
Con
urrent Zero-Knowledge in

Poly-logarithmi
 Rounds

(Extended Abstra
t)

Joe Kilian

�

Erez Petrank

y

May 28, 2000

Abstra
t

A proof is 
on
urrent zero-knowledge if it remains zero-knowledge when run in an

asyn
hronous environment, su
h as the Internet. It is known that zero-knowledge is

not ne
essarily preserved in su
h an environment; Kilian, Petrank and Ra
ko� have

shown that any 4 rounds zero-knowledge intera
tive proof (for a non-trivial language)

is not 
on
urrent zero-knowledge. On the other hand, Ri
hardson and Kilian have

shown that there exists a 
on
urrent zero-knowledge argument for all languages in NP,

but it requires a polynomial number of rounds. In this paper, we present a 
on
urrent

zero-knowledge proof for all languages in NP with a drasti
ally improved 
omplexity:

our proof requires only a poly-logarithmi
, spe
i�
ally, !(log

2

k) number of rounds.

Thus, we narrow the huge gap between the known upper and lower bounds on the

number of rounds required for a zero-knowledge proof that is robust for asyn
hronous


omposition.

1 Introdu
tion

Zero-knowledge proofs, presented in [19℄, are proofs that yield no knowledge but the validity

of the proven assertion. Zero-knowledge proofs and arguments [1℄ have been proven an

important tool in various 
ryptographi
 appli
ations. However, the original de�nition of

zero-knowledge 
onsiders se
urity only in a restri
ted s
enario in whi
h the prover and the

veri�er exe
ute the proof dis
onne
ted from the rest of the 
omputing environment.

In re
ent years, several papers have studied the a�e
t of a modern 
omputing environment

on the se
urity of zero-knowledge. In parti
ular, many 
omputers today are 
onne
ted

through networks (and it may be a small lo
al area networks or the big internet) in whi
h


onne
tions are maintained in parallel asyn
hronous sessions. It would be 
ommon to �nd

several 
onne
tions (su
h as FTP, Telnet, An internet browser, et
.) running together on a

single workstation. Can zero knowledge proto
ols be trusted in su
h a 
ommon environment?

�

NEC Resear
h Institute. E-mail: joe�resear
h.nj.ne
.
om

y

Dept. of Computer S
ien
e, Te
hnion - Israel Institute of Te
hnology, Haifa 32000, Israel. Email:

erez�
s.te
hnion.a
.il.

1



1.1 Previous work

Dwork, Naor, and Sahai [8℄ were the �rst to explore zero-knowledge in the asyn
hronous

setting. They denoted zero-knowledge proto
ols that are robust to asyn
hronous 
omposition


on
urrent zero-knowledge proto
ols. It was noti
ed in [8℄ that several known zero-knowledge

proofs, with a straightforward adaptation of their original simulation to the asyn
hronous

environment, may 
ause the simulator to work exponential time. Thus, it seems that the

zero-knowledge property does not ne
essarily 
arry over to the asyn
hronous setting. In

order to provide a proto
ol that may be used in a modern environment, they presented a


ompromise: a proto
ol that is not zero-knowledge in a fully asyn
hronous setting, but is

zero-knowledge in an environment with bounds on the asyn
hronisity. In parti
ular, they

present a 4 round zero-knowledge argument for NP assuming that there are two 
onstants �

and � su
h that the fastest message arrives within time at least � and the slowest message

arrives within time at most �.

Dwork and Sahai [9℄ redu
ed the limitation on the asyn
hronisity. They presented a

proof whi
h has a prepro
essing phase and a proof-body phase. Their proof is 
on
urrent

zero-knowledge argument for NP su
h that the (�; �) limitation is required only during

the prepro
essing stage. Then, the body of the proofs 
an be run in a fully asyn
hronous

environment.

Kilian, Petrank, and Ra
ko� [22℄ presented the �rst lower bound on 
on
urrent zero-

knowledge. They showed that any language that has a 4-rounds 
on
urrent (bla
k-box)

zero-knowledge intera
tive proof or argument is in BPP. Thus, a large 
lass of known zero-

knowledge intera
tive proofs and arguments for non-trivial languages do not remain zero-

knowledge in an asyn
hronous environment. The question that rose was: does there exist a

fully asyn
hronous (
on
urrent) zero-knowledge proof for NP?

The answer was given by Ri
hardson and Kilian [25℄ who presented 
on
urrent zero-

knowledge arguments for all languages in NP, that is robust in the fully asyn
hronous setting.

However, this proto
ol is not pra
ti
al. It requires a polynomial number of rounds, whi
h

makes it una

eptable in pra
ti
e. Note the huge gap between the upper and lower bounds

for fully asyn
hronous zero-knowledge proofs for NP. The upper bound has a polynomial

number of rounds, whereas the lower bound has 4 rounds.

Other resear
hers have 
on
entrated on presenting eÆ
ient 
on
urrent zero-knowledge

proto
ols for NP with weaker 
ompromises on the asyn
hronisity of the environment. Cres
enzo

and Ostrovsky [4℄ presented a 
on
urrent zero-knowledge argument for NP with a prepro-


essing phase. They removed the (�; �) 
onstraint of [9℄, and the only requirement is that

there must be a separating point in time between all prepro
essing of all 
on
urrent proofs,

and all bodies of all proofs. Namely, the �rst body of any proof may start only after all

prepro
essing phases in all the proofs have 
ompleted. D�amgard [5℄ and Canetti et. al. [3℄

have further redu
ed the limits on asyn
hronisity. They require that prior to the beginning of

the proofs, all veri�ers have deposited a publi
 key in a publi
 database. In [5℄ it is required

that the publi
 key is valid, i.e., that the veri�er must know the se
ret key asso
iated with

it. In [3℄ this requirement is relaxed. The veri�er only has to have a deposited string in the

publi
 database. Thus, these proofs are eÆ
ient, and make only the following 
ompromise

over full asyn
hronisity: all veri�ers must be previously registered before they 
an engage

in a proof. A veri�er that has not been registered 
annot join until all proofs are 
ompleted

and then it registers itself before any new proof begins.

2



1.2 This work

Returning to the fully asyn
hronous environment, the question remains: how many rounds

are required for a fully asyn
hronous 
on
urrent zero-knowledge proof for all languages in

NP? In this work, we provide a signi�
ant improvement of the upper bound. In parti
ular,

we present a 
on
urrent (bla
k-box) zero-knowledge argument for all languages in NP in

!(log

2

k) rounds. This improves over the polynomial bound of O(k

"

) rounds in [25℄.

The argument we provide relies on the existen
e of bit 
ommitment for polynomially

bounded re
eiver and 
ommitter (see further in Se
tion 2.3 below). Using [1℄, su
h s
hemes


an be based on the existen
e of 
ollision-intra
table hash fun
tions.

Our zero-knowledge argument for all languages in NP is a simple modi�
ation of the

proto
ol of Ri
hardson and Kilian: we 
hange the parameters to make the preamble short

enough, and use a round-eÆ
ient zero-knowledge (or witness indistinguishable) proof for

NP in the body of the proof. However, our simulator for this proof and analysis of the

simulator is 
ompletely di�erent from the simulator and analysis in [25℄. The simulator in

[25℄ rewinds the veri�er a

ording to the adversarial s
hedule as it is being revealed with time.

Interestingly, we propose a rewinding s
hedule whi
h is oblivious to any of the adversary's

a
tions. The rewinding is done at spe
i�
 points in time, regardless of the 
ontent of messages

and regardless of the s
hedule of the proofs as determined by the veri�er. Nevertheless, we

are able to show that the simulator manages to simulate the intera
tion well with probability

almost 1.

1.3 Terminology

Some words on the terminology we are using. By zero-knowledge we mean 
omputational

zero knowledge, i.e., the distribution output by the simulation is polynomial-time indistin-

guishable from the distribution of the views of the veri�er in the original intera
tion. (See

de�nitions in Se
tion 2.1 below.) Our proof is bla
k-box zero-knowledge (see Se
tion 2.2

below). The prover will be 
omputationally bounded (i.e., we will build a zero-knowledge

argument).

1.4 Guide to the paper

In Se
tion 2 we present some de�nitions and the tools we are using. In Se
tion 4 we present

the 
on
urrent zero-knowledge argument for NP. In Se
tion 5 we provide a simulator for

the intera
tion between the prover and the adversarial veri�er. In Se
tion 6 we analyze the

simulator with respe
t to a stati
 s
hedule. Namely, the s
hedule may be the worst possible,

but it is not modi�ed during the rewinds of the simulator. In Se
tion 7 we show that the

simulator works as well also with respe
t to s
hedules that 
hange dynami
ally during the

simulation. Thus, our proof is 
on
urrent zero-knowledge in the asyn
hronous setting.

3



2 Preliminaries

2.1 Zero-knowledge proofs

Let us re
all the 
on
ept of intera
tive proofs, as presented by [19℄. For formal de�nitions

and motivating dis
ussions the reader is referred to [19℄.

De�nition 2.1 A proto
ol between a (
omputationally unbounded) prover P and a (proba-

bilisti
 polynomial-time) veri�er V 
onstitutes an intera
tive proof for a language L if there

exists a negligible fra
tion " su
h that

� Completeness: If x 2 L then

Pr [(P; V )(x) a

epts ℄ � 1� "(jxj)

� Soundness: If x 62 L then for any prover P

�

Pr [(P

�

; V )(x) a

epts ℄ � "(jxj)

Brassard, Chaum, and Cr�epeau [1℄ suggested a modi�
ation of intera
tive proofs 
alled ar-

guments in whi
h the prover is also polynomial time bounded. Thus, the soundness property

is modi�ed to be guaranteed only for probabilisti
 polynomial time provers P

�

.

Let (P; V )(x) denote the random variable that represents V 's view of the intera
tion with

P on 
ommon input x. The view 
ontains the veri�er's random tape as well as the sequen
e

of messages ex
hanged between the parties.

We brie
y re
all the de�nition of bla
k-box zero-knowledge [19, 24, 15, 18℄. The reader

is referred to [18℄ for more details and motivation.

De�nition 2.2 A proto
ol (P; V ) is 
omputational zero-knowledge (resp., statisti
al zero-

knowledge) over a language L, if there exists an ora
le polynomial time ma
hine S (simulator)

su
h that for any polynomial time veri�er V

�

and for every x 2 L, the distribution of the

random variable S

V

�

(x) is polynomially indistinguishable from the distribution of the random

variable (P; V

�

)(x) (resp., the statisti
al di�eren
e betweenM(x) and (P; V )(x) is a negligible

fun
tion in jxj).

In this paper, we 
on
entrate on 
omputational zero-knowledge. In the sequel we will say

zero-knowledge meaning 
omputational zero-knowledge.

2.1.1 Con
urrent zero knowledge

Following [8℄, we 
onsider a setting in whi
h a polynomial time adversary 
ontrols many

veri�ers simultaneously. The adversary A takes as input a partial 
onversation trans
ript

of a prover intera
ting with several veri�ers 
on
urrently, where the trans
ript in
ludes the

lo
al times on the prover's 
lo
k when ea
h message was sent or re
eived by the prover. The

output of A will be a tuples of the form (V; �; t), indi
ating that P re
eives message � from

a veri�er V at time t on P

0

s lo
al 
lo
k. The adversary may either output a new tuple as

above, or wait for P to output its next message to one of the veri�ers. The time that is

written by the adversary in the tuple, must be greater than all times previously used in the

system (by messages sent to P or by P ). The view of the adversary on input x in su
h an

intera
tion (in
luding all messages and times, and the veri�ers random tapes) is denoted

(P;A)(x).

4



De�nition 2.3 We say that a proof or argument system (P; V ) for a language L is (
om-

putational) 
on
urrent zero-knowledge if there exists a probabilisti
 polynomial time ora
le

ma
hine S (the simulator) su
h that for any probabilisti
 polynomial time adversary A, the

distributions (P;A)(x) and S

A

(x) are 
omputational indistinguishable over the strings that

belong to the language L.

In what follows, we will usually refer to the adversary A as the adversarial veri�er V

�

or

just the veri�er V

�

. All these terms mean the same.

2.2 Bla
kbox simulation

The initial de�nition of zero-knowledge [18℄ required that for any probabilisti
 polynomial

time veri�er

^

V , a simulator S

^

V

exists that 
ould simulate

^

V 's view. Oren [24℄ proposes a

seemingly stronger, \better behaved" notion of zero-knowledge, known as bla
k-box zero-

knowledge. The basi
 idea behind bla
k box zero-knowledge is that instead of having a

new simulator S

^

V

for ea
h possible veri�er, we have a single probabilisti
 polynomial time

simulator S that intera
ts with ea
h possible

^

V . Furthermore, S is not allowed to examine

the internals of

^

V , but must simply look at

^

V 's input/output behavior. That is, it 
an have


onversations with

^

V and use these 
onversations to generate a simulation of

^

V 's view that

is 
omputationally indistinguishable from

^

V 's view of its intera
tion with P .

At �rst glan
e, the limitations on S may seem to for
e S to be as powerful as a prover.

However, S has important advantages over a prover P , allowing it to perform simulations in

probabilisti
 polynomial time. First, it may set

^

V 's 
oin tosses as it wishes, and even run

^

V on di�erent sets of 
oin tosses. More importantly, S may 
on
eptually \ba
k up"

^

V to

an earlier point in the 
onversation, and then send di�erent messages. This ability derives

from S's 
ontrol of

^

V 's 
oin tosses; sin
e

^

V otherwise operates deterministi
ally, S 
an rerun

it from the beginning, exploring di�erent dire
tions of the 
onversation by trying various

messages.

Indeed, all known proofs of zero-knowledge 
onstru
t bla
k-box simulations. There is no

way known to make use of a veri�er's internal state, nor to 
ustomize simulators based on

the des
ription of

^

V other than by using it as a bla
k box.

1

Thus, given the 
urrent state

of the art, an impossibility result for bla
k-box zero-knowledge seems to pre
lude a positive

result for the older de�nitions of zero-knowledge.

2.3 Bit 
ommitments

We in
lude a short and informal presentation of 
ommitment s
hemes. For more details

and motivation, see [13℄. A 
ommitment s
heme involves two parties: The sender and the

re
eiver. These two parties are involved in a proto
ol whi
h 
ontains two phases. In the �rst

phase the sender 
ommits to a bit, and in the se
ond phase it reveals it. A useful intuition to

keep in mind is the \envelope implementation" of bit 
ommitment. In this implementation,

the sender writes a bit on a pie
e of paper, puts it in an envelope and gives the envelope

to the re
eiver. In a se
ond (later) phase, the reveal phase, the re
eiver opens the envelope

1

As one slight ex
eption, [20℄ proves se
urity against spa
e-bounded veri�ers by 
onsidering the internal

state of the veri�ers. However, these te
hniques do not seem appli
able to more standard 
lasses of veri�ers.

5



to dis
over the bit that was 
ommitted on. In the a
tual digital proto
ol, we 
annot use

envelopes, but the goal of the 
ryptographi
 ma
hinery used, is to simulate this pro
ess.

More formally, a 
ommitment s
heme 
onsists of two phases. First 
omes the 
ommit

phase and then we have the reveal phase. We make two se
urity requirements whi
h (loosely

speaking) are:

Se
re
y: At the end of the 
ommit phase, the re
eiver has no knowledge about the value


ommitted upon.

Binding property: It is infeasible for the sender to pass the 
ommit phase su

essfully

and still have two di�erent values whi
h it may reveal su

essfully in the reveal phase.

Various implementations of 
ommitment s
hemes are known, ea
h has its advantages in

terms of se
urity (i.e., binding for the re
eiver and se
re
y for the re
eiver), the assumed

power of the two parties et
.

We work in the argument framework of Brassard, Chaum and Cr�epeau [1℄. In this

paradigm, all parties are assumed to be 
omputationally bounded. It is shown in [1℄ how

to 
ommit to bits with statisti
al se
urity, based on the intra
tability of 
ertain number-

theoreti
 problems. D�amgard, Pedersen and P�tzmann [6℄ give a proto
ol for eÆ
iently


ommitting to and revealing strings of bits with statisti
al se
urity, relying only on the

existen
e of 
ollision-intra
table hash fun
tions. This s
heme is quite pra
ti
al and we adopt

it for the veri�ers in our proto
ol. For the prover, we use a 
ommitment s
heme whose binding

is information theoreti
 and se
urity is 
omputational. Su
h s
hemes 
an be 
onstru
ed from

any one-way fun
tion, see [23℄. For simpli
ity, we will simply speak of 
ommitting to and

revealing bits when referring to the proto
ols of [6℄ for the veri�er and [23℄ for the prover.

2.4 Witness Indistinguishability

Witness indistinguishable proofs were presented in [12℄. The motivation was to provide

a 
ryptographi
 me
hanism whose notion of se
urity is similar though weaker than zero-

knowledge, it is meaningful and useful for 
ryptographi
 proto
ols, and the se
urity is pre-

served in an asyn
hronous 
omposition. A witness indistinguishable proof is a proof for a

language in NP su
h that the prover is using some witness to 
onvin
e the veri�er that the

input is in the language, yet, the view of the veri�er in 
ase the prover uses witness w

1

or

witness w

2

is polynomial time indistinguishable. Thus, the veri�er gets no knowledge on

whi
h witness was used in the proof. The formal de�nition follows. For further dis
ussion

and motivation the reader is referred to [12℄.

We say that a relation R is polynomial time if there exists a ma
hine that given (x; w)

works in polynomial time in jxj and determines whether (x; y) 2 R. For any NP lan-

guage there exists a polynomial time relation R

L

su
h that L 
an be des
ribed as L =

fx : 9y; R

L

(x; y)g.

De�nition 2.4 A proof system (P; V ) is witness indistinguishable over a polynomial time

relation R is for any V

0

, any large enough x, any w

1

; w

2

su
h that (x; w

1

) 2 R and (x; w

2

) 2

R, and for any auxiliary input y for V

0

, the view of V

0

in the intera
tion with P (x; w

1

) is

polynomially indistinguishable from the view of V

0

in the intera
tion with P (x; w

2

).

It is shown in [12℄ that witness indistinguishability is preserved with asyn
hronous 
om-

position of proofs.

6



2.5 The 
omplexity parameters

In this paper, we simplify the dis
ussion by using a single se
urity parameter k. Our proof has

!(log

2

k) rounds and the se
urity is preserved with a polynomial (in k) number of 
on
urrent

proofs. It is possible to separate the number k of allowed 
on
urrent proofs from the se
urity

parameter. If we know that the number of proofs to be run 
on
urrently is substantially

smaller than the se
urity parameter, we 
an relate the number of rounds to the number of

proofs and not to the se
urity parameter. We leave this (and similar) extensions to future

versions of this paper.

3 Main result

Our main result is the existen
e of poly-logarithmi
 round 
on
urrent (and bla
k box) zero-

knowledge arguments for NP. We state this expli
itly in the following theorem.

Theorem 3.1 Assume there is a se
ure bit 
ommitment s
heme, and 
onstant round wit-

ness indistinguishable arguments for all languages in NP. Let k be a 
omplexity parameter

bounding the size of the input, all parties are polynomial time in k, and the 
on
urrent proof

may 
ontain a polynomial (in k) number of proofs 
on
urrently. Then there exists a zero-

knowledge argument for all languages in NP whi
h is: 
omputational, bla
k-box, 
on
urrent,

and has a number of rounds t(k) whi
h is any fun
tion that is asymptoti
ally greater than

log

2

k, i.e., t(k) = !(k).

This theorem is proven in the rest of this paper. First we present the proto
ol, next we

present the simulator, and last, we analyze the simulator.

4 The zero-knowledge proof

We use a zero-knowledge argument for NP whi
h is similar to the one suggested by Ri
hard-

son and Kilian [25℄, following the ideas presented by Feige, Lapidot and Shamir [10℄. The

argument proof in [25℄ for a theorem T in NP 
onsists of a proof-preamble of k

"

rounds

and a proof-body being any \standard" zero-knowledge proof for a modi�ed NP theorem

T

0

. We modify the proof parameters to use only a poly-logarithmi
 number of rounds in the

preamble rather than the polynomial number used in [25℄. We then use a round-eÆ
ient

zero-knowledge proof in the main body. The body of the proof 
an be any (low error) stan-

dard round-eÆ
ient zero-knowledge (or witness indistinguishable) proof for the languages

in NP (see for example [11, 2, 14℄). An important property of these known proto
ols, is

that the prover need not be 
omputationally unbounded. It is enough that the prover has a

witness for the NP theorem T

0

that must be proven, and then the prover runs in polynomial

time. All these zero-knowledge proofs are also witness indistinguishable, whi
h is enough

for us. Feige and Shamir showed that witness indistinguishability is preserved also in the

asyn
hronous setting [12℄.

The preamble of our proof 
onsists of 2m rounds, where m = !(log

2

k) for the se
urity

parameter k. Namely,m is asymptoti
ally stri
tly larger than log

2

k. The main body 
onsists

of a 
onstant round zero-knowledge proof for NP. Thus, the number of rounds is dominated

by the preamble.

7



Let us 
on
entrate now on the preamble, whi
h is the main tool in making the zero-

knowledge proof a 
on
urrent one. Let T be the NP statement that the original prover would

like to prove. We use a preamble with 2m rounds to start the proof. In this preamble, P and

V will ea
h pi
k m strings in f0; 1g

k

denoted p

1

; p

2

; : : : ; p

m

and v

1

; v

2

; : : : ; v

m

respe
tively.

(Re
all that k is the se
urity parameter.) The prover P will then prove that either T is

true or for some i, 1 � i � m, v

i

= p

i

. We denote this modi�ed theorem T

0

. For ea
h

i, 1 � i � m, P will have to determine p

i

before v

i

is revealed. Thus, this preamble will

not give P a meaningful advantage in proving the theorem. However, the simulator will be

able to learn v

i

, and then rewind the proof and set p

i

= v

i

. Thus, the simulator will have a

witness to the modi�ed theorem T

0

, and it may a
t as a real prover in the body of the proof.

The full algorithm of the simulator is spe
i�ed in Se
tion 6 below.

The 
on
urrent zero-knowledge argument for an input theorem T goes as follows:

V ! P : Commit to v

1

; v

2

; : : : ; v

m

P ! V : Commit to p

1

V ! P : Reveal v

1

P ! V : Commit to p

2

� � �

V ! P : Reveal v

i

P ! V : Commit to p

i+1

� � �

V ! P : Reveal v

m

P $ V : A zero-knowledge proof that T is true or 9i s.t. v

i

= p

i

.

In words: The veri�er begins by 
ommitting to all its strings v

1

; : : : ; v

n

. After that, the

prover 
ommits to p

i

and then the veri�er reveals v

i

for ea
h i, i = 1; 2; : : : ; m. Finally, the

prover gives a zero-knowledge proof that T is true or there exists an i s.t. v

i

= p

i

.

If the veri�er fails to open one of its 
ommitments properly, then the prover immediately

aborts the proof. Ignoring the negligible 
han
e that the 
ommitments of the veri�er turn

out to fail the binding property, the strings v

1

; : : : ; v

m

are �xed after the �rst round for the

rest of the proof. Note that v

i

is revealed only after the prover P 
ommits on the value of p

i

.

Thus, if the se
urity of the bit 
ommitment holds, then P 
an �x p

i

= v

i

with a negligible

probability. Furthermore, ignoring the negligible 
han
e that the 
ommitment of the prover

is not se
ure, the veri�er does not learn the value of any of the p

i

's so he 
an never tell

whether it holds that p

i

= v

i

for some 1 � i � m.

Denote the probability that the prover fails to prove a true statement by the 
ompleteness

error and the probability that the veri�er a

epts a false statement (when the prover uses

an arbitrary strategy within its 
omputational limits) the soundness error. We 
laim that

these error probabilities are only slightly 
hanged by the modi�
ation made to the proof.

Claim 4.1 If the original proof has soundness error "

s

and 
ompleteness error "




then the

modi�ed proof has 
ompleteness error at most "




, and soundness error at most "

s

+ " for

some negligible (in the se
urity parameter k) ".

Proof Sket
h: It is easy to see that the 
ompleteness property is not harmed by the 
hange.

Regarding soundness, the advantage a prover P

�

may get is by managing to set p

i

= v

i

for

one of the rounds. We need to show that that 
annot happen too often. Here, the se
urity

8



of the veri�er's bit 
ommitment is not enough. In order to make sure that the prover 
annot


heat, we must require that the veri�er's 
ommitment is non-malleable [7℄. In order to 
heat,

the prover does not need to know 
ommitted bit. It just needs to produ
e a 
ommitment

su
h that after the veri�er opens its 
ommitment to a 
ertain string, the prover may open its


ommitment to the same string. Preveting this is exa
tly the issue in the non-malleability

study, and one may use non-malleable 
ommitment s
hemes as in [7℄ to make sure that the

soundness property is preserved. We 
hoose the following manner to get non-malleability

and keep the s
heme eÆ
ient. The veri�er 
ommits using information theoreti
 se
re
y.

Thus, the 
ommitted value of the prover 
annot depend on the 
ommitted value (but with

negligible probability). Next, the prover 
ommmits with an information theoreti
 binding

s
heme. Thus, the 
ommitted value binds the prover before it gets to see the veri�er openning

its 
ommitment. Using these two s
hemes, the soundness holds.

We remark that the problem is not symmetri
. Namely, we do not need non-malleable


ommitment s
heme for the prover. the reason is that the prover never opens its 
ommit-

ments, thus, the veri�er 
an only a
t upon the knowledge it gets from the 
ommit stage.

This gives the veri�er nothing by the se
urity property of the 
ommitment s
heme. 2

5 The simulator

We provide a bla
k-box simulator as explained in Se
tion 2.2 above. Namely, the adversarial

veri�er V

�

is given as a bla
k box and the simulator intera
ts with it. We assume that by

the time the simulator gets to the main body, it has a witness to the modi�ed theorem T

0

.

Thus, when simulating the main body, the simulator a
ts as the prover (whi
h is an eÆ
ient

algorithm given a witness to the NP theorem that has to be proven).

The simulator will su

eed in "guessing" one of the v

i

's by rewinding steps in the pream-

ble. (Re
all that the real prover 
annot rewind the veri�er, and 
annot get this advantage.)

In parti
ular, the simulator will rewind the veri�er at several points in their intera
tion. If

the veri�er reveals v

i

before a rewind, and the simulator rewinds the veri�er ba
k far enough,

it may 
hange the value of p

i

and 
ommit on p

i

= v

i

. Sin
e the veri�er is 
ommitted to the

value v

i

(as of the �rst round of the intera
tion), then unless the rewind goes beyond the

�rst round of the proof, the simulator need not worry that v

i

may 
hange after it sets the


ommitment on p

i

. On
e the simulator has ensured that for some round i p

i

= v

i

in the

preamble of a proof �, we say that it has solved the proof �. It 
an 
omplete the rest of

the simulation of � without further rewinding, by 
hoosing p

j

arbitrarily for any j 6= i and

by playing the real prover in the main body of the proof � (re
all that it has a witness to

the theorem T

0

that has to be proven). We stress that the rest of the simulation requires no

further rewinding. The main good feature of the preamble is exa
tly this. It is enough to

rewind on
e in any of the m rounds of the preamble, and the proof is solved. Of-
ourse, if

during a predetermined rewind the simulator 
an solve more than one proof by setting p

j

's

of other proofs to values of v

j

's that were dis
overed during the �rst run of rewound interval,

then it solves all the proofs it 
an.

Note that rewinding one step in one proof may render irrelevant simulation of steps

in other proofs that took pla
e in between those steps. Thus, 
hoosing a step to rewind

a

ording to the need to solve a proof � is dangerous. It may lead the simulation to run

an exponentially many steps as noted in [8℄ and proved for a set of proto
ols in [22℄. We

9



employ a di�erent strategy of rewinding. We spe
ify a �xed rewinding timing regardless of

the history of the intera
tion and the s
heduling of the proofs so far. Running this rewinding

s
hedule will guarantee a polynomial amount of work, so that the simulation is polynomial

time. Nevertheless, whatever s
hedule of proofs the adversarial veri�er-s
heduler may use,

the simulation is guaranteed to solve all proofs during their preamble with high probability.

During the run of the simulator, the adversarial veri�er V

�

may 
hoose to send inappro-

priate messages. For example, it may 
hoose not to reveal a value v

i

that it has 
ommitted

on in the �rst round. The run of the simulator is 
omposed of rewinds: it exe
utes an in-

tera
tion with the veri�er V

�

, then it rewinds V

�

and makes a se
ond run, in whi
h it may

set the p

i

's a

ording to information on v

i

's obtained in the �rst run. When the adversarial

veri�er V

�

sends an inappropriate message for a proof � the simulator may abort sending

messages to V

�

for this proof � (as the normal prover would have done). If that happens in

the �rst run of a rewind it bears a bad a�e
t: the simulator 
annot solve the proof � after

rewinding sin
e it did not get to see the string v

i

. However, if the veri�er V

�

sends a bad

message in the se
ond run of a rewound interval, then the proof � is 
onsidered solved: the

real prover aborts the intera
tion with the veri�er in �, and so does the simulator.

5.1 The adversarial s
heduler uses round slots

We begin by simplifying our view of the adversarial s
hedule. Re
all that we are running k

proofs, ea
h has 2m rounds. W.l.o.g., we assume that the real prover (and so also the simu-

lator) always answers immediately. Namely, the adversarial veri�er may delay its answers as

it pleases, but the prover answers at on
e. Thus, we get that the adversarial veri�er V

�

may

s
hedule an overall number of k �m pairs of rounds in the preambles. We are only interested

in the s
heduling of the preambles. We do not 
are how the body of the proof is s
heduled

and whether it will be rewound. We will not need to rewind the bodies: the simulator will

behave like the real prover in the bodies.

We �rst remark that We do not 
are how mu
h a
tual time passes between one pair of

rounds to the next. Our s
hedule will repeat ea
h of these times a polynomial number of

times, so the simulation time will be a polynomial times the sum of the pauses, whi
h must

be polynomial sin
e the adversarial veri�er is a polynomial time ma
hine. The output delays

are those determined by the veri�er in the last run of the rewinds. Meaning that they will

be distributed like in the real intera
tion.

A se
ond remark is about the possibility that the adversarial veri�er s
hedules messages

in parallel. In the sequel, we do not expli
itly 
onsider parallel pairs of rounds. If the

adversary sends more than one veri�er's message to the prover in parallel, then the prover

answers all of them in parallel. Thus, we get less then k �m pairs of a
tual rounds run. In

the analysis we will analyze the probability that \something bad" happens within a spe
i�


proof, ignoring the rest of the proofs that run with it. Thus, it will not matter if this proof

is run in parallel to other proofs. Note that rounds of the same proof 
annot run in parallel,

sin
e the order within a proof is guaranteed to be preserved in the 
on
urrent setting. Parallel

repetitions will redu
e the number of pairs of rounds and that may only make the simulation

more eÆ
ient. We will not expli
itly dis
uss parallel repetitions in the sequel.

For simpli
ity, from now on we will abuse the term round to denote a pair of rounds.

Namely, in what follows, a round 
onsists of a message of the veri�er followed by an immediate

response by the prover.

10



To summarize, we have redu
ed our view of the s
heduled proofs to the adversarial veri�er

V

�

s
heduling km rounds, with the only 
onstraint that within a proof the order of rounds

is preserved. We 
onsider only the rounds of the preambles and 
ompletely ignore rounds of

the proof-bodies that happen while the 
on
urrent preambles run. In fa
t, we think of this

s
hedule as assigning rounds of the various (preambles of) proofs to km \slots" of rounds. We


onsider the km slots by their order in time, and spe
ify the rewinding strategy with respe
t

to these slots, regardless of how the adversary assigns rounds to these slots. For example,

we may let the simulator rewind the veri�er to the �rst slot after running the se
ond slot.

More generally, After reading the veri�er's message in any of the round-slots, the simulator

may rewind the simulation (and the veri�er) to any previous round-slot of the simulation.

We will spe
ify rewinding in the following manner. A rewind (j ! i), for 1 � i < j � km,

means that after reading the veri�er's message of round slot j, the simulator rewinds the

simulation ba
k to round slot i. When running the rewound interval the se
ond time, the

simulator may 
hange its message in round slot i as well as any other message it made in

the round slots between i and j � 1.

5.2 Spe
i�
ation of the rewind timing

We use re
ursion to spe
ify the rewinding timing. At the top level of the re
ursion, the

simulator is running all the round slots 1::mk. The simulator rewinds the �rst half of the

round slots and then the se
ond half of these round slots, regardless of whi
h rounds of

whi
h proofs appear in the round-slots. It then \feeds" ea
h of these mk=2 round slots to

the re
ursion. Namely, at the se
ond level of the re
ursion, ea
h of the halves is split into

halves and ea
h quarter is rewound. Finally, at the bottom level, we are left with one or two

round slots. At the bottom of the re
ursion there is an interval 
ontaining one round slot.

There is no need to rewind one round slot (yet an interval of two round slots is rewound).

Let us explain this rewinding s
hedule with an example. Suppose the number of round

slots, mk, is 8 (just for the sake of this example), then the round slots are run by the

simulator in the following order: 1, 2, 1, 2, 3, 4, 3, 4, 1, 2, 1, 2, 3, 4, 3, 4, 5, 6, 5, 6, 7, 8, 7,

8, 5, 6, 5, 6, 7, 8, 7, 8. Using the rewinding syntax with the above sequen
e, we may write:

(2! 1), (4! 3), (4! 1), (2! 1), (4! 3), (6! 5), (8! 7), (8! 5), (6! 5), (8! 7).

At the top re
ursion level, we exe
ute (4! 1) and (8! 5), whi
h means rewinding the �rst

and the se
ond half of the round slots. Ea
h of the two times we run rounds 1 to 4, we

rewind the �rst and the se
ond half of that, getting (2! 1) and (4! 3) performed twi
e.

The same goes for the rewinding of the se
ond half with round slots 5 to 8. The re
ursion

ends here, sin
e we are left with two round slots in the se
ond level of re
ursion.

6 Analysis of the simulator with respe
t to a stati


s
hedule

To simplify the presentation of the analysis of our simulator, we start in this se
tion by

showing that the simulator works well for a stati
 s
hedule. Namely, the adversarial veri�er

V

�


hooses the (worst possible) s
hedule for the simulator, but this s
hedule is �xed and

does not 
hange during the simulation. In Se
tion 7 below, we extend the argument to the

11




ase that the s
hedule is dynami
 and may 
hange as a fun
tion of the adversary's random


oins and the history of the simulation so far.

We �rst note that the number of rounds run in the re
ursion is at most (mk)

2

and thus,

the simulator runs in polynomial time. Our goal is to show that with very high probability

the simulator will manage to obtain a witness for T

0

during the simulation of the preamble.

We start with some properties of the rewinding s
hedule. We denote the intervals that

are rewound rewind intervals. Be
ause of the (re
ursive) manner we de�ned the rewinding

s
hedule, the rewind intervals are either disjoint or 
ontained within ea
h other. So for any

two rewind intervals (j ! i) and (`! k) if i < ` � j, then it holds that k must be greater

or equal to i. In the above 
ase, in whi
h the rewind interval (`! k) is 
ontained within the

rewind interval (j ! i) we will say that the rewind (j ! i) dominates the rewind (`! k).

De�nition 6.1 We say that a rewind (`! k) dominates the rewind (j ! i) if k � i < j �

`.

We 
all a run of the simulator against a (bla
k-box) veri�er V

�

good if the simulator

solves ea
h of the proofs during the preamble and before it gets to simulating the main body

of the proof. We would like to show that the above rewinding timing lets the simulator get

\good" runs with very high probability, no matter what s
hedule is 
hosen for the messages

in the proofs. During the simulation, we do not need to rewind bodies of proofs, though,

of-
ourse a rewinding of a proof body that happens while rewinding a preamble of another

proof does not hurt the simulation.

A proof � may be solved via a rewind (j ! i) if the there are at least two rounds of

� appearing within the round slots i; i + 1; : : : ; j , and the proof � does not begin or end

during the round slots i + 1; i + 2; : : : ; j. The proof is a
tually solved with su
h a rewind

if the veri�er behaves \well" (i.e., follows the proto
ol) in both runs of the rewind interval.

In this 
ase, we have two 
onse
utive rounds of the proof �: Round a and Round a + 1,

(2 � a � m � 2) within the rewind interval. Thus, in the se
ond run of these rounds, we


an set p

a

in the preamble to equal v

a

, and solve the proof. The reason we require that the

�rst round of the proof � does not appear within the rewind interval is that if we rewind

beyond the �rst round of the proof, then V

�

gets to run its �rst round again, it may 
hoose

new values for v

1

; : : : ; v

m

. In parti
ular, v

a

may 
hange, and the simulator would not know

the new value of v

a

to set p

a

. The reason that we require that the preamble does not end

before the rewind, i.e., that round m of the proof � is not within the rewind interval, is that

a proof must be solved before the preamble ends. Else, the main body may start, and we

will noti
eably fail in the simulation, possibly 
ausing the veri�er to stop 
ooperating with

the rest of the simulation.

We would like to point out that a rewind may solve the proof in any level of the re
ursion.

If there exists a rewind (j ! i) that may solve the proof, and there exists a larger rewind

(`! k) that dominates it, then the existen
e of (`! k) does not \ruin" the ability of (j ! i)

to solve the proof. This is true sin
e in both runs of the rounds `; `+1 : : : ; k in the dominating

rewind interval we rewind (j ! i). So even if the rewind (j ! i) happens again and again

be
ause of dominating rewinds, in ea
h of the runs it may solve the proof again.

In what follows, we will restri
t our attention to the minimal rewinding intervals that

may solve a proof. If a proof may be solved by a rewind (`! k), then sometimes it may also

be solved by several rewinds that dominate (`! k). However, we will be interested only in

the smallest rewind interval that may solve a proof. Minimality is expressed in Condition

12



(4) of the following de�nition. This minimality property will be used in the proof of the

dynami
 s
hedule, in Se
tion 7 below.

De�nition 6.2 We say that a rewind (`! k) may solve a proof � if the following four


onditions hold:

1. At least two rounds of the preamble of � take pla
e during round slots k; k + 1; : : : ; `,

2. the �rst round of � takes pla
e at a round slot i < k,

3. the last round of � takes pla
e at a round slot j > `, and

4. any rewind (b! a) that is dominated by rewind (`! k) does not satisfy 
ondition 1

with respe
t to �.

Note that a rewind that may solve a proof 
ontains exa
tly two rounds of that proof. It


ontains at least two by Condition (1) of the de�nition. If it 
ontains more than 2, then

there must be a dominated rewind interval that 
ontains at least two su
h rounds, thus, the

dominating rewind interval does not satisfy the minimality 
ondition (4). We now 
laim

that for ea
h proof, there are \many" rewinds that may solve it.

Lemma 6.3 For any s
hedule of k 
opies of the proof (in the mk round slots), if a preamble

of a spe
i�
 proof � 
ompletes in round slot `, then there are at least

l

m

log(mk)+1

m

� 2 rewind

intervals that 
omplete by round ` and that may solve �.

Proof: We �rst show that there are at least

l

m

log(mk)+1

m

rewind intervals that satisfy Condi-

tions (1) and (4) in De�nition 6.2 above. We then note that at most two of these intervals

may foil Conditions (2) or (3), thus the number of rewinds that may solve the proof � is at

least

l

m

log(mk)+1

m

� 2 as required. Clearly, any good interval must end by round `, sin
e the

preamble terminates at round `.

Fix a proof � and any s
hedule of the rounds for all the proofs. We denote a rewind

interval good if it satis�es Conditions (1) and (4) in De�nition 6.2 above (with respe
t to

�). Consider the rewinds by the height of the re
ursion. At the top level, i.e., re
ursion

height dlog(mk)e, we have mk round slots. In these round slots we have m rounds of the

proof �. In ea
h re
ursion invo
ation, all round slots of the 
urrent level rewind interval are

split into almost

2

two equal parts and parti
ipate in two rewind intervals of a lower re
ursive

level. This splitting goes down the re
ursion until we are left with one or two round slots at

re
ursion level 1. If we 
onsider the rounds of the spe
i�
 proof � as s
heduled in the round

slots, then there are m rounds s
attered at the top level, whi
h are split in ea
h re
ursion

invo
ation. The split of these rounds of � is not ne
essarily equal, sin
e there may be other

rounds of other proofs that appear in the equal split of the round slots.

In the following, we 
laim that if there are r rounds of � at a rewind interval of level

h, then these rounds parti
ipate in at least

l

r

h+1

m

good rewind intervals with respe
t to �.

Assigning the re
ursion level h � log(mk) of the top level, and the number r = m of rounds

in the preamble of � in the top level, we get the validity of the assertion in Lemma 6.3.

2

If the number of round slots is odd, then the left interval has one more round slot than the right interval.

13



Claim 6.4 For any s
hedule of k 
opies of the proof (in mk round slots), and for any spe
i�


proof �. Let r be an integer, 2 � r � m, and let h be an integer su
h that r � 2

h

. Suppose

there are r rounds of a proof � in a rewind interval of re
ursion level h. Then these rounds

parti
ipate in at least

l

r

h+1

m

good rewind intervals with respe
t to the proof �.

Proof: We prove the 
laim by an indu
tion on r. Let r = 2. if the two rounds are split

at the 
urrent re
ursion invo
ation, then the 
urrent rewind interval is good. Otherwise,

the two rounds may stay together for several invo
ations of the re
ursion and then get split,

thus, making a good rewind interval at some lower level. Finally, they may stay together

until the bottom level, whi
h makes the bottom level rewind interval a good rewind interval

with respe
t to the proof �. Thus, these 2 rounds parti
ipate in at least 1 good rewind

interval, as required.

Now, suppose that the 
laim is 
orre
t for all 2 � r

0

< r and let us prove that it holds

for r rounds. Consider the partitioning of the r rounds of the 
urrent rewind interval into

two rewind intervals when invoking the next re
ursion. (Re
all that ea
h rewind interval is

split into two rewind intervals.) There are r

1

rounds that go into the �rst rewind interval,

and r

2

rounds that are assigned into the se
ond rewind interval. We know that r

1

+ r

2

= r

and assume w.l.o.g. that r

1

� r

2

. We split the analysis into 3 possible 
ases.

Case 1: r

1

� 2. In this 
ase, we may use the indu
tion hypothesis. The re
ursion level

of the two rewind intervals that 
ontain the r

1

and r

2

rounds is h � 1. By the indu
tion

hypothesis, the number of good rewind intervals is at least:

�

r

1

h

�

+

�

r

2

h

�

�

�

r

1

+ r

2

h

�

�

�

r

h + 1

�

and we are done with Case 1.

Case 2: r

1

= 1. In this 
ase, we know that r

2

= r � 1 � 2 (sin
e r � 3), thus, we may use

the indu
tion hypothesis for the se
ond rewind interval. Nothing is guaranteed for the �rst

rewind interval to whi
h only one round was assigned. By the indu
tion hypothesis, we get

that the number of good rewind intervals is at least:

�

r

2

h

�

=

�

r � 1

h

�

�

�

r

h+ 1

�

and we are done with Case 2.

Case 3: r

1

= 0. In this 
ase, we 
annot use the indu
tion hypothesis, sin
e r

2

= r. Thus,

we 
he
k what may happen to these r rounds as we go down the re
ursion. These rounds

may stay together in a single rewind interval only at re
ursion levels greater than dlog(r)e,

sin
e there are at most 2

h

0

round slots at a rewind interval of re
ursion level h

0

. So there

exists a level 2 < h

0

< h at whi
h the rounds r are split into r

1

� 1 rounds and r

2

� 1

rounds for the rewind intervals of level h

0

� 1. By the same argument as in Cases 1 and 2,

we get that the number of good intervals that these r rounds parti
ipate in is at least:

�

r

h

0

+ 1

�

�

�

r

h + 1

�

and we are done with Case 3 and with the proof of Claim 6.4. 2

As mentioned above, this also 
on
ludes the proof of Lemma 6.3 sin
e for any proof �

there are m rounds at re
ursion level dlog(mk)e, and sin
e only two of them may 
ontain

the �rst or last round of the preamble. 2

14



6.1 Why the rewinding works

We would like to 
laim now that the simulator will be able to solve ea
h proof during its

preamble and before it is required to simulate the main body of the proof. By Lemma 6.3,

for ea
h of the k proofs, there are at least

l

m

log(mk)

m

� 2 rewind intervals that may solve

it. Of-
ourse, it is enough that for ea
h proof there is one rewind that solves it during the

preamble. If we have one su
h rewind, the simulator 
an properly simulate ea
h proof and

all of them together no matter what the s
hedule is.

However, there is a deli
ate point to 
onsider here. It is not always the 
ase that a proof

is solved in a rewind that may solve it. The reason is that the adversarial veri�er V

�

may

sometimes not open the 
ommitment of a round of a proof �. If the veri�er V

�

does not

open the 
ommitment, then the real prover aborts the proof �. In a rewind interval that

may solve � there are exa
tly two rounds of � (whi
h are not the �rst or last round). Let

the number of these rounds be a and a + 1. The proof is solved in this rewind unless the

following event happens: the veri�er does not reveal the 
ommitted value v

a

in the �rst

run, but does reveal the 
ommitted value v

a

in the se
ond run. All three other alternatives

(i.e., the veri�er reveals the 
ommitted values in both runs, or does not reveal the 
ommitted

value in both runs, or reveals the 
ommitted value only in the �rst run) allow the simulator

solve the proof � in this rewind. If the veri�er reveals the 
ommitted value in the �rst run,

then the proof is solved, sin
e the simulator may set the value of its string p

a

to v

a

that it

has learned. If the veri�er does not reveal the 
ommitted value both in the �rst and se
ond

run, then the proof � is also solved, sin
e the prover does not answer any of the following

rounds of the proof �, and the simulator may easily \simulate" that.

We stress that the following naive solution would not work here. One may want to

abort this proof if either in the �rst or in the se
ond run V

�

does not reveal the 
ommitted

value. This solution does not work, sin
e it in
reases the probability of aborting � above the

probability of aborting � in the real proof. Thus, the simulation may be
ome polynomially

distinguishable from the original proof.

Let us 
ompute the probability that a rewind that may solve the proto
ol fails to solve

it. Of-
ourse the veri�er doesn't \know" that it has been rewound, so it 
annot make an

e�ort to abort the �rst run and behave well on the se
ond run. However, when we solve

a proof, the se
ond run is di�erent from the �rst run. In parti
ular, the value of some p

i

equals the value of some v

i

and the veri�er may note that an interval is run the se
ond time

by noting that some other proof �

0

has been solved in this rewind interval. However, the

prover is using a 
ommitment s
heme to se
retly 
ommit on the strings p

i

's in all the proofs.

The probability that the bad veri�er 
an tell that a proof has been solved is, thus, negligible.

Therefore, the probability that the veri�er aborts in the �rst run is similar to the probability

that it aborts in the se
ond run of the rewind interval. These two probabilities are equal

up to an (additive) negligible fra
tion. Whatever the probability p that V

�


hooses not to

reveal the 
ommitted value is, the probability that it does not reveal in the �rst run of a

rewind, yet it does reveal in the se
ond run, is p(1 � p + ") � 1=4 + " for some negligible

fra
tion ". In the sequel, we assume that any rewind that may solve the proof indeed solves

it with probability at least 2=3.

We go on and 
ompute the probability that the simulation su

eeds. The simulation

su

eeds if ea
h proof is solved before its preamble terminates. Note that a preamble of

a proof � may terminate several times, sin
e � may be 
ompletely (or partially) rewound

15



several times and in parti
ular, its last round of the preamble may be run several times.

At the worst 
ase, the preamble of ea
h of the k proofs terminates a number of times that

equals the overall number of times that a rewind interval is exe
uted. This number is at most

2

dlog(km)e

� 2km, i.e., a polynomial in k. We will show that the simulator fails to solve any

parti
ular proof with a negligible probability. Thus, it fails to solve any of (the polynomial

number of) the proofs with negligible probability as well.

Re
all that for any proof �, if the preamble of � is 
ompleted, then the number of rounds

that may solve � is at least a

def

=

l

m

log(mk)

m

�2. Sin
e we set m = !(log

2

k) and sin
e a realisti


value of m satis�es m < k, then this number is

a �

!(log

2

k)

log(k) + log(m)

= !(log k):

For any o

urren
e of a proof �, the probability that the simulator fails to solve it is at most

(1=3)

a

, whi
h is a negligible fra
tion (in k). By the summation bound, the probability that

the simulator fails in any of the (polynomially many) o

urren
es of proofs is also negligible.

To summarize, with probability almost 1, up to a negligible fra
tion, the simulator solves

all proofs within their preamble and thus, 
an �nish the simulation su

essfully. Also, The

s
hedule of the various proofs is independent of how many rewinds have been run, sin
e the

adversarial veri�er does not know that it is being rewound. Also, assuming that the bit


ommitment that the prover is using is se
ure, the s
hedule does not depend on whether the

simulator has managed to solve the proofs. Thus, the s
hedule of the proofs is indistinguish-

able from the s
hedule in the real intera
tion. Finally, the a
tual 
ontent of the preamble

is similar to the real intera
tion (ex
ept for proofs being solved, whi
h is indistinguishable

in polynomial time by the se
urity of the bit 
ommitment), and the 
ontent of the proof

bodies in the simulations is indistinguishable from the proof bodies in the real intera
tion

sin
e the simulator a
tually behaves as a prover in the bodies. by the witness indistinguisha-

bility property of the proof body, the fa
t that the simulator uses di�erent witnesses from

the real prover is polynomial time indistinguishable. Feige and Shamir showed that witness

indistinguishability is preserved also in the asyn
hronous setting [12℄. Thus, the trans
ript

of the intera
tion is indistinguishable in polynomial time from the output of the simulation.

7 Extending the analysis for the dynami
 s
hedule

We now move to the more diÆ
ult, yet realisti
 
ase, in whi
h the veri�er does not �x

the s
hedule of the messages in the mk round slots in advan
e, but may determine whi
h

message to s
hedule in the next round slot depending on the history so far and its random


oins. Looking ba
k at the analysis of the previous se
tion, the problem now is that the

rewind intervals in whi
h a proof may be solved 
onstitute a random variable. Ea
h time

a new rewind interval is started, there is a probability that the interval will in
lude two

rounds of the proof (whi
h are not the �rst or last round). This probability depends on the

random tape of the adversarial veri�er, the history so far, and the behavior of the prover (or

the simulator) during the rewind interval. It is possible that in the �rst run of the rewind

interval V

�

will 
hoose to in
lude two rounds of the proof but in the se
ond round it will


hoose not to. The se
urity of the prover's bit 
ommitment gives us, again, a guarantee that

the �rst run and the se
ond run of the rewind have similar behavior.

16



As before, we ask ourselves what is the probability that a preamble of a proof � ends

without the proof being solved by the simulator. At ea
h point of the simulation one or more

rewinds may start. The simulator solves the proof � during a rewind interval � if the �rst

run of � in
ludes exa
tly two rounds of the proof � that are not the �rst or the last rounds,

and the veri�er reveals its 
ommitted value properly. Let us present the expli
it de�nitions.

De�nition 7.1 (Dynami
 analogue of De�nition 6.2:) we say that a run of a rewind �

(either �rst or se
ond run) is interesting with respe
t to a proof � if it in
ludes exa
tly two

rounds of the preamble of � that are neither the �rst nor the last round of the preamble, and

there are no rewind intervals dominated by � that 
ontain two rounds of �.

De�nition 7.2 We say that a run of a rewind � (either �rst or se
ond run) is good with

respe
t to a proof � if it is interesting and the veri�er properly reveals its 
ommitments

during these two rounds. If a run is not good with respe
t to �, we 
all it bad with respe
t

to �.

If the �rst run is good with respe
t to a proof �, then the proof � is solved (no matter

what the se
ond run is). For ea
h run of a rewind �, there is a probability p

�

, determined

by the adversarial veri�er, that a run of this rewind is be good with respe
t to �. By the

se
urity of the prover's 
ommitment s
heme, the probability that the �rst run is good is

equal up to an (additive) negligible fra
tion to the probability that the se
ond run is good.

Similarly to Lemma 6.3, the following lemma holds.

Lemma 7.3 In any s
hedule of k 
opies of the proof (in mk round slots), if a preamble of a

spe
i�
 proof � 
ompletes in round `, then there are at least

l

m

log(mk)+1

m

� 2 rewind intervals

that 
ompleted before round ` with a se
ond good run with respe
t to �.

Proof: similar to the proof of Lemma 7.3. Proof omitted.

By Lemma 7.3, before a preamble may 
omplete, the history must 
ontain at least a

def

=

l

m

log(mk)+1

m

� 2 good se
ond runs. However, for the proof to be 
ompleted unsolved, all the

�rst runs of all previously 
ompleted rewinds must be bad with respe
t to �. We will show

that this happens with negligible probability.

Lemma 7.4 The probability that there exists a preamble of a proof � that ends well during

the simulation but is not solved is negligible.

Proof: We show that for any spe
i�
 
ompletion of a preamble of a spe
i�
 proof �, the

probability that the preamble ends well, yet � remains unsolved is negligible. Sin
e there is

a polynomial number of proofs and ea
h of the preambles may end a polynomial number of

times, then we get that the probability that a preamble of any of the proofs remains unsolved

when it ends is negligible.

Consider the run of the simulator. At ea
h point of the simulation, one or more rewind

intervals may start. At ea
h of these points there is some probability p that the run of one of

the rewinds interval will be good with respe
t to �. As dis
ussed before, if the 
ommitment

s
heme that the prover uses is se
ure, then the probability that the �rst run is good is equal

to the probability that the se
ond round is good up to an additive negligible fra
tion. We

would like to 
ompute the probability that the preamble of the proof instan
e � ends well

17



without being solved. By Lemma 7.3, for any possible s
hedule of the proof instan
e �, it

must in
lude at least a intervals that were good in the se
ond run with respe
t to �. By

our de�nition of a good interval, these intervals are non-overlapping (Re
all the minimality


ondition of De�nition 7.1).

We may think of the adversarial veri�er as running the following sto
hasti
 experiment,

whi
h we denote the sequential experiment. It runs through a series of tests (whi
h are the

rewinds). For the ith test, based on the history so far and its random tape, the adversary


hooses a probability p

i

(this is the probability that the �rst run of the interval ends well).

Then, with probability (1 � p

i

)(p

i

+ "

i

) the adversary wins the test, for some negligible

fra
tion "

i

. (The �rst run is bad and the se
ond is good.) With probability p

i

it looses the

whole experiment (the �rst run is good and the simulator has solved the proof �). In this


ase we say that the adversary dies. Finally, with probability (1 � p

i

)(1 � p

i

� "

i

) nothing

happens, i.e., the adversary neither wins nor dies. The goal of the adversary is to win at

least a tests in the experiment without dying. The probability that the adversary su

eeds

in the sequential experiment is an upper bound on the probability that the preamble of a

proof � ends without being solved. This is the 
ase sin
e for a preamble to 
omplete without

being solved, all �rst runs must be bad and at least a runs must be good. The number of

tests run during the sequential experiment is b. In our 
ase b � 2mk.

We now analyze the sequential experiment with parameters a and b.

Claim 7.5 Let b and a be two positive integers su
h that a < b and b is bounded by a

polynomial (in k). Then the probability that the adversary wins the sequential experiment

with parameters a and b is at most (2=3)

a

.

Proof: In the sequential experiment, the adversary 
hooses a probability p

i

in ea
h round

1 � i � b. In ea
h of the tests, with probability p

i

the adversary fails the whole experiment.

With probability (1� p

i

)(p

i

+ "

i

) it wins the ith test, where "

i

is a negligible fra
tion (in k).

With probability (1� p

i

)(1� p

i

� "

i

) nothing happens and we move to the next test.

We will show that for any ` � 0, the probability that the adversary goes from winning `

tests to winning ` + 1 tests without getting killed in between, is at most 2=3, regardless of

the 
hoi
e of the probabilities p

i

's. From that we get that the probability that the adversary

wins a tests without getting killed is at most (2=3)

a

.

Suppose the adversary has won ` tests without getting killed and it is now trying to win

one more. The adversary 
hooses probabilities p

i

's and runs the tests. In ea
h test it either

dies, or it wins, or nothing happens. Let � be the number of rounds remaining before the b

tests of the experiment end. The probability that the adversary wins one test before it dies

and before the game ends is:

�

1

def

=

�

X

t=1

0

�

t�1

Y

j=1

(1� p

j

)(1� p

j

� "

j

)

1

A

� (1� p

t

)(p

t

+ "

t

) (1)

To show that this probability is less than 2=3 no matter what the 
hoi
e of the p

j

's is, we


ompute the probability of a disjoint event. The event that the adversary dies before it wins

the ` + 1 test. (Note that there is a third disjoint event in whi
h the adversary does not

die and does not win during the remaining � tests.) The probability of the adversary dying

18



before winning is:

�

2

def

=

�

X

t=1

0

�

t�1

Y

j=1

(1� p

j

)(1� p

j

� "

j

)

1

A

� p

t

(2)

Comparing �

1

and �

2

, we see that for ea
h term in the summation, all the fa
tors are the

same but the last. Sin
e the "

i

's are negligible (in k) and � is bounded by a polynomial (in

k), then we get that

�

1

� �

2

� " (3)

for some negligible fra
tion ". Sin
e �

1

and �

2

represent the probabilities of disjoint events,

then we also get

�

1

+ �

2

� 1: (4)

Combining Equations 3 and 4 we get

�

1

�

1

2

+

"

2

<

2

3

and we are done with the proof of Claim 7.5. 2

To summarize, the probability that the preamble of any proof instan
e � ends well

without being solved, is at most

�

2

3

�

a

: Re
all that a =

l

m

log(mk)+1

m

� 2 = !(log k) (and

b � (2mk)

2

), so we get that the above is a negligible fra
tion in k. Sin
e we have at most

mk instan
es of any of the k proofs, the probability that the preamble of any of these proofs

ends well without being solved by our simulator is also negligible and we are done with the

proof of Lemma 7.4. 2

Using Lemma 7.4, we get that the simulator fails with negligible probability. Also, as

in the stati
 
ase, when the simulator su

eeds, it outputs an intera
tion that is polynomi-

ally indistinguishable from the real intera
tion between the adversarial veri�er and the real

prover.

8 A
knowledgment

We thank Uri Feige, Oded Goldrei
h, and Yuval Rabani for helpful dis
ussions.

Referen
es

[1℄ G. Brassard, D. Chaum and C. Cr�epeau. Minimum Dis
losure Proofs of Knowledge. In

JCSS, pages 156{189. 1988.

[2℄ C. Brassard, C. Crepeau and M. Yung, \Constant-Round Perfe
t Zero-Knowledge Com-

putationally Convin
ing Proto
ols", Theoreti
al Computer S
ien
e, Vol. 84, 1991, pp.

23-52.

[3℄ R. Canetti, O. Goldrei
h, S. Goldwasser and S. Mi
ali. Resettable zero-knowledge. In

Pro
. 32nd Annual ACM Symposium on Theory of Computing May 2000.

[4℄ G. Di Cres
enzo and R. Ostrovsky. \On Con
urrent Zero-Knowledge with Pre-

Pro
essing". Pro
eedings of Advan
es in Cryptology (CRYPT0-99), pp. 485-502,

Springer-Verlag Le
ture Notes in Computer S
ien
e, Vol 1666. 1999.

19



[5℄ I. D�amgard. \EÆ
ient Con
urrent Zero-Knowledge in the Auxiliary String Model." Ad-

van
es in Cryptology { Euro
rypt 2000 Pro
eedings, Le
ture Notes in Computer S
ien
e,

Berlin: Springer-Verlag, 2000.

[6℄ I. D�amgard, T. Pedersen and B. P�tzmann. On the Existen
e of Statisti
ally Hid-

ing Bit Commitment S
hemes and Fail-Stop Signatures. Advan
es in Cryptology {

CRYPTO '93 Pro
eedings, pp. 250-265. Le
ture Notes in Computer S
ien
e #773,

Berlin: Springer-Verlag, 1994.

[7℄ D. Dolev, C. Dwork, and M. Naor. \Non-malleable 
ryptography". In Pro
eedings of

the 23rd Symposium on Theory of Computing, ACM STOC, 1991.

[8℄ C. Dwork, M. Naor and A. Sahai. Con
urrent Zero-Knowledge. Pro
eedings,30th Sym-

posium on Theory of Computing, pp. 409{428, 1998.

[9℄ C. Dwork and A. Sahai. Con
urrent Zero-Knowledge: Redu
ing the Need for Timing

Constraints. Pro
eedings, Advan
es in Cryptology { Crypto '98.

[10℄ U. Feige, D. Lapidot and A. Shamir. Multiple non-intera
tive zero-knowledge proofs

based on a singe random string. In Pro
eedings of the 31st Annual IEEE Symposium on

the Foundations of Computer S
ien
e, pages 308{317, 1990.

[11℄ U. Feige and A. Shamir, \Zero Knowledge Proofs of Knowledge in Two Rounds", Ad-

van
es in Cryptology { Crypto 89 pro
eedings, pp. 526-544, 1990.

[12℄ U. Feige and A. Shamir. Witness indistinguishable and witness hiding proto
ols. In

Baru
h Awerbu
h, editor, Pro
eedings of the 22nd Annual ACM Symposium on the

Theory of Computing, pages 416{426, Baltimore, MY, May 1990. ACM Press.

[13℄ O. Goldrei
h. Foundation of Cryptography - Fragments of a Book .

Available from the Ele
troni
 Colloquium on Computational Complexity (ECCC)

http://www.e


.uni-trier.de/e


/, February 1995.

[14℄ O. Goldrei
h and A. Kahan, \How to Constru
t Constant-Round Zero-Knowledge Proof

Systems for NP", Journal of Cryptology, Vol. 9, No. 2, 1996, pp. 167{189.

[15℄ O. Goldrei
h, H. Kraw
zyk. On the Composition of Zero-Knowledge Proof Systems.

SIAM J. on Computing, Vol. 25, No.1, pp. 169-192, 1996

[16℄ O. Goldrei
h, S. Mi
ali, and A. Wigderson, \Proofs that Yield Nothing But their Va-

lidity or All Languages in NP Have Zero-Knowledge proof Systems", Jour. of ACM.,

Vol. 38, 1991, pp. 691{729.

[17℄ Oded Goldrei
h and Yair Oren. De�nitions and properties of zero-knowledge proof

systems. Journal of Cryptology, 7(1):1{32, Winter 1994.

[18℄ S. Goldwasser, S. Mi
ali, C. Ra
ko�. The Knowledge Complexity of Intera
tive Proofs.

Pro
. 17th STOC, 1985, pp. 291-304.

[19℄ S. Goldwasser, S. Mi
ali, and C. Ra
ko�. \The Knowledge Complexity of Intera
tive

Proof Systems", SIAM J. Comput., 18 (1):186{208, 1989.

20



[20℄ J. Kilian. Zero-Knowledge with Log-Spa
e Veri�ers

Pro
eedings, 29

th

annual IEEE Symposium on the Foundations of Computer S
ien
e.

[21℄ J. Kilian and E. Petrank. \Improved Lower Bounds for Con
urrent Zero-Knowledge",

Manus
ript, April 2000.

[22℄ J. Kilian, E. Petrank, and C. Ra
ko�. \Lower Bounds for Zero Knowledge on the In-

ternet", Pro
eedings of the 39nd IEEE Conferen
e on the Foundations of Computer

S
ien
e, November 1998.

[23℄ M. Naor. \Bit Commitment Using Pseudo-Randomness,", Journal of Cryptology, vol.

4, 1991, pp.151-158.

[24℄ Y. Oren. On the 
unning powers of 
heating veri�ers: Some observations about zero

knowledge proofs. In Ashok K. Chandra, editor, Pro
eedings of the 28th Annual Sym-

posium on Foundations of Computer S
ien
e, pages 462{471, Los Angeles, CA, O
tober

1987. IEEE Computer So
iety Press.

[25℄ R. Ransom and J. Kilian. Non-Syn
hronized Composition of Zero-Knowledge Proofs.

Manus
ript.

21


