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Abstra
t

There has been a re
ent upsurge of resear
h in the design of resilient Boolean fun
tions for use in stream


ipher systems. The existing resear
h 
on
entrates on maximum degree resilient fun
tions and tries to

obtain as high nonlinearity as possible. In sharp 
ontrast to this approa
h, we identify the 
lass of fun
tions

with provably best possible trade-o� among the parameters: number of variables, resilien
y, nonlinearity

and algebrai
 degree. We �rst prove a sharper version of M
Elie
e theorem for Reed-Muller 
odes as

applied to resilient fun
tions, whi
h also generalizes the well known Xiao-Massey 
hara
terization. As a


onsequen
e, a nontrivial upper bound on the nonlinearity of resilient fun
tions is obtained. This result


oupled with Siegenthaler's inequality naturally leads to the notion of provably best resilient fun
tions.

We further show that su
h best fun
tions 
an be 
onstru
ted by the Maiorana-M
Farland like te
hnique.

In 
ases where this method fails, we provide new ideas to 
onstru
t best fun
tions. We also brie
y dis
uss

eÆ
ient implementation of these fun
tions in hardware.

Keywords: Boolean fun
tions, Balan
edness, Algebrai
 Degree, Nonlinearity, Correlation Immunity, Re-

silien
y, Stream Ciphers, Combinatorial Cryptography.

1 Introdu
tion

Stream 
ipher 
ryptosystems are extensively used for defen
e 
omuni
ations worldwide and provide a reliable

and eÆ
ient method of se
ure 
ommuni
ation. In the standard model of stream 
ipher the outputs of several

independent Linear Feedba
k Shift Register (LFSR) sequen
es are 
ombined using a nonlinear Boolean

fun
tion to produ
e the keystrem. This keystream is bitwise XORed with the message bitstream to produ
e

the 
ipher. The de
ryption ma
hinery is identi
al to the en
ryption ma
hinary.

Siegenthaler [24℄ was the �rst to point out that if the 
ombining fun
tion is not 
hosen properly then the

whole system is sus
eptible to a divide-and-
onquer atta
k. He also de�ned the 
lass of fun
tions whi
h 
an

resist su
h atta
ks [23℄. Later works on theory of stream 
iphers with memoryless Boolean fun
tions have

pro
eeded on two lines. In one dire
tion, Siegenthaler's atta
k has been su

essively re�ned and sharpened

in a series of papers [13, 10, 9, 15℄. On the other hand, in another dire
tion, resear
hers have tried to design

better and better Boolean fun
tions for use in stream 
ipher systems. Here we 
on
entrate on this se
ond

dire
tion of resear
h. We 
onvin
ingly argue that 
ertain important questions regarding the design problem

have to date not been taken up by the resear
hers in this area. Our results provide satisfa
tory answers to

these questions.
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It is now generally a

epted that for a Boolean fun
tion to be used in stream 
ipher systems it must

satisfy several properties - balan
edness, high nonlinearity, high algebrai
 degree and high order of 
orrelation

immunity (see Se
tion 2 for de�nitions). Also a balan
ed 
orrelation immune fun
tion is 
alled a resilient

fun
tion. It is known that there are 
ertain trade-o� involved among these parameters. For example,

Siegenthaler showed [23℄ that for an n-variable fun
tion, of degree d and order of 
orrelation immunity m,

the following holds: m + d � n. Further, if the fun
tion is balan
ed then m + d � n � 1. However, the

exa
t nature of trade-o� between order of 
orrelation immunity and nonlinearity has not been previously

investigated.

A series of papers [1, 22, 3, 5, 12, 16, 20℄ have approa
hed the 
onstru
tion problem in the following

fashion. Fix the number of variables and the order of 
orrelation immunity (and possibly the degree) and

try to design balan
ed fun
tions with as high nonlinearity as possible. Many interesting ideas have been

used and su

essively better results have been proved.

Thus, the natural question that arises is what is the maximum nonlinearity a
hievable with a �xed

number of variables and a �xed order of 
orrelation immunity. More generally, the 
ru
ial question is

when 
an we say that a balan
ed Boolean fun
tion a
hieves the best possible trade-o� among the following

parameters: number of variables, 
orrelation immunity, nonlinearity and algebrai
 degree. Of 
ourse just

identifying the best fun
tions is not enough. We need methods to 
onstru
t and implement these fun
tions

eÆ
iently in hardware.

One of the main results we prove is that if f is an n-variable, m-resilient fun
tion, then W

f

(!) �

0 mod 2

m+2

, for all ! 2 f0; 1g

n

. (Here W

f

() is the Walsh transform of f). This is a generalization of the

famous Xiao-Massey 
hara
terization of 
orrelation immune fun
tions. More importantly, the result has a

root in 
oding theory. From Siegenthaler's inequality it is known that any n-variable,m-resilient fun
tion has

degree at most n�m�1 and hen
e is in Reed-Muller 
odeR(n�m�1; n). The famous M
Elie
e theorem [11,

Page 447℄ when applied to Reed-Muller 
ode R(n�m� 1; n) guarantees that W

f

(!) � 0 mod 2

1+b

n�1

n�m�1




.

The above mentioned result that we prove is mu
h sharper. From this result we obtain a nontrivial upper

bound on the nonlinearity of n-variable,m-resilient fun
tions. Further we introdu
e the notion of a (sequen
e

of) Boolean fun
tion with the best possible trade-o� among the parameters mentioned above (see Se
tion 4).

We believe this notion is important and serves as a ben
hmark for assessing the eÆ
a
y of past and future


onstru
tion methods.

We show that one of the existing 
onstru
tion methods (the Maiorana-M
Farland like 
onstru
tion

te
hnique) 
an provide all but �nitely many fun
tions of 
ertain in�nite sequen
es of best fun
tions. We

dis
uss the implementation of best fun
tions and show that fun
tions of large number of variables (around

50) 
an be implemented in hardware (see Subsubse
tion 4.1.1). However, the Maiorana-M
Farland like


onstru
tion te
hnique does not work in all 
ases. In su
h 
ases, we introdu
e new sharper 
onstru
tion

methods to obtain best fun
tions. Fun
tions with these parameters were not known earlier. We also dis
uss

important issues on fun
tions with small number of variables in Se
tion 5.

Future work on resilient Boolean fun
tions should pro
eed along the following lines. It is not 
lear

whether the upper bounds on nonlinearity of resilient fun
tions obtained in Theorem 3.2 are tight. It will

be a major task to show that in 
ertain 
ases the upper bounds are not tight and to obtain sharper upper

bounds. However, in signi�
antly many 
ases these upper bounds 
an be shown to be tight (for example

see Table in Page 6). Based on these upper bounds, we introdu
e 
on
epts of Type-I and Type-II optimal

resilient fun
tions (see Se
tion 4). Type-II optimal resilient fun
tions a
hieving the maximum possible

algebrai
 degree are naturally the best fun
tions for use in stream 
iphers. We have used existing and new

te
hniques to 
onstru
t su
h best fun
tions. Also it seems that the 
onstru
tion of 
ertain best fun
tions are

diÆ
ult. Either obtaining new 
onstru
tion methods for these best fun
tions or showing their non-existen
e

should be the main theme of any further work. On one hand these are 
ombinatorially 
hallenging problems

and on the other hand their answers have immediate pra
ti
al usefulness in designing se
ure stream 
ipher

systems.
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2 Preliminaries

In this se
tion we introdu
e a few basi
 
on
epts. By 


n

we denote the set of all n-variable Boolean fun
tions.

If we 
onsider a Boolean fun
tion as the output 
olumn of a truth table, then 


n

is the set of 2

2

n

distin
t

binary strings of length 2

n

. We denote the addition operator over GF (2) by �.

De�nition 2.1 For binary strings S

1

; S

2

of same length �, we denote by #(S

1

= S

2

) (respe
tively #(S

1

6=

S

2

)), the number of pla
es where S

1

and S

2

are equal (respe
tively unequal). The Hamming distan
e between

S

1

; S

2

is denoted by d(S

1

; S

2

), i.e. d(S

1

; S

2

) = #(S

1

6= S

2

). The Walsh Distan
e wd(S

1

; S

2

), between S

1

and

S

2

, is de�ned as, wd(S

1

; S

2

) = #(S

1

= S

2

) � #(S

1

6= S

2

). Note that, wd(S

1

; S

2

) = � � 2 d(S

1

; S

2

). Also

the Hamming weight or simply the weight of a binary string S is the number of 1s in S. This is denoted

by wt(S). A fun
tion f 2 


n

is said to be balan
ed if its output 
olumn in the truth table 
ontains equal

number of 0's and 1's (i.e. wt(f) = 2

n�1

).

De�nition 2.2 An n-variable Boolean fun
tion f(X

n

; : : : ;X

1

) 
an be 
onsidered to be a multivariate poly-

nomial over GF (2). This polynomial 
an be expressed as a sum of produ
ts representation of all dis-

tin
t k-th order produ
ts (0 � k � n) of the variables. More pre
isely, f(X

n

; : : : ;X

1

) 
an be written as

a

0

� (

L

i=n

i=1

a

i

X

i

)� (

L

1�i 6=j�n

a

ij

X

i

X

j

)� : : :� a

12:::n

X

1

X

2

: : : X

n

where the 
oeÆ
ients a

0

; a

ij

; : : : ; a

12:::n

2

f0; 1g. This representation of f is 
alled the algebrai
 normal form (ANF) of f . The number of variables in

the highest order produ
t term with nonzero 
oeÆ
ient is 
alled the algebrai
 degree, or simply degree of f .

In the stream 
ipher model, the 
ombining fun
tion f must be so 
hosen that it in
reases the linear 
om-

plexity [18℄ of the resulting key stream. High algebrai
 degree provides high linear 
omplexity [19, 4℄ and

hen
e it is desirable for f to have high algebrai
 degree. Another important 
ryptographi
 property for a

Boolean fun
tion is high nonlinearity. A fun
tion with low nonlinearity is prone to Best AÆne Approximation

(BAA) [4, Chapter 3℄ atta
k.

De�nition 2.3 Fun
tions of degree at most one are 
alled aÆne fun
tions. An aÆne fun
tion with 
onstant

term equal to zero is 
alled a linear fun
tion. The set of all n-variable aÆne (resp. linear) fun
tions is

denoted by A(n) (resp. L(n)). The nonlinearity of an n variable fun
tion f is nl(f) = min

g2A(n)

(d(f; g)),

i.e. the distan
e from the set of all n-variable aÆne fun
tions. Given an aÆne fun
tion l 2 A(n), by ndg(l)

we denote the number of variables on whi
h l is nondegenerate.

An important tool for the analysis of Boolean fun
tion is its Walsh transform, whi
h we de�ne next.

De�nition 2.4 Let X = (X

n

; : : : ;X

1

) and ! = (!

n

; : : : ; !

1

) both belong to f0; 1g

n

and X:! = X

n

!

n

�

: : : �X

1

!

1

. Let f(X) be a Boolean fun
tion on n variables. Then the Walsh transform of f(X) is a real

valued fun
tion over f0; 1g

n

that 
an be de�ned as W

f

(!) =

P

X2f0;1g

n

(�1)

f(X)�X:!

. The Walsh transform

is sometimes 
alled the spe
tral distribution or simply the spe
tra of a Boolean fun
tion.

Xiao and Massey [6℄ has provided a spe
tral 
hara
terization of 
orrelation immune fun
tions using Walsh

transform. We use that as a de�nition of 
orrelation immunity here.

De�nition 2.5 A fun
tion f(X

n

; : : : ;X

1

) is m-th order 
orrelation immune (CI) i� its Walsh transform

W

f

satis�es W

f

(!) = 0; for 1 � wt(!) � m : Note that balan
ed m-th order 
orrelation immune fun
tions

are 
alled m-resilient fun
tions and if f is balan
ed then W

f

(0) = 0. Thus, a fun
tion f(X

n

; : : : ;X

1

) is

m-resilient i� its Walsh transform W

f

satis�es W

f

(!) = 0; for 0 � wt(!) � m .

The relationship between Walsh distan
e and Walsh transform is [12℄ W

f

(!) = wd(f;

L

i=n

i=1

!

i

X

i

).

A Boolean fun
tion should have balan
edness, high nonlinearity, high order of resilien
y and high algebrai


degree to be used in stream 
iphers. By an (n;m; d; x) fun
tion we mean an n-variable, m-resilient (balan
ed

m-th order CI) fun
tion with degree d and nonlinearity x. By (n; 0; d; x) fun
tion we mean a balan
ed n-

variable fun
tion with degree d and nonlinearity x. In the above notation the degree 
omponent is repla
ed

by a '�' (i.e., (n;m;�; x)), if we do not want to spe
ify the degree.
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Maiorana-M
Farland like 
onstru
tion te
hnique : There are several 
onstru
tion methods for resilient

Boolean fun
tions in the literature. Perhaps the most important of all these is the Maiorana-M
Farland

like 
onstru
tion te
hnique whi
h has been investigated in a number of previous papers [1, 22, 3, 2℄. Here

we brie
y des
ribe this method. Let � be a map from f0; 1g

r

to f0; 1g

k

, where for any X 2 f0; 1g

r

,

wt(�(X)) � m+ 1. Let f : f0; 1g

r+k

! f0; 1g be a Boolean fun
tion de�ned as f(X;Y ) = Y :�(X)� g(X),

where X 2 f0; 1g

r

, Y 2 f0; 1g

k

and Y :�(X) is the inner produ
t of Y and �(X). Then f is m-resilient. It is

possible to interpret f as a 
on
atenation of 2

r

aÆne fun
tions l

0

; : : : ; l

2

r

�1

from F (k), the set of k-variable

aÆne fun
tions, where ndg(l

i

) � m + 1. Later we will use this method to 
onstru
t 
ertain sequen
es of

resilient fun
tions.

Next we need the following basi
 result, whi
h is known but we give a proof for the sake of 
ompleteness.

The notation f � g denotes the Boolean fun
tion h whose ANF is the produ
t (over GF (2)) of the ANFs

(whi
h are polynomials over GF (2)) of f and g, i.e., h(X

n

; : : : ;X

1

) = f(X

n

; : : : ;X

1

)� g(X

n

; : : : ;X

1

).

Lemma 2.1 Let f(X

n

; : : : ;X

1

) and g(X

n

; : : : ;X

1

) be two n-variable fun
tions. Then d(f; g) = wt(f) +

wt(g) � 2wt(f � g).

Proof : Let F

n

2

= f0; 1g

n

. The fun
tion f 
an be 
ompletely des
ribed by a subset A of F

n

2

, su
h that

(b

n

; : : : ; b

1

) 2 F

n

2

is in A i� f(b

n

; : : : ; b

1

) = 1. This set A is usually 
alled the support of f . We 
an get a

similar support B for g. The support of f � g is A�B (symmetri
 di�ern
e) and the support of f � g is

A \B. The result follows from the fa
t that d(f; g) = wt(f � g) = j A�B j = j A j+ j B j � 2j A \B j.

3 Spe
tral Weights of CI and Resilient Fun
tions

In this se
tion we prove a 
ru
ial result on the divisibility properties of the spe
tral weights of 
orrelation

immune and resilient fun
tions. Su
h a result has an analogue in the M
Elie
e Theorem [11℄ for Reed-Muller


odes: the weight of any fun
tion in R(r; n) is divisible by 2

b

n�1

r




, where R(r; n) is the set of all n-variable

Boolean fun
tions of degree at most r. If f is an n-variable, m-resilient fun
tion, using Siegenthaler's

inequality we know that the degree of f is at most n �m � 1. Hen
e for any linear fun
tion l 2 L(n), we

have f� l is in R(n�m�1; n) and so wt(f � l) = d(f; l) is divisible by 2

b

n�1

n�m�1




. However, this result is not

sharp enough to prove a nontrivial upper bound on the nonlinearity of resilient fun
tions. In Theorem 3.1

we prove that for any n-variable, m-resilient fun
tion f and l 2 L(n), d(f; l) is divisible by 2

m+1

. This is

a mu
h stronger result. For example, if n = 7 and m = 3, M
Elie
e Theorem guarantees that d(f; l) is

divisible by 2

2

. On the other hand Theorem 3.1 establishes that d(f; l) is divisible by 2

4

.

Theorem 3.1 also sharpens the Xiao-Massey 
hara
terization [6℄ of 
orrelation immune fun
tions. A

Boolean fun
tion f is m-th order CI i� wd(f; l) = 0 for all l 2 L(n) with 1 � ndg(l) � m, i.e., l is

nondegenerate on 1 to m variables. However, this 
hara
terization does not state anything about wd(f; l)

with ndg(l) > m. We show in Theorem 3.3 that 2

m+1

divides wd(f; l) for all l in L(n) with ndg(l) > m.

For resilient fun
tions the Xiao-Massey 
hara
terization 
an only be extended to in
lude the 
ondition that

Walsh distan
e between f and the all zero fun
tion is 0. However, Theorem 3.1 shows that 2

m+2

divides

wd(f; l) for all l in L(n) with ndg(l) > m.

Using Theorem 3.1 and Theorem 3.3 we prove nontrivial upper bounds on the nonlinearity of resilient

and 
orrelation immune fun
tions. We believe our results are the �rst major results on the maximum

nonlinearity of resilient fun
tions. These nonlinearity results have deep 
onsequen
es.

1. These bounds set up a "ben
hmark" by whi
h one 
an measure the eÆ
a
y of any new 
onstru
tion

method for resilient fun
tions. It will also be a major task to show that in 
ertain 
ases the upper bound of

Theorem 3.2 is not tight.

2. Based on Theorem 3.2 and Siegenthaler's inequality, we are able to satisfa
torily identify the 
lass

of Boolean fun
tions a
hieving the best possible trade-o� among the parameters : number of variables,

resilien
y, nonlinearity and algebrai
 degree.
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Maiorana-M
Farland like 
onstru
tions and its modi�
ations in 
ertain 
ases 
an be used to 
onstru
t

fun
tions with the best possible trade-o� between nonlinearity and resilien
y (see Se
tion 4). However,

the existing 
onstru
tions 
annot always be used to a
hieve the upper bound of Theorem 3.2. This shows

the inadequa
y of the 
onstru
tion te
hniques proposed so far. We provide new 
onstru
tions of resilient

fun
tions whi
h a
hieve the upper bound of Theorem 3.2.

Previous works related to upper bound on nonlinearity of resilient fun
tions were attempted in [3, 16℄.

In [3℄ an upper bound was obtained for a very small subset of resilient fun
tions. It was shown in [20℄, that

it is possible to 
onstru
t resilient fun
tions, outside the subset of [3℄, with nonlinearity more than the upper

bound obtained in [3℄. In [16℄, the maximum nonlinearity issue for 6-variable resilient fun
tions has been


ompletely settled by exhaustive 
omputer sear
h te
hnique. Corollary 3.1 provides a simple proof of the

same result.

Lemma 3.1 Let f be an n-variable fun
tion of even weight and l 2 L(n). Then d(f; l) (resp. wd(f; l)) is


ongruent to 0 mod 2 (resp. 0 mod 4).

Proof : From Lemma 2.1 we know that d(f; l) = wt(f) + wt(l) � 2wt(f � l). Sin
e all the terms on the

right are even it follows that d(f; l) is also even.

Lemma 3.2 Let f be an n-variable, 1-resilient fun
tion and l 2 L(n). Then d(f; l) (resp. wd(f; l)) is


ongruent to 0 mod 4 (resp. 0 mod 8).

Proof : Sin
e f is 1-resilient, by Siegenthaler's inequality we know that degree of f is at most n � 2.

If l is in L(n), then f � l is a fun
tion of degree at most n � 1 and hen
e wt(f � l) is even. Thus

d(f; l) = wt(f) + wt(l) � 2wt(f � l) � wt(f) mod 4. As f is balan
ed, wt(f) � 0 mod 4, and 
onsequently

d(f; l) � 0 mod 4.

Corollary 3.1 The maximum nonlinearity for a six variable 1-resilient fun
tion is 24.

Proof : Using Lemma 3.2, we know that for any l 2 L(6) and any 1-resilient fun
tion f , d(f; l) � 0 mod 4.

Thus the possible values for d(f; l) are 32 � 4k, for some k � 0. If for every l, k � 1, then f must be bent

and hen
e 
annot be resilient. So there must be some l, su
h that d(f; l) = 32�8. But then the nonlinearity

is at most 24.

The above result was obtained in [16℄ using an essentially exhaustive 
omputer sear
h. Next we present

the major result on the spe
tral weights of resilient fun
tions.

Theorem 3.1 Let f be an n-variable, m-resilient (with n � 3 and m � n� 3) fun
tion and l 2 L(n). Then

d(f; l) (resp. wd(f; l)) is 
ongruent to 0 mod 2

m+1

(resp. 0 mod 2

m+2

).

Proof : There are three indu
tions invloved - on the number of variables n, on the order of resilien
y m

and on the number of variables in the linear fun
tion l, whi
h we denote by k = ndg(l).

Base for indu
tion on n: It is possible to verify the result for n = 3. Assume the result is true for all

fun
tions on less than n variables (with n � 4).

Indu
tive Step for indu
tion on n: Let f be an n-variable fun
tion.

Now we use indu
tion on m. The indu
tion on m is 
arried out separately for odd and even values.

Base for indu
tion on m: If m = 0, then f is a balan
ed fun
tion and Lemma 3.1 provides the base 
ase.

If m = 1, then Lemma 3.2 provides the base 
ase.

Next we make the indu
tion hypothesis that if f is m� 2-resilient (with m� 2 � 0), and l 2 L(n), then

d(f; l) � 0 mod 2

m�1

.

Indu
tive Step for indu
tion on m: Let f be m-resilient and let l be any fun
tion in L(n). We now use

indu
tion on the number of variables k in l (i.e., l 2 L(n) is nondegenerate on exa
tly k variables).

Base for indu
tion on k: k � m, sin
e f is m-resilient d(f; l) = 2

n�1

� 0 mod 2

m+1

.
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Indu
tive Step for indu
tion on k: Let k > m and using Lemma 3.1 and Lemma 3.2 we 
an assume k � 2.

Without loss of generality assume X

n

and X

n�1

are present in l. Write l = X

n

� X

n�1

� �, where � is

nondegenerate on at most k � 2 variables. Also de�ne �

1

= X

n

� � and �

2

= X

n�1

� �. Using indu
tion

hypothesis on k, we know d(f; �) � d(f; �

1

) � d(f; �

2

) � 0 mod 2

m+1

. Let g

00

; g

01

; g

10

; g

11

be (n�2)-variable

fun
tions de�ned by g

ij

(X

n�2

; : : : ;X

1

) = f(i; j;X

n�2

; : : : ;X

1

). Sin
e � has at most n� 2 variables, there is

a fun
tion � 2 L(n � 2) whi
h has the same set of variables as �. Denote by a

ij

the value d(g

ij

; �). Sin
e

�; �

1

; �

2

have less than k variables, using the indu
tion hypothesis on k we have the following equations.

1. d(f; �) = a

00

+ a

01

+ a

10

+ a

11

= k

1

2

m+1

, 2. d(f; �

1

) = a

00

+ a

01

� a

10

� a

11

= k

2

2

m+1

,

3. d(f; �

2

) = a

00

� a

01

+ a

10

� a

11

= k

3

2

m+1

, and 4. d(f; l) = a

00

� a

01

� a

10

+ a

11

.

From the �rst three equations, we 
an express a

01

; a

10

and a

11

in terms of a

00

. This gives us

a

01

= (k

1

+ k

3

)2

m

� a

00

, a

10

= (k

1

+ k

2

)2

m

� a

00

and a

11

= �(k

2

+ k

3

)2

m

+ a

00

.

Now using equation 4, we get d(f; l) = 4a

00

� (k

1

+k

2

+k

3

)2

m+1

. Sin
e f is m-resilient and g is obtained

from f by setting two variables to 
onstant values, g is an (n� 2)-variable, (m� 2)-resilient fun
tion. First

assume m is even, then m�2 is also even. Using the indu
tion hypothesis on n and the indu
tion hypothesis

on even m we have a

00

= d(g; �) � 0 mod 2

m�1

. The argument is similar for odd m. (This is the reason for


hoosing the base 
ases separately for m = 0 and m = 1.) Hen
e d(f; l) � 0 mod 2

m+1

.

Using Theorem 3.1, it is possible to obtain an upper bound on the nonlinearity of an n-variable, m-

resilient fun
tion. Let nl(n;m) be the maximum possible for an n-variable, m-resilient fun
tion.

Theorem 3.2 1. If n is even and m+ 1 >

n

2

� 1, then nl(n;m) � 2

n�1

� 2

m+1

.

2. If n is even and m+ 1 �

n

2

� 1, then nl(n;m) � 2

n�1

� 2

n

2

�1

� 2

m+1

.

3. If n is odd and 2

m+1

> 2

n�1

� nlmax(n), then nl(n;m) � 2

n�1

� 2

m+1

.

4. If n is odd and 2

m+1

� 2

n�1

�nlmax(n), then nl(n;m) is the highest multiple of 2

m+1

whi
h is less than

or equal to 2

n�1

� nlmax(n).

Further in 
ases 1 and 3, the spe
tra of any fun
tion a
hieving the stated bound must be three valued, i.e.

the values of the Walsh distan
es must be 0;�2

m+2

.

Proof : We prove only 
ases 1 and 2, the other 
ases being similar.

1. Using Theorem 3.1 for any n-variable, m-resilient fun
tion f and l 2 L(n), we have d(f; l) � 0 mod 2

m+1

.

Thus d(f; l) = 2

n�1

� k2

m+1

for some k. Clearly k 
annot be 0 for l and hen
e the nonlinearity of f is at

most 2

n�1

� 2

m+1

.

2. As in 1, we have d(f; l) = 2

n�1

� k2

m+1

for some k. Let 2

n

2

�1

= p2

m+1

(we 
an write in this way as

m <

n

2

� 1). If for all l we have k � p, then f must ne
essarily be bent and hen
e 
annot be resilient. Thus

there must be some l su
h that the 
orresponding k > p. This shows that the nonlinearity of f is at most

2

n�1

� 2

n

2

�1

� 2

m+1

.

The proof of the last statement follows from the fa
t that if the Walsh distan
es are not three valued

0;�2

m+2

, then �2

m+i

must be a Walsh distan
e value for i � 3. The nonlinearity for su
h a fun
tion is


learly less than the stated bound.

We state the boundary 
ase of Theorem 3.2 in the following 
orollary (see also [3, 16℄).

Corollary 3.2 For n � 4, nl(n; n� 3) = 2

n�2

.

Proof : From Theorem 3.2 it is 
lear that nl(n; n � 3) � 2

n�1

� 2

n�2

= 2

n�2

. Moreover, it is easy to


onstru
t an (n; n� 3; 2; 2

n�2

) fun
tion by 
on
atenating two distin
t linear fun
tions from L(n� 1), ea
h

of whi
h are nondegenerate on n� 2 variables.

We also need the following 
orollary whi
h will be used to de�ne the 
on
ept of saturated best fun
tion

in Se
tion 4.

Corollary 3.3 Let m > b

n

2


 � 2. Then, nl(n;m) � 2

n�1

� 2

m+1

� 2

n�1

� 2

b

n�1

2




. Further, the spe
tra of

any (n;m;�; 2

n�1

� 2

m+1

) fun
tion is ne
essarily three valued.
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The upper bound for nl(n;m) given by Theorem 3.2 is listed in Table 1 for the �rst few interesting 
ases.

The 
olumns represent the resilien
y and the rows represent the number of variables. The entries with �

represent bounds whi
h has not yet been a
hieved. Fun
tions 
an be 
onstru
ted with parameters satisfying

the other entries. In parti
ular, the entries with # represent fun
tions whi
h have been 
onstru
ted here for

the �rst time.

1 2 3 4 5 6 7 8

5 12 8 0

6 24 24 16 0

7 56 56

�

48 32 0

8 116

�

112 112

#

96 64 0

9 244

�

240 240

�

224

#

192 128 0

10 492

�

480 480 480

�

448 384 256 0

The set of n-variablem-th order 
orrelation immune fun
tions is a superset of n-variablem-resilient fun
tions.

The following two results are for 
orrelation immune fun
tions and are similar to Theorem 3.1, Theorem 3.2.

Theorem 3.3 Let f be an n-variable, m-th order 
orrelation immune (with n � 3 and m � n� 2) fun
tion

and l 2 L(n). Then d(f; l) (resp. wd(f; l)) is 
ongruent to 0 mod 2

m

(resp. 0 mod 2

m+1

).

Proof : We have to note that if a fun
tion f is 1st order 
orrelation immune (CI) then d(f; l) is even

(wd(f; l) � 0 mod 4) for any linear fun
tion l. Now given a 2nd order CI fun
tion, by Siegenthaler's

inequality we know that degree of f is at most n�2. Thus, similar to the proof of Lemma 3.2, we get d(f; l)

(resp. wd(f; l)) is 
ongruent to 0 mod 4 (resp. 0 mod 8). Using these as the base 
ases, the proof is similar

to the proof of Theorem 3.1.

Theorem 3.4 Let nl
(n;m) denote the highest possible nonlinearity for an n-variable fun
tion whi
h is CI

of order m. Then we have the following.

1. If n is even and m >

n

2

� 1, then nl
(n;m) � 2

n�1

� 2

m

.

2. If n is even and m �

n

2

� 1, then nl
(n;m) � 2

n�1

� 2

n

2

�1

� 2

m

.

3. If n is odd and 2

m

> 2

n�1

� nlmax(n), then nl
(n;m) � 2

n�1

� 2

m

.

4. If n is odd and 2

m

� 2

n�1

� nlmax(n), then nl
(n;m) is the highest multiple of 2

m

whi
h is less than or

equal to 2

n�1

� nlmax(n).

Further in 
ases 1 and 3, the spe
tra of any fun
tion a
hieving the stated bound must be three valued, i.e.

the values of the Walsh distan
es must be 0;�2

m+1

.

4 Constru
tion of Resilient Fun
tions

Motivated by Theorem 3.2, we introdu
e a new notion of optimality for resilient fun
tions. An (n;m; d; x)

fun
tion is said to be Type-I optimal if x is the upper bound on nl(n;m) provided in Theorem 3.2. However,

there is a stronger notion of optimality. Given an n-variable fun
tion, there may be more than one possible

values of order of resilien
ym, su
h that the upper bound on nl(n;m) is same using Theorem 3.2. We 
all an

n-variable, m-resilient fun
tion having nonlinearity x to be Type-II optimal if the fun
tion is Type-I optimal

and further for any p > m the upper bound on nl(n; p) in Theorem 3.2 is stri
tly less than x. These notions

of optimality 
an be further strengthened by requiring the degree to be the maximum possible. This 
an

be done by 
onsidering Siegenthaler's inequality for balan
ed fun
tions: m+ d � n� 1, for any n-variable,

m-resilient, degree d fun
tion. Thus (n;m; n�m� 1; x) Type-II optimal fun
tions a
hieve the best possible

trade-o� among the parameters - number of variables, order of resilien
y, degree and nonlinearity. We will

refer to su
h fun
tions as best fun
tions.

Example 4.1 An (8; 2; 5; 112) fun
tion is Type-I optimal. Moreover, (8; 2;�; 112) fun
tions are not Type-II

optimal sin
e nl(8; 3) � 112. However, an (8; 3;�; 112) fun
tion is Type-II optimal sin
e nl(8; 4) � 96. Also
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an (8; 3; 4; 112) fun
tion optimizes the degree and hen
e it is a best fun
tion. From Theorem 3.2, the spe
tra

of any (8; 3;�; 112) fun
tion is ne
essarily three valued. However, this may not ne
essarily be true for any

best fun
tion. For example, an (8; 1; 6; 116) fun
tion (if one exists) will be a best fun
tion, but its spe
tra

will not be three valued.

The way we have de�ned the notion of optimality it is not guaranteed whether it is possible to 
onstru
t

fun
tions satisfying the notions of Type-I and Type-II optimality introdu
ed above. The tightness of the

upper bounds in Theorem 3.2 is 
ontingent on the existen
e of su
h fun
tions. However, we will show for


ertain sequen
es of best fun
tions, it is possible to 
onstru
t all but �nitely many fun
tions of any su
h

sequen
e.

We 
all a best fun
tion to be saturated if its spe
tra is three valued a

ording to Corollary 3.3. Thus an

(n;m; n�m� 1; x)-fun
tion is 
alled saturated best (SB for short) if it is Type-II optimal and its spe
tra is

three valued. For su
h a fun
tion we must ne
essarily have m >

n

2

� 2. Therefore, the (8; 3; 4; 112) Type-II

optimal fun
tions are saturated best. However, the (8; 1; 6; 116) Type-II optimal fun
tions (if at all exist)


an not have a three valued Walsh spe
tra. From Parseval's theorem, if it has a three valued Walsh spe
tra,

then 24

2

� z = 2

16

, whi
h is not possible for integer z. Thus, the (8; 1; 6; 116) Type-II optimal fun
tions are

best but not saturated best.

Lemma 4.1 If an (n;m; n�m�1; x) fun
tion f is an SB fun
tion, then so is an (n+1;m+1; n�m�1; 2x)

fun
tion g.

Proof : Sin
e f is SB, x = 2

n�1

� 2

m+1

and so 2x = 2

n

� 2

m+2

. From Corollary 3.3, nl(n + 1;m + 1) �

2

n

� 2

m+2

and hen
e the spe
tra of g is three valued.

This naturally leads to a notion of a sequen
e of Boolean fun
tions, ea
h of whi
h is an SB fun
tion.

More pre
isely, a saturated best fun
tion sequen
e (an SBS for short), is an in�nite sequen
e of Boolean

fun
tions f

0

; f

1

; : : :, where f

0

is an (n

0

;m

0

; n

0

�m

0

� 1; x

0

) fun
tion whi
h is SB and the upper bound on

nl(n

0

� 1;m

0

� 1) in Theorem 3.2 is stri
tly less than

x

0

2

. Also for j � 0, f

j+1

is an (n

j

+ 1;m

j

+ 1; n

j

�

m

j

� 1; 2x

j

) fun
tion (and hen
e is also SB from Lemma 4.1). Note that n

j

�m

j

� 1 = n

0

�m

0

� 1 and

so the degree of all the fun
tions in an SBS are same. Thus an SBS is 
ompletely de�ned by spe
ifying the

parameters of a fun
tion f

0

. Note that the fun
tions whi
h form an SBS is not unique, i.e., there 
an be

more than one distin
t (n

0

;m

0

; n

0

�m

0

� 1; x

0

) fun
tions and all of them are possible representatives for

f

0

. Thus a parti
ular SBS is 
hara
terized by several parameters and any sequen
e of fun
tions satisfying

these parameters is said to form the parti
ular SBS.

Example 4.2 The following seqen
es are SBS's.

1. f

0

; f

1

; : : :, where f

0

is an (3; 0; 2; 2) fun
tion.

2. f

0

; f

1

; : : :, where f

0

is an (5; 1; 3; 12) fun
tion.

3. f

0

; f

1

; : : :, where f

0

is an (7; 2; 4; 56) fun
tion.

It is not known whether (7; 2; 4; 56) fun
tions exists. However, we show how to 
onstru
t an

(8; 3; 4; 112) fun
tion, whi
h is f

1

in this SBS.

For i � 0 we de�ne SBS(i) as follows. An SBS(0) is a sequen
e f

0;0

; f

0;1

; : : :, where f

0;0

is a (3; 0; 2; 2)

fun
tion. For i > 0, an SBS(i) is a sequen
e f

i;0

; f

i;1

; : : :, where f

i;0

is a (3 + 2i; i; 2 + i; 2

2+2i

� 2

1+i

) SB

fun
tion. Note that all fun
tions in an SBS(i) have the same degree 2 + i. Constru
tion of SBS(0) and

SBS(1) are already known. Unfortunately, it is not known whether the initial fun
tions for an SBS(i) exist

for i > 1. In the next subse
tion we show how to 
onstru
t all but �nitely many initial fun
tions of any

SBS(i).

Now we will 
on
entrate on the 
onstru
tion problem of SB fun
tions. In de�ning SBS we stated that

any fun
tion in an SBS must be an SB fun
tion. However, the 
onverse that given any SB fun
tion, it must

o

ur in some SBS(i) is not immediate. The following result proves this and justi�es the fa
t that we 
an

restri
t our attention to the 
onstru
tion problem for SBS(i) only.
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Lemma 4.2 Any SB fun
tion must o

ur in some SBS(i).

Proof : First note that any fun
tion of SBS(i) has algebrai
 degree 2 + i. Any SB fun
tion f must be an

(n;m; n �m� 1; 2

n�1

� 2

m+1

) fun
tion having degree d = n�m� 1. Hen
e f must o

ur in SBS(d� 2),

i.e., in SBS(n�m� 3).

4.1 Constru
tion of SBS(i)

Here we show that the Maiorana-M
Farland like 
onstru
tion pro
edure 
an be used to 
onstru
t all but

�nitely many fun
tions of any SBS(i). First we state the following result whi
h is easy to prove.

Lemma 4.3 Let f

i;j

be a j-th fun
tion of SBS(i). Then the fun
tion g = Y � f

i;j

(where the variable Y

does not o

ur in f

i;j

) is an f

i;j+1

fun
tion of SBS(i). Consequently, if one 
an 
onstru
t f

i;j

, then one 
an


onstru
t f

i;k

for all k > j.

Proof : The proof follows from Lemma 4.1 and the fa
t that nl(f

i;j+1

) = 2nl(f

i;j

).

This shows that if one 
an 
onstru
t any one of the fun
tions in SBS(i), then it is possible to 
onstru
t

any fun
tion in the su

eeding part of the sequen
e. Thus it is enough if we 
an 
onstru
t the �rst fun
tion

of ea
h sequen
e. This is possible for SBS(0) and SBS(1) sin
e 
onstru
tion of (3; 0; 2; 2) and (5; 1; 3; 12)

fun
tions are known. However, the 
onstru
tion problem for the �rst fun
tion of SBS(i) for i > 1 is an

ongoing resear
h problem. Here we show that the Maiorana-M
Farland like 
onstru
tion pro
edure 
an be

used to 
onstru
t all but �nitely many fun
tions of any SBS(i). More pre
isely, if SBS(i) = f

i;0

; f

i;1

: : :, then

we show how to 
onstru
t f

i;t

for all t � t

0

, where t

0

is su
h that 2

1+i

= 3 + i + t

0

. For SBS(2), this gives

t

0

= 3. Moreover, in Subse
tion 4.2, we show how to 
onstru
t f

2;1

and f

2;2

. This leaves open the problem

of 
onstru
ting f

i;t

, with t < t

0

and i � 3 as a 
hallenging resear
h problem.

Theorem 4.1 For any SBS(i) = f

i;0

; f

i;1

; : : :, it is possible to 
onstru
t f

i;t

for all t greater than or equal

to some t

0

.

Proof : The �rst fun
tion f

i;0

is a (3 + 2i; i; 2 + i; 2

2+2i

� 2

1+i

) fun
tion. We show that for some j, f

i;j

is 
onstru
tible by Maiorana-M
Farland like 
onstru
tion te
hniques. Let j be su
h that 2

1+i

= 3 + i + j.

A fun
tion f

i;j

is to be an (n = 3 + 2i + j; i + j; 2 + i; 2

2+2i+j

� 2

1+i+j

). We show how to 
onstru
t su
h

a fun
tion. Consider the set � of all k = 2 + i+ j-variable linear fun
tions whi
h are nondegenerate on at

least 1 + i + j variables. Clearly there are

�

2+i+j

2+i+j

�

+

�

2+i+j

1+i+j

�

= 3 + i + j su
h linear fun
tions. Consider

an n-variable fun
tion f (a string of length 2

n

) formed by 
on
atenating 2

n�k

fun
tions from �. Sin
e

2

n�k

= 2

1+i

= 3 + i+ j = j � j, we use ea
h of the fun
tions in � exa
tly on
e in the formation of f . Sin
e

ea
h fun
tion in � is nondegenerate on 1 + i + j variables ea
h of these fun
tions is (i + j)-resilient. Let

V = fX

2+i+j

; : : : ;X

1

g be the set of variables whi
h are involved in the linear fun
tions in �. Ea
h of the

variables in V o

ur in 2

1+i

� 1 of the linear fun
tions in �. Thus ea
h variable o

urs an odd number of

times and hen
e the degree of f is n�k+1 = 2+ i. Sin
e ea
h linear fun
tion is used on
e, the nonlinearity

of f is 2

n�1

� 2

k�1

= 2

2+2i+j

� 2

1+i+j

. Thus f is a (3 + 2i + j; i + j; 2 + i; 2

2+2i+j

� 2

1+i+j

) fun
tion and


an be taken as f

i;j

. Take t

0

= j. Using Lemma 4.3 it is possible to 
onstru
t f

i;t

for all t > t

0

= j.

In the proof of the above theorem we use Lemma 4.3 to 
onstru
t f

i;t

for all t > j, given the fun
tion

f

i;j

. Thus f

i;t

(Y

t�j

; : : : ; Y

1

; X) = Y

t�j

� : : :�Y

1

�f

i;j

(X). This results in the fun
tion f

i;t

depending linearly

on the variables Y

t�j

; : : : ; Y

1

. This is not re
ommendable from 
ryptographi
 point of view. There are two

ways to avoid this situation.

(I) The above proof of Theorem 4.1 
an be modi�ed so that Lemma 4.3 is not required at all. In fa
t, the

linear 
on
atenation te
hnique used to 
onstru
t f

i;j


an dire
tly be used to 
onstru
t f

i;t

. In f

i;j

, a total

of 2

1+i

slots were �lled up using the 3 + i + j di�erent linear fun
tions (ea
h exa
tly on
e) and this was

made possible by the fa
t that 2

1+i

= 3 + i + j. In 
onstru
ting f

i;t

dire
tly we will still have to �ll 2

1+i

slots but the number of linear fun
tions that 
an be used will in
rease to 3+ i+ t. Hen
e no linear fun
tion

9



need to be used more than on
e and as a result the nonlinearity obtained will a
hieve the upper bound of

Theorem 3.2. The ANF of the resulting f

i;t

will depend nonlinearly on all the variables Y

t�j

; : : : ; Y

1

.

(II) After obtaining f

i;j

, instead of using Lemma 4.3 we 
an use a more powerful 
onstru
tion provided

in [12℄. The method of [12℄ shows that if f is an m-resilient fun
tion, then g de�ned as g(Y;X) = (1 �

Y )f(X)� Y (a� f(X ��)), is an (m+1)-resilient fun
tion, where � is an all one ve
tor and a = m mod 2.

This also guarantees that g does not depend linearly on Y . Hen
e if we use this te
hnique repeatedly

to 
onstru
t f

i;t

from f

i;j

, then the ANF of the resulting f

i;t

will depend nonlinearly on all the variables

Y

t�j

; : : : ; Y

1

.
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Figure 1: Hardware for Implementing SB fun
tions

4.1.1 Implementation issues

From an implementation point of view, both the above methods 
an be mapped eÆ
iently in hardware. We

brie
y dis
uss these possiblities.

If f is implemented using the sequen
e of 
onstru
tors as des
ribed in [12℄ (dis
ussed in item (II) above),

then it is possible to implement f using a pipelined store and forward ar
hite
ture. In this 
ase the basi


fun
tion [12℄ is f

i;j

whi
h is 
onstru
ted in Theorem 4.1 by the Maiorana-M
Farland like te
hnique.

Now we des
ribe a simple hardware implementation strategy for the fun
tions 
onstru
ted in Theorem 4.1

and item (I) above. Suppose f is an n-variable fun
tion 
onstru
ted by the Maiorana-M
Farland like


onstru
tion te
hnique. Then we 
an write n = n

1

+ n

2

, where f is the 
on
atenation of 2

n

1

suitable linear

fun
tions from L(n

2

). Ea
h linear fun
tion in L(n

2

) 
an be easily implemented using two input XOR gates.

Suppose we have blo
ks B

0

; : : : ; B

2

n

1

�1

where ea
h blo
k implements one linear fun
tion in L(n

2

). Further,

ea
h blo
k is required to have an enable signal, whi
h determines whether the blo
k should produ
e an output

or not. To implement the fun
tion f all that is required is a 1 � 2

n

1

demultimlexer, where the variables

X

n

; : : : ;X

n�n

1

+1

a
t as the sele
t variables of the demultiplexer. The input line of the demultiplexer is

always set to 1 and output line i serves as enable input for blo
k B

i

. Clearly su
h a setup will 
ompute f .

The size of the demultiplexer is 2

n

1

and there are 2

n

1

blo
ks. The size of ea
h blo
k is bounded above by

n

2

. So the total size of the hardware is O(n

2

2

n

1

). If n

1

is not large, then implementation of su
h fun
tions

is feasible. For example, using 
urrent te
hnology it is possible to implement fun
tions where n

1

� 25 and

n

2

� 32.

4.2 A Sharper Constru
tion

For SBS(2) = f

2;0

; f

2;1

; f

2;2

; : : :, Theorem 4.1 
an be used to 
onstru
t f

2;t

for all t � 3. Here we show how to


onstru
t f

2;1

((8; 3; 4; 112) Type-II optimal fun
tion). This requires a nontrivial spe
tral analysis leading to

a new 
onstru
tion methodology. However, the 
onstru
tion of f

2;0

((7; 2; 4; 56) Type-II optimal fun
tion) is

not yet known. Thus, we want to 
onstru
t a 3-resilient fun
tion f 2 


8

with maximum possible algebrai


degree 4 and nonlinearity 112. For a Boolean fun
tion f , we de�ne NZ(f) = f! j W

f

(!) 6= 0g, where W

f

is the Walsh transform of f .

10



Lemma 4.4 Let f

1

; f

2

be two (7; 3;�; 48) fun
tions su
h that NZ(f

1

) \ NZ(f

2

) = ;. Let f 2 


8

be

f = (1�X

8

)f

1

�X

8

f

2

. Then, f is an (8; 3;�; 112) fun
tion.

First let us 
onstru
t the fun
tion f

2

using linear 
on
atenation. We take four 5-variable linear fun
tions

nondegenerate on at least 4 variables : l

51

= X

1

� X

2

� X

3

� X

4

, l

52

= X

1

� X

2

� X

3

� X

5

, l

53

=

X

1

�X

2

�X

4

�X

5

and l

54

= X

1

�X

3

�X

4

�X

5

. We 
onsider f

2

= l

51

l

52

l

53

l

54

, 
on
atenation of the four

linear fun
tions. It is easy to see that sin
e ea
h l

5i

is 3-resilient, f

2

is also 3-resilient. Note that ea
h of the

variables X

2

;X

3

;X

4

;X

5

o

urs in exa
tly three linear fun
tions, so algebrai
 degree of f

2

is 3. Moreover,

nonlinearity of f

2

is 3� 16 = 48.

Now let us analyze the Walsh spe
tra of f

2

. Note that for the linear fun
tions � of the form a

7

X

7

�

a

6

X

6

� l

5i

, a

7

; a

6

2 f0; 1g; 1 � i � 4, wd(f

2

; �) is nonzero. There are 16 su
h fun
tions in L(7). For the rest

of the fun
tions �

1

in L(7), wd(f

2

; �

1

) is zero. Also, note that a

ording to the Theorem 3.2, this is a three

valued Walsh spe
tra.

Next we need to use the following basi
 idea. When d(f

2

; l) is minimum, then d(f

1

; l) must be 2

n�2

,

i.e., when wd(f

2

; l) is maximum, then wd(f

1

; l) must be 0. We now 
onstru
t another (7; 3; 3; 48) fun
tion,

having a three valued Walsh spe
tra su
h that wd(f

1

; �) is zero for all � of the form a

7

X

7

� a

6

X

6

� l

5i

,

a

7

; a

6

2 f0; 1g; 1 � i � 4.

We start from a (5; 1; 3; 12) fun
tion g. The Walsh spe
tra of the fun
tion need to be su
h that wd(g; l

5i

) =

0 for 1 � i � 4. We 
hoose g to be 00000111011111001110010110100010 by running 
omputer program.

Then we 
onstru
t f

1

= X

7

� X

6

� g. Note that f

1

is a (7; 3; 3; 48) fun
tion and the Walsh spe
tra of f

1

is su
h that wd(f

1

; �) is zero for all � of the form a

7

X

7

� a

6

X

6

� l

5i

, a

7

; a

6

2 f0; 1g; 1 � i � 4. Thus,

NZ(f

1

) \ NZ(f

2

) = ;. Also there are degree three terms in f

1

(resp. f

2

) whi
h are not in f

2

(resp. f

1

).

Hen
e, f = (1�X

8

)f

1

�X

8

f

2

is an (8; 3; 4; 112) fun
tion. The fun
tion is the 256-bit string des
ribed below.

0000011101111100111001011010001011111000100000110001101001011101

1111100010000011000110100101110100000111011111001110010110100010

0110100110010110011010011001011001101001011010011001011010010110

0110011010011001100110010110011001011010101001011010010101011010

Theorem 4.2 It is possible to 
onstru
t (8; 3; 4; 112) and (9; 4; 4; 224) fun
tions.

Proof : Above we dis
ussed how to 
onstru
t a (8; 3; 4; 112) fun
tion f . NowX

9

�f is a (9; 4; 4; 224) fun
tion.

Note that we 
an also 
onstru
t a (9; 4; 4; 224) fun
tion as (1�X

9

)f(X

8

; : : : ;X

1

)�X

9

(1�f(1�X

8

; : : : ; 1�X

1

))

where the fun
tion does not depend linearly on X

9

.

5 On Constru
tion of Small Fun
tions

The maximum nonlinearity question for all Boolean fun
tions on even number of variables has been solved

quite some time ba
k [17℄. The same question for odd number of variables has been solved for odd n �

7 [14, 7℄. Further, the maximum nonlinearity question is 
ompletely solved for balan
ed and resilient

fun
tions on n variables for n � 5. Now we 
onsider the 
ases n = 6 to n = 10 separately.

Case n = 6: A bent fun
tion on 6 variables has nonlinearity 28. It is possible to 
onstru
t balan
ed fun
tions

on 6 variables having maximum nonlinearity 26 (see [21℄). In [16℄, a 
omputer sear
h was 
arried out on

6-variable resilient fun
tions and the maximum nonlinearities for 1, 2 and 3 resilient fun
tions were shown

to be 24, 24, 16 respe
tively. These results follow very easily from Corollary 3.1 and Theorem 3.2. Also it

is possible to 
onstru
t (6; 1; 4; 24), (6; 2; 3; 24) and (6; 3; 2; 16) fun
tions.

Case n = 7: The maximum possible nonlinearity for balan
ed fun
tions is 56. Here we have shown that

the maximum possible nonlinearity for 1, 2, 3, 4 resilient fun
tions are respe
tively 56, 56, 48, 32. The


onstru
tion of (7; 1; 5; 56), (7; 3; 3; 48) and (7; 4; 2; 32) fun
tions are known [20℄. However, the 
onstru
tion

of (7; 2;�; 56) fun
tion seems to be a diÆ
ult one.
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Case n = 8: A bent fun
tion on 8 variables has nonlinearity 120. The maximum possible nonlinearity of

balan
ed fun
tions is 118. It is possible to 
onstru
t balan
ed fun
tions on 8 variables having nonlinearity

116 [21℄. The problem of 
onstru
ting an 8-variable balan
ed fun
tion with nonlinearity 118 has been open

for quite some time. Here we present a result whi
h 
ould be an important step in solving this problem.

Theorem 5.1 Let if possible f be a (8; 0;�; 118) fun
tion. Then one 
an write f = (1 � X

8

)f

1

� X

8

f

2

,

where f

1

and f

2

are 7-variable fun
tions having nonlinearity 55 ea
h.

Proof : First we prove that the degree of f must be 7. If the degree of f is less than 7, then using [7,

Lemma 2.1℄, we 
an perform an aÆne transformation on the varibles of f to obtain an 8-variable fun
tion g,

su
h that g = (1�X

8

)g

1

�X

8

g

2

and the degrees of g

1

and g

2

(g

1

; g

2

2 


7

) are ea
h less than or equal to 5.

The aÆne transformation preserves the weight and nonlinearity of f and so wt(f) = wt(g) = wt(g

1

)+wt(g

2

)

and nl(f) = nl(g). Sin
e f is balan
ed, wt(g

1

)+wt(g

2

) = wt(g) = wt(f) = 128 � 0 mod 4. Also wt(g

1

) and

wt(g

2

) are both even sin
e their degrees are less than or equal to 5. Hen
e wt(g

1

) � wt(g

2

) � 0 mod 4 or

wt(g

1

) � wt(g

2

) � 2 mod 4. Sin
e g

1

; g

2

are 7-variable fun
tions with degree � 5, it follows that (see [11℄) for

any linear fun
tion l 2 L(7), d(g

1

; l) � wt(g

1

) mod 4 and d(g

2

; l) � wt(g

2

) mod 4. Hen
e for any l 2 L(7),

d(g

1

; l) � d(g

2

; l) mod 4 and so d(g

1

; l) + d(g

2

; l) � 0 mod 4 (**). Sin
e the nonlinearity of g is 118, there

exists � 2 L(7) su
h that one of the following must hold: (1) d(g; ��) = 118, (2) d(g; ��) = 138, (3)

d(g; ��




) = 118, (4) d(g; ��




) = 138. Here we 
onsider only 
ase (1), other ones being similar. From (1) we

have 2 mod 4 � 118 = d(g; ��) = d(g

1

; �) + d(g

2

; �) whi
h is a 
ontradi
tion to equation (**).

Thus the degree of f is 7. Without loss of generality we 
onsider X

7

: : : X

1

is a degree 7 term in the

ANF of f . We put f

1

(X

7

; : : : ;X

1

) = f(X

8

= 0;X

7

; : : : ;X

1

) and f

2

(X

7

; : : : ;X

1

) = f(X

8

= 1;X

7

; : : : ;X

1

).

Thus both f

1

; f

2

are of degree 7 and hen
e of odd weight and so nl(f

1

); nl(f

2

) � 55. It 
an be proved that

if any of nl(f

1

) or nl(f

2

) is � 53, then nl(f) < 118.

The major impli
ation of Theorem 5.1 is that if it is not possible to 
onstru
t (8; 0; 7; 118) fun
tion

by 
on
atenating two 7-variable, degree 7, nonlinearity 55 fun
tions, then the maximum nonlinearity of

balan
ed 8-variable fun
tions is 116.

Now we turn to the question of maximum nonlinearity for resilient 8-variable fun
tion. Using Theo-

rem 3.2, the maximum possible nonlinearities for 1, 2, 3, 4, 5-resilient fun
tions are 116, 112, 112, 96, 64

respe
tively. Constru
tion of (8; 2; 5; 112); (8; 4; 3; 96); (8; 5; 2; 64) fun
tions is known [20℄. In Theorem 4.2

we showed how to 
onstru
t (8; 3; 4; 112) fun
tions. The existen
e of (8; 1;�; 116) is an open question.

Case n = 9: The maximum nonlinearity question for 9-variable fun
tions is an outstanding open problem of


oding theory. The known upper bound [8℄ is 244. It is easy to 
onstru
t balan
ed fun
tions with nonlinearity

240. Using Theorem 3.2, the maximum possible nonlinearities for 1, 2, 3, 4, 5, 6-resilient fun
tions are 244,

240, 240, 224, 192, 128 respe
tively. Constru
tion of (9; 1; 7; 240); (9; 2; 5; 240); (9; 3; 5; 224); (9; 5; 3; 192),

(9; 6; 2; 128) fun
tions is known [20℄. In Theorem 4.2 we showed how to 
onstru
t (9; 4; 4; 224) fun
tions.

Constru
tion of (9; 1;�; 244); (9; 2; 6; 240) and (9; 3;�; 240) fun
tions are open.

Case n = 10: A bent fun
tion on 10 variables has nonlinearity 496. The maximum possible nonlinearity of

balan
ed fun
tions is 494. The 
onstru
tion of [21℄ 
an provide balan
ed fun
tions with nonlinearity 492.

Using Theorem 3.2, the maximum possible nonlinearities for 1, 2, 3, 4, 5, 6, 7-resilient fun
tions are 492,

488, 480, 480, 448, 384, 256 respe
tively. Constru
tion of (10; 1; 8; 484); (10; 2; 7; 480); (10; 3; 5; 480);

(10; 3; 6; 464); (10; 4; 5; 448); (10; 5; 4; 448); (10; 6; 3; 384); (10; 7; 2; 256) fun
tions is known [20℄. Constru
tion

of (10; 1;�; 492); (10; 1;�; 488); (10; 2;�; 488); (10; 3; 6; 480); (10; 4;�; 480) fun
tions is 
urrently not known.

Next we show how to 
onstru
t (10; 3; 6; 480) fun
tions. Note that the fun
tion we 
onstru
t is not an SB

fun
tion and its Walsh spe
tra is �ve-valued (0;�32;�64).

Theorem 5.2 It is possible to 
onstru
t (10; 3; 6; 480) fun
tions.

Proof : We 
onstru
t a fun
tion f by 
on
atenating linear fun
tions from L(5) as follows. There are 10

fun
tions �

0

; : : : ; �

9

in L(5) whi
h are nondegenerate on exa
tly 3 variables. Also there are 5 fun
tions

�

0

; : : : ; �

4

in L(5) whi
h are nondegenerate on exa
tly 4 variables. The fun
tion f is the 
on
atenation of
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the following sequen
e of fun
tions,

�

0

�

0

�

0

�




0

�

1

�

1

�

1

�




1

�

2

�

2

�

3

�

4

�

0

�




0

�

1

�




1

�

2

�




2

�

3

�




3

�

4

�




4

�

5

�




5

�

6

�




6

�

7

�




7

�

8

�




8

�

9

�




9

: The fun
tions �

i

and �

j

�




j

are

both 3-resilient and hen
e f is 3-resilient too. It 
an be 
he
ked that there are variables between X

5

; : : : ;X

1

whi
h o

ur odd number of times overall in the above sequen
e. Hen
e the degree of f is 6. Also the

nonlinearity of f 
an be shown to be 480.
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