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Abstrat

A proof is onurrent zero-knowledge if it remains zero-knowledge when run in an

asynhronous environment, suh as the Internet. It is known that zero-knowledge is

not neessarily preserved in suh an environment; Kilian, Petrank and Rako� have

shown that any 4 rounds zero-knowledge interative proof (for a non-trivial language)

is not onurrent zero-knowledge. On the other hand, Rihardson and Kilian have

shown that there exists a onurrent zero-knowledge argument for all languages in NP,

but it requires a polynomial number of rounds. In this paper, we present a onurrent

zero-knowledge proof for all languages in NP with a drastially improved omplexity:

our proof requires only a poly-logarithmi, spei�ally, !(log

2

k) number of rounds.

Thus, we narrow the huge gap between the known upper and lower bounds on the

number of rounds required for a zero-knowledge proof that is robust for asynhronous

omposition.

1 Introdution

Zero-knowledge proofs, presented in [19℄, are proofs that yield no knowledge but the validity

of the proven assertion. Zero-knowledge proofs and arguments [1℄ have been proven an

important tool in various ryptographi appliations. However, the original de�nition of

zero-knowledge onsiders seurity only in a restrited senario in whih the prover and the

veri�er exeute the proof disonneted from the rest of the omputing environment.

In reent years, several papers have studied the a�et of a modern omputing environment

on the seurity of zero-knowledge. In partiular, many omputers today are onneted

through networks (and it may be a small loal area networks or the big internet) in whih

onnetions are maintained in parallel asynhronous sessions. It would be ommon to �nd

several onnetions (suh as FTP, Telnet, An internet browser, et.) running together on a

single workstation. Can zero knowledge protools be trusted in suh a ommon environment?
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1.1 Previous work

Dwork, Naor, and Sahai [8℄ were the �rst to explore zero-knowledge in the asynhronous

setting. They denoted zero-knowledge protools that are robust to asynhronous omposition

onurrent zero-knowledge protools. It was notied in [8℄ that several known zero-knowledge

proofs, with a straightforward adaptation of their original simulation to the asynhronous

environment, may ause the simulator to work exponential time. Thus, it seems that the

zero-knowledge property does not neessarily arry over to the asynhronous setting. In

order to provide a protool that may be used in a modern environment, they presented a

ompromise: a protool that is not zero-knowledge in a fully asynhronous setting, but is

zero-knowledge in an environment with bounds on the asynhronisity. In partiular, they

present a 4 round zero-knowledge argument for NP assuming that there are two onstants �

and � suh that the fastest message arrives within time at least � and the slowest message

arrives within time at most �.

Dwork and Sahai [9℄ redued the limitation on the asynhronisity. They presented a

proof whih has a preproessing phase and a proof-body phase. Their proof is onurrent

zero-knowledge argument for NP suh that the (�; �) limitation is required only during

the preproessing stage. Then, the body of the proofs an be run in a fully asynhronous

environment.

Kilian, Petrank, and Rako� [22℄ presented the �rst lower bound on onurrent zero-

knowledge. They showed that any language that has a 4-rounds onurrent (blak-box)

zero-knowledge interative proof or argument is in BPP. Thus, a large lass of known zero-

knowledge interative proofs and arguments for non-trivial languages do not remain zero-

knowledge in an asynhronous environment. The question that rose was: does there exist a

fully asynhronous (onurrent) zero-knowledge proof for NP?

The answer was given by Rihardson and Kilian [25℄ who presented onurrent zero-

knowledge arguments for all languages in NP, that is robust in the fully asynhronous setting.

However, this protool is not pratial. It requires a polynomial number of rounds, whih

makes it unaeptable in pratie. Note the huge gap between the upper and lower bounds

for fully asynhronous zero-knowledge proofs for NP. The upper bound has a polynomial

number of rounds, whereas the lower bound has 4 rounds.

Other researhers have onentrated on presenting eÆient onurrent zero-knowledge

protools for NP with weaker ompromises on the asynhronisity of the environment. Cresenzo

and Ostrovsky [4℄ presented a onurrent zero-knowledge argument for NP with a prepro-

essing phase. They removed the (�; �) onstraint of [9℄, and the only requirement is that

there must be a separating point in time between all preproessing of all onurrent proofs,

and all bodies of all proofs. Namely, the �rst body of any proof may start only after all

preproessing phases in all the proofs have ompleted. D�amgard [5℄ and Canetti et. al. [3℄

have further redued the limits on asynhronisity. They require that prior to the beginning of

the proofs, all veri�ers have deposited a publi key in a publi database. In [5℄ it is required

that the publi key is valid, i.e., that the veri�er must know the seret key assoiated with

it. In [3℄ this requirement is relaxed. The veri�er only has to have a deposited string in the

publi database. Thus, these proofs are eÆient, and make only the following ompromise

over full asynhronisity: all veri�ers must be previously registered before they an engage

in a proof. A veri�er that has not been registered annot join until all proofs are ompleted

and then it registers itself before any new proof begins.
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1.2 This work

Returning to the fully asynhronous environment, the question remains: how many rounds

are required for a fully asynhronous onurrent zero-knowledge proof for all languages in

NP? In this work, we provide a signi�ant improvement of the upper bound. In partiular,

we present a onurrent (blak-box) zero-knowledge argument for all languages in NP in

!(log

2

k) rounds. This improves over the polynomial bound of O(k

"

) rounds in [25℄.

The argument we provide relies on the existene of bit ommitment for polynomially

bounded reeiver and ommitter (see further in Setion 2.3 below). Using [1℄, suh shemes

an be based on the existene of ollision-intratable hash funtions.

Our zero-knowledge argument for all languages in NP is a simple modi�ation of the

protool of Rihardson and Kilian: we hange the parameters to make the preamble short

enough, and use a round-eÆient zero-knowledge (or witness indistinguishable) proof for

NP in the body of the proof. However, our simulator for this proof and analysis of the

simulator is ompletely di�erent from the simulator and analysis in [25℄. The simulator in

[25℄ rewinds the veri�er aording to the adversarial shedule as it is being revealed with time.

Interestingly, we propose a rewinding shedule whih is oblivious to any of the adversary's

ations. The rewinding is done at spei� points in time, regardless of the ontent of messages

and regardless of the shedule of the proofs as determined by the veri�er. Nevertheless, we

are able to show that the simulator manages to simulate the interation well with probability

almost 1.

1.3 Terminology

Some words on the terminology we are using. By zero-knowledge we mean omputational

zero knowledge, i.e., the distribution output by the simulation is polynomial-time indistin-

guishable from the distribution of the views of the veri�er in the original interation. (See

de�nitions in Setion 2.1 below.) Our proof is blak-box zero-knowledge (see Setion 2.2

below). The prover will be omputationally bounded (i.e., we will build a zero-knowledge

argument).

1.4 Guide to the paper

In Setion 2 we present some de�nitions and the tools we are using. In Setion 4 we present

the onurrent zero-knowledge argument for NP. In Setion 5 we provide a simulator for

the interation between the prover and the adversarial veri�er. In Setion 6 we analyze the

simulator with respet to a stati shedule. Namely, the shedule may be the worst possible,

but it is not modi�ed during the rewinds of the simulator. In Setion 7 we show that the

simulator works as well also with respet to shedules that hange dynamially during the

simulation. Thus, our proof is onurrent zero-knowledge in the asynhronous setting.
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2 Preliminaries

2.1 Zero-knowledge proofs

Let us reall the onept of interative proofs, as presented by [19℄. For formal de�nitions

and motivating disussions the reader is referred to [19℄.

De�nition 2.1 A protool between a (omputationally unbounded) prover P and a (proba-

bilisti polynomial-time) veri�er V onstitutes an interative proof for a language L if there

exists a negligible fration " suh that

� Completeness: If x 2 L then

Pr [(P; V )(x) aepts ℄ � 1� "(jxj)

� Soundness: If x 62 L then for any prover P

�

Pr [(P

�

; V )(x) aepts ℄ � "(jxj)

Brassard, Chaum, and Cr�epeau [1℄ suggested a modi�ation of interative proofs alled ar-

guments in whih the prover is also polynomial time bounded. Thus, the soundness property

is modi�ed to be guaranteed only for probabilisti polynomial time provers P

�

.

Let (P; V )(x) denote the random variable that represents V 's view of the interation with

P on ommon input x. The view ontains the veri�er's random tape as well as the sequene

of messages exhanged between the parties.

We briey reall the de�nition of blak-box zero-knowledge [19, 24, 15, 18℄. The reader

is referred to [18℄ for more details and motivation.

De�nition 2.2 A protool (P; V ) is omputational zero-knowledge (resp., statistial zero-

knowledge) over a language L, if there exists an orale polynomial time mahine S (simulator)

suh that for any polynomial time veri�er V

�

and for every x 2 L, the distribution of the

random variable S

V

�

(x) is polynomially indistinguishable from the distribution of the random

variable (P; V

�

)(x) (resp., the statistial di�erene betweenM(x) and (P; V )(x) is a negligible

funtion in jxj).

In this paper, we onentrate on omputational zero-knowledge. In the sequel we will say

zero-knowledge meaning omputational zero-knowledge.

2.1.1 Conurrent zero knowledge

Following [8℄, we onsider a setting in whih a polynomial time adversary ontrols many

veri�ers simultaneously. The adversary A takes as input a partial onversation transript

of a prover interating with several veri�ers onurrently, where the transript inludes the

loal times on the prover's lok when eah message was sent or reeived by the prover. The

output of A will be a tuples of the form (V; �; t), indiating that P reeives message � from

a veri�er V at time t on P

0

s loal lok. The adversary may either output a new tuple as

above, or wait for P to output its next message to one of the veri�ers. The time that is

written by the adversary in the tuple, must be greater than all times previously used in the

system (by messages sent to P or by P ). The view of the adversary on input x in suh an

interation (inluding all messages and times, and the veri�ers random tapes) is denoted

(P;A)(x).
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De�nition 2.3 We say that a proof or argument system (P; V ) for a language L is (om-

putational) onurrent zero-knowledge if there exists a probabilisti polynomial time orale

mahine S (the simulator) suh that for any probabilisti polynomial time adversary A, the

distributions (P;A)(x) and S

A

(x) are omputational indistinguishable over the strings that

belong to the language L.

In what follows, we will usually refer to the adversary A as the adversarial veri�er V

�

or

just the veri�er V

�

. All these terms mean the same.

2.2 Blakbox simulation

The initial de�nition of zero-knowledge [18℄ required that for any probabilisti polynomial

time veri�er

^

V , a simulator S

^

V

exists that ould simulate

^

V 's view. Oren [24℄ proposes a

seemingly stronger, \better behaved" notion of zero-knowledge, known as blak-box zero-

knowledge. The basi idea behind blak box zero-knowledge is that instead of having a

new simulator S

^

V

for eah possible veri�er, we have a single probabilisti polynomial time

simulator S that interats with eah possible

^

V . Furthermore, S is not allowed to examine

the internals of

^

V , but must simply look at

^

V 's input/output behavior. That is, it an have

onversations with

^

V and use these onversations to generate a simulation of

^

V 's view that

is omputationally indistinguishable from

^

V 's view of its interation with P .

At �rst glane, the limitations on S may seem to fore S to be as powerful as a prover.

However, S has important advantages over a prover P , allowing it to perform simulations in

probabilisti polynomial time. First, it may set

^

V 's oin tosses as it wishes, and even run

^

V on di�erent sets of oin tosses. More importantly, S may oneptually \bak up"

^

V to

an earlier point in the onversation, and then send di�erent messages. This ability derives

from S's ontrol of

^

V 's oin tosses; sine

^

V otherwise operates deterministially, S an rerun

it from the beginning, exploring di�erent diretions of the onversation by trying various

messages.

Indeed, all known proofs of zero-knowledge onstrut blak-box simulations. There is no

way known to make use of a veri�er's internal state, nor to ustomize simulators based on

the desription of

^

V other than by using it as a blak box.

1

Thus, given the urrent state

of the art, an impossibility result for blak-box zero-knowledge seems to prelude a positive

result for the older de�nitions of zero-knowledge.

2.3 Bit ommitments

We inlude a short and informal presentation of ommitment shemes. For more details

and motivation, see [13℄. A ommitment sheme involves two parties: The sender and the

reeiver. These two parties are involved in a protool whih ontains two phases. In the �rst

phase the sender ommits to a bit, and in the seond phase it reveals it. A useful intuition to

keep in mind is the \envelope implementation" of bit ommitment. In this implementation,

the sender writes a bit on a piee of paper, puts it in an envelope and gives the envelope

to the reeiver. In a seond (later) phase, the reveal phase, the reeiver opens the envelope

1

As one slight exeption, [20℄ proves seurity against spae-bounded veri�ers by onsidering the internal

state of the veri�ers. However, these tehniques do not seem appliable to more standard lasses of veri�ers.
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to disover the bit that was ommitted on. In the atual digital protool, we annot use

envelopes, but the goal of the ryptographi mahinery used, is to simulate this proess.

More formally, a ommitment sheme onsists of two phases. First omes the ommit

phase and then we have the reveal phase. We make two seurity requirements whih (loosely

speaking) are:

Serey: At the end of the ommit phase, the reeiver has no knowledge about the value

ommitted upon.

Binding property: It is infeasible for the sender to pass the ommit phase suessfully

and still have two di�erent values whih it may reveal suessfully in the reveal phase.

Various implementations of ommitment shemes are known, eah has its advantages in

terms of seurity (i.e., binding for the reeiver and serey for the reeiver), the assumed

power of the two parties et.

We work in the argument framework of Brassard, Chaum and Cr�epeau [1℄. In this

paradigm, all parties are assumed to be omputationally bounded. It is shown in [1℄ how

to ommit to bits with statistial seurity, based on the intratability of ertain number-

theoreti problems. D�amgard, Pedersen and P�tzmann [6℄ give a protool for eÆiently

ommitting to and revealing strings of bits with statistial seurity, relying only on the

existene of ollision-intratable hash funtions. This sheme is quite pratial and we adopt

it for the veri�ers in our protool. For the prover, we use a ommitment sheme whose binding

is information theoreti and seurity is omputational. Suh shemes an be onstrued from

any one-way funtion, see [23℄. For simpliity, we will simply speak of ommitting to and

revealing bits when referring to the protools of [6℄ for the veri�er and [23℄ for the prover.

2.4 Witness Indistinguishability

Witness indistinguishable proofs were presented in [12℄. The motivation was to provide

a ryptographi mehanism whose notion of seurity is similar though weaker than zero-

knowledge, it is meaningful and useful for ryptographi protools, and the seurity is pre-

served in an asynhronous omposition. A witness indistinguishable proof is a proof for a

language in NP suh that the prover is using some witness to onvine the veri�er that the

input is in the language, yet, the view of the veri�er in ase the prover uses witness w

1

or

witness w

2

is polynomial time indistinguishable. Thus, the veri�er gets no knowledge on

whih witness was used in the proof. The formal de�nition follows. For further disussion

and motivation the reader is referred to [12℄.

We say that a relation R is polynomial time if there exists a mahine that given (x; w)

works in polynomial time in jxj and determines whether (x; y) 2 R. For any NP lan-

guage there exists a polynomial time relation R

L

suh that L an be desribed as L =

fx : 9y; R

L

(x; y)g.

De�nition 2.4 A proof system (P; V ) is witness indistinguishable over a polynomial time

relation R is for any V

0

, any large enough x, any w

1

; w

2

suh that (x; w

1

) 2 R and (x; w

2

) 2

R, and for any auxiliary input y for V

0

, the view of V

0

in the interation with P (x; w

1

) is

polynomially indistinguishable from the view of V

0

in the interation with P (x; w

2

).

It is shown in [12℄ that witness indistinguishability is preserved with asynhronous om-

position of proofs.
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2.5 The omplexity parameters

In this paper, we simplify the disussion by using a single seurity parameter k. Our proof has

!(log

2

k) rounds and the seurity is preserved with a polynomial (in k) number of onurrent

proofs. It is possible to separate the number k of allowed onurrent proofs from the seurity

parameter. If we know that the number of proofs to be run onurrently is substantially

smaller than the seurity parameter, we an relate the number of rounds to the number of

proofs and not to the seurity parameter. We leave this (and similar) extensions to future

versions of this paper.

3 Main result

Our main result is the existene of poly-logarithmi round onurrent (and blak box) zero-

knowledge arguments for NP. We state this expliitly in the following theorem.

Theorem 3.1 Assume there is a seure bit ommitment sheme, and onstant round wit-

ness indistinguishable arguments for all languages in NP. Let k be a omplexity parameter

bounding the size of the input, all parties are polynomial time in k, and the onurrent proof

may ontain a polynomial (in k) number of proofs onurrently. Then there exists a zero-

knowledge argument for all languages in NP whih is: omputational, blak-box, onurrent,

and has a number of rounds t(k) whih is any funtion that is asymptotially greater than

log

2

k, i.e., t(k) = !(k).

This theorem is proven in the rest of this paper. First we present the protool, next we

present the simulator, and last, we analyze the simulator.

4 The zero-knowledge proof

We use a zero-knowledge argument for NP whih is similar to the one suggested by Rihard-

son and Kilian [25℄, following the ideas presented by Feige, Lapidot and Shamir [10℄. The

argument proof in [25℄ for a theorem T in NP onsists of a proof-preamble of k

"

rounds

and a proof-body being any \standard" zero-knowledge proof for a modi�ed NP theorem

T

0

. We modify the proof parameters to use only a poly-logarithmi number of rounds in the

preamble rather than the polynomial number used in [25℄. We then use a round-eÆient

zero-knowledge proof in the main body. The body of the proof an be any (low error) stan-

dard round-eÆient zero-knowledge (or witness indistinguishable) proof for the languages

in NP (see for example [11, 2, 14℄). An important property of these known protools, is

that the prover need not be omputationally unbounded. It is enough that the prover has a

witness for the NP theorem T

0

that must be proven, and then the prover runs in polynomial

time. All these zero-knowledge proofs are also witness indistinguishable, whih is enough

for us. Feige and Shamir showed that witness indistinguishability is preserved also in the

asynhronous setting [12℄.

The preamble of our proof onsists of 2m rounds, where m = !(log

2

k) for the seurity

parameter k. Namely,m is asymptotially stritly larger than log

2

k. The main body onsists

of a onstant round zero-knowledge proof for NP. Thus, the number of rounds is dominated

by the preamble.
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Let us onentrate now on the preamble, whih is the main tool in making the zero-

knowledge proof a onurrent one. Let T be the NP statement that the original prover would

like to prove. We use a preamble with 2m rounds to start the proof. In this preamble, P and

V will eah pik m strings in f0; 1g

k

denoted p

1

; p

2

; : : : ; p

m

and v

1

; v

2

; : : : ; v

m

respetively.

(Reall that k is the seurity parameter.) The prover P will then prove that either T is

true or for some i, 1 � i � m, v

i

= p

i

. We denote this modi�ed theorem T

0

. For eah

i, 1 � i � m, P will have to determine p

i

before v

i

is revealed. Thus, this preamble will

not give P a meaningful advantage in proving the theorem. However, the simulator will be

able to learn v

i

, and then rewind the proof and set p

i

= v

i

. Thus, the simulator will have a

witness to the modi�ed theorem T

0

, and it may at as a real prover in the body of the proof.

The full algorithm of the simulator is spei�ed in Setion 6 below.

The onurrent zero-knowledge argument for an input theorem T goes as follows:

V ! P : Commit to v

1

; v

2

; : : : ; v

m

P ! V : Commit to p

1

V ! P : Reveal v

1

P ! V : Commit to p

2

� � �

V ! P : Reveal v

i

P ! V : Commit to p

i+1

� � �

V ! P : Reveal v

m

P $ V : A zero-knowledge proof that T is true or 9i s.t. v

i

= p

i

.

In words: The veri�er begins by ommitting to all its strings v

1

; : : : ; v

n

. After that, the

prover ommits to p

i

and then the veri�er reveals v

i

for eah i, i = 1; 2; : : : ; m. Finally, the

prover gives a zero-knowledge proof that T is true or there exists an i s.t. v

i

= p

i

.

If the veri�er fails to open one of its ommitments properly, then the prover immediately

aborts the proof. Ignoring the negligible hane that the ommitments of the veri�er turn

out to fail the binding property, the strings v

1

; : : : ; v

m

are �xed after the �rst round for the

rest of the proof. Note that v

i

is revealed only after the prover P ommits on the value of p

i

.

Thus, if the seurity of the bit ommitment holds, then P an �x p

i

= v

i

with a negligible

probability. Furthermore, ignoring the negligible hane that the ommitment of the prover

is not seure, the veri�er does not learn the value of any of the p

i

's so he an never tell

whether it holds that p

i

= v

i

for some 1 � i � m.

Denote the probability that the prover fails to prove a true statement by the ompleteness

error and the probability that the veri�er aepts a false statement (when the prover uses

an arbitrary strategy within its omputational limits) the soundness error. We laim that

these error probabilities are only slightly hanged by the modi�ation made to the proof.

Claim 4.1 If the original proof has soundness error "

s

and ompleteness error "



then the

modi�ed proof has ompleteness error at most "



, and soundness error at most "

s

+ " for

some negligible (in the seurity parameter k) ".

Proof Sketh: It is easy to see that the ompleteness property is not harmed by the hange.

Regarding soundness, the advantage a prover P

�

may get is by managing to set p

i

= v

i

for

one of the rounds. We need to show that that annot happen too often. Here, the seurity
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of the veri�er's bit ommitment is not enough. In order to make sure that the prover annot

heat, we must require that the veri�er's ommitment is non-malleable [7℄. In order to heat,

the prover does not need to know ommitted bit. It just needs to produe a ommitment

suh that after the veri�er opens its ommitment to a ertain string, the prover may open its

ommitment to the same string. Preveting this is exatly the issue in the non-malleability

study, and one may use non-malleable ommitment shemes as in [7℄ to make sure that the

soundness property is preserved. We hoose the following manner to get non-malleability

and keep the sheme eÆient. The veri�er ommits using information theoreti serey.

Thus, the ommitted value of the prover annot depend on the ommitted value (but with

negligible probability). Next, the prover ommmits with an information theoreti binding

sheme. Thus, the ommitted value binds the prover before it gets to see the veri�er openning

its ommitment. Using these two shemes, the soundness holds.

We remark that the problem is not symmetri. Namely, we do not need non-malleable

ommitment sheme for the prover. the reason is that the prover never opens its ommit-

ments, thus, the veri�er an only at upon the knowledge it gets from the ommit stage.

This gives the veri�er nothing by the seurity property of the ommitment sheme. 2

5 The simulator

We provide a blak-box simulator as explained in Setion 2.2 above. Namely, the adversarial

veri�er V

�

is given as a blak box and the simulator interats with it. We assume that by

the time the simulator gets to the main body, it has a witness to the modi�ed theorem T

0

.

Thus, when simulating the main body, the simulator ats as the prover (whih is an eÆient

algorithm given a witness to the NP theorem that has to be proven).

The simulator will sueed in "guessing" one of the v

i

's by rewinding steps in the pream-

ble. (Reall that the real prover annot rewind the veri�er, and annot get this advantage.)

In partiular, the simulator will rewind the veri�er at several points in their interation. If

the veri�er reveals v

i

before a rewind, and the simulator rewinds the veri�er bak far enough,

it may hange the value of p

i

and ommit on p

i

= v

i

. Sine the veri�er is ommitted to the

value v

i

(as of the �rst round of the interation), then unless the rewind goes beyond the

�rst round of the proof, the simulator need not worry that v

i

may hange after it sets the

ommitment on p

i

. One the simulator has ensured that for some round i p

i

= v

i

in the

preamble of a proof �, we say that it has solved the proof �. It an omplete the rest of

the simulation of � without further rewinding, by hoosing p

j

arbitrarily for any j 6= i and

by playing the real prover in the main body of the proof � (reall that it has a witness to

the theorem T

0

that has to be proven). We stress that the rest of the simulation requires no

further rewinding. The main good feature of the preamble is exatly this. It is enough to

rewind one in any of the m rounds of the preamble, and the proof is solved. Of-ourse, if

during a predetermined rewind the simulator an solve more than one proof by setting p

j

's

of other proofs to values of v

j

's that were disovered during the �rst run of rewound interval,

then it solves all the proofs it an.

Note that rewinding one step in one proof may render irrelevant simulation of steps

in other proofs that took plae in between those steps. Thus, hoosing a step to rewind

aording to the need to solve a proof � is dangerous. It may lead the simulation to run

an exponentially many steps as noted in [8℄ and proved for a set of protools in [22℄. We

9



employ a di�erent strategy of rewinding. We speify a �xed rewinding timing regardless of

the history of the interation and the sheduling of the proofs so far. Running this rewinding

shedule will guarantee a polynomial amount of work, so that the simulation is polynomial

time. Nevertheless, whatever shedule of proofs the adversarial veri�er-sheduler may use,

the simulation is guaranteed to solve all proofs during their preamble with high probability.

During the run of the simulator, the adversarial veri�er V

�

may hoose to send inappro-

priate messages. For example, it may hoose not to reveal a value v

i

that it has ommitted

on in the �rst round. The run of the simulator is omposed of rewinds: it exeutes an in-

teration with the veri�er V

�

, then it rewinds V

�

and makes a seond run, in whih it may

set the p

i

's aording to information on v

i

's obtained in the �rst run. When the adversarial

veri�er V

�

sends an inappropriate message for a proof � the simulator may abort sending

messages to V

�

for this proof � (as the normal prover would have done). If that happens in

the �rst run of a rewind it bears a bad a�et: the simulator annot solve the proof � after

rewinding sine it did not get to see the string v

i

. However, if the veri�er V

�

sends a bad

message in the seond run of a rewound interval, then the proof � is onsidered solved: the

real prover aborts the interation with the veri�er in �, and so does the simulator.

5.1 The adversarial sheduler uses round slots

We begin by simplifying our view of the adversarial shedule. Reall that we are running k

proofs, eah has 2m rounds. W.l.o.g., we assume that the real prover (and so also the simu-

lator) always answers immediately. Namely, the adversarial veri�er may delay its answers as

it pleases, but the prover answers at one. Thus, we get that the adversarial veri�er V

�

may

shedule an overall number of k �m pairs of rounds in the preambles. We are only interested

in the sheduling of the preambles. We do not are how the body of the proof is sheduled

and whether it will be rewound. We will not need to rewind the bodies: the simulator will

behave like the real prover in the bodies.

We �rst remark that We do not are how muh atual time passes between one pair of

rounds to the next. Our shedule will repeat eah of these times a polynomial number of

times, so the simulation time will be a polynomial times the sum of the pauses, whih must

be polynomial sine the adversarial veri�er is a polynomial time mahine. The output delays

are those determined by the veri�er in the last run of the rewinds. Meaning that they will

be distributed like in the real interation.

A seond remark is about the possibility that the adversarial veri�er shedules messages

in parallel. In the sequel, we do not expliitly onsider parallel pairs of rounds. If the

adversary sends more than one veri�er's message to the prover in parallel, then the prover

answers all of them in parallel. Thus, we get less then k �m pairs of atual rounds run. In

the analysis we will analyze the probability that \something bad" happens within a spei�

proof, ignoring the rest of the proofs that run with it. Thus, it will not matter if this proof

is run in parallel to other proofs. Note that rounds of the same proof annot run in parallel,

sine the order within a proof is guaranteed to be preserved in the onurrent setting. Parallel

repetitions will redue the number of pairs of rounds and that may only make the simulation

more eÆient. We will not expliitly disuss parallel repetitions in the sequel.

For simpliity, from now on we will abuse the term round to denote a pair of rounds.

Namely, in what follows, a round onsists of a message of the veri�er followed by an immediate

response by the prover.
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To summarize, we have redued our view of the sheduled proofs to the adversarial veri�er

V

�

sheduling km rounds, with the only onstraint that within a proof the order of rounds

is preserved. We onsider only the rounds of the preambles and ompletely ignore rounds of

the proof-bodies that happen while the onurrent preambles run. In fat, we think of this

shedule as assigning rounds of the various (preambles of) proofs to km \slots" of rounds. We

onsider the km slots by their order in time, and speify the rewinding strategy with respet

to these slots, regardless of how the adversary assigns rounds to these slots. For example,

we may let the simulator rewind the veri�er to the �rst slot after running the seond slot.

More generally, After reading the veri�er's message in any of the round-slots, the simulator

may rewind the simulation (and the veri�er) to any previous round-slot of the simulation.

We will speify rewinding in the following manner. A rewind (j ! i), for 1 � i < j � km,

means that after reading the veri�er's message of round slot j, the simulator rewinds the

simulation bak to round slot i. When running the rewound interval the seond time, the

simulator may hange its message in round slot i as well as any other message it made in

the round slots between i and j � 1.

5.2 Spei�ation of the rewind timing

We use reursion to speify the rewinding timing. At the top level of the reursion, the

simulator is running all the round slots 1::mk. The simulator rewinds the �rst half of the

round slots and then the seond half of these round slots, regardless of whih rounds of

whih proofs appear in the round-slots. It then \feeds" eah of these mk=2 round slots to

the reursion. Namely, at the seond level of the reursion, eah of the halves is split into

halves and eah quarter is rewound. Finally, at the bottom level, we are left with one or two

round slots. At the bottom of the reursion there is an interval ontaining one round slot.

There is no need to rewind one round slot (yet an interval of two round slots is rewound).

Let us explain this rewinding shedule with an example. Suppose the number of round

slots, mk, is 8 (just for the sake of this example), then the round slots are run by the

simulator in the following order: 1, 2, 1, 2, 3, 4, 3, 4, 1, 2, 1, 2, 3, 4, 3, 4, 5, 6, 5, 6, 7, 8, 7,

8, 5, 6, 5, 6, 7, 8, 7, 8. Using the rewinding syntax with the above sequene, we may write:

(2! 1), (4! 3), (4! 1), (2! 1), (4! 3), (6! 5), (8! 7), (8! 5), (6! 5), (8! 7).

At the top reursion level, we exeute (4! 1) and (8! 5), whih means rewinding the �rst

and the seond half of the round slots. Eah of the two times we run rounds 1 to 4, we

rewind the �rst and the seond half of that, getting (2! 1) and (4! 3) performed twie.

The same goes for the rewinding of the seond half with round slots 5 to 8. The reursion

ends here, sine we are left with two round slots in the seond level of reursion.

6 Analysis of the simulator with respet to a stati

shedule

To simplify the presentation of the analysis of our simulator, we start in this setion by

showing that the simulator works well for a stati shedule. Namely, the adversarial veri�er

V

�

hooses the (worst possible) shedule for the simulator, but this shedule is �xed and

does not hange during the simulation. In Setion 7 below, we extend the argument to the
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ase that the shedule is dynami and may hange as a funtion of the adversary's random

oins and the history of the simulation so far.

We �rst note that the number of rounds run in the reursion is at most (mk)

2

and thus,

the simulator runs in polynomial time. Our goal is to show that with very high probability

the simulator will manage to obtain a witness for T

0

during the simulation of the preamble.

We start with some properties of the rewinding shedule. We denote the intervals that

are rewound rewind intervals. Beause of the (reursive) manner we de�ned the rewinding

shedule, the rewind intervals are either disjoint or ontained within eah other. So for any

two rewind intervals (j ! i) and (`! k) if i < ` � j, then it holds that k must be greater

or equal to i. In the above ase, in whih the rewind interval (`! k) is ontained within the

rewind interval (j ! i) we will say that the rewind (j ! i) dominates the rewind (`! k).

De�nition 6.1 We say that a rewind (`! k) dominates the rewind (j ! i) if k � i < j �

`.

We all a run of the simulator against a (blak-box) veri�er V

�

good if the simulator

solves eah of the proofs during the preamble and before it gets to simulating the main body

of the proof. We would like to show that the above rewinding timing lets the simulator get

\good" runs with very high probability, no matter what shedule is hosen for the messages

in the proofs. During the simulation, we do not need to rewind bodies of proofs, though,

of-ourse a rewinding of a proof body that happens while rewinding a preamble of another

proof does not hurt the simulation.

A proof � may be solved via a rewind (j ! i) if the there are at least two rounds of

� appearing within the round slots i; i + 1; : : : ; j , and the proof � does not begin or end

during the round slots i + 1; i + 2; : : : ; j. The proof is atually solved with suh a rewind

if the veri�er behaves \well" (i.e., follows the protool) in both runs of the rewind interval.

In this ase, we have two onseutive rounds of the proof �: Round a and Round a + 1,

(2 � a � m � 2) within the rewind interval. Thus, in the seond run of these rounds, we

an set p

a

in the preamble to equal v

a

, and solve the proof. The reason we require that the

�rst round of the proof � does not appear within the rewind interval is that if we rewind

beyond the �rst round of the proof, then V

�

gets to run its �rst round again, it may hoose

new values for v

1

; : : : ; v

m

. In partiular, v

a

may hange, and the simulator would not know

the new value of v

a

to set p

a

. The reason that we require that the preamble does not end

before the rewind, i.e., that round m of the proof � is not within the rewind interval, is that

a proof must be solved before the preamble ends. Else, the main body may start, and we

will notieably fail in the simulation, possibly ausing the veri�er to stop ooperating with

the rest of the simulation.

We would like to point out that a rewind may solve the proof in any level of the reursion.

If there exists a rewind (j ! i) that may solve the proof, and there exists a larger rewind

(`! k) that dominates it, then the existene of (`! k) does not \ruin" the ability of (j ! i)

to solve the proof. This is true sine in both runs of the rounds `; `+1 : : : ; k in the dominating

rewind interval we rewind (j ! i). So even if the rewind (j ! i) happens again and again

beause of dominating rewinds, in eah of the runs it may solve the proof again.

In what follows, we will restrit our attention to the minimal rewinding intervals that

may solve a proof. If a proof may be solved by a rewind (`! k), then sometimes it may also

be solved by several rewinds that dominate (`! k). However, we will be interested only in

the smallest rewind interval that may solve a proof. Minimality is expressed in Condition
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(4) of the following de�nition. This minimality property will be used in the proof of the

dynami shedule, in Setion 7 below.

De�nition 6.2 We say that a rewind (`! k) may solve a proof � if the following four

onditions hold:

1. At least two rounds of the preamble of � take plae during round slots k; k + 1; : : : ; `,

2. the �rst round of � takes plae at a round slot i < k,

3. the last round of � takes plae at a round slot j > `, and

4. any rewind (b! a) that is dominated by rewind (`! k) does not satisfy ondition 1

with respet to �.

Note that a rewind that may solve a proof ontains exatly two rounds of that proof. It

ontains at least two by Condition (1) of the de�nition. If it ontains more than 2, then

there must be a dominated rewind interval that ontains at least two suh rounds, thus, the

dominating rewind interval does not satisfy the minimality ondition (4). We now laim

that for eah proof, there are \many" rewinds that may solve it.

Lemma 6.3 For any shedule of k opies of the proof (in the mk round slots), if a preamble

of a spei� proof � ompletes in round slot `, then there are at least

l

m

log(mk)+1

m

� 2 rewind

intervals that omplete by round ` and that may solve �.

Proof: We �rst show that there are at least

l

m

log(mk)+1

m

rewind intervals that satisfy Condi-

tions (1) and (4) in De�nition 6.2 above. We then note that at most two of these intervals

may foil Conditions (2) or (3), thus the number of rewinds that may solve the proof � is at

least

l

m

log(mk)+1

m

� 2 as required. Clearly, any good interval must end by round `, sine the

preamble terminates at round `.

Fix a proof � and any shedule of the rounds for all the proofs. We denote a rewind

interval good if it satis�es Conditions (1) and (4) in De�nition 6.2 above (with respet to

�). Consider the rewinds by the height of the reursion. At the top level, i.e., reursion

height dlog(mk)e, we have mk round slots. In these round slots we have m rounds of the

proof �. In eah reursion invoation, all round slots of the urrent level rewind interval are

split into almost

2

two equal parts and partiipate in two rewind intervals of a lower reursive

level. This splitting goes down the reursion until we are left with one or two round slots at

reursion level 1. If we onsider the rounds of the spei� proof � as sheduled in the round

slots, then there are m rounds sattered at the top level, whih are split in eah reursion

invoation. The split of these rounds of � is not neessarily equal, sine there may be other

rounds of other proofs that appear in the equal split of the round slots.

In the following, we laim that if there are r rounds of � at a rewind interval of level

h, then these rounds partiipate in at least

l

r

h+1

m

good rewind intervals with respet to �.

Assigning the reursion level h � log(mk) of the top level, and the number r = m of rounds

in the preamble of � in the top level, we get the validity of the assertion in Lemma 6.3.

2

If the number of round slots is odd, then the left interval has one more round slot than the right interval.

13



Claim 6.4 For any shedule of k opies of the proof (in mk round slots), and for any spei�

proof �. Let r be an integer, 2 � r � m, and let h be an integer suh that r � 2

h

. Suppose

there are r rounds of a proof � in a rewind interval of reursion level h. Then these rounds

partiipate in at least

l

r

h+1

m

good rewind intervals with respet to the proof �.

Proof: We prove the laim by an indution on r. Let r = 2. if the two rounds are split

at the urrent reursion invoation, then the urrent rewind interval is good. Otherwise,

the two rounds may stay together for several invoations of the reursion and then get split,

thus, making a good rewind interval at some lower level. Finally, they may stay together

until the bottom level, whih makes the bottom level rewind interval a good rewind interval

with respet to the proof �. Thus, these 2 rounds partiipate in at least 1 good rewind

interval, as required.

Now, suppose that the laim is orret for all 2 � r

0

< r and let us prove that it holds

for r rounds. Consider the partitioning of the r rounds of the urrent rewind interval into

two rewind intervals when invoking the next reursion. (Reall that eah rewind interval is

split into two rewind intervals.) There are r

1

rounds that go into the �rst rewind interval,

and r

2

rounds that are assigned into the seond rewind interval. We know that r

1

+ r

2

= r

and assume w.l.o.g. that r

1

� r

2

. We split the analysis into 3 possible ases.

Case 1: r

1

� 2. In this ase, we may use the indution hypothesis. The reursion level

of the two rewind intervals that ontain the r

1

and r

2

rounds is h � 1. By the indution

hypothesis, the number of good rewind intervals is at least:

�

r

1

h

�

+

�

r

2

h

�

�

�

r

1

+ r

2

h

�

�

�

r

h + 1

�

and we are done with Case 1.

Case 2: r

1

= 1. In this ase, we know that r

2

= r � 1 � 2 (sine r � 3), thus, we may use

the indution hypothesis for the seond rewind interval. Nothing is guaranteed for the �rst

rewind interval to whih only one round was assigned. By the indution hypothesis, we get

that the number of good rewind intervals is at least:

�

r

2

h

�

=

�

r � 1

h

�

�

�

r

h+ 1

�

and we are done with Case 2.

Case 3: r

1

= 0. In this ase, we annot use the indution hypothesis, sine r

2

= r. Thus,

we hek what may happen to these r rounds as we go down the reursion. These rounds

may stay together in a single rewind interval only at reursion levels greater than dlog(r)e,

sine there are at most 2

h

0

round slots at a rewind interval of reursion level h

0

. So there

exists a level 2 < h

0

< h at whih the rounds r are split into r

1

� 1 rounds and r

2

� 1

rounds for the rewind intervals of level h

0

� 1. By the same argument as in Cases 1 and 2,

we get that the number of good intervals that these r rounds partiipate in is at least:

�

r

h

0

+ 1

�

�

�

r

h + 1

�

and we are done with Case 3 and with the proof of Claim 6.4. 2

As mentioned above, this also onludes the proof of Lemma 6.3 sine for any proof �

there are m rounds at reursion level dlog(mk)e, and sine only two of them may ontain

the �rst or last round of the preamble. 2
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6.1 Why the rewinding works

We would like to laim now that the simulator will be able to solve eah proof during its

preamble and before it is required to simulate the main body of the proof. By Lemma 6.3,

for eah of the k proofs, there are at least

l

m

log(mk)

m

� 2 rewind intervals that may solve

it. Of-ourse, it is enough that for eah proof there is one rewind that solves it during the

preamble. If we have one suh rewind, the simulator an properly simulate eah proof and

all of them together no matter what the shedule is.

However, there is a deliate point to onsider here. It is not always the ase that a proof

is solved in a rewind that may solve it. The reason is that the adversarial veri�er V

�

may

sometimes not open the ommitment of a round of a proof �. If the veri�er V

�

does not

open the ommitment, then the real prover aborts the proof �. In a rewind interval that

may solve � there are exatly two rounds of � (whih are not the �rst or last round). Let

the number of these rounds be a and a + 1. The proof is solved in this rewind unless the

following event happens: the veri�er does not reveal the ommitted value v

a

in the �rst

run, but does reveal the ommitted value v

a

in the seond run. All three other alternatives

(i.e., the veri�er reveals the ommitted values in both runs, or does not reveal the ommitted

value in both runs, or reveals the ommitted value only in the �rst run) allow the simulator

solve the proof � in this rewind. If the veri�er reveals the ommitted value in the �rst run,

then the proof is solved, sine the simulator may set the value of its string p

a

to v

a

that it

has learned. If the veri�er does not reveal the ommitted value both in the �rst and seond

run, then the proof � is also solved, sine the prover does not answer any of the following

rounds of the proof �, and the simulator may easily \simulate" that.

We stress that the following naive solution would not work here. One may want to

abort this proof if either in the �rst or in the seond run V

�

does not reveal the ommitted

value. This solution does not work, sine it inreases the probability of aborting � above the

probability of aborting � in the real proof. Thus, the simulation may beome polynomially

distinguishable from the original proof.

Let us ompute the probability that a rewind that may solve the protool fails to solve

it. Of-ourse the veri�er doesn't \know" that it has been rewound, so it annot make an

e�ort to abort the �rst run and behave well on the seond run. However, when we solve

a proof, the seond run is di�erent from the �rst run. In partiular, the value of some p

i

equals the value of some v

i

and the veri�er may note that an interval is run the seond time

by noting that some other proof �

0

has been solved in this rewind interval. However, the

prover is using a ommitment sheme to seretly ommit on the strings p

i

's in all the proofs.

The probability that the bad veri�er an tell that a proof has been solved is, thus, negligible.

Therefore, the probability that the veri�er aborts in the �rst run is similar to the probability

that it aborts in the seond run of the rewind interval. These two probabilities are equal

up to an (additive) negligible fration. Whatever the probability p that V

�

hooses not to

reveal the ommitted value is, the probability that it does not reveal in the �rst run of a

rewind, yet it does reveal in the seond run, is p(1 � p + ") � 1=4 + " for some negligible

fration ". In the sequel, we assume that any rewind that may solve the proof indeed solves

it with probability at least 2=3.

We go on and ompute the probability that the simulation sueeds. The simulation

sueeds if eah proof is solved before its preamble terminates. Note that a preamble of

a proof � may terminate several times, sine � may be ompletely (or partially) rewound
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several times and in partiular, its last round of the preamble may be run several times.

At the worst ase, the preamble of eah of the k proofs terminates a number of times that

equals the overall number of times that a rewind interval is exeuted. This number is at most

2

dlog(km)e

� 2km, i.e., a polynomial in k. We will show that the simulator fails to solve any

partiular proof with a negligible probability. Thus, it fails to solve any of (the polynomial

number of) the proofs with negligible probability as well.

Reall that for any proof �, if the preamble of � is ompleted, then the number of rounds

that may solve � is at least a

def

=

l

m

log(mk)

m

�2. Sine we set m = !(log

2

k) and sine a realisti

value of m satis�es m < k, then this number is

a �

!(log

2

k)

log(k) + log(m)

= !(log k):

For any ourrene of a proof �, the probability that the simulator fails to solve it is at most

(1=3)

a

, whih is a negligible fration (in k). By the summation bound, the probability that

the simulator fails in any of the (polynomially many) ourrenes of proofs is also negligible.

To summarize, with probability almost 1, up to a negligible fration, the simulator solves

all proofs within their preamble and thus, an �nish the simulation suessfully. Also, The

shedule of the various proofs is independent of how many rewinds have been run, sine the

adversarial veri�er does not know that it is being rewound. Also, assuming that the bit

ommitment that the prover is using is seure, the shedule does not depend on whether the

simulator has managed to solve the proofs. Thus, the shedule of the proofs is indistinguish-

able from the shedule in the real interation. Finally, the atual ontent of the preamble

is similar to the real interation (exept for proofs being solved, whih is indistinguishable

in polynomial time by the seurity of the bit ommitment), and the ontent of the proof

bodies in the simulations is indistinguishable from the proof bodies in the real interation

sine the simulator atually behaves as a prover in the bodies. by the witness indistinguisha-

bility property of the proof body, the fat that the simulator uses di�erent witnesses from

the real prover is polynomial time indistinguishable. Feige and Shamir showed that witness

indistinguishability is preserved also in the asynhronous setting [12℄. Thus, the transript

of the interation is indistinguishable in polynomial time from the output of the simulation.

7 Extending the analysis for the dynami shedule

We now move to the more diÆult, yet realisti ase, in whih the veri�er does not �x

the shedule of the messages in the mk round slots in advane, but may determine whih

message to shedule in the next round slot depending on the history so far and its random

oins. Looking bak at the analysis of the previous setion, the problem now is that the

rewind intervals in whih a proof may be solved onstitute a random variable. Eah time

a new rewind interval is started, there is a probability that the interval will inlude two

rounds of the proof (whih are not the �rst or last round). This probability depends on the

random tape of the adversarial veri�er, the history so far, and the behavior of the prover (or

the simulator) during the rewind interval. It is possible that in the �rst run of the rewind

interval V

�

will hoose to inlude two rounds of the proof but in the seond round it will

hoose not to. The seurity of the prover's bit ommitment gives us, again, a guarantee that

the �rst run and the seond run of the rewind have similar behavior.
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As before, we ask ourselves what is the probability that a preamble of a proof � ends

without the proof being solved by the simulator. At eah point of the simulation one or more

rewinds may start. The simulator solves the proof � during a rewind interval � if the �rst

run of � inludes exatly two rounds of the proof � that are not the �rst or the last rounds,

and the veri�er reveals its ommitted value properly. Let us present the expliit de�nitions.

De�nition 7.1 (Dynami analogue of De�nition 6.2:) we say that a run of a rewind �

(either �rst or seond run) is interesting with respet to a proof � if it inludes exatly two

rounds of the preamble of � that are neither the �rst nor the last round of the preamble, and

there are no rewind intervals dominated by � that ontain two rounds of �.

De�nition 7.2 We say that a run of a rewind � (either �rst or seond run) is good with

respet to a proof � if it is interesting and the veri�er properly reveals its ommitments

during these two rounds. If a run is not good with respet to �, we all it bad with respet

to �.

If the �rst run is good with respet to a proof �, then the proof � is solved (no matter

what the seond run is). For eah run of a rewind �, there is a probability p

�

, determined

by the adversarial veri�er, that a run of this rewind is be good with respet to �. By the

seurity of the prover's ommitment sheme, the probability that the �rst run is good is

equal up to an (additive) negligible fration to the probability that the seond run is good.

Similarly to Lemma 6.3, the following lemma holds.

Lemma 7.3 In any shedule of k opies of the proof (in mk round slots), if a preamble of a

spei� proof � ompletes in round `, then there are at least

l

m

log(mk)+1

m

� 2 rewind intervals

that ompleted before round ` with a seond good run with respet to �.

Proof: similar to the proof of Lemma 7.3. Proof omitted.

By Lemma 7.3, before a preamble may omplete, the history must ontain at least a

def

=

l

m

log(mk)+1

m

� 2 good seond runs. However, for the proof to be ompleted unsolved, all the

�rst runs of all previously ompleted rewinds must be bad with respet to �. We will show

that this happens with negligible probability.

Lemma 7.4 The probability that there exists a preamble of a proof � that ends well during

the simulation but is not solved is negligible.

Proof: We show that for any spei� ompletion of a preamble of a spei� proof �, the

probability that the preamble ends well, yet � remains unsolved is negligible. Sine there is

a polynomial number of proofs and eah of the preambles may end a polynomial number of

times, then we get that the probability that a preamble of any of the proofs remains unsolved

when it ends is negligible.

Consider the run of the simulator. At eah point of the simulation, one or more rewind

intervals may start. At eah of these points there is some probability p that the run of one of

the rewinds interval will be good with respet to �. As disussed before, if the ommitment

sheme that the prover uses is seure, then the probability that the �rst run is good is equal

to the probability that the seond round is good up to an additive negligible fration. We

would like to ompute the probability that the preamble of the proof instane � ends well
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without being solved. By Lemma 7.3, for any possible shedule of the proof instane �, it

must inlude at least a intervals that were good in the seond run with respet to �. By

our de�nition of a good interval, these intervals are non-overlapping (Reall the minimality

ondition of De�nition 7.1).

We may think of the adversarial veri�er as running the following stohasti experiment,

whih we denote the sequential experiment. It runs through a series of tests (whih are the

rewinds). For the ith test, based on the history so far and its random tape, the adversary

hooses a probability p

i

(this is the probability that the �rst run of the interval ends well).

Then, with probability (1 � p

i

)(p

i

+ "

i

) the adversary wins the test, for some negligible

fration "

i

. (The �rst run is bad and the seond is good.) With probability p

i

it looses the

whole experiment (the �rst run is good and the simulator has solved the proof �). In this

ase we say that the adversary dies. Finally, with probability (1 � p

i

)(1 � p

i

� "

i

) nothing

happens, i.e., the adversary neither wins nor dies. The goal of the adversary is to win at

least a tests in the experiment without dying. The probability that the adversary sueeds

in the sequential experiment is an upper bound on the probability that the preamble of a

proof � ends without being solved. This is the ase sine for a preamble to omplete without

being solved, all �rst runs must be bad and at least a runs must be good. The number of

tests run during the sequential experiment is b. In our ase b � 2mk.

We now analyze the sequential experiment with parameters a and b.

Claim 7.5 Let b and a be two positive integers suh that a < b and b is bounded by a

polynomial (in k). Then the probability that the adversary wins the sequential experiment

with parameters a and b is at most (2=3)

a

.

Proof: In the sequential experiment, the adversary hooses a probability p

i

in eah round

1 � i � b. In eah of the tests, with probability p

i

the adversary fails the whole experiment.

With probability (1� p

i

)(p

i

+ "

i

) it wins the ith test, where "

i

is a negligible fration (in k).

With probability (1� p

i

)(1� p

i

� "

i

) nothing happens and we move to the next test.

We will show that for any ` � 0, the probability that the adversary goes from winning `

tests to winning ` + 1 tests without getting killed in between, is at most 2=3, regardless of

the hoie of the probabilities p

i

's. From that we get that the probability that the adversary

wins a tests without getting killed is at most (2=3)

a

.

Suppose the adversary has won ` tests without getting killed and it is now trying to win

one more. The adversary hooses probabilities p

i

's and runs the tests. In eah test it either

dies, or it wins, or nothing happens. Let � be the number of rounds remaining before the b

tests of the experiment end. The probability that the adversary wins one test before it dies

and before the game ends is:

�

1

def

=

�

X

t=1

0

�

t�1

Y

j=1

(1� p

j

)(1� p

j

� "

j

)

1

A

� (1� p

t

)(p

t

+ "

t

) (1)

To show that this probability is less than 2=3 no matter what the hoie of the p

j

's is, we

ompute the probability of a disjoint event. The event that the adversary dies before it wins

the ` + 1 test. (Note that there is a third disjoint event in whih the adversary does not

die and does not win during the remaining � tests.) The probability of the adversary dying

18



before winning is:

�

2

def

=

�

X

t=1

0

�

t�1

Y

j=1

(1� p

j

)(1� p

j

� "

j

)

1

A

� p

t

(2)

Comparing �

1

and �

2

, we see that for eah term in the summation, all the fators are the

same but the last. Sine the "

i

's are negligible (in k) and � is bounded by a polynomial (in

k), then we get that

�

1

� �

2

� " (3)

for some negligible fration ". Sine �

1

and �

2

represent the probabilities of disjoint events,

then we also get

�

1

+ �

2

� 1: (4)

Combining Equations 3 and 4 we get

�

1

�

1

2

+

"

2

<

2

3

and we are done with the proof of Claim 7.5. 2

To summarize, the probability that the preamble of any proof instane � ends well

without being solved, is at most

�

2

3

�

a

: Reall that a =

l

m

log(mk)+1

m

� 2 = !(log k) (and

b � (2mk)

2

), so we get that the above is a negligible fration in k. Sine we have at most

mk instanes of any of the k proofs, the probability that the preamble of any of these proofs

ends well without being solved by our simulator is also negligible and we are done with the

proof of Lemma 7.4. 2

Using Lemma 7.4, we get that the simulator fails with negligible probability. Also, as

in the stati ase, when the simulator sueeds, it outputs an interation that is polynomi-

ally indistinguishable from the real interation between the adversarial veri�er and the real

prover.
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