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Abstract

There has been a recent upsurge of research in the design of resilient Boolean functions for use in stream
cipher systems. The existing research concentrates on maximum degree resilient functions and tries to
obtain as high nonlinearity as possible. In sharp contrast to this approach, we identify the class of functions
with provably best possible trade-off among the parameters: number of variables, resiliency, nonlinearity
and algebraic degree. We first prove a sharper version of McEliece theorem for Reed-Muller codes as
applied to resilient functions, which also generalizes the well known Xiao-Massey characterization. As a
consequence, a nontrivial upper bound on the nonlinearity of resilient functions is obtained. This result
coupled with Siegenthaler’s inequality naturally leads to the notion of provably best resilient functions.
We further show that such best functions can be constructed by the Maiorana-McFarland like technique.
In cases where this method fails, we provide new ideas to construct best functions. We also briefly discuss
efficient implementation of these functions in hardware.

Keywords: Boolean functions, Balancedness, Algebraic Degree, Nonlinearity, Correlation Immunity, Re-
siliency, Stream Ciphers, Combinatorial Cryptography.

1 Introduction

Stream cipher cryptosystems are extensively used for defence comunications worldwide and provide a reliable
and efficient method of secure communication. In the standard model of stream cipher the outputs of several
independent Linear Feedback Shift Register (LF'SR) sequences are combined using a nonlinear Boolean
function to produce the keystrem. This keystream is bitwise XORed with the message bitstream to produce
the cipher. The decryption machinery is identical to the encryption machinary.

Siegenthaler [24] was the first to point out that if the combining function is not chosen properly then the
whole system is susceptible to a divide-and-conquer attack. He also defined the class of functions which can
resist such attacks [23]. Later works on theory of stream ciphers with memoryless Boolean functions have
proceeded on two lines. In one direction, Siegenthaler’s attack has been successively refined and sharpened
in a series of papers [13, 10, 9, 15]. On the other hand, in another direction, researchers have tried to design
better and better Boolean functions for use in stream cipher systems. Here we concentrate on this second
direction of research. We convincingly argue that certain important questions regarding the design problem
have to date not been taken up by the researchers in this area. Our results provide satisfactory answers to
these questions.



It is now generally accepted that for a Boolean function to be used in stream cipher systems it must
satisfy several properties - balancedness, high nonlinearity, high algebraic degree and high order of correlation
immunity (see Section 2 for definitions). Also a balanced correlation immune function is called a resilient
function. It is known that there are certain trade-off involved among these parameters. For example,
Siegenthaler showed [23] that for an n-variable function, of degree d and order of correlation immunity m,
the following holds: m + d < n. Further, if the function is balanced then m +d < n — 1. However, the
exact nature of trade-off between order of correlation immunity and nonlinearity has not been previously
investigated.

A series of papers [1, 22, 3, 5, 12, 16, 20] have approached the construction problem in the following
fashion. Fix the number of variables and the order of correlation immunity (and possibly the degree) and
try to design balanced functions with as high nonlinearity as possible. Many interesting ideas have been
used and successively better results have been proved.

Thus, the natural question that arises is what is the maximum nonlinearity achievable with a fixed
number of variables and a fixed order of correlation immunity. More generally, the crucial question is
when can we say that a balanced Boolean function achieves the best possible trade-off among the following
parameters: number of variables, correlation immunity, nonlinearity and algebraic degree. Of course just
identifying the best functions is not enough. We need methods to construct and implement these functions
efficiently in hardware.

One of the main results we prove is that if f is an n-variable, m-resilient function, then W;(w) =
0 mod 2™*2, for all w € {0,1}". (Here W/() is the Walsh transform of f). This is a generalization of the
famous Xiao-Massey characterization of correlation immune functions. More importantly, the result has a
root in coding theory. From Siegenthaler’s inequality it is known that any n-variable, m-resilient function has
degree at most n—m—1 and hence is in Reed-Muller code R(n—m—1,n). The famous McEliece theorem [11,

Page 447] when applied to Reed-Muller code R(n —m — 1,n) guarantees that W;(@w) = 0 mod oltlatnmtl,
The above mentioned result that we prove is much sharper. From this result we obtain a nontrivial upper
bound on the nonlinearity of n-variable, m-resilient functions. Further we introduce the notion of a (sequence
of ) Boolean function with the best possible trade-off among the parameters mentioned above (see Section 4).
We believe this notion is important and serves as a benchmark for assessing the efficacy of past and future
construction methods.

We show that one of the existing construction methods (the Maiorana-McFarland like construction
technique) can provide all but finitely many functions of certain infinite sequences of best functions. We
discuss the implementation of best functions and show that functions of large number of variables (around
50) can be implemented in hardware (see Subsubsection 4.1.1). However, the Maiorana-McFarland like
construction technique does not work in all cases. In such cases, we introduce new sharper construction
methods to obtain best functions. Functions with these parameters were not known earlier. We also discuss
important issues on functions with small number of variables in Section 5.

Future work on resilient Boolean functions should proceed along the following lines. It is not clear
whether the upper bounds on nonlinearity of resilient functions obtained in Theorem 3.2 are tight. It will
be a major task to show that in certain cases the upper bounds are not tight and to obtain sharper upper
bounds. However, in significantly many cases these upper bounds can be shown to be tight (for example
see Table in Page 6). Based on these upper bounds, we introduce concepts of Type-I and Type-II optimal
resilient functions (see Section 4). Type-1I optimal resilient functions achieving the maximum possible
algebraic degree are naturally the best functions for use in stream ciphers. We have used existing and new
techniques to construct such best functions. Also it seems that the construction of certain best functions are
difficult. Either obtaining new construction methods for these best functions or showing their non-existence
should be the main theme of any further work. On one hand these are combinatorially challenging problems
and on the other hand their answers have immediate practical usefulness in designing secure stream cipher
systems.



2 Preliminaries

In this section we introduce a few basic concepts. By €, we denote the set of all n-variable Boolean functions.
If we consider a Boolean function as the output column of a truth table, then €2, is the set of 22" distinct
binary strings of length 2. We denote the addition operator over GF'(2) by .

Definition 2.1 For binary strings Si,Sy of same length A\, we denote by #(S1 = S2) (respectively #(S1 #
S2) ), the number of places where S1 and Sy are equal (respectively unequal). The Hamming distance between
S1, 89 is denoted by d(S1,S2), i.e. d(S1,S2) = #(S1 # S2). The Walsh Distance wd(S,S2), between S and
Ss, is defined as, wd(S1,S2) = #(S1 = S2) — #(S1 # S2). Note that, wd(S1,S2) = X\ — 2d(S1,S2). Also
the Hamming weight or simply the weight of a binary string S is the number of 1s in S. This is denoted
by wt(S). A function f € Q, is said to be balanced if its output column in the truth table contains equal
number of 0’s and 1’s (i.e. wt(f) =2""1).

Definition 2.2 An n-variable Boolean function f(X,,...,X1) can be considered to be a multivariate poly-
nomial over GF(2). This polynomial can be expressed as a sum of products representation of all dis-
tinct k-th order products (0 < k < n) of the variables. More precisely, f(Xp,...,X1) can be written as
ap ® (D=} a;iXi) ® (@19-#91 a;j XiX;) @ ... ®a12. 2, X1Xo ... Xy, where the coefficients ao, aij, ... ,a12..n €
{0,1}. This representation of f is called the algebraic normal form (ANF) of f. The number of variables in
the highest order product term with nonzero coefficient is called the algebraic degree, or simply degree of f.

In the stream cipher model, the combining function f must be so chosen that it increases the linear com-
plexity [18] of the resulting key stream. High algebraic degree provides high linear complexity [19, 4] and
hence it is desirable for f to have high algebraic degree. Another important cryptographic property for a
Boolean function is high nonlinearity. A function with low nonlinearity is prone to Best Affine Approzimation
(BAA) [4, Chapter 3] attack.

Definition 2.3 Functions of degree at most one are called affine functions. An affine function with constant
term equal to zero is called a linear function. The set of all n-variable affine (resp. linear) functions is
denoted by A(n) (resp. L(n)). The nonlinearity of an n variable function f is nl(f) = mingeam)(d(f,9)),
i.e. the distance from the set of all n-variable affine functions. Given an affine function l € A(n), by ndg(l)
we denote the number of variables on which | is nondegenerate.

An important tool for the analysis of Boolean function is its Walsh transform, which we define next.

Definition 2.4 Let X = (X,,,...,X1) and @ = (wp,...,w1) both belong to {0,1}" and X.@w = X,w, ®
... ® Xjwi. Let f(X) be a Boolean function on n variables. Then the Walsh transform of f(X) is a real
valued function over {0,1}™ that can be defined as Wy(w) = ZYG{OJ}n(_l)f(X)@X'w' The Walsh transform
is sometimes called the spectral distribution or simply the spectra of a Boolean function.

Xiao and Massey [6] has provided a spectral characterization of correlation immune functions using Walsh
transform. We use that as a definition of correlation immunity here.

Definition 2.5 A function f(X,,...,X1) is m-th order correlation immune (CI) iff its Walsh transform
Wy satisfies Wy(w) = 0, for 1 < wt(@) < m . Note that balanced m-th order correlation immune functions
are called m-resilient functions and if f is balanced then W¢(0) = 0. Thus, a function f(Xy,...,X1) is
m-resilient iff its Walsh transform Wy satisfies Wy(@) =0, for 0 < wt(@) < m .

The relationship between Walsh distance and Walsh transform is [12] W (@) = wd(f, D=} wi X;).

A Boolean function should have balancedness, high nonlinearity, high order of resiliency and high algebraic
degree to be used in stream ciphers. By an (n,m,d, z) function we mean an n-variable, m-resilient (balanced
m-th order CI) function with degree d and nonlinearity x. By (n,0,d,z) function we mean a balanced n-
variable function with degree d and nonlinearity . In the above notation the degree component is replaced
by a’—’ (i.e., (n,m,—,z)), if we do not want to specify the degree.



Maiorana-McFarland like construction technique : There are several construction methods for resilient
Boolean functions in the literature. Perhaps the most important of all these is the Maiorana-McFarland
like construction technique which has been investigated in a number of previous papers [1, 22, 3, 2]. Here
we briefly describe this method. Let 7 be a map from {0,1}" to {0,1}¥, where for any X € {0,1}",
wt(m(X)) >m+ 1. Let f:{0,1}"** — {0,1} be a Boolean function defined as f(X,Y) =Y.7n(X) & g(X),
where X € {0,1}",Y € {0,1}* and Y.7(X) is the inner product of Y and 7(X). Then f is m-resilient. It is
possible to interpret f as a concatenation of 2" affine functions ly, ..., lor_1 from F(k), the set of k-variable
affine functions, where ndg(l;) > m + 1. Later we will use this method to construct certain sequences of
resilient functions.

Next we need the following basic result, which is known but we give a proof for the sake of completeness.
The notation f x g denotes the Boolean function A whose ANF is the product (over GF(2)) of the ANFs
(which are polynomials over GF'(2)) of f and g, i.e., h(X,,..., X1) = f(Xn,..., X1) X g(Xp, ..., X1).

Lemma 2.1 Let f(X,,...,X1) and g(Xn,...,X1) be two n-variable functions. Then d(f,g) = wt(f) +
wi(g) — 2wi(f x g).

Proof : Let F} = {0,1}". The function f can be completely described by a subset A of FJ', such that
(bp,...,b1) € Fy is in A iff f(by,...,b1) = 1. This set A is usually called the support of f. We can get a
similar support B for g. The support of f @& g is AAB (symmetric differnce) and the support of f X g is
AN B. The result follows from the fact that d(f,g9) = wt(f®g) =|AAB|=|A|+|B|-2/ANB|. =

3 Spectral Weights of CI and Resilient Functions

In this section we prove a crucial result on the divisibility properties of the spectral weights of correlation
immune and resilient functions. Such a result has an analogue in the McEliece Theorem [11] for Reed-Muller
codes: the weight of any function in R(r,n) is divisible by ZLnTilJ, where R(r,n) is the set of all n-variable
Boolean functions of degree at most r. If f is an n-variable, m-resilient function, using Siegenthaler’s
inequality we know that the degree of f is at most n —m — 1. Hence for any linear function | € L(n), we
have f@®l is in R(n—m —1,n) and so wt(f @) = d(f,1) is divisible by ole=amtl, However, this result is not
sharp enough to prove a nontrivial upper bound on the nonlinearity of resilient functions. In Theorem 3.1
we prove that for any n-variable, m-resilient function f and [ € L(n), d(f,l) is divisible by 27+, This is
a much stronger result. For example, if n = 7 and m = 3, McEliece Theorem guarantees that d(f,[) is
divisible by 22. On the other hand Theorem 3.1 establishes that d(f,[) is divisible by 2*.

Theorem 3.1 also sharpens the Xiao-Massey characterization [6] of correlation immune functions. A
Boolean function f is m-th order CI iff wd(f,l) = 0 for all [ € L(n) with 1 < ndg(l) < m, ie., [ is
nondegenerate on 1 to m variables. However, this characterization does not state anything about wd(f,1)
with ndg(l) > m. We show in Theorem 3.3 that 2! divides wd(f,l) for all [ in L(n) with ndg(l) > m.
For resilient functions the Xiao-Massey characterization can only be extended to include the condition that
Walsh distance between f and the all zero function is 0. However, Theorem 3.1 shows that 2™*2? divides
wd(f,1) for all [ in L(n) with ndg(l) > m.

Using Theorem 3.1 and Theorem 3.3 we prove nontrivial upper bounds on the nonlinearity of resilient
and correlation immune functions. We believe our results are the first major results on the maximum
nonlinearity of resilient functions. These nonlinearity results have deep consequences.

1. These bounds set up a ”"benchmark” by which one can measure the efficacy of any new construction
method for resilient functions. It will also be a major task to show that in certain cases the upper bound of
Theorem 3.2 is not tight.

2. Based on Theorem 3.2 and Siegenthaler’s inequality, we are able to satisfactorily identify the class
of Boolean functions achieving the best possible trade-off among the parameters : number of variables,
resiliency, nonlinearity and algebraic degree.



Maiorana-McFarland like constructions and its modifications in certain cases can be used to construct
functions with the best possible trade-off between nonlinearity and resiliency (see Section 4). However,
the existing constructions cannot always be used to achieve the upper bound of Theorem 3.2. This shows
the inadequacy of the construction techniques proposed so far. We provide new constructions of resilient
functions which achieve the upper bound of Theorem 3.2.

Previous works related to upper bound on nonlinearity of resilient functions were attempted in [3, 16].
In [3] an upper bound was obtained for a very small subset of resilient functions. It was shown in [20], that
it is possible to construct resilient functions, outside the subset of [3], with nonlinearity more than the upper
bound obtained in [3]. In [16], the maximum nonlinearity issue for 6-variable resilient functions has been
completely settled by exhaustive computer search technique. Corollary 3.1 provides a simple proof of the
same result.

Lemma 3.1 Let f be an n-variable function of even weight and | € L(n). Then d(f,l) (resp. wd(f,1)) is
congruent to 0 mod 2 (resp. 0 mod 4).

Proof : From Lemma 2.1 we know that d(f,l) = wt(f) + wt(l) — 2wt(f x [). Since all the terms on the
right are even it follows that d(f,!) is also even. ]

Lemma 3.2 Let f be an n-variable, 1-resilient function and | € L(n). Then d(f,l) (resp. wd(f,1)) is
congruent to 0 mod 4 (resp. 0 mod 8).

Proof : Since f is l-resilient, by Siegenthaler’s inequality we know that degree of f is at most n — 2.
If [ is in L(n), then f x [ is a function of degree at most n — 1 and hence wt(f x ) is even. Thus
d(f,1) = wt(f) + wt(l) — 2wt(f x 1) = wt(f) mod 4. As f is balanced, wit(f) = 0 mod 4, and consequently
d(f,l) =0 mod 4. ]

Corollary 3.1 The mazimum nonlinearity for a siz variable 1-resilient function is 24.

Proof : Using Lemma 3.2, we know that for any [ € L(6) and any 1-resilient function f, d(f,l) = 0 mod 4.
Thus the possible values for d(f,[) are 32 + 4k, for some k > 0. If for every [, k < 1, then f must be bent
and hence cannot be resilient. So there must be some [, such that d(f,!) = 32+8. But then the nonlinearity
is at most 24. [ |

The above result was obtained in [16] using an essentially exhaustive computer search. Next we present
the major result on the spectral weights of resilient functions.

Theorem 3.1 Let f be an n-variable, m-resilient (with n > 3 and m < n —3) function and | € L(n). Then
d(f,1) (resp. wd(f,1)) is congruent to 0 mod 2™*! (resp. 0 mod 2™*2).

Proof : There are three inductions invloved - on the number of variables n, on the order of resiliency m
and on the number of variables in the linear function [, which we denote by k = ndg(l).

Base for induction on m: It is possible to verify the result for n = 3. Assume the result is true for all
functions on less than n variables (with n > 4).

Inductive Step for induction on n: Let f be an n-variable function.

Now we use induction on m. The induction on m is carried out separately for odd and even values.
Base for induction on m: If m = 0, then f is a balanced function and Lemma 3.1 provides the base case.
If m =1, then Lemma 3.2 provides the base case.

Next we make the induction hypothesis that if f is m — 2-resilient (with m — 2 > 0), and [ € L(n), then
d(f,1) =0 mod 2L,

Inductive Step for induction on m: Let f be m-resilient and let [ be any function in L(n). We now use
induction on the number of variables & in [ (i.e., [ € L(n) is nondegenerate on exactly k variables).
Base for induction on k: k < m, since f is m-resilient d(f,l) = 2" ! = 0 mod 2™+,



Inductive Step for induction on k: Let k > m and using Lemma 3.1 and Lemma 3.2 we can assume k& > 2.
Without loss of generality assume X, and X,_; are present in [. Write [ = X,, ® X,,_1 ® A, where A is
nondegenerate on at most k — 2 variables. Also define A\ = X, ® A and Ay = X,,_1 & A. Using induction
hypothesis on k, we know d(f, \) = d(f, \1) = d(f, A\2) = 0 mod 2™ *L. Let goo, go1, 910, g11 be (n—2)-variable
functions defined by g¢;;(Xp—2,...,X1) = f(4, 5, Xp—2,...,X1). Since X has at most n — 2 variables, there is
a function p € L(n — 2) which has the same set of variables as A\. Denote by a;; the value d(g;;, ). Since
A, A1, A2 have less than k variables, using the induction hypothesis on k we have the following equations.

1. d(f, )\) =ago +ap1 +aijp t+aj; = k12m+1, 2. d(f, )\1) = agg + ap1 — a1 — A11 = k22m+1,

3. d(f, )\2) = app —ap1 +aip — a1 = k}32m+1, and 4. d(f,l) = agp — agp1 — @10 + A11-

From the first three equations, we can express ap1,a19 and aj; in terms of agg. This gives us
aor = (k1 + k3)2™ — ago, a10 = (k1 + k2)2™ — ago and ay1 = —(k2 + k3)2™ + ago.

Now using equation 4, we get d(f,1) = dago — (k1 + k2 +k3)2™ 1. Since f is m-resilient and g is obtained
from f by setting two variables to constant values, g is an (n — 2)-variable, (m — 2)-resilient function. First
assume m is even, then m — 2 is also even. Using the induction hypothesis on n and the induction hypothesis
on even m we have agy = d(g, #) = 0 mod 2", The argument is similar for odd m. (This is the reason for
choosing the base cases separately for m = 0 and m = 1.) Hence d(f,l) = 0 mod 2! [ |

Using Theorem 3.1, it is possible to obtain an upper bound on the nonlinearity of an n-variable, m-
resilient function. Let nl(n,m) be the maximum possible for an n-variable, m-resilient function.

Theorem 3.2 1. If n is even and m +1 > 2 — 1, then nl(n,m) < 2"+ — 2m+1,

2. If nis even and m+ 1 < % — 1, then nl(n,m) < 2" ! — 2771 — gmtl,

3. If n is odd and 2™ > 2=t — nlmax(n), then nl(n,m) < 2"~ — 2m+L,

4. If n is odd and 2™+ < 2" —nlmaz(n), then nl(n,m) is the highest multiple of 2™ which is less than
or equal to 2" 1 — nlmax(n).

Further in cases 1 and 3, the spectra of any function achieving the stated bound must be three valued, i.e.

the values of the Walsh distances must be 0,212,

Proof : We prove only cases 1 and 2, the other cases being similar.
1. Using Theorem 3.1 for any n-variable, m-resilient function f and [ € L(n), we have d(f,1) = 0 mod 2!,
Thus d(f,1) = 2" 1 & k2™ *! for some k. Clearly k cannot be 0 for [ and hence the nonlinearity of f is at
most 271 — 2mt,
2. As in 1, we have d(f,1) = 2" ! + k2! for some k. Let 227" = p2™+! (we can write in this way as
m < ¢ —1). If for all | we have k < p, then f must necessarily be bent and hence cannot be resilient. Thus
there must be some [ such that the corresponding k£ > p. This shows that the nonlinearity of f is at most
gn—1 _ 2%71 _ gm+l
The proof of the last statement follows from the fact that if the Walsh distances are not three valued
0,422 then £2™%* must be a Walsh distance value for ¢ > 3. The nonlinearity for such a function is
clearly less than the stated bound. [ |
We state the boundary case of Theorem 3.2 in the following corollary (see also [3, 16]).

Corollary 3.2 Forn >4, nl(n,n — 3) = 2" 2.

Proof : From Theorem 3.2 it is clear that nl(n,n — 3) < 277! — 272 = 272 Moreover, it is easy to
construct an (n,n — 3,2,2" 2) function by concatenating two distinct linear functions from L(n — 1), each
of which are nondegenerate on n — 2 variables. [

We also need the following corollary which will be used to define the concept of saturated best function
in Section 4.

Corollary 3.3 Let m > [5]| — 2. Then, nl(n,m) < gn—l _gmtl < gn—1 o=, Further, the spectra of
any (n,m,—, 2"~ — 2m*TY) function is necessarily three valued.



The upper bound for nl(n,m) given by Theorem 3.2 is listed in Table 1 for the first few interesting cases.
The columns represent the resiliency and the rows represent the number of variables. The entries with x
represent bounds which has not yet been achieved. Functions can be constructed with parameters satisfying
the other entries. In particular, the entries with # represent functions which have been constructed here for
the first time.

1 2 3 4 5 6 7 8
12 8 0
24 24 |16 0
56 56* | 48 32 0
116* | 112 | 112% | 96 64 |0
244* | 240 | 240* | 224% [ 192 [ 128 | 0
10 | 492 | 480 | 480 | 480* | 448 | 384 | 256 | 0

O o[ | O Ot

The set of n-variable m-th order correlation immune functions is a superset of n-variable m-resilient functions.
The following two results are for correlation immune functions and are similar to Theorem 3.1, Theorem 3.2.

Theorem 3.3 Let f be an n-variable, m-th order correlation immune (with n > 3 and m < n —2) function
and 1 € L(n). Then d(f,1) (resp. wd(f,1)) is congruent to 0 mod 2™ (resp. 0 mod 21 ).

Proof : We have to note that if a function f is 1lst order correlation immune (CI) then d(f,l) is even
(wd(f,1) = 0mod 4) for any linear function {. Now given a 2nd order CI function, by Siegenthaler’s
inequality we know that degree of f is at most n — 2. Thus, similar to the proof of Lemma 3.2, we get d(f,1)
(resp. wd(f,l)) is congruent to 0 mod 4 (resp. 0 mod 8). Using these as the base cases, the proof is similar
to the proof of Theorem 3.1. [ |

Theorem 3.4 Let nlc(n,m) denote the highest possible nonlinearity for an n-variable function which is CI
of order m. Then we have the following.

1. If n is even and m > % — 1, then nlc(n,m) < 2"+ — 2™,

2. If n is even and m < % — 1, then nlc(n,m) < 2" 1 — 25-1 _gm,

3. If n is odd and 2™ > 2"~ — nlmaz(n), then nlc(n,m) < 27—t —2m,

4. If n is odd and 2™ < 2"~' —nlmax(n), then nlc(n,m) is the highest multiple of 2™ which is less than or
equal to 2"~ — nlmaz(n).

Further in cases 1 and 3, the spectra of any function achieving the stated bound must be three valued, i.e.
the values of the Walsh distances must be 0, £2m 11,

4 Construction of Resilient Functions

Motivated by Theorem 3.2, we introduce a new notion of optimality for resilient functions. An (n,m,d, x)
function is said to be Type-I optimal if z is the upper bound on nl(n,m) provided in Theorem 3.2. However,
there is a stronger notion of optimality. Given an n-variable function, there may be more than one possible
values of order of resiliency m, such that the upper bound on nl(n,m) is same using Theorem 3.2. We call an
n-variable, m-resilient function having nonlinearity z to be Type-II optimal if the function is Type-I optimal
and further for any p > m the upper bound on nl(n,p) in Theorem 3.2 is strictly less than z. These notions
of optimality can be further strengthened by requiring the degree to be the maximum possible. This can
be done by considering Siegenthaler’s inequality for balanced functions: m + d < n — 1, for any n-variable,
m-resilient, degree d function. Thus (n,m,n —m — 1,z) Type-1I optimal functions achieve the best possible
trade-off among the parameters - number of variables, order of resiliency, degree and nonlinearity. We will
refer to such functions as best functions.

Example 4.1 An (8,2,5,112) function is Type-I optimal. Moreover, (8,2, —,112) functions are not Type-II
optimal since nl(8,3) < 112. However, an (8,3, —, 112) function is Type-1I optimal since nl(8,4) < 96. Also



an (8,3,4,112) function optimizes the degree and hence it is a best function. From Theorem 3.2, the spectra
of any (8,3, —,112) function is necessarily three valued. However, this may not necessarily be true for any
best function. For example, an (8,1,6,116) function (if one exists) will be a best function, but its spectra
will not be three valued.

The way we have defined the notion of optimality it is not guaranteed whether it is possible to construct
functions satisfying the notions of Type-I and Type-Il optimality introduced above. The tightness of the
upper bounds in Theorem 3.2 is contingent on the existence of such functions. However, we will show for
certain sequences of best functions, it is possible to construct all but finitely many functions of any such
sequence.

We call a best function to be saturated if its spectra is three valued according to Corollary 3.3. Thus an
(n,m,n —m — 1, z)-function is called saturated best (SB for short) if it is Type-1I optimal and its spectra is
three valued. For such a function we must necessarily have m > & — 2. Therefore, the (8, 3,4,112) Type-II
optimal functions are saturated best. However, the (8,1,6,116) Type-II optimal functions (if at all exist)
can not have a three valued Walsh spectra. From Parseval’s theorem, if it has a three valued Walsh spectra,
then 242 x z = 2'6_ which is not possible for integer z. Thus, the (8,1, 6,116) Type-II optimal functions are
best but not saturated best.

Lemma 4.1 If an (n,m,n—m—1,x) function f is an SB function, then so is an (n+1,m+1,n—m—1,2x)
function g.

Proof : Since f is SB, z = 2" 1 — 2+l and so 2z = 2" — 2™*2, From Corollary 3.3, nl(n +1,m + 1) <
2" — 2m+2 and hence the spectra of ¢ is three valued. [ |

This naturally leads to a notion of a sequence of Boolean functions, each of which is an SB function.
More precisely, a saturated best function sequence (an SBS for short), is an infinite sequence of Boolean
functions fy, f1,..., where fq is an (ng,mo,ng — mo — 1,z¢) function which is SB and the upper bound on
nl(no — 1,mo — 1) in Theorem 3.2 is strictly less than %2. Also for j > 0, fjy1 is an (n; +1,m; + 1,n; —
mj — 1,2z;) function (and hence is also SB from Lemma 4.1). Note that n; —m; —1 = ng —my — 1 and
so the degree of all the functions in an SBS are same. Thus an SBS is completely defined by specifying the
parameters of a function fy. Note that the functions which form an SBS is not unique, i.e., there can be
more than one distinct (ng, mo,ng — mo — 1, xp) functions and all of them are possible representatives for
fo. Thus a particular SBS is characterized by several parameters and any sequence of functions satisfying

these parameters is said to form the particular SBS.

Example 4.2 The following seqences are SBS’s.

1. fo, f1,..., where fo is an (3,0,2,2) function.

2. fo, f1,-.., where fy is an (5,1,3,12) function.

3. fo, f1,-.., where fy is an (7,2,4,56) function.

It is not known whether (7,2,4,56) functions exists. However, we show how to construct an
(8,3,4,112) function, which is fy in this SBS.

For ¢ > 0 we define SBS(¢) as follows. An SBS(0) is a sequence fo o, fo,1,..., where foo is a (3,0,2,2)
function. For ¢ > 0, an SBS(4) is a sequence fig, fi1,..., where figo is a (3 + 24,4,2 + i,227% — 21%7) SB
function. Note that all functions in an SBS(:) have the same degree 2 + i. Construction of SBS(0) and
SBS(1) are already known. Unfortunately, it is not known whether the initial functions for an SBS(4) exist
for + > 1. In the next subsection we show how to construct all but finitely many initial functions of any
SBS(37).

Now we will concentrate on the construction problem of SB functions. In defining SBS we stated that
any function in an SBS must be an SB function. However, the converse that given any SB function, it must
occur in some SBS(7) is not immediate. The following result proves this and justifies the fact that we can
restrict our attention to the construction problem for SBS(z) only.



Lemma 4.2 Any SB function must occur in some SBS(3).

Proof : First note that any function of SBS(7) has algebraic degree 2 + 4. Any SB function f must be an
(n,m,n —m — 1,2" 1 — 2m*1) function having degree d = n —m — 1. Hence f must occur in SBS(d — 2),
ie., in SBS(n —m — 3). ]

4.1 Construction of SBS(i)

Here we show that the Maiorana-McFarland like construction procedure can be used to construct all but
finitely many functions of any SBS(7). First we state the following result which is easy to prove.

Lemma 4.3 Let f;j be a j-th function of SBS(i). Then the function g =Y @ f;; (where the variable Y
does not occur in f; ;) is an f; j+1 function of SBS(i). Consequently, if one can construct f; ;, then one can
construct fi . for all k> j.

Proof : The proof follows from Lemma 4.1 and the fact that ni(f; ;1) = 2nl(fi ;). |

This shows that if one can construct any one of the functions in SBS(¢), then it is possible to construct
any function in the succeeding part of the sequence. Thus it is enough if we can construct the first function
of each sequence. This is possible for SBS(0) and SBS(1) since construction of (3,0,2,2) and (5,1,3,12)
functions are known. However, the construction problem for the first function of SBS(i) for 7 > 1 is an
ongoing research problem. Here we show that the Maiorana-McFarland like construction procedure can be
used to construct all but finitely many functions of any SBS(i). More precisely, if SBS(¢) = fi o, fi1 ..., then
we show how to construct f;; for all t > ¢y, where ¢ is such that 2110 = 3 4§ + to. For SBS(2), this gives
to = 3. Moreover, in Subsection 4.2, we show how to construct f,; and f29. This leaves open the problem
of constructing f;;, with ¢ < ¢y and ¢ > 3 as a challenging research problem.

Theorem 4.1 For any SBS(i) = fio, fi1,..., it is possible to construct f;; for all t greater than or equal
to some t.

Proof : The first function f;o is a (3 + 24,4,2 + 4,22% — 21%%) function. We show that for some j, f;
is constructible by Maiorana-McFarland like construction techniques. Let j be such that 2'7 = 3 4+ ¢ + j.
A function f;; is to be an (n = 3 + 20 + j,i + 4,2 + i, 22720 — 214947)  We show how to construct such
a function. Consider the set A of all £ = 2 + ¢ 4 j-variable linear functions which are nondegenerate on at
least 1 + ¢ + j variables. Clearly there are (gizig) + (ﬁzig) = 3 + 4 + 7 such linear functions. Consider
an n-variable function f (a string of length 2") formed by concatenating 2"~* functions from A. Since
2"k —214+% — 3 4+ i+ j = | A |, we use each of the functions in A exactly once in the formation of f. Since
each function in A is nondegenerate on 1 + i + j variables each of these functions is (i + j)-resilient. Let
V = {Xo4itj,..., X1} be the set of variables which are involved in the linear functions in A. Each of the
variables in V occur in 2'*? — 1 of the linear functions in A. Thus each variable occurs an odd number of
times and hence the degree of f is n —k+1 = 2 +14. Since each linear function is used once, the nonlinearity
of fis 2n~1 —2k=1 = 2242+j _ 9l+i+j Thus f is a (3 +2i + 4,4 + 4,2 + 0,222+ — 21++7) function and
can be taken as f; ;. Take tg = j. Using Lemma 4.3 it is possible to construct f;; for all ¢ > ¢ = j. [ |
In the proof of the above theorem we use Lemma 4.3 to construct f;; for all £ > j, given the function
fij- Thus fi;(Yi—j,...,Y1,X) =Y,_;&®...®Y1® f; ;(X). This results in the function f;; depending linearly
on the variables Y; ;,...,Y7. This is not recommendable from cryptographic point of view. There are two
ways to avoid this situation.
(I) The above proof of Theorem 4.1 can be modified so that Lemma 4.3 is not required at all. In fact, the
linear concatenation technique used to construct fi,j can directly be used to construct f;;. In f;;, a total
of 2!t slots were filled up using the 3 + 4 + j different linear functions (each exactly once) and this was
made possible by the fact that 2'7% = 3 4+ i + j. In constructing fit directly we will still have to fill PARN
slots but the number of linear functions that can be used will increase to 3 + 4 + ¢. Hence no linear function



need to be used more than once and as a result the nonlinearity obtained will achieve the upper bound of
Theorem 3.2. The ANF of the resulting f; ; will depend nonlinearly on all the variables Y;_;, ..., Y.

(IT) After obtaining f; j, instead of using Lemma 4.3 we can use a more powerful construction provided
in [12]. The method of [12] shows that if f is an m-resilient function, then g defined as g(Y,X) = (1 &
V)f(X)®Y(a® f(X ®@)), is an (m + 1)-resilient function, where @ is an all one vector and a = m mod 2.
This also guarantees that g does not depend linearly on Y. Hence if we use this technique repeatedly
to construct f;; from f; ;, then the ANF of the resulting f;; will depend nonlinearly on all the variables
Yij,..., Y.

X, - Xa
1 Xow . X
3
1 |1x2m f
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Figure 1: Hardware for Implementing SB functions

4.1.1 Implementation issues

From an implementation point of view, both the above methods can be mapped efficiently in hardware. We
briefly discuss these possiblities.

If f is implemented using the sequence of constructors as described in [12] (discussed in item (II) above),
then it is possible to implement f using a pipelined store and forward architecture. In this case the basic
function [12] is f; ; which is constructed in Theorem 4.1 by the Maiorana-McFarland like technique.

Now we describe a simple hardware implementation strategy for the functions constructed in Theorem 4.1
and item (I) above. Suppose f is an n-variable function constructed by the Maiorana-McFarland like
construction technique. Then we can write n = n; + no, where f is the concatenation of 2™ suitable linear
functions from L(ng). Each linear function in L(ngy) can be easily implemented using two input XOR gates.
Suppose we have blocks By, ..., Boni —1 where each block implements one linear function in L(ny). Further,
each block is required to have an enable signal, which determines whether the block should produce an output
or not. To implement the function f all that is required is a 1 x 2" demultimlexer, where the variables
X, ..., Xp_pn,+1 act as the select variables of the demultiplexer. The input line of the demultiplexer is
always set to 1 and output line ¢ serves as enable input for block B;. Clearly such a setup will compute f.
The size of the demultiplexer is 2" and there are 2™ blocks. The size of each block is bounded above by
ny. So the total size of the hardware is O(n92™ ). If n; is not large, then implementation of such functions
is feasible. For example, using current technology it is possible to implement functions where n; < 25 and
ng < 32.

4.2 A Sharper Construction

For SBS(2) = f20, f2,1, f2.2,- .., Theorem 4.1 can be used to construct fy; for all £ > 3. Here we show how to
construct fo1 ((8,3,4,112) Type-II optimal function). This requires a nontrivial spectral analysis leading to
a new construction methodology. However, the construction of fz ((7,2,4,56) Type-1I optimal function) is
not yet known. Thus, we want to construct a 3-resilient function f € Qg with maximum possible algebraic
degree 4 and nonlinearity 112. For a Boolean function f, we define NZ(f) = {w | Wy (@) # 0}, where W;
is the Walsh transform of f.

10



Lemma 4.4 Let f1, fo be two (7,3,—,48) functions such that NZ(f1) N NZ(fz) = 0. Let f € Qg be
f=0& Xg)f1 ® Xgfo. Then, f is an (8,3, —,112) function.

First let us construct the function f; using linear concatenation. We take four 5-variable linear functions
nondegenerate on at least 4 variables : l5; = X1 @ Xo @ X3 B Xy, I = X1 ® Xo @ X3 8 X5, l53 =
X1 Xo® XD X5 and I54 = X1 & X3 D Xy & X5. We consider fo = 51059053054, concatenation of the four
linear functions. It is easy to see that since each [5; is 3-resilient, fo is also 3-resilient. Note that each of the
variables Xy, X3, X4, X5 occurs in exactly three linear functions, so algebraic degree of fy is 3. Moreover,
nonlinearity of fy is 3 x 16 = 48.

Now let us analyze the Walsh spectra of f;. Note that for the linear functions A of the form a7 X7 @&
agXe @ ls;, a7, a6 € {0,1},1 < i <4, wd(f2,A) is nonzero. There are 16 such functions in L(7). For the rest
of the functions A\ in L(7), wd(f2, A1) is zero. Also, note that according to the Theorem 3.2, this is a three
valued Walsh spectra.

Next we need to use the following basic idea. When d(f2,1) is minimum, then d(f1,1) must be 2" 2,
i.e., when wd(fa,1) is mazimum, then wd(f1,l) must be 0. We now construct another (7,3,3,48) function,
having a three valued Walsh spectra such that wd(f1, ) is zero for all A of the form a7; X7 ® agXg @ I5,
ar, s € {0,1},1 <1 <4,

We start from a (5, 1, 3, 12) function g. The Walsh spectra of the function need to be such that wd(g, l5;) =
0 for 1 <7 < 4. We choose ¢g to be 00000111011111001110010110100010 by running computer program.
Then we construct fi = X7 ® X @ g. Note that f is a (7,3,3,48) function and the Walsh spectra of f;
is such that wd(f1, ) is zero for all A of the form a7 X7 ® asX¢ @ 5, a7,a6 € {0,1},1 < i < 4. Thus,
NZ(f1) " NZ(f2) = 0. Also there are degree three terms in f; (resp. f2) which are not in fo (resp. f1).
Hence, f = (1® Xg)f1® Xgfo is an (8,3,4,112) function. The function is the 256-bit string described below.

0000011101111100111001011010001011111000100000110001101001011101
1111100010000011000110100101110100000111011111001110010110100010
0110100110010110011010011001011001101001011010011001011010010110
0110011010011001100110010110011001011010101001011010010101011010

Theorem 4.2 [t is possible to construct (8,3,4,112) and (9,4,4,224) functions.

Proof : Above we discussed how to construct a (8, 3,4, 112) function f. Now Xo® f is a (9,4, 4, 224) function.
Note that we can also construct a (9,4, 4, 224) function as (16 X9) f(Xs, ..., X1)@Xo(1®f (16 Xs,...,10X)))
where the function does not depend linearly on Xj. [ |

5 On Construction of Small Functions

The maximum nonlinearity question for all Boolean functions on even number of variables has been solved
quite some time back [17]. The same question for odd number of variables has been solved for odd n <
7 [14, 7]. Further, the maximum nonlinearity question is completely solved for balanced and resilient
functions on n variables for n < 5. Now we consider the cases n = 6 to n = 10 separately.

Case n = 6: A bent function on 6 variables has nonlinearity 28. It is possible to construct balanced functions
on 6 variables having maximum nonlinearity 26 (see [21]). In [16], a computer search was carried out on
6-variable resilient functions and the maximum nonlinearities for 1, 2 and 3 resilient functions were shown
to be 24, 24, 16 respectively. These results follow very easily from Corollary 3.1 and Theorem 3.2. Also it
is possible to construct (6, 1,4,24), (6,2,3,24) and (6,3,2,16) functions.

Case n = 7: The maximum possible nonlinearity for balanced functions is 56. Here we have shown that
the maximum possible nonlinearity for 1, 2, 3, 4 resilient functions are respectively 56, 56, 48, 32. The
construction of (7,1,5,56), (7,3,3,48) and (7,4,2,32) functions are known [20]. However, the construction
of (7,2,—,56) function seems to be a difficult one.
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Case n = 8: A bent function on 8 variables has nonlinearity 120. The maximum possible nonlinearity of
balanced functions is 118. It is possible to construct balanced functions on 8 variables having nonlinearity
116 [21]. The problem of constructing an 8-variable balanced function with nonlinearity 118 has been open
for quite some time. Here we present a result which could be an important step in solving this problem.

Theorem 5.1 Let if possible f be a (8,0,—,118) function. Then one can write f = (1 ® Xg)f1 & Xgfo,
where fi1 and fo are 7-variable functions having nonlinearity 55 each.

Proof : First we prove that the degree of f must be 7. If the degree of f is less than 7, then using [7,
Lemma 2.1], we can perform an affine transformation on the varibles of f to obtain an 8-variable function g,
such that g = (1 ® X3)g1 ® Xgg2 and the degrees of g1 and g5 (g1, g2 € 27) are each less than or equal to 5.
The affine transformation preserves the weight and nonlinearity of f and so wt(f) = wt(g) = wt(g1) +wt(g2)
and nl(f) = nl(g). Since f is balanced, wt(g;) +wt(g2) = wt(g) = wi(f) = 128 = 0 mod 4. Also wt(g;) and
wt(g2) are both even since their degrees are less than or equal to 5. Hence wt(g1) = wt(g2) = 0 mod 4 or
wt(g1) = wt(g2) = 2 mod 4. Since g;, g2 are 7-variable functions with degree < 5, it follows that (see [11]) for
any linear function [ € L(7), d(g1,!) = wt(g1) mod 4 and d(g2,l) = wt(g2) mod 4. Hence for any [ € L(7),
d(g1,1) = d(g2,!) mod 4 and so d(gi,1) + d(g2,!) = 0 mod 4 (**). Since the nonlinearity of g is 118, there
exists A € L(7) such that one of the following must hold: (1) d(g,A\) = 118, (2) d(g,A\) = 138, (3)
d(g, A\°) = 118, (4) d(g, AX°) = 138. Here we consider only case (1), other ones being similar. From (1) we
have 2 mod 4 = 118 = d(g, A\\) = d(g1, A) + d(g2, \) which is a contradiction to equation (**).

Thus the degree of f is 7. Without loss of generality we consider X7...X; is a degree 7 term in the
ANF of f We put fl(X7, cee ,Xl) = f(Xg = 0,X7, ce ,Xl) and f2(X7, ce ,Xl) = f(Xg = 1,X7, cee ,Xl).
Thus both fi, fo are of degree 7 and hence of odd weight and so nl(f1),nl(f2) < 55. It can be proved that
if any of nl(f1) or nl(fs) is < 53, then nl(f) < 118. |

The major implication of Theorem 5.1 is that if it is not possible to construct (8,0,7,118) function
by concatenating two 7-variable, degree 7, nonlinearity 55 functions, then the maximum nonlinearity of
balanced 8-variable functions is 116.

Now we turn to the question of maximum nonlinearity for resilient 8-variable function. Using Theo-
rem 3.2, the maximum possible nonlinearities for 1, 2, 3, 4, 5-resilient functions are 116, 112, 112, 96, 64
respectively. Construction of (8,2,5,112),(8,4,3,96), (8,5,2,64) functions is known [20]. In Theorem 4.2
we showed how to construct (8,3,4,112) functions. The existence of (8,1, —,116) is an open question.
Case n = 9: The maximum nonlinearity question for 9-variable functions is an outstanding open problem of
coding theory. The known upper bound [8] is 244. It is easy to construct balanced functions with nonlinearity
240. Using Theorem 3.2, the maximum possible nonlinearities for 1, 2, 3, 4, 5, 6-resilient functions are 244,
240, 240, 224, 192, 128 respectively. Construction of (9,1,7,240), (9,2, 5,240), (9, 3,5,224), (9, 5, 3,192),
(9,6,2,128) functions is known [20]. In Theorem 4.2 we showed how to construct (9,4,4,224) functions.
Construction of (9,1, —,244), (9,2, 6,240) and (9,3, —,240) functions are open.

Case n = 10: A bent function on 10 variables has nonlinearity 496. The maximum possible nonlinearity of
balanced functions is 494. The construction of [21] can provide balanced functions with nonlinearity 492.
Using Theorem 3.2, the maximum possible nonlinearities for 1, 2, 3, 4, 5, 6, 7-resilient functions are 492,
488, 480, 480, 448, 384, 256 respectively. Construction of (10,1, 8,484), (10,2, 7,480), (10, 3, 5,480),

(10,3, 6,464), (10,4, 5,448), (10, 5,4, 448), (10, 6, 3, 384), (10,7, 2,256) functions is known [20]. Construction
of (10,1, —,492), (10,1, —, 488), (10,2, —, 488), (10, 3, 6,480), (10,4, —,480) functions is currently not known.
Next we show how to construct (10, 3,6,480) functions. Note that the function we construct is not an SB
function and its Walsh spectra is five-valued (0, £32, £64).

Theorem 5.2 [t is possible to construct (10,3,6,480) functions.

Proof : We construct a function f by concatenating linear functions from L(5) as follows. There are 10
functions o, ..., 9 in L(5) which are nondegenerate on exactly 3 variables. Also there are 5 functions
A0, -« -y Aq in L(5) which are nondegenerate on exactly 4 variables. The function f is the concatenation of
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the following sequence of functions,

A0A0AOAGAT AT AT AT A2 A2 Ag A puo G 101 14T [ 05 A3 105 Pha fhg 1o 115 106 I 17 7 s g o o - The functions A; and puju§ are
both 3-resilient and hence f is 3-resilient too. It can be checked that there are variables between Xs, ..., X
which occur odd number of times overall in the above sequence. Hence the degree of f is 6. Also the
nonlinearity of f can be shown to be 480. ]
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