

f

is the Walsh transform of f .
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Lemma 4.4 Let f

1

; f

2

be two (7; 3;�; 48) funtions suh that NZ(f

1

) \ NZ(f

2

) = ;. Let f 2 


8

be

f = (1�X

8

)f

1

�X

8

f

2

. Then, f is an (8; 3;�; 112) funtion.

First let us onstrut the funtion f

2

using linear onatenation. We take four 5-variable linear funtions

nondegenerate on at least 4 variables : l

51

= X

1

� X

2

� X

3

� X

4

, l

52

= X

1

� X

2

� X

3

� X

5

, l

53

=

X

1

�X

2

�X

4

�X

5

and l

54

= X

1

�X

3

�X

4

�X

5

. We onsider f

2

= l

51

l

52

l

53

l

54

, onatenation of the four

linear funtions. It is easy to see that sine eah l

5i

is 3-resilient, f

2

is also 3-resilient. Note that eah of the

variables X

2

;X

3

;X

4

;X

5

ours in exatly three linear funtions, so algebrai degree of f

2

is 3. Moreover,

nonlinearity of f

2

is 3� 16 = 48.

Now let us analyze the Walsh spetra of f

2

. Note that for the linear funtions � of the form a

7

X

7

�

a

6

X

6

� l

5i

, a

7

; a

6

2 f0; 1g; 1 � i � 4, wd(f

2

; �) is nonzero. There are 16 suh funtions in L(7). For the rest

of the funtions �

1

in L(7), wd(f

2

; �

1

) is zero. Also, note that aording to the Theorem 3.2, this is a three

valued Walsh spetra.

Next we need to use the following basi idea. When d(f

2

; l) is minimum, then d(f

1

; l) must be 2

n�2

,

i.e., when wd(f

2

; l) is maximum, then wd(f

1

; l) must be 0. We now onstrut another (7; 3; 3; 48) funtion,

having a three valued Walsh spetra suh that wd(f

1

; �) is zero for all � of the form a

7

X

7

� a

6

X

6

� l

5i

,

a

7

; a

6

2 f0; 1g; 1 � i � 4.

We start from a (5; 1; 3; 12) funtion g. The Walsh spetra of the funtion need to be suh that wd(g; l

5i

) =

0 for 1 � i � 4. We hoose g to be 00000111011111001110010110100010 by running omputer program.

Then we onstrut f

1

= X

7

� X

6

� g. Note that f

1

is a (7; 3; 3; 48) funtion and the Walsh spetra of f

1

is suh that wd(f

1

; �) is zero for all � of the form a

7

X

7

� a

6

X

6

� l

5i

, a

7

; a

6

2 f0; 1g; 1 � i � 4. Thus,

NZ(f

1

) \ NZ(f

2

) = ;. Also there are degree three terms in f

1

(resp. f

2

) whih are not in f

2

(resp. f

1

).

Hene, f = (1�X

8

)f

1

�X

8

f

2

is an (8; 3; 4; 112) funtion. The funtion is the 256-bit string desribed below.

0000011101111100111001011010001011111000100000110001101001011101

1111100010000011000110100101110100000111011111001110010110100010

0110100110010110011010011001011001101001011010011001011010010110

0110011010011001100110010110011001011010101001011010010101011010

Theorem 4.2 It is possible to onstrut (8; 3; 4; 112) and (9; 4; 4; 224) funtions.

Proof : Above we disussed how to onstrut a (8; 3; 4; 112) funtion f . NowX

9

�f is a (9; 4; 4; 224) funtion.

Note that we an also onstrut a (9; 4; 4; 224) funtion as (1�X

9

)f(X

8

; : : : ;X

1

)�X

9

(1�f(1�X

8

; : : : ; 1�X

1

))

where the funtion does not depend linearly on X

9

.

5 On Constrution of Small Funtions

The maximum nonlinearity question for all Boolean funtions on even number of variables has been solved

quite some time bak [17℄. The same question for odd number of variables has been solved for odd n �

7 [14, 7℄. Further, the maximum nonlinearity question is ompletely solved for balaned and resilient

funtions on n variables for n � 5. Now we onsider the ases n = 6 to n = 10 separately.

Case n = 6: A bent funtion on 6 variables has nonlinearity 28. It is possible to onstrut balaned funtions

on 6 variables having maximum nonlinearity 26 (see [21℄). In [16℄, a omputer searh was arried out on

6-variable resilient funtions and the maximum nonlinearities for 1, 2 and 3 resilient funtions were shown

to be 24, 24, 16 respetively. These results follow very easily from Corollary 3.1 and Theorem 3.2. Also it

is possible to onstrut (6; 1; 4; 24), (6; 2; 3; 24) and (6; 3; 2; 16) funtions.

Case n = 7: The maximum possible nonlinearity for balaned funtions is 56. Here we have shown that

the maximum possible nonlinearity for 1, 2, 3, 4 resilient funtions are respetively 56, 56, 48, 32. The

onstrution of (7; 1; 5; 56), (7; 3; 3; 48) and (7; 4; 2; 32) funtions are known [20℄. However, the onstrution

of (7; 2;�; 56) funtion seems to be a diÆult one.
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Case n = 8: A bent funtion on 8 variables has nonlinearity 120. The maximum possible nonlinearity of

balaned funtions is 118. It is possible to onstrut balaned funtions on 8 variables having nonlinearity

116 [21℄. The problem of onstruting an 8-variable balaned funtion with nonlinearity 118 has been open

for quite some time. Here we present a result whih ould be an important step in solving this problem.

Theorem 5.1 Let if possible f be a (8; 0;�; 118) funtion. Then one an write f = (1 � X

8

)f

1

� X

8

f

2

,

where f

1

and f

2

are 7-variable funtions having nonlinearity 55 eah.

Proof : First we prove that the degree of f must be 7. If the degree of f is less than 7, then using [7,

Lemma 2.1℄, we an perform an aÆne transformation on the varibles of f to obtain an 8-variable funtion g,

suh that g = (1�X

8

)g

1

�X

8

g

2

and the degrees of g

1

and g

2

(g

1

; g

2

2 


7

) are eah less than or equal to 5.

The aÆne transformation preserves the weight and nonlinearity of f and so wt(f) = wt(g) = wt(g

1

)+wt(g

2

)

and nl(f) = nl(g). Sine f is balaned, wt(g

1

)+wt(g

2

) = wt(g) = wt(f) = 128 � 0 mod 4. Also wt(g

1

) and

wt(g

2

) are both even sine their degrees are less than or equal to 5. Hene wt(g

1

) � wt(g

2

) � 0 mod 4 or

wt(g

1

) � wt(g

2

) � 2 mod 4. Sine g

1

; g

2

are 7-variable funtions with degree � 5, it follows that (see [11℄) for

any linear funtion l 2 L(7), d(g

1

; l) � wt(g

1

) mod 4 and d(g

2

; l) � wt(g

2

) mod 4. Hene for any l 2 L(7),

d(g

1

; l) � d(g

2

; l) mod 4 and so d(g

1

; l) + d(g

2

; l) � 0 mod 4 (**). Sine the nonlinearity of g is 118, there

exists � 2 L(7) suh that one of the following must hold: (1) d(g; ��) = 118, (2) d(g; ��) = 138, (3)

d(g; ��



) = 118, (4) d(g; ��



) = 138. Here we onsider only ase (1), other ones being similar. From (1) we

have 2 mod 4 � 118 = d(g; ��) = d(g

1

; �) + d(g

2

; �) whih is a ontradition to equation (**).

Thus the degree of f is 7. Without loss of generality we onsider X

7

: : : X

1

is a degree 7 term in the

ANF of f . We put f

1

(X

7

; : : : ;X

1

) = f(X

8

= 0;X

7

; : : : ;X

1

) and f

2

(X

7

; : : : ;X

1

) = f(X

8

= 1;X

7

; : : : ;X

1

).

Thus both f

1

; f

2

are of degree 7 and hene of odd weight and so nl(f

1

); nl(f

2

) � 55. It an be proved that

if any of nl(f

1

) or nl(f

2

) is � 53, then nl(f) < 118.

The major impliation of Theorem 5.1 is that if it is not possible to onstrut (8; 0; 7; 118) funtion

by onatenating two 7-variable, degree 7, nonlinearity 55 funtions, then the maximum nonlinearity of

balaned 8-variable funtions is 116.

Now we turn to the question of maximum nonlinearity for resilient 8-variable funtion. Using Theo-

rem 3.2, the maximum possible nonlinearities for 1, 2, 3, 4, 5-resilient funtions are 116, 112, 112, 96, 64

respetively. Constrution of (8; 2; 5; 112); (8; 4; 3; 96); (8; 5; 2; 64) funtions is known [20℄. In Theorem 4.2

we showed how to onstrut (8; 3; 4; 112) funtions. The existene of (8; 1;�; 116) is an open question.

Case n = 9: The maximum nonlinearity question for 9-variable funtions is an outstanding open problem of

oding theory. The known upper bound [8℄ is 244. It is easy to onstrut balaned funtions with nonlinearity

240. Using Theorem 3.2, the maximum possible nonlinearities for 1, 2, 3, 4, 5, 6-resilient funtions are 244,

240, 240, 224, 192, 128 respetively. Constrution of (9; 1; 7; 240); (9; 2; 5; 240); (9; 3; 5; 224); (9; 5; 3; 192),

(9; 6; 2; 128) funtions is known [20℄. In Theorem 4.2 we showed how to onstrut (9; 4; 4; 224) funtions.

Constrution of (9; 1;�; 244); (9; 2; 6; 240) and (9; 3;�; 240) funtions are open.

Case n = 10: A bent funtion on 10 variables has nonlinearity 496. The maximum possible nonlinearity of

balaned funtions is 494. The onstrution of [21℄ an provide balaned funtions with nonlinearity 492.

Using Theorem 3.2, the maximum possible nonlinearities for 1, 2, 3, 4, 5, 6, 7-resilient funtions are 492,

488, 480, 480, 448, 384, 256 respetively. Constrution of (10; 1; 8; 484); (10; 2; 7; 480); (10; 3; 5; 480);

(10; 3; 6; 464); (10; 4; 5; 448); (10; 5; 4; 448); (10; 6; 3; 384); (10; 7; 2; 256) funtions is known [20℄. Constrution

of (10; 1;�; 492); (10; 1;�; 488); (10; 2;�; 488); (10; 3; 6; 480); (10; 4;�; 480) funtions is urrently not known.

Next we show how to onstrut (10; 3; 6; 480) funtions. Note that the funtion we onstrut is not an SB

funtion and its Walsh spetra is �ve-valued (0;�32;�64).

Theorem 5.2 It is possible to onstrut (10; 3; 6; 480) funtions.

Proof : We onstrut a funtion f by onatenating linear funtions from L(5) as follows. There are 10

funtions �

0

; : : : ; �

9

in L(5) whih are nondegenerate on exatly 3 variables. Also there are 5 funtions

�

0

; : : : ; �

4

in L(5) whih are nondegenerate on exatly 4 variables. The funtion f is the onatenation of
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the following sequene of funtions,

�

0

�

0

�

0

�



0

�

1

�

1

�

1

�



1

�

2

�

2

�

3

�

4

�

0

�



0

�

1

�



1

�

2

�



2

�

3

�



3

�

4

�



4

�

5

�



5

�

6

�



6

�

7

�



7

�

8

�



8

�

9

�



9

: The funtions �

i

and �

j

�



j

are

both 3-resilient and hene f is 3-resilient too. It an be heked that there are variables between X

5

; : : : ;X

1

whih our odd number of times overall in the above sequene. Hene the degree of f is 6. Also the

nonlinearity of f an be shown to be 480.
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