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Abstrat

We provide identi�ation protools that are seure even when the adversary an reset the in-

ternal state and/or randomization soure of the user identifying itself, and when exeuted in an

asynhronous environment like the Internet that gives the adversary onurrent aess to instanes

of the user. These protools are suitable for use by devies (like smartards) whih when under

adversary ontrol may not be able to reliably maintain their internal state between invoations.
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1 Introdution

An identi�ation protool enables one entity to identify itself to another as the legitimate owner of

some key. This problem has been onsidered in a variety of settings. Here we are interested in an

asymmetri setting. The entity identifying itself is typially alled the prover, while the entity to

whih the prover is identifying itself is alled the veri�er. The prover holds a seret key sk whose

orresponding publi key pk is assumed to be held by the veri�er.

The adversary's goal is to impersonate the prover, meaning to get the veri�er to aept it as

the owner of the publi key pk. Towards this goal, it is allowed various types of attaks on the

prover. In the model of smartard based identi�ation onsidered by [18℄, the adversary may play the

role of veri�er and interat with the prover, trying to learn something about sk, before making its

impersonation attempt. In the model of \Internet" based identi�ation onsidered by [9, 3, 8℄, the

adversary is allowed to interat onurrently with many di�erent prover \instanes" as well as with the

veri�er. Formal notions of seurity orresponding to these settings have been provided in the works

in question, and there are many protool solutions for them in the literature.

In this work we onsider a novel attak apability for the adversary. We allow it, while interating

with the prover, to reset the prover's internal state. That is, it an \bakup" the prover, maintaining

the prover's oins, and ontinue its interation with the prover. In order to allow the adversary

to get the maximum possible bene�t from this new apability, we also allow it to have onurrent

aess to di�erent prover instanes. Thus, it an interat with di�erent prover instanes and reset

eah of them at will towards its goal of impersonating the prover. The question of the seurity of

identi�ation protools under reset attaks was raised by Canetti, Goldreih, Goldwasser and Miali

[11℄, who onsidered the same issue in the ontext of zero-knowledge proofs.

1.1 The power of reset attaks

An example. Let us illustrate the power of reset attaks with an example. A popular paradigm

for smartard based identi�ation is to use a proof of knowledge [18℄. The prover's publi key is an

instane of a hard NP language L, and the seret key is a witness to the membership of the publi

key in L. The protool enables the prover to prove that it \knows" sk. A protool that is a proof

of knowledge for a hard problem, and also has an appropriate zero-knowledge type property suh as

being witness hiding [19℄, is a seure identi�ation protool in the smartard model [18℄.

A simple instane is the zero-knowledge proof of quadrati residuosity of [22℄. The prover's publi

key onsists of a omposite integer N and a quadrati residue u 2 Z

�

N

. The orresponding seret key

is a square root s 2 Z

�

N

of u. The prover proves that it \knows" a square root of u, as follows. It

begins the protool by piking a random r 2 Z

�

N

and sending y = r

2

mod N to the veri�er. The latter

responds with a random hallenge bit . The prover replies with a = rs



mod N , meaning it returns r

if  = 0 and rs mod N if  = 1. The veri�er heks that a

2
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mod N . (This atomi protool has

an error probability of 1=2, whih an be lowered by sequential repetition. The Fiat-Shamir protool

[20℄ an be viewed as a parallelized variant of this protool.)

Now suppose the adversary is able to mount reset attaks on the prover. It an run the prover to

get y, feed it hallenge 0, and get bak a = r. Now, it baks the prover up to the step just after it

returned y, and feeds it hallenge 1 to get answer a

0

= rs. From a and a

0

it is easily able to extrat

the prover's seret key s. Thus, this protool is not seure under reset attaks.

Generalizing from the example, we see that in fat, all proof of knowledge based identi�ation

protools an broken in the same way. Indeed, in a proof of knowledge, the prover is de�ned to \know

a seret" exatly when this seret an be extrated by a polynomial time algorithm (the \extrator")

whih has orale aess to the prover and is allowed to reset the latter [18, 6℄. An attaker allowed a

reset attak an simply run the extrator, with the same result, namely it gets the seret. So the bulk
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of eÆient smartard based identi�ation protools in the literature are inseure under reset attaks.

Mounting reset attaks. Resetting or restoring the omputational state of a devie is partiularly

simple in the ase the devie onsists of a smartard whih the enemy an apture and experiment

with. If the ard is manufatured with seure hardware, the enemy may not be able to read its seret

ontent, but it ould disonnet its battery so as to restore the ard's seret internal ontent to some

initial state, and then re-insert the battery and use it with that state a number of times. If the

smart ard implements a proof of knowledge prover for ID purposes, then suh an ative enemy may

impersonate the prover later on.

Other senarios in whih suh an attak an be realized is if an enemy is able to fore a rash on

the devie exeuting the prover algorithm, in order to fore it to resume omputation after the rash

in an older \omputational state", thereby foring it to essentially reset itself.

Can we use resettable zero-knowledge? Zero-knowledge proofs of membership seure under

reset attak do exist [11℄, but for reasons similar to those illustrated above, are not proofs of knowledge.

Aordingly, they annot be used for identi�ation under a proof of knowledge paradigm. One of the

solution paradigms we illustrate later however will show how proofs of membership, rather than proofs

of knowledge, an be used for identi�ation.

1.2 Notions of seurity

Towards the goal of proving identi�ation protools seure against reset attaks, we �rst disuss the

notions of seurity we de�ne and use.

We distinguish between two types of resettable attaks CR1 (Conurrent-Reset-1) and CR2 (Con-

urrent-Reset-2). In a CR1 attak, Viky (the adversary) may interat onurrently, in the role of

veri�er, with many instanes of the prover Alie, resetting Alie to initial onditions and interleaving

exeutions, hoping to learn enough to be able to impersonate Alie in a future time. Later, Viky will

try to impersonate Alie, trying to identify herself as Alie to Bob (the veri�er).

In a CR2 attak, Viky, while trying to impersonate Alie (i.e attempting to identify herself as

Alie to Bob the veri�er), may interat onurrently, in the role of veri�er, with many instanes of the

prover Alie, resetting Alie to initial onditions and interleaving exeutions. Clearly, a CR1 attak is

a speial ase of a CR2 attak.

A de�nition of what it means for Viky to win in the CR1 setting is straightforward: Viky wins

if she an make the veri�er Bob aept. In the CR2 setting Viky an make the veri�er aept by

simply being the woman-in-the-middle, passing messages bak and forth between Bob and Alie. The

de�nitional issues are now muh more omplex beause the woman-in-the-middle \attak" is not really

an attak and the de�nition must take this into aount. We address these issues based on de�nitional

ideas from [9, 8℄, spei�ally by assigning session-ids to eah ompleted exeution of an ID protool,

whih the prover must generate and the veri�er aept at the ompletion of the exeution. For reasons

of brevity we do not disuss the CR2 setting muh in this abstrat, and refer the reader to the full

version of this paper [5℄.

We larify that the novel feature of our work is the onsideration of reset attaks for identi�ation.

However our settings are de�ned in suh a way that the traditional onurrent attaks as onsidered by

[9, 17℄ and others are inorporated, so that seurity against these attaks is ahieved by our protools.

1.3 Four paradigms for identi�ation seure against reset attak

As we explained above, the standard proof of knowledge based paradigm fails to provide identi�ation

in the resettable setting. In that light, it may not be lear how to even prove the existene of a solution

to the problem. Perhaps surprisingly however, not only an the existene of solutions be proven under

the minimal assumption of a one-way funtion, but even simple and eÆient solutions an be designed.
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This is done in part by returning to some earlier paradigms. Zero-knowledge proofs of knowledge

and identi�ation are so strongly linked in ontemporary ryptography that it is sometimes forgotten

that these in fat replaed earlier identi�ation tehniques largely due to the eÆieny gains they

brought. In onsidering a new adversarial setting it is thus natural to �rst return to older paradigms

and see whether they an be \lifted" to the resettable setting. We propose in partiular signature

and enryption based solutions for resettable identi�ation and prove them seure in both the CR1

and the CR2 settings. We then present a general method for transforming identi�ation protools

seure in a onurrent but non-reset setting to ones seure in a reset setting. Finally we return to the

zero-knowledge ideas and provide a new paradigm based on zero-knowledge proofs of membership as

opposed to proofs of knowledge.

Signature based identifiation. The basi idea of the signature based paradigm is for Alie

onvines Bob that she is Alie, by being \able to" sign random douments of Bob's hoie. This

is known (folklore) to yield a seure identi�ation sheme in the serial non-reset setting of [18℄ as

long as the signature sheme is seure in the sense of [23℄. It is also known to be seure in the

onurrent non-reset setting [3℄. But it fails in general to be seure in the resettable setting beause

an adversary an obtain signatures of di�erent messages under the same prover oins. What we show

is that the paradigm yields seure solutions in the resettable setting if ertain speial kinds of signature

shemes are used. (The signing algorithm should be deterministi and stateless.) In the CR1 setting

the basi protool using suh signature shemes suÆes. The CR2 setting is more omplex and we

need to modify the protool to inlude \hallenges" sent by the prover. Sine signature shemes with

the desired properties exist (and even eÆient ones exist) we obtain resettable identi�ation shemes

proven seure under minimal assumptions for both the CR1 and the CR2 settings, and also obtain

some eÆient spei� protools.

Enryption based identifiation. In the enryption based paradigm, Alie onvines Bob she is

Alie, by being \able to" derypt iphertexts whih Bob reated. While the basi idea goes bak to

symmetri authentiation tehniques of the seventies, modern treatments of this paradigm appeared

more reently in [15, 3, 17℄ but did not onsider reset attaks. We show that under an appropriate

ondition on the enryption sheme |namely that it be seure against hosen-iphertext attaks| a

resettable identi�ation protool an be obtained. As before the simple solution for the CR1 setting

needs to be modi�ed before it will work in the CR2 setting.

Transforming standard protools. Although Fiat-Shamir like identi�ation protools are not

seure in the ontext of reset attaks, with our third paradigm we show how to turn pratial identi-

�ation shemes into seure ones in the CR1 and CR2 settings. The solution relies on the tehniques

introdued in [11℄ and utilizes pseudorandom funtions and trapdoor ommitments. It applies to most

of the popular identi�ation shemes, like Fiat-Shamir [20℄, Okamoto-Shnorr [31, 28℄ or Okamoto-

Guillou-Quisquater [25, 28℄.

ZK proof of membership based identifiation. In the zero-knowledge proofs of membership

paradigm, Alie onvines Bob she is Alie, by being \able to" prove membership in a hard language

L, rather than by proving she has a witness for language L. She does so by employing a resettable

zero-knowledge proof of language membership for L as de�ned in [11℄ . Both Alie and Bob will need

to have a publi-key to enable the protool. Alie's publi-key de�nes who she is, and Bob's publi-key

enables him to verify her identity in a seure way. We adopt the general protool for membership in

NP languages of [11℄ for the purpose of identi�ation. The identi�ation protools are onstant round.

What makes this work is the fat that the protool for language membership (x 2 L) being zero-

knowledge implies \learning nothing" about x in a very strong sense | a veri�er annot subsequently

onvine anyone else that x 2 L with non-negligible probability. We note that while we an make

this approah work using resettable zero-knowledge proofs, it does not seem to work using resettable
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witness indistinguishable proofs for ID protools.

Perspetive. Various parts of the literature have motivated the study of zero-knowledge protools

seure against strong attaks suh as onurrent or reset in part by the pereived need for suh tools

for the purpose of appliations suh as identi�ation in similar attak settings. While the tools might

be suÆient for identi�ation, they are not neessary. Our results demonstrate that identi�ation is

muh easier than zero-knowledge and the latter is usually an overkill for the former.

2 De�nitions

The adversary model here, allowing reset attaks in a onurrent exeution setting, is the strongest one

for identi�ation onsidered to date. It is onvenient to de�ne two versions of the model: Conurrent-

Reset-1 (CR1) and Conurrent-Reset-2 (CR2). While both models allow onurrent reset attaks on

provers, in CR1 |whih models smartard based identi�ation and extends the setting of [18℄| the

adversary is allowed aess to provers only prior to its attempt to onvine the veri�er to aept, while

in CR2 |whih models network or \Internet" based identi�ation and extends the setting of [9℄|

the adversary maintains aess to the provers even while trying to onvine the veri�er to aept.

The split enables us to take an inremental approah both to the de�nitions and to the design of

protools, onsidering �rst the simpler CR1 setting and then showing how to lift the ideas to the more

omplex CR2 setting. In this setion we present de�nitions for the CR1 ase obtained by adapting and

extending [18℄, and de�nitions for the CR2 ase based on ideas of [9, 8℄.

Notation.If A(�; �; : : :) is a randomized algorithm then y  A(x

1

; x

2

; : : : ;R) means y is assigned the

unique output of the algorithm on inputs x

1

; x

2

; : : : and oins R, while y  A(x

1

; x

2

; : : :) is shorthand

for �rst piking R at random (from the set of all strings of some appropriate length) and then setting

y  A(x

1

; x

2

; : : : ;R). If x

1

; x

2

; : : : are strings then x

1

kx

2

k � � � denotes an enoding under whih the

onstituent strings are uniquely reoverable. It is assumed any string x an be uniquely parsed as an

enoding of some sequene of strings. The empty string is denoted ".

Syntax of identifiation protools.An identi�ation protool proeeds as depited in Figure 1.

The prover has a seret key sk whose mathing publi key pk is held by the veri�er. (In pratie the

prover might provide its publi key, and the erti�ate of this publi key, as part of the protool, but

this is better slipped under the rug in the model.) Eah party omputes its next message as a funtion

of its keys, oins and the urrent onversation pre�x. The number of moves m(k) is odd so that the

�rst and last moves belong to the prover. (An identi�ation protool is initiated by the prover who at

the very least must provide a request to be identi�ed.) At the end of the protool the veri�er outputs a

deision to either aept or rejet. Eah party may also output a session id. (Sessions ids are relevant

in the CR2 setting but an be ignored for the CR1 setting.) A partiular protool is desribed by a

(single) protool desription funtion ID whih spei�es how all assoiated proesses |key generation,

message omputation, session id or deision omputation| are implemented. (We say that ID is for

the CR1 setting if sid

P

= sid

V

= ", meaning no session ids are generated.) The seond part of Figure 1

shows how it works: the �rst argument to ID is a keyword |one of keygen, prvmsg, vfmsg, prvsid,

vfend| whih invokes the subroutine responsible for that funtion on the other arguments.

Completeness.Naturally, a orret exeution of the protool (meaning one in the absene of an

adversary) should lead the veri�er to aept. To formalize this \ompleteness" requirement we onsider

an adversary-free exeution of the protool ID whih proeeds as desribed in the following experiment:

(pk; sk) ID(keygen; k) ; Choose tapes R

P

; R

V

at random

msg

1

 ID(prvmsg; sk; ";R

P

)

For j = 1 to bm(k)=2 do

msg

2j

 ID(vfmsg; pk;msg

1

k � � � kmsg

2j�1

;R

V

)
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Prover Veri�er

pk; sk ; Coins: R

P

pk ; Coins: R

V

msg

1

-

msg

2

�

.

.

.

msg

m(k)�1

�

msg

m(k)

-

Output: sid

P

Output: deision 2 faept; rejetg

and: sid

V

(pk; sk) ID(keygen; k) | Randomized proess to generate a publi key pk and mathing seret key

sk

msg

2j+1

 ID(prvmsg; sk;msg

1

k � � �msg

2j

;R

P

) | (1 � 2j + 1 � m(k)) Next prover message as a

funtion of seret key, onversation pre�x and oins R

P

msg

2j

 ID(vfmsg; pk;msg

1

k � � � kmsg

2j�1

;R

V

) | (2 � 2j � m(k) � 1) Next veri�er message as a

funtion of publi key, onversation pre�x and oins R

V

sid

P

 ID(prvsid; sk;msg

1

k � � � kmsg

m(k)

;R

P

) | Prover's session id as a funtion of seret key, full

onversation and oins

sid

V

kdeision  ID(vfend; pk;msg

1

k � � � kmsg

m(k)

;R

V

) | Veri�er session id and deision (aept or

rejet) as a funtion of publi key, full onversation and oins

Figure 1: The prover sends the �rst and last messages in an m(k)-move identi�ation protool at

the end of whih the veri�er outputs a deision and eah party optionally outputs a session id. The

protool desription funtion ID spei�es all proesses assoiated to the protool.

msg

2j+1

 ID(prvmsg; sk;msg

1

k � � � kmsg

2j

;R

P

)

EndFor

sid

P

 ID(prvsid; sk;msg

1

k � � � kmsg

m(k)

;R

P

)

sid

V

kdeision ID(vfend; pk;msg

1

k � � � kmsg

m(k)

;R

V

)

The ompleteness ondition is that, in the above experiment, the probability that sid

P

= sid

V

and

deision = aept is 1. (The probability is over the oin tosses of ID(keygen; k) and the random hoies

of R

P

; R

V

.) As always, the requirement an be relaxed to only ask for a probability lose to one.

Experiments and settings.Fix an identi�ation protool desription funtion ID and an adversary

I. Assoiated to them is Experiment

id-r1

ID;I

(k), depited in Figure 2, whih is used to de�ne the

seurity of ID in the CR1 setting. (In this ontext it is understood that ID is for the CR1 setting,

meaning does not produe session ids.) Experiment

id-r

ID;I

(k), depited in Figure 3, is used to de�ne

the seurity of ID in the CR2 setting.The experiment gives the adversary appropriate aess to prover

instane orales Prover

1

;Prover

2

; : : : and a single veri�er orale, let it query these subjet to ertain

restritions imposed by the experiment, and then determine whether it \wins". The interfae to the

prover instane orales and the veri�er orale (whih, in the experiment, are impliit, never appearing

by name) is via orale queries; the experiment enumerates the types of queries and shows how answers

are provided to them.

Eahexperiment begins with some initializations whih inlude hoosing of the keys. Then the

adversary is invoked on input the publi key. A WakeNewProver query ativates a new prover instane

Prover

p

by piking a random tape R

p

for it. (A random tape for a prover instane is hosen exatly

one and all messages of this prover instane are then omputed with respet to this tape. The
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Experiment

id-r1

ID;I

(k) | Exeution of protool ID with adversary I and seurity parameter k in the

CR1 setting

Initialization:

(1) (pk; sk) ID(keygen; k) // Pik keys via randomized key generation algorithm //

(2) Choose tape R

V

for veri�er at random ; C

V

 0 // Coins and message ounter for veri�er //

(3) p 0 // Number of ative prover instanes //

Exeute adversary I on input pk and reply to its orale queries as follows:

� When I makes query WakeNewProver // Ativate a new prover instane //

(1) p p+ 1 ; Pik a tape R

p

at random ; Return p

� When I makes query Send(prvmsg; i;msg

1

k � � � kmsg

2j

) with 0 � 2j < m(k) and 1 � i � p

(1) If C

V

6= 0 then Return ? // Interation with prover instane allowed only before interation

with veri�er begins //

(2) msg

2j+1

 ID(prvmsg; sk;msg

1

k � � � kmsg

2j

;R

i

)

(3) Return msg

2j+1

� When I makes query Send(vfmsg;msg

1

k � � � kmsg

2j�1

) with 1 � 2j � 1 � m(k)

(1) C

V

 C

V

+2

(2) If 2j < C

V

then Return ? // Not allowed to reset the veri�er //

(3) If 2j�1 < m(k)�1 then msg

2j

 ID(vfmsg; pk;msg

1

k � � � kmsg

2j�1

;R

V

) ; Return msg

2j

(4) If 2j�1=m(k) then deision ID(vfend; pk;msg

1

k � � � kmsg

2j

;R

V

)

(5) Return deision

Did I win? When I has terminated set Win

I

= true if deision = aept.

Figure 2: Experiment desribing exeution of identi�ation protool ID with adversary I and seurity

parameter k in the CR1 setting.

tape of a spei� prover instane annot be hanged, or \reset", one hosen.) A Send(prvmsg; i; x)

query |viewed as sent to prover instane Prover

i

| results in the adversary being returned the next

prover message omputed as ID(prvmsg; sk; x;R

i

). (It is assumed that x = msg

1

k � � � kmsg

2j

is a

valid onversation pre�x, meaning ontains an even number of messages 2j < m(k), else the query

is not valid.) Resetting is aptured by allowing arbitrary (valid) onversation pre�xes to be queried.

(For example the adversary might try msg

1

kmsg

2

for many di�erent values of msg

2

, orresponding

to suessively resetting the prover instane to the point where it reeives the seond protool move.)

Conurreny is aptured by the fat that any ativated prover instanes an be queried.

A Send(vfmsg; x) query is used to invoke the veri�er on a onversation pre�x x and results in

the adversary being returned either the next veri�er message omputed as ID(vfmsg;pk; x;R

V

) |

this when the veri�er still has a move to make| or the deision omputed as ID(vfend;pk; x;R

V

)

|this when x orresponds to a full onversation. (Here R

V

was hosen at random in the experiment

initialization step. It is assumed that x = msg

1

k � � � kmsg

2j�1

is a valid onversation pre�x, meaning

ontains an odd number of messages 1 � 2j � 1 � m(k), else the query is not valid.) Unlike a prover

instane, resetting the (single) veri�er instane is not allowed. (Our signature and enryption based

protools are atually seure even if veri�er resets are allowed, but sine the pratial need to onsider

this attak is not apparent, the de�nition exludes it.) This is enfored expliitly in the experiments

via the veri�er message ounter C

V

.

We now ome to the di�erene in the two settings:
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Experiment

id-r

ID;I

(k) | Exeution of protool ID with adversary I and seurity parameter k in the

CR2 setting

Initialization:

(1) (pk; sk) ID(keygen; k) // Pik keys via randomized key generation algorithm //

(2) Choose tape R

V

for veri�er at random ; C

V

 0 // Coins and message ounter for veri�er //

(3) p 0 // Number of ative prover instanes //

Exeute adversary I on input pk and reply to its orale queries as follows:

� When I makes query WakeNewProver // Ativate a new prover instane //

(1) p p+ 1 ; SID

p

 ; ; Pik a tape R

p

at random ; Return p

� When I makes query Send(prvmsg; i;msg

1

k � � � kmsg

2j

) with 0 � 2j < m(k) and 1 � i � p

(1) msg

2j+1

 ID(prvmsg; sk;msg

1

k � � � kmsg

2j

;R

i

) ; s msg

2j+1

(2) If 2j+1=m(k) then

sid ID(prvsid; sk;msg

1

k � � � kmsg

2j+1

;R

i

) ; s sksid

SID

i

 SID

i

[ fsidg

(3) Return s

� When I makes query Send(vfmsg;msg

1

k � � � kmsg

2j�1

) with 1 � 2j � 1 � m(k)

(1) C

V

 C

V

+2

(2) If 2j < C

V

then Return ? // Not allowed to reset the veri�er //

(3) If 2j�1 < m(k)�1 then msg

2j

 ID(vfmsg; pk;msg

1

k � � � kmsg

2j�1

;R

V

) ; Return msg

2j

(4) If 2j�1=m(k) then sid

V

kdeision ID(vfend; pk;msg

1

k � � � kmsg

2j

;R

V

) ;

Return sid

V

kdeision

Did I win? When I has terminated set Win

I

= true if either of the following are true:

(1) deision = aept and sid

V

62 SID

1

[ � � � [ SID

p

.

(2) There exist 1 � a < b � p with SID

a

\ SID

b

6= ;

Figure 3: Experiment desribing exeution of identi�ation protool ID with adversary I and seurity

parameter k in the CR2 setting.

CR1 setting: The adversary's ations are divided into two phases. In the �rst phase it interats

with the prover instanes, not being allowed to interat with the veri�er; in the seond phase it is

denied aess to the prover instanes and tries to onvine the veri�er to aept. Experiment

id-r1

ID;I

(k)

enfores this by returning ? in reply to a Send(prvmsg; i; x) unless C

V

= 0.

CR2 setting: The prover instanes and the veri�er instane are available simultaneously to the adver-

sary. In partiular it an relay message bak and forth between them.

What's a win? In the CR1 setting it is easy to say what it should mean for the adversary to

\win:" it should make the veri�er instane aept. The parameter Win

I

is set aordingly in

Experiment

id-r1

ID;I

(k). What it means for the adversary to \win" is less lear in the CR2 setting

beause here there is one easy way for the adversary to make the veri�er aept: play \man in the

middle" between the veri�er and some prover instane, relaying messages bak and forth between

them until the veri�er aepts. Yet, it is lear that this is not really an attak; there is no harm in

the veri�er aepting under these onditions sine in fat it was atually talking to the prover. Rather

this example highlights the fat that the de�nitional issues of the seond setting are signi�antly more

hallenging than those of the �rst setting: how exatly do we say what it means for the adversary

9



to win? Lukily, however, this problem has already been solved. The �rst proposed de�nition, due

to Bellare and Rogaway [9℄, is based on the idea of \mathing onversations" and orresponds to a

very stringent seurity requirement. Another possible de�nition is that of [8℄ whih uses the idea of

\mathing session ids." (The idea goes bak to Bellare, Petrank, Rako� and Rogaway, 1996.) We

will use the latter de�nitional approah.

View a session id shared between a prover instane and the veri�er as a \onnetion name," enabling

the veri�er to di�erentiate between di�erent prover instanes. It is not seret, and in partiular will

be given to the adversary. (In setting one, even though there are many prover instanes, a session id

is not neessary to di�erentiate them from the point of view of the veri�er beause only one prover

instane an interat with the veri�er at any time.) In the absene of an adversary, the session ids

output by a prover instane and the veri�er at the end of their interation must be the same, but with

high probability no two di�erent prover instanes should have the same session id, sine otherwise the

veri�er annot tell them apart. Vitory for the adversary now will orrespond to making the veri�er

aept with a session id not held by any prover instane. (We also delare the adversary vitorious if

it \onfuses" the veri�er by managing to make two di�erent prover instanes output the same session

id.) The parameter Win

I

is set aordingly in Experiment

id-r

ID;I

(k). Session ids are publi in the

sense that the adversary gets to see those reated by any instanes with whih it interats.

Definition of seurity. The experiments indiate under what onditions adversaries are delared

to \win." The de�nition of the protool is responsible for ensuring that both parties rejet a reeived

onversation pre�x if it is inonsistent with their oins. It is also assumed that the adversary never

repeats an orale query. We an now provide de�nitions of seurity for protool ID.

De�nition 2.1 [Seurity of an ID protool in the CR1 setting℄ Let ID be an identi�ation

protool desription for the CR1 setting. Let I be an adversary (alled an impersonator in this

ontext) and let k be the seurity parameter. The advantage of impersonator I is

Adv

id-r1

ID;I

(k) = Pr [Win

I

= true ℄

where the probability is with respet to Experiment

id-r1

ID;I

(k). Protool ID is said to be polynomially-

seure in the CR1 setting if Adv

id-r1

ID

(�) is negligible for any impersonator I of time-omplexity poly-

nomial in k.

We adopt the onvention that the time-omplexity t(k) of an adversary I is the exeution time of

the entire experiment Experiment

id-r1

ID;I

(k), inluding the time taken for initialization, omputation

of replies to adversary orale queries, and omputation of Win

I

. We also de�ne the query-omplexity

q(k) of I as the number of Send(prvmsg; �; �) queries made by I in Experiment

id-r1

ID;I

(k). It is always

the ase that q(k) � t(k) so an adversary of polynomial time-omplexity has polynomial query-

omplexity. These de�nitions and onventions an be ignored if polynomial-seurity is the only onern,

but simplify onrete seurity onsiderations to whih we will pay some attention later.

A de�nition of seurity for the CR2 setting an be found in [5℄.

De�nition 2.2 [Seurity of an ID protool in the CR2 setting℄ Let ID be an identi�ation

protool desription. Let I be an adversary (alled an impersonator in this ontext) and let k be the

seurity parameter. The advantage of impersonator I is

Adv

id-r2

ID;I

(k) = Pr [Win

I

= true ℄

where the probability is with respet to Experiment

id-r

ID;I

(k). Protool ID is said to be polynomially-

seure in the CR2 setting if Adv

id-r2

ID

(�) is negligible for any impersonator I of time-omplexity poly-

nomial in k.

We adopt the same onventions regarding time and query omplexity as above.
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Prover Veri�er

pk; sk ; Coins: R

P

= " pk ; Coins: R

V

= h

V

start

-

h

V

�

sig DS(sign; sk;h

V

)

sig

-

Output: deision = DS(vf; pk;h

V

; sig)

ID(keygen; k) = DS(keygen; k) | ID has same key generation proess as DS

ID(prvmsg; sk; x;R

P

) where jR

P

j = 0

{ Parse x as msg

1

k � � � kmsg

l

{ If l 62 f0; 2g then Return ?

{ If l = 0 then Return start

{ If jmsg

2

j 6= vl(k) then Return ?

{ h

V

 msg

2

; sig DS(sign; sk;h

V

)

{ Return sig

ID(prvsid; sk; x;R

P

) where jR

P

j = 0

{ Return "

ID(vfmsg; pk; x;R

V

) where jR

V

j = vl (k)

{ Parse x as msg

1

k � � � kmsg

l

{ If l 6= 1 then Return ?

{ h

V

 R

V

{ Return h

V

ID(vfend; pk; x;R

V

) where jR

V

j = vl(k)

{ Parse x as msg

1

k � � � kmsg

l

{ If l 6= 3 or msg

2

6= R

V

then Return ?

{ h

V

 msg

2

; sig msg

3

{ deision DS(vf ; pk;h

V

; sig)

{ Return "kdeision

Figure 4: Reset-seure identi�ation protool ID for the CR1 setting based on a deterministi, stateless

digital signature sheme DS: Shemati followed by full protool desription.

More. Appendix A ontains more information about the notions inluding omparison with previous

de�nitions in the literature.

3 CR1-seure Identi�ation protools

Four paradigms are illustrated: signature based, enryption based, identi�ation based, and zero-

knowledge based.

3.1 A signature based protool

We assume knowledge of bakground in digital signatures as summarized in Appendix B.1.

Signature based identifiation. A natural identi�ation protool is for the veri�er to issue a

random hallenge h

V

and the prover respond with a signature of h

V

omputed under its seret key

sk. (Pre�x the protool with an initial start move by the prover to request start of an identi�ation

proess, and you have a three move protool.) This simple protool an be proven seure in the

serial, non-resettable (ie. standard smartard) setting of [18℄ as long as the signature sheme meets

the notion of seurity of [23℄ provided in De�nition B.1. (This result seems to be folklore.) The same

protool has also been proven to provide authentiation in the onurrent, non-resettable (ie. standard

network) setting [3℄. (The intuition in both ases is that the only thing an adversary an do with a

prover orale is feed it hallenge strings and obtain their signatures, and if the sheme is seure against

hosen-message attak this will not help the adversary forge a signature of a hallenge issued by the

veri�er unless it guesses the latter, and the probability of the last event an be made small by using
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a long enough hallenge.) This protool is thus a natural andidate for identi�ation in the resettable

setting.

However this protool does not always provide seurity in the resettable setting. The intuition

desribed above breaks down beause resetting allows an adversary to obtain the signatures of di�erent

messages under the same set of oins. (It an ativate a prover instane and then query it repeatedly

with di�erent hallenges, thereby obtaining their signatures with respet to a �xed set of oin tosses.)

As explained in Appendix B.1, this is not overed by the usual notion of a hosen-message attak used

to de�ne seurity of signature shemes in [23℄. And indeed, for many signature shemes it is possible

to forge the signature of a new message if one is able to obtain the signatures of several messages

under one set of oins. Similarly, if the signing algorithm is stateful, resetting allows an adversary to

make the prover release several signatures omputed using one value of the state variable |e�etively,

the prover does not get a hane to update its state is it expets to| again leading to the possibility

of forgery on a sheme seure in the standard sense.

The solution is simple: restrit the signature sheme to be stateless and deterministi. In Appendix B.1we

explain how signatures shemes an be imbued with these attributes so that stateless, deterministi

signature shemes are available.

Protool and seurity. Let DS be a deterministi, stateless signature sheme. Figure 4 illus-

trates the ows of the assoiated identi�ation protool IDand then provides the protool desription.

(The latter inludes several heks omitted in the piture but important for seurity against resets.)A

parameter of the protool is the length vl(k) of the veri�er's random hallenge. The prover is deter-

ministi and has random tape " while the veri�er's random tape is h

V

. Refer to De�nition 2.1 and

De�nition B.1 for the meanings of terms used in the theorem below, and to Setion D.1 for the proof.

Theorem 3.1 [Conrete seurity of the signature based ID sheme in the CR1 setting℄ Let

DS be a deterministi, stateless signature sheme, let vl(�) be a polynomially-bounded funtion, and

let ID be the assoiated identi�ation sheme as per Figure 4. If I is an adversary of time-omplexity

t(�) and query-omplexity q(�) attaking ID in the CR1 setting then there exists a forger F attaking

DS suh that

Adv

id-r1

ID;I

(k) � Adv

ds

DS;F

(k) +

q(k)

2

vl(k)

: (1)

Furthermore F has time-omplexity t(k) and makes at most q(k) signing queries in its hosen-message

attak on DS.

This immediately implies the following:

Corollary 3.2 [Polynomial-seurity of the signature based ID sheme in the CR1 setting℄

Let DS be a deterministi, stateless signature sheme, let vl(k) = k, and let ID be the assoiated

identi�ation sheme as per Figure 4. If DS is polynomially-seure then ID is polynomially-seure in

the CR1 setting.

Corollary 3.2 together with Proposition B.2 imply:

Corollary 3.3 [Existene of an ID sheme polynomially-seure in the CR1 setting℄ Assume

there exists a one-way funtion. Then there exists an identi�ation sheme that is polynomially-seure

in the CR1 setting.

This means that we an prove the existene of an identi�ation protool seure in the CR1 setting

under the minimal omplexity assumption of a one-way funtion.
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Prover Veri�er

pk; sk ; Coins: R

P

= " pk ; Coins: R

V

= h

V

kR

e

start

-

txt AE(en; pk;h

V

;R

e

)

txt

�

ptxt AE(de; sk;txt)

ptxt

-

If h

V

= ptxt

then deision aept

else deision rejet

Output: deision

ID(keygen; k) = AE(keygen; k) | ID has same key generation proess as AE

ID(prvmsg; sk; x;R

P

) where R

P

= "

{ Parse x as msg

1

k � � � kmsg

l

{ If l 62 f0; 2g then Return ?

{ If l = 0 then Return start

{ txt msg

2

; ptxt AE(de; sk;txt)

{ If jptxtj 6= vl(k) then Return ?

{ Return ptxt

ID(prvsid; sk; x;R

P

) where R

P

= "

{ Return "

ID(vfmsg; pk; x;R

V

)

{ Parse R

V

as h

V

kR

e

with jh

V

j = vl(k)

{ Parse x as msg

1

k � � � kmsg

l

{ If l 6= 1 then Return ?

{ txt AE(en; pk;h

V

;R

e

)

{ Return txt

ID(vfend; pk; x;R

V

)

{ Parse R

V

as h

V

kR

e

with jh

V

j = vl (k)

{ Parse x as msg

1

k � � � kmsg

l

{ If l 6= 3 then Return ?

{ ptxt msg

3

; sid h

V

{ If ptxt = h

V

then deision aept else deision rejet

{ Return "kdeision

Figure 5: Reset-seure identi�ation protool ID for the CR1 setting based on a hosen-iphertext

attak seure asymmetri enryption sheme AE: Shemati followed by full protool desription.

3.2 An enryption based protool

Enryption based identifiation. The idea is simple: the prover proves its identity by proving

its ability to derypt a iphertext sent by the veri�er. This basi idea goes bak to early work in

entity authentiation where the enryption was usually symmetri (ie. private-key based). These

early protools however had no supporting de�nitions or analysis. The �rst \modern" treatment

is that of [15℄ who onsidered the paradigm with regard to providing deniable authentiation and

identi�ed non-malleability under hosen-iphertext attak |equivalently, indistinguishability under

hosen-iphertext attak [4, 15℄| as the seurity property required of the enryption sheme. Results

of [3, 17, 15℄ imply that the protool is a seure identi�ation sheme in the onurrent non-reset

setting, but reset attaks have not been onsidered before.

Protool and seurity. Let AE be an asymmetri enryption sheme polynomially-seure against

hosen-iphertext attak. Figure 5 illustrates the ows of the assoiated identi�ation protool ID

and then provides the protool desription. A parameter of this protool is the length vl(k) of the

veri�er's random hallenge. The veri�er sends the prover a iphertext formed by enrypting a random

hallenge, and the prover identi�es itself by orretly derypting this to send the veri�er bak the

hallenge. The prover is deterministi, having random tape ". We make the oins R

e

used by the
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Prover Veri�er

pk = (pk

CID

; pk

TDC

); sk = sk

CID

pk

Coins: R

P

= � Coins: R

V

= h

V

kR



start

-

tdom 

T DC(mt; pk

TDC

;h

V

;R



)

tdom

�

R

CID

 PRF(eval; �;tdom)

om CID(mt; sk

CID

;R

CID

)

om

-

h

V

kR



�

If T DC(vf ; pk

TDC

;tdom;h

V

kR



) = aept

then resp CID(resp; sk

CID

;omkh

V

;R

CID

)

else resp ?

resp

-

deision CID(vf; pk

CID

;omkh

V

kresp)

Output: deision

ID(keygen; k) = CID(keygen; k) and T DC(keygen; k)

Figure 6: Reset-seure identi�ation protool ID for the CR1 setting based on an identi�ation sheme

CID seure against non-resetting CR1 attaks

enryption algorithm expliit, so that the veri�er's random tape onsists of the hallenge |a random

string of length vl(k) where vl is a parameter of the protool| and oins suÆient for one invoation

of the enryption algorithm. Refer to De�nition 2.1 and De�nition B.3 for the meanings of terms used

in the theorem below, and to Setion D.2 for the proof.

Theorem 3.4 [Conrete seurity of the enryption based ID sheme in the CR1 setting℄

Let AE be an asymmetri enryption sheme, let vl(�) a polynomially-bounded funtion, and let ID

be the assoiated identi�ation sheme as per Figure 5. If I is an adversary of time-omplexity t(�) and

query-omplexity q(�) attaking ID in the CR1 setting then there exists an eavesdropper E attaking

AE suh that

Adv

id-r1

ID;I

(k) � Adv

lr-a

AE ;E

(k) +

2q(k) + 2

2

vl(k)

: (2)

Furthermore E has time-omplexity t(k), makes one query to its lr-enryption orale, and at most

q(k) queries to its deryption orale.

This immediately implies the following:

Corollary 3.5 [Polynomial-seurity of the enryption based ID sheme in the CR1 setting℄

Let AE be an asymmetri enryption sheme, let vl(k) = k, and let ID be the assoiated identi�ation

sheme as per Figure 5. If AE is polynomially-seure against hosen-iphertext attak then ID is

polynomially-seure in the CR1 setting.

3.3 An identi�ation based protool

Identifiation based protool. As disussed in the introdution, proof of knowledge based
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identi�ation protools of the Fiat-Shamir type annot be seure against reset attaks. In this setion,

however, we present a general transformation of suh identi�ation shemes into seure ones in the

CR1 setting. We start with identi�ation shemes that onsists of three moves, an initial ommitment

om of the prover, a random value h

V

, the hallenge, of the veri�er and a onlusive response resp

from the prover. We all a protool obeying this struture a anonial identi�ation sheme.

Loosely speaking, we will assume that the underlying anonial idential sheme CID is seure

against non-resetting attaks in the CR1 model, i.e., against attaks where the adversary merely runs

onurrent sessions with the prover without resets before engaging in a veri�ation. In addition to

the Fiat-Shamir system [20℄, most of the well-known pratial identi�ation shemes also ahieve

this seurity level, for example Ong-Shnorr [29, 32℄ for some system parameters, Okamoto-Guillou-

Quisquater [25, 28℄ and Okamoto-Shnorr [31, 28℄. Nonetheless, there are also protools whih are

only known to be seure against sequential attaks (e.g. [33℄).

To avoid onfusion with the derived sheme ID, instead of writing Send(prvmsg; : : :) and

Send(vfmsg; : : :), we denote the algorithms generating the ommitment, hallenge and response mes-

sage for the CID-protool CID by CID(mt; : : :), CID(hall; : : :), and CID(resp; : : :), respetively,

and the veri�ation step by CID(vf; : : :). We also write Adv

id-nr-r1

CID;I

CID

(k) for the probability that an

impersonator I

CID

sueeds in an attak on sheme CID in the non-resetting CR1 setting.

Protool and seurity. Our solution originates from the work of [11℄ about resettable zero-

knowledge. In order to ensure that the adversary does not gain any advantage from resetting the

prover, we insert a new �rst round into the CID-identi�ation protool in whih the veri�er non-

interatively ommits to his hallenge h

V

. The parameters for this ommitment sheme beome part

of the publi key. This keeps the adversary from resetting the prover to the hallenge-message and

ompleting the protool with di�erent hallenges.

In addition, we let the prover determine the random values in his identi�ation by applying a

pseudorandom funtion to the veri�er's initial ommitment. Now, if the adversary resets the prover

(with the same random tape) to the outset of the protool and ommits to a di�erent hallenge

then the prover uses virtually independent randomness for this exeution, although having the same

random tape. On the other hand, using pseudorandom values instead of truly random oins does not

weaken the original identi�ation protool notieably. Essentially, this prunes the CR1 adversary into

a non-resetting one onerning exeutions with the prover.

In order to handle the intrusion try we use use a speial, so-alled trapdoor ommitment sheme

T DC for the veri�er's initial ommitment. This means that there is a seret information suh that

knowledge of this seret allows to generate a dummy ommitment and to �nd a valid opening to any

value later on. Furthermore, the dummy ommitment and the fake deommitment are identially

distributed to an honestly given ommitment and opening to the same value. Without knowing the

seret a ommitment is still solidly binding. Trapdoor ommitment shemes exist under standard

assumptions like the intratability of the disrete-log or the RSA or fatoring assumption [10℄ and

thus under the same assumptions that the aforementioned CID-identi�ation protools rely on.

Basially, a trapdoor ommitment enables us to redue an intrusion try of an impersonator I in

the derived sheme ID to one for the CID-protool. If I initiates a session with the veri�er in ID

then we an �rst ommit to a dummy value 0

vl(k)

without having to ommuniate with the veri�er in

CID. When I then takes the next step by sending om, we forward this ommitment to our veri�er

in CID and learn the veri�er's hallenge. Knowing the seret key sk

TDC

for the trapdoor sheme we

an then �nd a valid opening for our dummy ommitment with respet to the hallenge. Finally, we

forward I's response in our attak.

The sheme is displayed in Figure 6. See Appendix B.3 and B.4 for de�nitions and notions.

The disussion above indiates that any adversary I for ID does not have muh more power than a

non-resetting impersonator attaking CID and seurity of ID follows from the seurity of CID.
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Theorem 3.6 [Conrete seurity of the identi�ation based sheme in the CR1 setting℄ Let

CID be an CID-identi�ation protool and let vl(�) be a polynomially-bounded funtion. Also, let

PRF be a pseudorandom funtion family and denote by T DC a trapdoor ommitment sheme. Let

ID be the assoiated identi�ation sheme as per Figure 6. If I is an adversary of time-omplexity

t(�) and query-omplexity q(�) attaking ID in the CR1 setting then there exists an adversary I

CID

attaking CID in a non-resetting CR1 attak suh that

Adv

id-r1

ID;I

(k) � q(k) �Adv

PRF

(t;q)

(k) +Adv

T DC

t

(k) +Adv

id-nr-r1

CID;I

CID

(k) : (3)

Furthermore I

CID

has time-omplexity t(k) and runs at most q(k) sessions with the prover before

trying to intrude.

As usual we have:

Corollary 3.7 [Polynomial-seurity of the identi�ation based sheme in the CR1 setting℄

Let PRF be a polynomially-seure pseudorandom funtion family and let T DC be a polynomially-

seure trapdoor ommitment sheme, set vl(k) = k, and let ID be the assoiated identi�ation sheme

as per Figure 6. If CID is a polynomially-seure CID-identi�ation protool in the non-resetting CR1

model then ID is polynomially-seure in the CR1 setting.

Note that the publi key in our CR1-seure identi�ation sheme onsists of two independent parts,

pk

CID

and pk

TDC

. For onrete shemes the key generation may be ombined and simpli�ed. For

instane, for Okamoto-Shnorr the publi key of the identi�ation protool desribes a group of prime

order q, two generators g

1

; g

2

of that group and the publi key X = g

x

1

1

g

x

2

2

for seret x

1

; x

2

2 Z

q

. The

prover sends om = g

r

1

1

g

r

2

2

and replies to the hallenge h

V

by transmitting y

i

= r

i

+h

V

x

i

mod q for

i = 1; 2. In this ase, the publi key for the trapdoor ommitment sheme ould be given by g

1

; g

3

= g

z

1

for random trapdoor z 2 Z

q

, and the ommitment funtion maps a value  and randomness R



to

g



1

g

R



3

.

3.4 A zero-knowledge based protool

As we disussed in the Introdution the idea of [18℄ of proving identity by employing a zero knowledge

proof of knowledge has been the aepted paradigm for identi�ation protools in the smartard

setting. Unfortunately, as we indiated, in the resettable setting this paradigm annot work.

Resettable Zero Knowledge Based Identity. We thus instead propose the following paradigm.

Let L be a hard NP language for whih there is no known eÆient proedures for membership testing

but for whih there exists a randomized generating algorithm G whih outputs pairs (x;w), where

x 2 L and w is an NP-witness that x 2 L. (The distribution aording to whih (x;w) is generated

should be one for whih it is hard to tell whether x 2 L or not). Eah user Alie will run G to get a

pair (x;w) and will then publish x as its publi key. To prove her identity Alie will run a resettable

zero-knowledge proof that x 2 L.

Protool. To implement the above idea we need resettable zero-knowledge proofs for L. For this we

turn to the work of [11℄. In [11℄ two resettable zero-knowledge proofs for any NP language are proposed:

one whih takes a non-onstant number of rounds and works against a omputationally unbounded

prover, and one whih only takes a onstant number of rounds and works against omputationally

bounded provers (i.e argument) and requires the veri�ers to have published publi-keys whih the

prover an aess. We propose to utilize the latter, for eÆieny sake. Thus, to implement the

paradigm, we require both prover and veri�er to have publi-keys aessible by eah other. Whereas

the prover's publi key is x whose membership in L it will prove to the veri�er, the veri�er's publi key

in [11℄ is used for speifying a perfetly private omputationally binding ommitment sheme whih
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the prover must use during the protool. (Suh ommitment shemes exist based for example on the

strong hardness of Disrete Log Assumption.)

Seurity. We briey outline how to prove that the resulting ID protool is seure in the CR1

setting. Suppose not, and that after launhing a CR1 attak, an imposter an now falsely identify

himself with a non-negligible probability. Then, we will onstrut a polynomial time algorithm A to

deide membership in L. On input x, A �rst launhes the o�-line resetting attak using x as the publi

key and the simulator { whih exists by the zero-knowledge property { to obtain views of the protool

exeution. (This requires that the simulator be blak-box, but this is true in the known protools.) If

x 2 L, this view should be idential to the view obtained during the real exeution, in whih ase a

suessful attak will result, whih is essentially a way for A to �nd a language membership proof. If

x not in L, then by the soundness property of a zero-knowledge proof, no matter what the simulator

outputs, it will not be possible to prove membership in L.
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A Remarks about the notions of seurity

The identifiation problem being onsidered. We are onsidering unilateral identi�ation.

(One party, the prover, wants to identify itself to another party, the veri�er. The other possibility

is multilateral identi�ation in whih both parties want to identify themselves to eah other.) We

are in a publi-key setting, also alled the asymmetri setting. (The prover's publi key is known

to the veri�er. Other possibilities are that the identi�ation is based on shared keys, also alled the

symmetri setting, or involves a trusted authentiation server, the so-alled three party setting.) In

some ontexts |notably that of authentiated session-key exhange in a onurrent setting| the

identi�ation problem has been alled the entity authentiation problem. It is the same problem.

Identifiation as a prelude to seure sessions and the role of session keys. Identi�ation

is hardly an end in itself: an entity goes through an identi�ation proess in order to then ondut

some transation that is allowed only to this entity. For example, you �rst identify yourself to the

ATM mahine and then withdraw ash. As this example indiates we imagine the transation as an

exhange between prover and veri�er taking plae after the veri�er has aepted in the identi�ation

protool. In the smartard setting (setting one) this piture is valid beause one identi�ation is

ompleted, an adversary annot step in. (Your ard is in the ATM mahine and until it is removed the

adversary is ut o�.) In the Internet setting (setting two) however, identi�ation by itself is largely

useless beause an adversary an \hijak" the ensuing session, meaning impersonate the prover in

the transation ows that follow the identi�ation, by simply waiting for the veri�er to aept and

then sending its own messages to the veri�er. To have seure transations, some information from

the identi�ation proess must be used to authentiate ows in the transation. This information is

usually a session key. Identi�ation without session key exhange is for pratial purposes hardly useful

in setting two, whih is why previous works suh as [9, 8℄ have looked at the problems in ombination.

In this paper however our fous is the new issues raised by reset attaks and in order to get a better

understanding of them in setting two we simplify by deoupling the identi�ation and the session key

exhange. Our protools an be modi�ed to also distribute a session key.

The need for multiple prover instanes. Could we simplify the model by providing only a

single prover-instane orale? The answer is no. We an give an example protool that is seure if

the adversary an aess only a single prover instane, but is inseure if the adversary an aess

polynomially-many prover instanes.

B Primitives used and their seurity

Our protools make use of signature shemes satisfying some speial properties, and of standard

hosen-iphertext seure enryption shemes. This setion realls the neessary bakground.
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(pk; sk) DS(keygen; k) | Generate publi key pk and mathing seret key sk

sig DS(sign; sk;msg) | Compute signature of message msg

deision DS(vf; pk;msg; sig) | Verify that sig is a valid signature of msg (aept or rejet)

Figure 7: The digital signature sheme desription DS desribes all funtionalities assoiated to the

signature sheme.

B.1 Stateless digital signature shemes

Signature shemes. A digital signature sheme is spei�ed by a desription funtion DS, whih, as

indiated in Figure 7, spei�es how keys are generated, how messages are signed, and how andidate

signatures are veri�ed. (As usual it is required that true signatures |meaning those generated by

DS(sign; sk; �)| always suessfully pass the veri�ation test.) The key generation algorithm is prob-

abilisti and the veri�ation algorithm is deterministi. The signature algorithm merits a separate

disussion whih will ome later.

Seurity of a signature sheme. The usual de�nition of seurity against hosen-message attak

is adopted [23℄.

De�nition B.1 [Seurity of a digital signature sheme℄ Let DS be a digital signature sheme

desription, F an adversary (alled a forger in this ontext) having aess to an orale, and k the

seurity parameter. De�ne

Experiment

ds

DS;F

(k)

(pk; sk) DS(keygen; k) ; Win

F

 false

(msg; sig) F

DS(sign;sk;�)

(pk)

If DS(vf;pk;msg; sig) = aept and F never made orale query msg

then Win

F

 true

The advantage of forger F is

Adv

ds

DS;F

(k) = Pr [Win

F

= true ℄

where the probability is with respet to Experiment

ds

DS;F

(k). Digital signature sheme DS is said

to be polynomially-seure if Adv

ds

DS

(�) is negligible for any forger F of time-omplexity polynomial in

k.

The time-omplexity t(k) of adversary F is de�ned as the exeution time of Experiment

ds

DS;F

(k), as

with previous de�nitions.

State and randomization in signing. The signing algorithm DS(sign; sk; �) might be stateful (and

possibly randomized); randomized but not stateful; or deterministi and stateless. We label a sheme

in this regard aording to the attribute of its signing algorithm, meaning the sheme is referred to as

stateful (resp. stateless, randomized, deterministi) if the signing algorithm is stateful (resp. stateless,

randomized, deterministi). The di�erene is important to the appliation to identi�ation so we detail

it. In a stateful sheme |this is alled \history dependent" in some works [23℄| the signer maintains

some state information state aross invoations of the signing proedure. When a message is reeived,

the signer ips some oins; then produes a signature as a funtion of state, the oins ipped, the

message and the keys; then updates state as a funtion of the oins and message; �nally stores state

so that it is available at the next invoation of the signing proedure. In a randomized but stateless

sheme, the signing algorithm ips oins upon eah invoation, but no global state is maintained aross

invoations. In the simplest ase the signing algorithm is not randomized (ie. deterministi) and not

stateful (ie. stateless). It assoiates to any message a unique signature.
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De�nition B.1 applies regardless of whether the signing proedure is stateful or stateless, ran-

domized or deterministi. But we stress that the orale DS(sign; sk; �) provided to the forger F in

De�nition B.1 is responsible for implementing any statefulness or randomization in the signing proess

and does so as desribed above. In partiular, if the sheme is randomized, fresh oins are piked and

used upon eah invoation of the orale; if the sheme is stateful, the orale maintains and updates

the state. (In partiular the adversary has no way to fore the orale to reuse a partiular set of oins

for two signatures. This will be important later.)

The basi versions of the shemes of [23, 7, 26, 35℄ are (randomized and) stateful. The more eÆ-

ient shemes of [16, 12℄ are also (randomized and) stateful. Examples of (randomized but) stateless

shemes are those of [24, 14℄. Although there seem to be few shemes that are \naturally" stateless,

deterministi and seure, any signature sheme an be made stateless and deterministi while preserv-

ing seurity. A well-known transformation |attributed in [23℄ to Goldreih and Levin| transforms

a stateful sheme into a (randomized but) stateless one by using a binary tree struture. A stateless

signing algorithm an be derandomized |while preserving statelessness and seurity| via the follow-

ing (folklore) trik: the seret key is expanded to inlude a key � speifying an instane PRF(eval; �; �)

of a family of pseudorandom funtions (see [21℄ or Appendix B.3), and to sign message msg ompute

R

msg

= PRF(eval; �;msg) and use R

msg

as the oins f or the signing algorithm. Combining this

with Rompel's result [35℄ implies:

Proposition B.2 If there exists a one-way funtion then there exists a stateless, determinsti polynomially-

seure digital signature sheme.

This addresses the \theoretial" question of the existene of stateless, deterministi signature shemes

by indiating they exist under the minimal possible omplexity assumption. The next question |on

the \pratial" side| is about the ost of available solutions. The most eÆient known signature

shemes that are provably-seure under standard |meaning non-random orale| assumptions are

those of [24, 14℄. These shemes are randomized but stateless. Derandomization is heap if properly

implemented: Instantiate the pseudorandom funtion used in the derandomization proess disussed

above with a blok ipher, and the impat on the ost of signing |already involving publi key

operations| is negligible. In this way we get eÆient, stateless, deterministi signature shemes that

are provably polynomially-seure under standard assumptions. (One an also onsider the earlier

shemes of [16, 12℄ but they are less eÆient than those of [24, 14℄ and also are stateful. Making a

stateful sheme stateless seems to be more ostly than derandomizing an already stateless sheme.)

B.2 CCA2-seure Enryption shemes

Enryption shemes. An asymmetri enryption sheme is spei�ed by a desription funtion

AE , whih as indiated, in Figure 8, spei�es how keys are generated, how messages are enrypted,

and how iphertexts are derypted. (As usual it is required that if iphertext txt is generated

via AE(en;pk;msg) then AE(de;pk; sk;txt) returns msg.) The key generation and enryption

algorithms are probabilisti while the deryption algorithm is deterministi.

Seurity of an enryption sheme. We require indistinguishability against hosen-iphertext

attak. The version of the de�nition we adopt, from [1℄, allows the adversary multiple \test" message

pairs rather than a single one, and was shown by them to be polynomially equivalent to the more

standard formuation of [34℄. De�ne LR(msg

0

;msg

1

; b) = msg

b

for any equal-length strings msg

0

;msg

1

and bit b.

De�nition B.3 [Seurity of an enryption sheme under hosen-iphertext attak℄ Let AE

be an asymmetri enryption sheme desription. Let E be an adversary (alled an eavesdropper in
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(pk; sk) AE(keygen; k) | Generate publi key pk and mathing seret key sk

txt AE(en; pk;msg) | Compute enryption of message msg

out  AE(de; pk; sk;txt) | The deryption proedure takes the publi key, seret key and a

iphertext txt and returns out whih is either a message msg or the speial symbol ? to indiate

it onsidered the iphertext invalid.

Figure 8: The asymmetri enryption sheme desription AE desribes all funtionalities assoiated

to the enryption sheme.

this ontext) having aess to two orales, the �rst taking as input any two strings of equal length and

the seond any string. Let k be the seurity parameter. De�ne

Experiment

lr-a

AE ;E

(k)

(pk; sk) AE(keygen; k) ; Win

E

 false

b

R

 f0; 1g // Random hallenge bit //

gb E

AE(en;pk;LR(�;�;b));AE(de;pk;sk;�)

(pk) // Eavesdropper's guess bit //

If gb = b and AE(de;pk; sk; �) was never alled on a iphertext

returned by AE(en;pk; LR(�; �;b))

then Win

E

 true

The advantage of eavesdropper E is

Adv

ds

AE ;E

(k) = 2 � Pr [Win

E

= true ℄� 1

where the probability is with respet to Experiment

lr-a

AE ;E

(k). Asymmetri enryption sheme AE is

said to be polynomially-seure if Adv

lr-a

AE

(�) is negligible for any eavesdropper E of time-omplexity

polynomial in k.

We all AE(en;pk; LR(�; �;b)) the \lr-enryption orale" where \lr" stands for \left or right."

B.3 Pseudorandom funtions

Pseudorandom funtions. We keep the de�nition as simple as possible for our purpose. A pseu-

dorandom funtion family is a funtion PRF(eval; �; �) in two arguments. The �rst argument, alled

the key, has k bits and de�nes in a straightforward way a funtion PRF(eval; �; �) for any � 2 f0; 1g

k

.

For every � 2 f0; 1g

k

the funtion PRF(eval; �; �) has input and output length inl(k) and outl(k); the

atual hoie of inl(�) and outl(�) depends on the appliation.

Seurity of a pseudorandom funtions. We adopt the de�nition of pseudorandom funtions

being indistinguishable from random funtions [21℄:

De�nition B.4 [Seurity of a pseudorandom funtion family℄ Let PRF be a pseudorandom

funtion family, D an adversary (alled a distinguisher in this ontext) having aess to an orale, and

k the seurity parameter. De�ne

Experiment

prf-dist

PRF ;D

(k; b)

If b = 0 then �

R

 f0; 1g

k

and let O(�) = PRF(eval; �; �)

If b = 1 then let O(�) be a random funtion with input/output length inl(k) and outl(k)

gb

b

 D

O(�)

(k)

The advantage of distinguisher D is

Adv

prf-ind

PRF ;D

(k) = jPr [ gb

1

= 1 ℄� Pr [ gb

0

= 1 ℄ j
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(pk; sk) T DC(keygen; k) | Generate publi key pk and seret key sk

tdom T DC(mt; pk; ;R



) | Compute ommitment of value  with randomness R



deision  T DC(vf ; pk;tdom; kR



) | Verify that tdom is ommitment of  and randomness

R



(

0

; R

0



); T DC(fake; sk; kR



; 

0

) | Given a value  and randomness R



and another value 

0

use

the seert key sk to �nd R

0



suh that 

0

; R

0



and ; R



yield the same ommitment

Figure 9: The trapdoor ommitment sheme desription T DC desribes all funtionalities assoiated

to the trapdoor ommitment sheme.

where the probabilities are with respet to Experiment

prf-dist

PRF ;D

(k; b). The time-omplexity t(k) of

D is de�ned as the maximum exeution time Experiment

prf-dist

PRF ;D

(k; b) for b = 0; 1, and the query-

omplexity is the maximum number of queries D makes to the orale in either experiment. Set

Adv

PRF

(t;q)

(k) to be the maximum Adv

prf-ind

PRF ;D

(k) over all distinguishers D with time-omplexity t(k)

and query-omplexity q(k). The pseudorandom funtion family PRF is alled polynomially-seure if

Adv

prf-ind

PRF ;D

(�) is negligible for any distinguisher D of time-omplexity polynomial in k.

B.4 Trapdoor ommitments

Trapdoor ommitment shemes. A (non-interative) trapdoor ommitment sheme is de�ned by

a funtion T DC as displayed in Figure 9. The funtion T DC spei�es a key generation algorithm, a

ommitment algorithm, a veri�ation funtion deiding the orretness of a given ommitment, and

a faking algorithm that allows to open a ommitment with any value 

0

given the seret key. We

demand that a ommitment and suh a faked opening is identially distributed to a ommitment with

the orret opening for the same value 

0

. In partiular, this implies that the ommitment sheme

provides perfet serey, i.e., a ommitment is distributed independently of the atual value.

Seurity of a trapdoor ommitment sheme. We require that it is infeasible to �nd a ommit-

ment and ambiguous deommitments.

De�nition B.5 [Seurity of a trapdoor ommitment sheme℄ Let T DC be a trapdoor ommit-

ment sheme desription. Let C be an adversary (alled a ollision-�nder in this ontext) and let k

be the seurity parameter. Set

Experiment

td-oll

T DC;C

(k)

(pk; sk) T DC(keygen; k) ; Win

C

 false

(tdom; kR



; 

0

kR

0



) C(k;pk)

If T DC(vf;pk;tdom; kR



) = T DC(vf;pk;tdom; 

0

kR

0



) = aept and  6= 

0

then Win

C

 true

The advantage of the ollision-�nder C is

Adv

td-oll

T DC;C

(k) = Pr [Win

C

= true ℄

where the probability is with respet to Experiment

td-oll

T DC;C

(k). The trapdoor ommitment sheme is

said to be polynomially-seure if Adv

td-oll

T DC;C

(�) is negligible for any eavesdropper C of time-omplexity

polynomial in k. Set Adv

T DC

t

(k) to be the maximum Adv

td-oll

T DC;C

(k) over all ollision-�nder C with

running time t(k).

ID-based trapdoor ommitment sheme. For an ID-based trapdoor ommitment sheme the

key generation algorithm returns a uniformly distributed string sid

TDC

2 f0; 1g

vl(k)

as part of the
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seret key. Yet, the publi key is distributed independently of this string sid

TDC

. The ommitment

algorithm T DC(mt;pk; �) now takes as input a string sid 2 f0; 1g

vl (k)

, a value  and randomness R



and returns a ommitment.

Seurity for ID-based trapdoor ommitment shemes is de�ned with respet to a ollision-�nder

that gets k;pk and sk (inluding sid

TDC

) as input and is onsidered to win if it outputs a ommitment

with valid openings for two di�erent values ; 

0

and the same sid, where sid is di�erent from sid

TDC

.

In other words, the trapdoor property is tied to sid

TDC

and does not help to overome the binding

property for other IDs.

As an example of an ID-based trapdoor ommitment sheme we sketh a solution based on Ped-

ersen's disrete-log ommitment sheme [30℄; similar solutions an be ereted for RSA and fatoring.

The publi key onsists of a group of prime order q and two random generators g

1

; g

2

of the group,

as well as another generator g

3

. The latter generator is de�ned by g

3

= g

�sid

TDC

1

g

z

2

for random

sid

TDC

2 f0; 1g

vl(k)

and random z 2 Z

q

. Clearly, g

3

hides sid

TDC

information-thereotially.

A ommitment to (sid; ; R



) is de�ned by (g

sid

1

g

3

)



g

R



2

. The trapdoor sk

TDC

equals sid

TDC

and z.

Beause g

sid

TDC

1

g

3

= g

z

2

is is easy to adapt a deommitment for sid

TDC

by the disrete-log trapdoor

property [10℄. Namely, given ;R



; sid

TDC

; z and 

0

let R

0



= z+R



� z

0

mod q suh that

(g

sid

TDC

1

g

3

)



0

g

R

0



2

= g

z

0

+R

0



2

= g

z+R



2

= (g

sid

TDC

1

g

3

)



g

R



2

On the other side, for distint  6= 

0

an ambiguous deommitment (;R



), (

0

; R

0



) for the same

sid 6= sid

TDC

implies

(g

sid

1

g

3

)



g

R



2

= (g

sid

1

g

3

)



0

g

R

0



2

or equivalently,

g

(sid�sid

TDC

)(�

0

)

1

= g

(R

0



+z

0

)�(R



+z)

2

:

Sine sid�sid

TDC

; �

0

6= 0 one an easily ompute log

g

1

g

2

, ontraditing the disrete-log assumption.

C CR2-seure Identi�ation protools

The protools of Setion 3 are not seure in the CR2 setting. We show how the same paradigms an

be applied to yield modi�ed protools that are seure in the CR2 setting.

C.1 A signature based protool

The signature based protool of Figure 4 whih we proved seure in the CR1 setting is not seure in

the CR2 setting, even in the absene of reset attaks, sine there are no session ids. Indeed, if an

adversary ativates two prover instanes and plays the role of the veri�er with eah, then both aept

with the same session id, so the adversary wins as per our de�nition. In fat any identi�ation protool

in whih the session ids have length O(log k) is not polynomially-seure in the CR2 setting.

We modify the protool of Figure 4 by having the prover selet a random \hallenge" and sign

the onatenation of this with the veri�er's hallenge. The session id (for both the prover and the

veri�er) is the onatenation of the two hallenges. We will prove that this protool is seure in the

CR2 setting.

Protool and seurity. Let DS be a deterministi, stateless signature sheme. Figure 10 illus-

trates the ows of the assoiated identi�ation protool ID and then provides the protool desription.

(The latter inludes several heks omitted in the piture but important for seurity against resets.)

Parameters of the protool are the length vl(k) of the veri�er's random hallenge and the length

pl(k) of the prover's random hallenge. The random tape, for eah party, is its hallenge. Refer to
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Prover Veri�er

pk; sk ; Coins: R

P

= h

P

pk ; Coins: R

V

= h

V

start

-

h

V

�

sig DS(sign; sk;h

V

kh

P

)

h

P

ksig

-

Output: sid

P

= h

V

kh

P

Output: sid

V

= h

V

kh

P

and: deision = DS(vf ; pk;

h

V

kh

P

; sig)

ID(keygen; k) = DS(keygen; k) | ID has same key generation proess as DS

ID(prvmsg; sk; x;R

P

) where jR

P

j = pl(k)

{ Parse x as msg

1

k � � � kmsg

l

{ If l 62 f0; 2g then Return ?

{ If l = 0 then Return start

{ If jmsg

2

j 6= vl(k) then Return ?

{ h

V

 msg

2

; h

P

 R

P

{ sig DS(sign; sk;h

V

kh

P

)

{ Return h

P

ksig

ID(prvsid; sk; x;R

P

) where jR

P

j = pl (k)

{ Parse x as msg

1

k � � � kmsg

l

{ If l 6= 3 or jmsg

2

j 6= vl (k) then Return ?

{ h

V

 msg

2

; sid

P

 h

V

kR

P

{ Return sid

P

ID(vfmsg; pk; x;R

V

) where jR

V

j = vl (k)

{ Parse x as msg

1

k � � � kmsg

l

{ If l 6= 1 then Return ?

{ h

V

 R

V

{ Return h

V

ID(vfend; pk; x;R

V

) where jR

V

j = vl(k)

{ Parse x as msg

1

k � � � kmsg

l

{ If l 6= 3 or msg

2

6= R

V

then Return ?

{ Parse msg

3

as h

P

ksig with jh

P

j = pl(k)

{ h

V

 msg

2

; sid

V

 h

V

kh

P

{ deision DS(vf ; pk;h

V

kh

P

; sig)

{ Return (sid; deision)

Figure 10: Reset-seure identi�ation protool ID for the CR2 setting based on a deterministi,

stateless digital signature sheme DS: Shemati followed by full protool desription.

De�nition 2.2 and De�nition B.1 for the meanings of terms used in the theorem below. The proof is

similar to that of Theorem 3.1 and is omitted.

Theorem C.1 [Conrete seurity of the signature based ID sheme in the CR2 setting℄

Let DS be a deterministi, stateless signature sheme, let vl(�) and pl(�) be polynomially-bounded

funtions, and let ID be the assoiated identi�ation sheme as per Figure 10. If I is an adversary

of time-omplexity t(�) and query-omplexity q(�) attaking ID in the CR2 setting then there exists a

forger F attaking DS suh that

Adv

id-r2

ID;I

(k) � Adv

ds

DS;F

(k) +

q(k)

2

vl(k)

+

q(k)

2

� q(k)

2

pl(k)+1

: (4)

Furthermore F has time-omplexity t(k) and makes at most q(k) signing queries in its hosen-message

attak on DS.

As before we get two orollaries:

Corollary C.2 [Polynomial-seurity of the signature based ID sheme in the CR2 set-

ting℄ Let DS be a deterministi, stateless signature sheme, let vl(k) = pl (k) = k, and let ID

be the assoiated identi�ation sheme as per Figure 10. If DS is polynomially-seure then ID is

polynomially-seure in the CR2 setting.
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Prover Veri�er

pk; sk ; Coins: R

P

= none
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V
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e
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-
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P
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V

;R

e
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txt

�
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P
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-
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P
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P
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V
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P
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ID(keygen; k) = AE(keygen; k) | ID has same key generation proess as AE

ID(prvmsg; sk; x;R

P

) where jR

P

j = pl(k)

{ Parse x as msg

1

k � � � kmsg

l

{ If l 62 f0; 2g then Return ?

{ If l = 0 then Return R

P

{ txt msg

2

; ptxt AE(de; sk;txt)

{ If jptxtj 6= pl(k)+vl(k) then Return ?

{ Parse ptxt as none

P

kh

P
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jnone

P

j = pl(k) and jh

P

j = vl(k)

{ If none

P

6= R

P

then Return ?

{ Return h

P

ID(prvsid; sk; x;R

P

) where jR

P

j = pl(k)

{ Parse x as msg

1

k � � � kmsg

l

{ If l 6= 3 then Return ?

{ h

P

 msg

3

; sid R

P

kh

P

{ If jh

P

j 6= vl(k) then Return ?

{ Return sid

ID(vfmsg; pk; x;R

V

)

{ Parse R

V

as h

V

kR

e

with jh

V

j = vl(k)

{ Parse x as msg

1

k � � � kmsg

l

{ If l 6= 1 then Return ?

{ If jmsg

1

j 6= pl(k) then Return ?

{ txt AE(en; pk;msg

1

kh

V

;R

e

)

{ Return txt

ID(vfend; pk; x;R

V

)

{ Parse R

V

as h

V

kR

e

with jh

V

j = vl(k)

{ Parse x as msg

1

k � � � kmsg

l

{ If l 6= 3 then Return ?

{ If jmsg

1

j 6= pl(k) then Return ?

{ sid msg

3

kh

V

{ If msg

3

= h

V

then deision aept else deision rejet

{ Return (sid; deision)

Figure 11: Reset-seure identi�ation protool ID for the CR2 setting based on a hosen-iphertext

attak seure asymmetri enryption sheme AE: Shemati followed by full protool desription.

Corollary C.3 [Existene of an ID sheme polynomially-seure in the CR2 setting℄ Assume

there exists a one-way funtion. Then there exists an identi�ation sheme that is polynomially-seure

in the CR2 setting.

C.2 An enryption based protool

The enryption based protool of Figure 5 (whih we proved seure in the CR1 setting) does not have

session ids, so the disussion above implies that it is not seure in the CR2 setting. Modifying this

protool to make it seure in the CR2 setting is more triky than in the ase of the signature based

protool. The �rst thought is to have the prover pik some random hallenge h

P

and onvey it, in

the lear, along with ptxt. Both parties then set their session id to h

P

kptxt. But this protool is

inseure. An adversary an modify h

P

after the prover sends it, and the veri�er would still aept,

but with a session id not shared by any prover instane, so that the adversary wins. (Modi�ation
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of h

P

by the veri�er in the protool of Figure 10 would lead to the veri�er rejeting beause of the

attahed signature, but we do not want to use signatures here.) Instead we have the prover send a

none (random string) in its �rst move, and have the veri�er enrypt the onatenation of the prover

and veri�er hallenges.

Protool and seurity. Let AE be an asymmetri enryption sheme polynomially-seure against

hosen-iphertext attak. Figure 11 illustrates the ows of the assoiated identi�ation protool ID

and then provides the protool desription. Parameters of the protool are the length vl(k) of the

veri�er's random hallenge and the length pl(k) of the prover's random hallenge. The random tape of

the prover is its none, and that of the veri�er is its hallenge together with oins R

e

suÆient for one

invokation of the enryption algorithm. Refer to De�nition 2.2 and De�nition B.3 for the meanings of

terms used in the theorem below. The proof is similar to that of Theorem 3.4 and is omitted.

Theorem C.4 [Conrete seurity of the enryption based ID sheme in the CR2 setting℄ Let

AE be an asymmetri enryption sheme, let vl(�) and pl(�) be polynomially-bounded funtions, and

let ID be the assoiated identi�ation sheme as per Figure 11. If I is an adversary of time-omplexity

t(�) and query-omplexity q(�) attaking ID in the CR2 setting then there exists an eavesdropper E

attaking AE suh that

Adv

id-r2

ID;I

(k) � Adv

lr-a

AE ;E

(k) +

2q(k) + 2

2

vl(k)

+

q(k)

2

� q(k)

2

pl(k)

: (5)

Furthermore E has time-omplexity t(k), makes one query to its lr-enryption orale, and at most

q(k) queries to its deryption orale.

As before we get the orollary:

Corollary C.5 [Polynomial-seurity of the enryption based ID sheme in the CR2 setting℄

Let AE be an asymmetri enryption sheme, let vl(k) = pl (k) = k, and let ID be the assoiated

identi�ation sheme as per Figure 11. If AE is polynomially-seure against hosen-iphertext attak

then ID is polynomially-seure in the CR2 setting.

C.3 An identi�ation based protool

We modify the CR1 seure identi�ation sheme in Setion 3.3 to ahieve CR2 seurity. For this we

de�ne an adversarial suess slightly more stingent: the impersonator is not onsidered to be vitorious

anymore if it onfuses the veri�er and generates session ID ollisions in the exeutions with the prover.

Rather, the only way for the adversary to win is by passing the veri�er's examination for a fresh session

ID. We write Adv

weak-id-r2

ID;I

(k) for the suess probability of adversary I winning under this slightly

weaker seurity notion in a CR2-attak against ID.

Protool and seurity. The key to aomplish CR2-seurity lies in the extension of the trapdoor

ommitment sheme to an ID-based one: the key generation algorithm outputs (pk

TDC

; sk

TDC

) suh

that sk

TDC

inludes a uniformly distributed string sid

TDC

of length vl(k), and suh that pk

TDC

is distributed independently of sid

TDC

. The input to the ommitment funtion takes an additional

string of length vl(k). Given a ommitment involving sid

TDC

it is easy to open this ommitment

with any value later. But it is still infeasible to �nd ambiguous deommitments for a ommitment

with sid 6= sid

TDC

, even if one knows sk

TDC

. An example based on the disrete logarithm is given in

Setion B.4.

Roughly, an ID-based trapdoor ommitment shemes links a session ID to the trapdoor property.

So if we simulate the adversary I to derive an impersonater for I

CID

, as done in the CR1 setting, we

an later use the previously generated sid

TDC

in the adversary's intrusion attempt. This means that

the adversary annot use this session ID in its exeutions with the prover (otherwise the adversary
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= sidkh

V
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start

-

tdom T DC(mt; pk
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; sidkh
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;R



)

sidktdom
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CID

 PRF(eval; �; sidktdom)

om CID(mt; sk

CID

;R

CID

)

om

-

h

V

kR



�

If T DC(vf ; pk

TDC

;tdom; sidkh

V

kR



) = aept

then resp CID(resp; sk

CID

;omkh

V

;R

CID

)

else resp ?

resp

-

deision CID(vf; pk

CID

;omkh

V

kresp)

Output: sid

P

= sid Output: sid

V

= sid and deision

ID(keygen; k) = CID(keygen; k) and T DC(keygen; k)

Figure 12: Reset-seure identi�ation protool ID for the CR2 setting based on seure CID-

identi�ation sheme

is not onsidered vitorious aording to the de�nition). But if the impersonator forgos using sid

TDC

then all its ommitments for other session IDs are binding and a similar argument to the one in the

CR1 model applies. Sine the publi key of the trapdoor sheme hides sid

TDC

perfetly, we an later

laim that the veri�er has hosen sid

TDC

only then.

The di�erene to the CR1 setting is that the impersonator I may now interleave the exeution with

the veri�er and the ones with prover. Let Adv

id-nr-r2

CID;I

CID

(k) be the suess probability of I

CID

breaking

CID in a non-resetting CR2-attak. Although CID-protools fail to be seure against suh attaks

in general, e.g., the woman-in-the-middle adversary breaks suh shemes in this setting, lukily they

remain seure under a ertain ondition on the adversary. Therefore, we will still able to start with

the previously mentioned known CID-protools.

To speify the ondition under whih CID-shemes remain seure, onsider an exeution of an

impersonator I

CID

attaking CID in a non-resetting CR2 attak. At some step the veri�er sends a

random hallenge h

V

to I

CID

and the adversary then �nishes the attak, either suessfully or not.

De�ne a hallenge reset to be the following ation: reset the state of the prover, the adversary and

the veri�er to the point before sending h

V

; then transmit another random h

0

V

instead and ontinue

the adversary's attak on this new hallenge. The reason for onsidering suh hallenge-resets is that

they are normally used to prove seurity for CID shemes, refer to [18℄ for details.

Next we look at what happens on the prover's side in hallenge resets. We are espeially interested

in exeutions in whih the prover has sent a ommitment om before the adversary reeived h

V

, and

in whih the impersonator has answered with some hallenge h in that exeution with the prover

after reeiving h

V

. This implies that after a hallenge reset the adversary may now deide to send a

di�erent hallenge h

0

instead of h. We say that the impersonator never �nishes an exeution with

the prover ambiguously if this never happens. For a funtion hr (�) we say that an CID-identi�ation

protool is hr-hallenge-resettable for I

CID

if the impersonator I

CID

never �nishes an exeution with
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the prover ambiguously, even if hr (k) hallenge resets our. As for the asymptoti behavior, it is

understood that a polynomially-seure CID-protool in the non-resetting CR2 setting refers to seurity

against any polynomially-bounded, non-resetting CR2-adversary I

CID

for whih the protool is hr -

hallenge-resettable for any polynomial hr(�).

To larify the notion we onsider two examples. No CID-sheme is even 2-hallenge-resettable for

the woman-in-the-middle adversary. The reason is suh an adversary dupliates all messages of the

prover and the veri�er and if we exeute a hallenge reset then the adversary imitates this, too. In

ontrast, for any non-resetting CR1-adversary any CID-protool is hallenge-resettable beause the

exeutions with the prover are already �nished when the intrusion try starts.

In omparison to the CR1-seure sheme, here the veri�er hooses a random session ID and the

ID-based trapdoor sheme is applied to ommit to the session ID and the hallenge at the beginning

of an exeution. The session ID is also transmitted in lear together with the ommitment. Exept

for this modi�ed ommitment the rest of the protool remains unhanged. The ommon session ID is

set to the veri�er's hoie (and thus it is easy for the adversary to make sessions with the prover end

up with the same ID).

Theorem C.6 [Conrete seurity of the identi�ation based sheme in the CR2 setting℄ Let

CID be an CID-identi�ation protool and let hr (�); vl(�) be polynomially-bounded funtions. Also,

let PRF be a pseudorandom funtion family and denote by T DC an ID-based trapdoor ommitment

sheme. Let ID be the assoiated identi�ation sheme as per Figure 12. If I is an adversary of

time-omplexity t(�) and query-omplexity q(�) attaking ID in the CR2 setting then there exists

an adversary I

CID

attaking CID in a non-resetting CR2 attak suh that CID is hr(�)-hallenge-

resettable for I

CID

and

Adv

weak-id-r2

ID;I

(k) � q(k) �Adv

PRF

(t;q)

(k) +Adv

T DC

t�hr

(k) +Adv

id-nr-r2

CID;I

CID

(k) : (6)

For the asymptoti ounterpart we have:

Corollary C.7 [Polynomial-seurity of the identi�ation based sheme in the CR2 setting℄

Let PRF be a polynomially-seure pseudorandom funtion family and let T DC be a polynomially-

seure ID-based trapdoor ommitment sheme, set vl(k) = k, and let ID be the assoiated identi-

�ation sheme as per Figure 12. If CID is a polynomially-seure CID-identi�ation protool in the

non-resetting CR2 setting then ID is polynomially-seure in the CR2 setting.

D Proofs

D.1 Proof of Theorem 3.1

Figure 13 desribes the forging algorithm F attaking DS. It runs I as a subroutine, itself responding

to the latter's orale queries so as to provide a \simulation" of the environment provided to I in

Experiment

id-r

ID;I

(k), and eventually outputs a forgery. The forger is not in possession of the seret

key sk whih is used by prover instanes but an ompensate using its aess to the signing orale.

Important to the fat that the time-omplexity of F is t(k) |the same as that of I| are our onven-

tions under whih the time measured pertains to the entire experiment. (In partiular the time used

by the signing orale is not an \extra" for the forger sine it orresponds to invoations of the signing

algorithm by prover instanes in Experiment

id-r

ID;I

(k).) It remains to verify Equation (1).

We laim that the simulation is \perfet" in the sense that from the point of view of I it is in

Experiment

id-r

ID;I

(k). Barring the use of the signing orale to ompute the signatures, the forger

mimis Experiment

id-r

ID;I

(k) faithfully, so what we need to hek is that the values returned to the

impersonator via the signing orale are the same as those it would get from prover instanes in
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Adversary F

DS(sign;sk;�)

(pk) | Forger given signing orale

Initialization:

(1) Choose R

V

= h

V

of length vl(k) at random ; C

V

 0 // Coins and message ounter for

veri�er //

(2) p 0 // Number of ative prover instanes //

Exeute adversary I on input pk and reply to its orale queries as follows:

� When I makes query WakeNewProver // Ativate a new prover instane //

(1) p p+ 1 ; R

p

 " ; Return p

� When I makes query Send(prvmsg; i;msg

1

k � � � kmsg

2j

) with 0 � 2j < 3 and 1 � i � p

(1) If C

V

6= 0 then Return ?

(2) If 2j = 0 then Return start

(3) If 2j = 2 then // msg

1

= start and msg

2

is veri�er hallenge //

If jmsg

2

j 6= vl (k) then Return ?

msg

3

 DS(sign; sk;msg

2

) // Invoke signing orale //

Return msg

3

� When I makes query Send(vfmsg;msg

1

k � � � kmsg

2j�1

) with 1 � 2j � 1 � 3

(1) C

V

 C

V

+2

(2) If 2j < C

V

then Return ? // Not allowed to reset the veri�er //

(3) If 2j�1 = 1 then msg

2

 h

V

; Return msg

2

(4) If 2j�1=3 then

sig msg

3

deision DS(vf ; pk;h

V

; sig)

Return "kdeision

Forgery: Return (h

V

; sig) // Output of the forger //

Figure 13: Forger F attaking DS, using as subroutine an impersonator I attaking the signature

based ID protool ID of Figure 4.

Experiment

id-r

ID;I

(k), even in the presene of resets. This is true beause the signing algorithm is

stateless and deterministi. (Had the signing algorithm been probabilisti or stateful, the signature

returned by a prover instane after a reset would not be obtainable via the signing orale sine the

latter uses fresh oins eah time or updates its state in the normal way while the reset prover instane

would reuse signing oins or state.) This laim about the quality of the simulation is used to erase the

distintion between the experiments in the relevant probabilities below.

Let GuessChall be the event that I makes a query Send(prvmsg; p; startkmsg

2

) in whih msg

2

= h

V

equals the random hallenge R

V

= h

V

hosen for the veri�er in the initialization phase. As long as

this event does not our, F does not invoke its signing orale on its output message h

V

, and thus,

as per De�nition B.1, wins if DS(vf;pk;h

V

; sig) = aept. We now bound the advantage of I as

follows:

Pr [Win

I

= true ℄ = Pr

h

Win

I

= true ^ GuessChall

i

+ Pr [Win

I

= true ^ GuessChall ℄

= Pr [Win

F

= true ℄ + Pr [Win

I

= true ^ GuessChall ℄

� Pr [Win

F

= true ℄ + Pr [GuessChall ℄ :
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Adversary E

AE(en;pk;LR(�;�;b));AE(de;pk;sk;�)

(pk) | Eavesdropper given lr-enryption orale and de-

ryption orale

Initialization:

(1) C

V

 0 // Message ounter for veri�er, but no oins. //

(2) p 0 // Number of ative prover instanes //

Exeute adversary I on input pk and reply to its orale queries as follows:

� When I makes query WakeNewProver // Ativate a new prover instane //

(1) p p+ 1 ; Pik a tape R

p

at random ; Return p

� When I makes query Send(prvmsg; i;msg

1

k � � � kmsg

2j

) with 0 � 2j < 3 and 1 � i � p

(1) If C

V

6= 0 then Return ?

(2) If 2j = 0 then Return start

(3) If 2j = 2 then // msg

1

= start and msg

2

is iphertext //

msg

3

 AE(de; sk;msg

2

) // Invoke deryption orale //

If jmsg

3

j 6= vl (k) then Return ? else Return msg

3

� When I makes query Send(vfmsg;msg

1

k � � � kmsg

2j�1

) with 1 � 2j � 1 � 3

(1) C

V

 C

V

+2

(2) If 2j < C

V

then Return ? // Not allowed to reset the veri�er //

(3) If 2j�1 = 1 then

Let h

0

;h

1

be random but distint strings of length vl(k)

txt  AE(en; pk; LR(h

0

;h

1

;b)) // Invoke lr-enryption orale on the messages

h

0

;h

1

//

msg

2

 txt Return msg

2

(4) If 2j�1=3 then

If msg

3

= h

0

then gb 0

else If msg

3

= h

1

then gb 1

else let gb be a random bit

// The eavesdropper sets its guess bit and terminates. Nothing is returned to I in reply to

this query sine it is the last query and the eavesdropper has everything it needs anyway. //

Output: Return gb // Guess bit returned by eavesdropper //

Figure 14: Eavesdropper E attaking AE , using as subroutine an impersonator I attaking the en-

ryption based ID protool ID of Figure 5.

Now note the probability of GuessChall is at most q(k)=2

vl(k)

sine we have assumed that the

number of Send(prvmsg; �; �) queries made by I is at most q(k) and no information about R

V

is provided

during the simulation of Send(prvmsg; �; �) queries. This yields Equation (1) as desired.

D.2 Proof of Theorem 3.4

Figure 14 desribes the eavesdropping algorithm E attaking AE . It runs I as a subroutine, itself

responding to the latter's orale queries so as to provide a \simulation" of the environment provided

to I in Experiment

id-r

ID;I

(k). The eavesdropper is not in possession of the seret key sk whih is

used by prover instanes but an ompensate using its aess to the deryption orale. As usual

our onventions on the way time-omplexity is measured are important to it being the ase that the
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time-omplexity of E is t(k), the same as that of I. It remains to verify Equation (2).

We laim that the simulation is \perfet" |in the sense that from the point of view of I it is in

Experiment

id-r

ID;I

(k)| exept for there being no reply made to the very last query of I, this being

its third move message to the veri�er. Indeed, the answers provided to Send(prvmsg; �; �; �) queries are

learly the same in the simulation as in the real experiment due to invoation of the same deryption

proedure, even though in the real experiment it is diretly invoked and in the simulation it is invoked

as an orale without diret aess to the underlying seret key. Now onsider Send(vfmsg; �) queries.

Sine both h

0

and h

1

are hosen at random, the iphertext msg

2

returned by the simulated veri�er

is formed by enrypting a random string, regardless of the value of the (unknown to E) hallenge

bit b, and this is distributed like the orresponding iphertext in the real experiment. In reply to

its last query to the veri�er, I would expet to reeive the veri�er deision. This is not provided in

the simulation (indeed E does not know how to provide this sine it does not know b) but this is

immaterial sine E is in possession of I's guess msg

3

at the hallenge and, using this, outputs its own

guess bit gb. This laim about the quality of the simulation is used to erase the distintion between

the experiments in the relevant probabilities below.

Let GuessCiph be the event that I makes a query Send(prvmsg; p; startkmsg

2

) in whih msg

2

= txt

equals the iphertext that E obtained via its query to its lr-enryption orale. As long as this event

does not our, E does not invoke its deryption orale on any iphertext returned by its lr-enryption

orale, and thus, as per De�nition B.3, wins if gb = b. We an lower bound the probability that E

wins as follows:

Pr [Win

E

= true ℄ = Pr

h

gb = b ^ GuessCiph

i

� Pr [ gb = b ℄� Pr [GuessCiph ℄ : (7)

On the other hand

Pr [ gb = b ℄ = Pr [ gb = b j Win

I

= true ℄ � Pr [Win

I

= true ℄

+ Pr [ gb = b j Win

I

6= true ℄ � Pr [Win

I

6= true ℄

= 1 � Pr [Win

I

= true ℄ +

�

1

2

�

1

2

vl(k)

� 1

�

� (1� Pr [Win

I

= true ℄)

=

1

2

�

1

2

vl(k)

� 1

+

�

1

2

+

1

2

vl(k)

� 1

�

� Pr [Win

I

= true ℄ : (8)

Above the 1=(2

vl(k)

� 1) represents the probability that I does not orretly derypt the hallenge

iphertext but, unlukily for us, provides the plaintext h

1�b

. From Equation (8) we get

Pr [Win

I

= true ℄ =

2(2

vl(k)

� 1)

2

vl(k)

+ 1

�

�

Pr [ gb = b ℄�

1

2

+

1

2

vl(k)

� 1

�

� 2 � Pr [ gb = b ℄� 1 +

2

2

vl(k)

+ 1

:

Using Equation (7) and the de�nition of the advantage from De�nition B.3 we get

Pr [Win

I

= true ℄ � 2 � (Pr [Win

E

= true ℄ + Pr [GuessCiph ℄)� 1 +

2

2

vl(k)

+ 1

= Adv

lr-a

AE ;E

(k) + 2 � Pr [GuessCiph ℄ +

2

2

vl(k)

+ 1

� Adv

lr-a

AE ;E

(k) + 2 �

q(k)

2

vl(k)

+

2

2

vl(k)

= Adv

lr-a

AE ;E

(k) +

2q(k) + 2

2

vl(k)

:
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Adversary I

CID

(pk

CID

) | Non-resetting CR1 attaker for CID

Initialization:

(1) C

V

 0 // Message ounter for veri�er //

(2) pik random string R

om

// for assimilated trapdoor ommitment //

(3) p 0 // Number of ative prover instanes //

(4) (pk

TDC

; sk

TDC

) T DC(keygen; k) // Keys for trapdoor ommitment sheme //

Exeute adversary I on input pk = (pk

CID

; pk

TDC

) and reply to its orale queries as follows:

� When I makes query WakeNewProver // Ativate a new prover instane //

(1) p p+ 1 ; Pik a tape R

p

at random ; Return p

� When I makes query Send(prvmsg; i;msg

1

k � � � kmsg

2j

) with 0 � 2j < 5 and 1 � i � p

(1) If C

V

6= 0 then Return ?

(2) If 2j = 0 then Return start

(3) If 2j = 2 then // msg

1

= start and msg

2

is trapdoor ommitment //

msg

3

 CID(mt; sk

CID

; �;R

i

) // Feth ommitment of CID-prover //

Return msg

3

(4) If 2j = 4 then // msg

4

is opening of trapdoor ommitment msg

2

//

parse msg

4

as kR

If T DC(vf ; pk

TDC

;msg

2

;msg

4

) = aept

then msg

5

 CID(resp; sk

CID

;msg

3

k;R

i

) // Get response from CID-prover //

else msg

5

 ?

Return msg

5

� When I makes query Send(vfmsg;msg

1

k � � � kmsg

2j�1

) with 1 � 2j � 1 � 5

(1) C

V

 C

V

+2

(2) If 2j < C

V

then Return ? // Not allowed to reset the veri�er //

(3) If 2j�1 = 1 then // Start: ompute dummy trapdoor ommitment for 0

vl(k)

//

msg

2

 T DC(mt; pk

TDC

; 0

vl(k)

;R

om

)

Return msg

2

(4) If 2j�1 = 3 then // Forward om, get veri�er's hallenge and adapt dummy ommitment

//

h

V

 CID(hall; pk

CID

;msg

3

)

msg

4

 T DC(fake; sk

TDC

; 0

vl(k)

kR

om

;h

V

)

Return msg

4

(5) If 2j�1=5 then // Adversary and we �nish exeution with veri�er //

forward msg

3

kh

V

kmsg

5

to veri�er in CID

Figure 15: Impersonater I

CID

attaking CID in a non-resetting CR1 model, using as subroutine an

impersonator I attaking the protool ID of Figure 6 in the CR1 setting.

Above we upper bounded Pr [GuessCiph ℄ by the probability of guessing the underlying plaintext,

using the fat that deryption is assumed unique (meaning iphertexts of distint plaintexts are always

distint). This yields Equation (2) as desired.
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D.3 Proof of Theorem 3.6

Figure 15 shows the adversary attaking the CID-identi�ation protool in the non-resetting CR1

model. This algorithm gets pk

CID

as input and tries to pass the veri�er's examination by running the

adversary I for ID as a subroutine.

Algorithm I

CID

basially simulates the CR1-adversary I with the CID-protool by assimilating all

additional steps of ID. Spei�ally, I

CID

generates a random key pair (pk

TDC

; sk

TDC

) of the trapdoor

ommitment sheme and starts the simulation of I on pk

CID

and pk

TDC

. If this algorithm I ommits

to some tdom in some instane with the prover then I

CID

alls the prover in CID to obtain om and

passes this ommitment on to I. If I opens a ommitment tdom then I

CID

heks the orretness; if

the opening is valid then forward the hallenge to the prover and hand the answer to I. If the deom-

mitment is inorret then return ? to I without involving the prover. For a orret deommitment

I

CID

fethes the prover's response for the hallenge and hands it to I.

When I �nishes the phase with the prover and starts an exeution with the veri�er, I

CID

ommits to

a dummy value 0

vl(k)

. Then I sends a ommitment to the veri�er whih I

CID

passes to the veri�er in

CID to obtain a hallenge h

V

from the veri�er. Exploiting the trapdoor property and knowledge of

sk

TDC

, adversary I

CID

�nds an appropriate opening for this hallenge h

V

for the dummy ommitment.

Note that this deommitment is identially distributed as if I

CID

would have ommitted to h

V

right

away. I

CID

gives this deommitment to I and returns the answer to the veri�er in CID.

In ontrast to the prover in protool ID the prover in CID uses random oins instead of a pseudo-

random funtion. The �rst step is to verify that pseudorandom values R

i

 PRF(eval; �;tdom)

instead of truly random R

i

do not help I too muh. To this end, we reall the hybrid model of [11℄

in whih we replae the pseudorandom funtion by a random one. Namely, given protool ID in the

CR1 setting we denote by ID

rand

the identi�ation sheme in whih eah prover instane, instead

of applying a pseudorandom funtion to tdom, evaluates a random funtion on this value, where

an independent funtion is seleted for eah prover inarnation. Although random funtions are not

eÆiently omputable, they an be simulated by assigning eah new argument an independent random

string, and by repeating previously given answers for the same queries. The next laim relates the

advantage the adversary I might gain in ID ompared to ID

rand

to the pseudorandomness of PRF :

Claim D.1 Let ID be the identi�ation protool in Figure 6 and let vl(�) a polynomially-bounded

funtion. Also, let PRF be a pseudorandom funtion family. If I is an adversary of time-omplexity

t(�) and query-omplexity q(�) attaking ID in the CR1 setting then

Adv

id-r1

ID;I

(k) � q(k) �Adv

PRF

(t;q)

(k) +Adv

id-r1

ID

rand

;I

(k) : (9)

Proof: Given an adversary I we onstrut a distinguisher D for the pseudorandom funtion ensemble

PRF as follows. D essentially plays the role of the honest parties, i.e., the prover and veri�er,

but is given orale aess to a sequene of funtions f

1

; : : : ; f

q(k)

whih are either pseudorandom

or truly random. D generates a random key pair (pk; sk)  ID(keygen; k) and starts to emulate

the attak. This is done by performing all steps of the prover's inarnations and the veri�er as

de�ned by the protool, exept for the step where some prover instane i is supposed to ompute

R

i

 PRF(eval; �;tdom). Instead, algorithm D replies by querying orale f

i

about tdom and

ontinuing this prover's simulation for random tape R

i

. The distinguisher outputs 1 if and only if the

adversary is suessful.

Clearly, if f

1

; : : : ; f

q(k)

is a sequene of pseudorandom funtions then D outputs 1 exatly if the

adversary breaks ID. On the other hand, if the funtions are truly random then D outputs 1 if and
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only if the adversary breaks ID

rand

. The running time of D is bounded by t(k) and the number of

queries is at most q(k). An hybrid argument now shows that this yields an algorithm distinguishing

a single pseudorandom funtion from PRF and a random one; the distinguishing advantage drops by

a fator q(k) at most (see [2℄).

Hene, if the adversary I never queries a prover opy for the same pre�x twie, the hybrid sheme

orresponds to the setting where eah prover inarnation uses an independent random tape, like

the prover instanes in CID. Beause suh double queries an be easily eliminated by table-lookup

tehniques, we assume in the sequel for simpliity that I never sends the same message to the same

prover instane twie.

Next we bound the probability that I �nds distint openings to a ommitment tdom sent to the

prover in ID

rand

by the maximal probability Adv

T DC

t

(k) of an algorithm �nding a ommitment with

ambiguous deommitments and running in time t(k). If this does not happen then I virtually mounts

a non-resetting CR1 attak on ID

rand

, and therefore I

CID

a orresponing attak on CID.

Claim D.2 If I is an adversary of time-omplexity t(�) and query-omplexity q(�) attaking ID

rand

in the CR1 setting then for I

CID

attaking CID as de�ned in Figure 15 we have

Adv

id-r1

ID

rand

;I

(k) � Adv

T DC

t

(k) +Adv

id-nr-r1

CID;I

CID

(k) : (10)

Proof: Conditioning on the event Unambiguity that the impersonator I does not send tdom with

two valid deommitments to some prover inarnation, it is lear that I runs a non-resetting CR1 attak

only. In this ase, adversary I

CID

wins whenever I wins. It therefore suÆes to bound the probability

of event Unambiguity.

We laim that Pr

h

Unambiguity

i

is at mostAdv

T DC

t

(k). This an be seen as follows. Given a publi

key pk

TDC

of the trapdoor ommitment sheme we hoose a pair (pk

CID

; sk

CID

) for the identi�ation

protool and run an attak of I on ID

rand

by impersonating the honest prover and veri�er. If I outputs

a ommitment tdom with distint openings with respet to pk

TDC

then we output this ommitment

with the openings, too. Apparently, the probability that we �nd suh ambiguous deommitments

equals the probability Pr

h

Unambiguity

i

, and the running time of our algorithm is bounded by

t(k). This ompletes the proof.

Colleting the probabilities from Claims D.1 and D.2 yields the theorem.
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