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on
urrent a

ess to instan
es

of the user. These proto
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1 Introdu
tion

An identi�
ation proto
ol enables one entity to identify itself to another as the legitimate owner of

some key. This problem has been 
onsidered in a variety of settings. Here we are interested in an

asymmetri
 setting. The entity identifying itself is typi
ally 
alled the prover, while the entity to

whi
h the prover is identifying itself is 
alled the veri�er. The prover holds a se
ret key sk whose


orresponding publi
 key pk is assumed to be held by the veri�er.

The adversary's goal is to impersonate the prover, meaning to get the veri�er to a

ept it as

the owner of the publi
 key pk. Towards this goal, it is allowed various types of atta
ks on the

prover. In the model of smart
ard based identi�
ation 
onsidered by [18℄, the adversary may play the

role of veri�er and intera
t with the prover, trying to learn something about sk, before making its

impersonation attempt. In the model of \Internet" based identi�
ation 
onsidered by [9, 3, 8℄, the

adversary is allowed to intera
t 
on
urrently with many di�erent prover \instan
es" as well as with the

veri�er. Formal notions of se
urity 
orresponding to these settings have been provided in the works

in question, and there are many proto
ol solutions for them in the literature.

In this work we 
onsider a novel atta
k 
apability for the adversary. We allow it, while intera
ting

with the prover, to reset the prover's internal state. That is, it 
an \ba
kup" the prover, maintaining

the prover's 
oins, and 
ontinue its intera
tion with the prover. In order to allow the adversary

to get the maximum possible bene�t from this new 
apability, we also allow it to have 
on
urrent

a

ess to di�erent prover instan
es. Thus, it 
an intera
t with di�erent prover instan
es and reset

ea
h of them at will towards its goal of impersonating the prover. The question of the se
urity of

identi�
ation proto
ols under reset atta
ks was raised by Canetti, Goldrei
h, Goldwasser and Mi
ali

[11℄, who 
onsidered the same issue in the 
ontext of zero-knowledge proofs.

1.1 The power of reset atta
ks

An example. Let us illustrate the power of reset atta
ks with an example. A popular paradigm

for smart
ard based identi�
ation is to use a proof of knowledge [18℄. The prover's publi
 key is an

instan
e of a hard NP language L, and the se
ret key is a witness to the membership of the publi


key in L. The proto
ol enables the prover to prove that it \knows" sk. A proto
ol that is a proof

of knowledge for a hard problem, and also has an appropriate zero-knowledge type property su
h as

being witness hiding [19℄, is a se
ure identi�
ation proto
ol in the smart
ard model [18℄.

A simple instan
e is the zero-knowledge proof of quadrati
 residuosity of [22℄. The prover's publi


key 
onsists of a 
omposite integer N and a quadrati
 residue u 2 Z

�

N

. The 
orresponding se
ret key

is a square root s 2 Z

�

N

of u. The prover proves that it \knows" a square root of u, as follows. It

begins the proto
ol by pi
king a random r 2 Z

�

N

and sending y = r

2

mod N to the veri�er. The latter

responds with a random 
hallenge bit 
. The prover replies with a = rs




mod N , meaning it returns r

if 
 = 0 and rs mod N if 
 = 1. The veri�er 
he
ks that a

2

� yu




mod N . (This atomi
 proto
ol has

an error probability of 1=2, whi
h 
an be lowered by sequential repetition. The Fiat-Shamir proto
ol

[20℄ 
an be viewed as a parallelized variant of this proto
ol.)

Now suppose the adversary is able to mount reset atta
ks on the prover. It 
an run the prover to

get y, feed it 
hallenge 0, and get ba
k a = r. Now, it ba
ks the prover up to the step just after it

returned y, and feeds it 
hallenge 1 to get answer a

0

= rs. From a and a

0

it is easily able to extra
t

the prover's se
ret key s. Thus, this proto
ol is not se
ure under reset atta
ks.

Generalizing from the example, we see that in fa
t, all proof of knowledge based identi�
ation

proto
ols 
an broken in the same way. Indeed, in a proof of knowledge, the prover is de�ned to \know

a se
ret" exa
tly when this se
ret 
an be extra
ted by a polynomial time algorithm (the \extra
tor")

whi
h has ora
le a

ess to the prover and is allowed to reset the latter [18, 6℄. An atta
ker allowed a

reset atta
k 
an simply run the extra
tor, with the same result, namely it gets the se
ret. So the bulk
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of eÆ
ient smart
ard based identi�
ation proto
ols in the literature are inse
ure under reset atta
ks.

Mounting reset atta
ks. Resetting or restoring the 
omputational state of a devi
e is parti
ularly

simple in the 
ase the devi
e 
onsists of a smart
ard whi
h the enemy 
an 
apture and experiment

with. If the 
ard is manufa
tured with se
ure hardware, the enemy may not be able to read its se
ret


ontent, but it 
ould dis
onne
t its battery so as to restore the 
ard's se
ret internal 
ontent to some

initial state, and then re-insert the battery and use it with that state a number of times. If the

smart 
ard implements a proof of knowledge prover for ID purposes, then su
h an a
tive enemy may

impersonate the prover later on.

Other s
enarios in whi
h su
h an atta
k 
an be realized is if an enemy is able to for
e a 
rash on

the devi
e exe
uting the prover algorithm, in order to for
e it to resume 
omputation after the 
rash

in an older \
omputational state", thereby for
ing it to essentially reset itself.

Can we use resettable zero-knowledge? Zero-knowledge proofs of membership se
ure under

reset atta
k do exist [11℄, but for reasons similar to those illustrated above, are not proofs of knowledge.

A

ordingly, they 
annot be used for identi�
ation under a proof of knowledge paradigm. One of the

solution paradigms we illustrate later however will show how proofs of membership, rather than proofs

of knowledge, 
an be used for identi�
ation.

1.2 Notions of se
urity

Towards the goal of proving identi�
ation proto
ols se
ure against reset atta
ks, we �rst dis
uss the

notions of se
urity we de�ne and use.

We distinguish between two types of resettable atta
ks CR1 (Con
urrent-Reset-1) and CR2 (Con-


urrent-Reset-2). In a CR1 atta
k, Vi
ky (the adversary) may intera
t 
on
urrently, in the role of

veri�er, with many instan
es of the prover Ali
e, resetting Ali
e to initial 
onditions and interleaving

exe
utions, hoping to learn enough to be able to impersonate Ali
e in a future time. Later, Vi
ky will

try to impersonate Ali
e, trying to identify herself as Ali
e to Bob (the veri�er).

In a CR2 atta
k, Vi
ky, while trying to impersonate Ali
e (i.e attempting to identify herself as

Ali
e to Bob the veri�er), may intera
t 
on
urrently, in the role of veri�er, with many instan
es of the

prover Ali
e, resetting Ali
e to initial 
onditions and interleaving exe
utions. Clearly, a CR1 atta
k is

a spe
ial 
ase of a CR2 atta
k.

A de�nition of what it means for Vi
ky to win in the CR1 setting is straightforward: Vi
ky wins

if she 
an make the veri�er Bob a

ept. In the CR2 setting Vi
ky 
an make the veri�er a

ept by

simply being the woman-in-the-middle, passing messages ba
k and forth between Bob and Ali
e. The

de�nitional issues are now mu
h more 
omplex be
ause the woman-in-the-middle \atta
k" is not really

an atta
k and the de�nition must take this into a

ount. We address these issues based on de�nitional

ideas from [9, 8℄, spe
i�
ally by assigning session-ids to ea
h 
ompleted exe
ution of an ID proto
ol,

whi
h the prover must generate and the veri�er a

ept at the 
ompletion of the exe
ution. For reasons

of brevity we do not dis
uss the CR2 setting mu
h in this abstra
t, and refer the reader to the full

version of this paper [5℄.

We 
larify that the novel feature of our work is the 
onsideration of reset atta
ks for identi�
ation.

However our settings are de�ned in su
h a way that the traditional 
on
urrent atta
ks as 
onsidered by

[9, 17℄ and others are in
orporated, so that se
urity against these atta
ks is a
hieved by our proto
ols.

1.3 Four paradigms for identi�
ation se
ure against reset atta
k

As we explained above, the standard proof of knowledge based paradigm fails to provide identi�
ation

in the resettable setting. In that light, it may not be 
lear how to even prove the existen
e of a solution

to the problem. Perhaps surprisingly however, not only 
an the existen
e of solutions be proven under

the minimal assumption of a one-way fun
tion, but even simple and eÆ
ient solutions 
an be designed.
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This is done in part by returning to some earlier paradigms. Zero-knowledge proofs of knowledge

and identi�
ation are so strongly linked in 
ontemporary 
ryptography that it is sometimes forgotten

that these in fa
t repla
ed earlier identi�
ation te
hniques largely due to the eÆ
ien
y gains they

brought. In 
onsidering a new adversarial setting it is thus natural to �rst return to older paradigms

and see whether they 
an be \lifted" to the resettable setting. We propose in parti
ular signature

and en
ryption based solutions for resettable identi�
ation and prove them se
ure in both the CR1

and the CR2 settings. We then present a general method for transforming identi�
ation proto
ols

se
ure in a 
on
urrent but non-reset setting to ones se
ure in a reset setting. Finally we return to the

zero-knowledge ideas and provide a new paradigm based on zero-knowledge proofs of membership as

opposed to proofs of knowledge.

Signature based identifi
ation. The basi
 idea of the signature based paradigm is for Ali
e


onvin
es Bob that she is Ali
e, by being \able to" sign random do
uments of Bob's 
hoi
e. This

is known (folklore) to yield a se
ure identi�
ation s
heme in the serial non-reset setting of [18℄ as

long as the signature s
heme is se
ure in the sense of [23℄. It is also known to be se
ure in the


on
urrent non-reset setting [3℄. But it fails in general to be se
ure in the resettable setting be
ause

an adversary 
an obtain signatures of di�erent messages under the same prover 
oins. What we show

is that the paradigm yields se
ure solutions in the resettable setting if 
ertain spe
ial kinds of signature

s
hemes are used. (The signing algorithm should be deterministi
 and stateless.) In the CR1 setting

the basi
 proto
ol using su
h signature s
hemes suÆ
es. The CR2 setting is more 
omplex and we

need to modify the proto
ol to in
lude \
hallenges" sent by the prover. Sin
e signature s
hemes with

the desired properties exist (and even eÆ
ient ones exist) we obtain resettable identi�
ation s
hemes

proven se
ure under minimal assumptions for both the CR1 and the CR2 settings, and also obtain

some eÆ
ient spe
i�
 proto
ols.

En
ryption based identifi
ation. In the en
ryption based paradigm, Ali
e 
onvin
es Bob she is

Ali
e, by being \able to" de
rypt 
iphertexts whi
h Bob 
reated. While the basi
 idea goes ba
k to

symmetri
 authenti
ation te
hniques of the seventies, modern treatments of this paradigm appeared

more re
ently in [15, 3, 17℄ but did not 
onsider reset atta
ks. We show that under an appropriate


ondition on the en
ryption s
heme |namely that it be se
ure against 
hosen-
iphertext atta
ks| a

resettable identi�
ation proto
ol 
an be obtained. As before the simple solution for the CR1 setting

needs to be modi�ed before it will work in the CR2 setting.

Transforming standard proto
ols. Although Fiat-Shamir like identi�
ation proto
ols are not

se
ure in the 
ontext of reset atta
ks, with our third paradigm we show how to turn pra
ti
al identi-

�
ation s
hemes into se
ure ones in the CR1 and CR2 settings. The solution relies on the te
hniques

introdu
ed in [11℄ and utilizes pseudorandom fun
tions and trapdoor 
ommitments. It applies to most

of the popular identi�
ation s
hemes, like Fiat-Shamir [20℄, Okamoto-S
hnorr [31, 28℄ or Okamoto-

Guillou-Quisquater [25, 28℄.

ZK proof of membership based identifi
ation. In the zero-knowledge proofs of membership

paradigm, Ali
e 
onvin
es Bob she is Ali
e, by being \able to" prove membership in a hard language

L, rather than by proving she has a witness for language L. She does so by employing a resettable

zero-knowledge proof of language membership for L as de�ned in [11℄ . Both Ali
e and Bob will need

to have a publi
-key to enable the proto
ol. Ali
e's publi
-key de�nes who she is, and Bob's publi
-key

enables him to verify her identity in a se
ure way. We adopt the general proto
ol for membership in

NP languages of [11℄ for the purpose of identi�
ation. The identi�
ation proto
ols are 
onstant round.

What makes this work is the fa
t that the proto
ol for language membership (x 2 L) being zero-

knowledge implies \learning nothing" about x in a very strong sense | a veri�er 
annot subsequently


onvin
e anyone else that x 2 L with non-negligible probability. We note that while we 
an make

this approa
h work using resettable zero-knowledge proofs, it does not seem to work using resettable
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witness indistinguishable proofs for ID proto
ols.

Perspe
tive. Various parts of the literature have motivated the study of zero-knowledge proto
ols

se
ure against strong atta
ks su
h as 
on
urrent or reset in part by the per
eived need for su
h tools

for the purpose of appli
ations su
h as identi�
ation in similar atta
k settings. While the tools might

be suÆ
ient for identi�
ation, they are not ne
essary. Our results demonstrate that identi�
ation is

mu
h easier than zero-knowledge and the latter is usually an overkill for the former.

2 De�nitions

The adversary model here, allowing reset atta
ks in a 
on
urrent exe
ution setting, is the strongest one

for identi�
ation 
onsidered to date. It is 
onvenient to de�ne two versions of the model: Con
urrent-

Reset-1 (CR1) and Con
urrent-Reset-2 (CR2). While both models allow 
on
urrent reset atta
ks on

provers, in CR1 |whi
h models smart
ard based identi�
ation and extends the setting of [18℄| the

adversary is allowed a

ess to provers only prior to its attempt to 
onvin
e the veri�er to a

ept, while

in CR2 |whi
h models network or \Internet" based identi�
ation and extends the setting of [9℄|

the adversary maintains a

ess to the provers even while trying to 
onvin
e the veri�er to a

ept.

The split enables us to take an in
remental approa
h both to the de�nitions and to the design of

proto
ols, 
onsidering �rst the simpler CR1 setting and then showing how to lift the ideas to the more


omplex CR2 setting. In this se
tion we present de�nitions for the CR1 
ase obtained by adapting and

extending [18℄, and de�nitions for the CR2 
ase based on ideas of [9, 8℄.

Notation.If A(�; �; : : :) is a randomized algorithm then y  A(x

1

; x

2

; : : : ;R) means y is assigned the

unique output of the algorithm on inputs x

1

; x

2

; : : : and 
oins R, while y  A(x

1

; x

2

; : : :) is shorthand

for �rst pi
king R at random (from the set of all strings of some appropriate length) and then setting

y  A(x

1

; x

2

; : : : ;R). If x

1

; x

2

; : : : are strings then x

1

kx

2

k � � � denotes an en
oding under whi
h the


onstituent strings are uniquely re
overable. It is assumed any string x 
an be uniquely parsed as an

en
oding of some sequen
e of strings. The empty string is denoted ".

Syntax of identifi
ation proto
ols.An identi�
ation proto
ol pro
eeds as depi
ted in Figure 1.

The prover has a se
ret key sk whose mat
hing publi
 key pk is held by the veri�er. (In pra
ti
e the

prover might provide its publi
 key, and the 
erti�
ate of this publi
 key, as part of the proto
ol, but

this is better slipped under the rug in the model.) Ea
h party 
omputes its next message as a fun
tion

of its keys, 
oins and the 
urrent 
onversation pre�x. The number of moves m(k) is odd so that the

�rst and last moves belong to the prover. (An identi�
ation proto
ol is initiated by the prover who at

the very least must provide a request to be identi�ed.) At the end of the proto
ol the veri�er outputs a

de
ision to either a

ept or reje
t. Ea
h party may also output a session id. (Sessions ids are relevant

in the CR2 setting but 
an be ignored for the CR1 setting.) A parti
ular proto
ol is des
ribed by a

(single) proto
ol des
ription fun
tion ID whi
h spe
i�es how all asso
iated pro
esses |key generation,

message 
omputation, session id or de
ision 
omputation| are implemented. (We say that ID is for

the CR1 setting if sid

P

= sid

V

= ", meaning no session ids are generated.) The se
ond part of Figure 1

shows how it works: the �rst argument to ID is a keyword |one of keygen, prvmsg, vfmsg, prvsid,

vfend| whi
h invokes the subroutine responsible for that fun
tion on the other arguments.

Completeness.Naturally, a 
orre
t exe
ution of the proto
ol (meaning one in the absen
e of an

adversary) should lead the veri�er to a

ept. To formalize this \
ompleteness" requirement we 
onsider

an adversary-free exe
ution of the proto
ol ID whi
h pro
eeds as des
ribed in the following experiment:

(pk; sk) ID(keygen; k) ; Choose tapes R

P

; R

V

at random

msg

1

 ID(prvmsg; sk; ";R

P

)

For j = 1 to bm(k)=2
 do

msg

2j

 ID(vfmsg; pk;msg

1

k � � � kmsg

2j�1

;R

V

)
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Prover Veri�er

pk; sk ; Coins: R

P

pk ; Coins: R

V

msg

1

-

msg

2

�

.

.

.

msg

m(k)�1

�

msg

m(k)

-

Output: sid

P

Output: de
ision 2 fa

ept; reje
tg

and: sid

V

(pk; sk) ID(keygen; k) | Randomized pro
ess to generate a publi
 key pk and mat
hing se
ret key

sk

msg

2j+1

 ID(prvmsg; sk;msg

1

k � � �msg

2j

;R

P

) | (1 � 2j + 1 � m(k)) Next prover message as a

fun
tion of se
ret key, 
onversation pre�x and 
oins R

P

msg

2j

 ID(vfmsg; pk;msg

1

k � � � kmsg

2j�1

;R

V

) | (2 � 2j � m(k) � 1) Next veri�er message as a

fun
tion of publi
 key, 
onversation pre�x and 
oins R

V

sid

P

 ID(prvsid; sk;msg

1

k � � � kmsg

m(k)

;R

P

) | Prover's session id as a fun
tion of se
ret key, full


onversation and 
oins

sid

V

kde
ision  ID(vfend; pk;msg

1

k � � � kmsg

m(k)

;R

V

) | Veri�er session id and de
ision (a

ept or

reje
t) as a fun
tion of publi
 key, full 
onversation and 
oins

Figure 1: The prover sends the �rst and last messages in an m(k)-move identi�
ation proto
ol at

the end of whi
h the veri�er outputs a de
ision and ea
h party optionally outputs a session id. The

proto
ol des
ription fun
tion ID spe
i�es all pro
esses asso
iated to the proto
ol.

msg

2j+1

 ID(prvmsg; sk;msg

1

k � � � kmsg

2j

;R

P

)

EndFor

sid

P

 ID(prvsid; sk;msg

1

k � � � kmsg

m(k)

;R

P

)

sid

V

kde
ision ID(vfend; pk;msg

1

k � � � kmsg

m(k)

;R

V

)

The 
ompleteness 
ondition is that, in the above experiment, the probability that sid

P

= sid

V

and

de
ision = a

ept is 1. (The probability is over the 
oin tosses of ID(keygen; k) and the random 
hoi
es

of R

P

; R

V

.) As always, the requirement 
an be relaxed to only ask for a probability 
lose to one.

Experiments and settings.Fix an identi�
ation proto
ol des
ription fun
tion ID and an adversary

I. Asso
iated to them is Experiment

id-
r1

ID;I

(k), depi
ted in Figure 2, whi
h is used to de�ne the

se
urity of ID in the CR1 setting. (In this 
ontext it is understood that ID is for the CR1 setting,

meaning does not produ
e session ids.) Experiment

id-
r

ID;I

(k), depi
ted in Figure 3, is used to de�ne

the se
urity of ID in the CR2 setting.The experiment gives the adversary appropriate a

ess to prover

instan
e ora
les Prover

1

;Prover

2

; : : : and a single veri�er ora
le, let it query these subje
t to 
ertain

restri
tions imposed by the experiment, and then determine whether it \wins". The interfa
e to the

prover instan
e ora
les and the veri�er ora
le (whi
h, in the experiment, are impli
it, never appearing

by name) is via ora
le queries; the experiment enumerates the types of queries and shows how answers

are provided to them.

Ea
hexperiment begins with some initializations whi
h in
lude 
hoosing of the keys. Then the

adversary is invoked on input the publi
 key. A WakeNewProver query a
tivates a new prover instan
e

Prover

p

by pi
king a random tape R

p

for it. (A random tape for a prover instan
e is 
hosen exa
tly

on
e and all messages of this prover instan
e are then 
omputed with respe
t to this tape. The

7



Experiment

id-
r1

ID;I

(k) | Exe
ution of proto
ol ID with adversary I and se
urity parameter k in the

CR1 setting

Initialization:

(1) (pk; sk) ID(keygen; k) // Pi
k keys via randomized key generation algorithm //

(2) Choose tape R

V

for veri�er at random ; C

V

 0 // Coins and message 
ounter for veri�er //

(3) p 0 // Number of a
tive prover instan
es //

Exe
ute adversary I on input pk and reply to its ora
le queries as follows:

� When I makes query WakeNewProver // A
tivate a new prover instan
e //

(1) p p+ 1 ; Pi
k a tape R

p

at random ; Return p

� When I makes query Send(prvmsg; i;msg

1

k � � � kmsg

2j

) with 0 � 2j < m(k) and 1 � i � p

(1) If C

V

6= 0 then Return ? // Intera
tion with prover instan
e allowed only before intera
tion

with veri�er begins //

(2) msg

2j+1

 ID(prvmsg; sk;msg

1

k � � � kmsg

2j

;R

i

)

(3) Return msg

2j+1

� When I makes query Send(vfmsg;msg

1

k � � � kmsg

2j�1

) with 1 � 2j � 1 � m(k)

(1) C

V

 C

V

+2

(2) If 2j < C

V

then Return ? // Not allowed to reset the veri�er //

(3) If 2j�1 < m(k)�1 then msg

2j

 ID(vfmsg; pk;msg

1

k � � � kmsg

2j�1

;R

V

) ; Return msg

2j

(4) If 2j�1=m(k) then de
ision ID(vfend; pk;msg

1

k � � � kmsg

2j

;R

V

)

(5) Return de
ision

Did I win? When I has terminated set Win

I

= true if de
ision = a

ept.

Figure 2: Experiment des
ribing exe
ution of identi�
ation proto
ol ID with adversary I and se
urity

parameter k in the CR1 setting.

tape of a spe
i�
 prover instan
e 
annot be 
hanged, or \reset", on
e 
hosen.) A Send(prvmsg; i; x)

query |viewed as sent to prover instan
e Prover

i

| results in the adversary being returned the next

prover message 
omputed as ID(prvmsg; sk; x;R

i

). (It is assumed that x = msg

1

k � � � kmsg

2j

is a

valid 
onversation pre�x, meaning 
ontains an even number of messages 2j < m(k), else the query

is not valid.) Resetting is 
aptured by allowing arbitrary (valid) 
onversation pre�xes to be queried.

(For example the adversary might try msg

1

kmsg

2

for many di�erent values of msg

2

, 
orresponding

to su

essively resetting the prover instan
e to the point where it re
eives the se
ond proto
ol move.)

Con
urren
y is 
aptured by the fa
t that any a
tivated prover instan
es 
an be queried.

A Send(vfmsg; x) query is used to invoke the veri�er on a 
onversation pre�x x and results in

the adversary being returned either the next veri�er message 
omputed as ID(vfmsg;pk; x;R

V

) |

this when the veri�er still has a move to make| or the de
ision 
omputed as ID(vfend;pk; x;R

V

)

|this when x 
orresponds to a full 
onversation. (Here R

V

was 
hosen at random in the experiment

initialization step. It is assumed that x = msg

1

k � � � kmsg

2j�1

is a valid 
onversation pre�x, meaning


ontains an odd number of messages 1 � 2j � 1 � m(k), else the query is not valid.) Unlike a prover

instan
e, resetting the (single) veri�er instan
e is not allowed. (Our signature and en
ryption based

proto
ols are a
tually se
ure even if veri�er resets are allowed, but sin
e the pra
ti
al need to 
onsider

this atta
k is not apparent, the de�nition ex
ludes it.) This is enfor
ed expli
itly in the experiments

via the veri�er message 
ounter C

V

.

We now 
ome to the di�eren
e in the two settings:
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Experiment

id-
r

ID;I

(k) | Exe
ution of proto
ol ID with adversary I and se
urity parameter k in the

CR2 setting

Initialization:

(1) (pk; sk) ID(keygen; k) // Pi
k keys via randomized key generation algorithm //

(2) Choose tape R

V

for veri�er at random ; C

V

 0 // Coins and message 
ounter for veri�er //

(3) p 0 // Number of a
tive prover instan
es //

Exe
ute adversary I on input pk and reply to its ora
le queries as follows:

� When I makes query WakeNewProver // A
tivate a new prover instan
e //

(1) p p+ 1 ; SID

p

 ; ; Pi
k a tape R

p

at random ; Return p

� When I makes query Send(prvmsg; i;msg

1

k � � � kmsg

2j

) with 0 � 2j < m(k) and 1 � i � p

(1) msg

2j+1

 ID(prvmsg; sk;msg

1

k � � � kmsg

2j

;R

i

) ; s msg

2j+1

(2) If 2j+1=m(k) then

sid ID(prvsid; sk;msg

1

k � � � kmsg

2j+1

;R

i

) ; s sksid

SID

i

 SID

i

[ fsidg

(3) Return s

� When I makes query Send(vfmsg;msg

1

k � � � kmsg

2j�1

) with 1 � 2j � 1 � m(k)

(1) C

V

 C

V

+2

(2) If 2j < C

V

then Return ? // Not allowed to reset the veri�er //

(3) If 2j�1 < m(k)�1 then msg

2j

 ID(vfmsg; pk;msg

1

k � � � kmsg

2j�1

;R

V

) ; Return msg

2j

(4) If 2j�1=m(k) then sid

V

kde
ision ID(vfend; pk;msg

1

k � � � kmsg

2j

;R

V

) ;

Return sid

V

kde
ision

Did I win? When I has terminated set Win

I

= true if either of the following are true:

(1) de
ision = a

ept and sid

V

62 SID

1

[ � � � [ SID

p

.

(2) There exist 1 � a < b � p with SID

a

\ SID

b

6= ;

Figure 3: Experiment des
ribing exe
ution of identi�
ation proto
ol ID with adversary I and se
urity

parameter k in the CR2 setting.

CR1 setting: The adversary's a
tions are divided into two phases. In the �rst phase it intera
ts

with the prover instan
es, not being allowed to intera
t with the veri�er; in the se
ond phase it is

denied a

ess to the prover instan
es and tries to 
onvin
e the veri�er to a

ept. Experiment

id-
r1

ID;I

(k)

enfor
es this by returning ? in reply to a Send(prvmsg; i; x) unless C

V

= 0.

CR2 setting: The prover instan
es and the veri�er instan
e are available simultaneously to the adver-

sary. In parti
ular it 
an relay message ba
k and forth between them.

What's a win? In the CR1 setting it is easy to say what it should mean for the adversary to

\win:" it should make the veri�er instan
e a

ept. The parameter Win

I

is set a

ordingly in

Experiment

id-
r1

ID;I

(k). What it means for the adversary to \win" is less 
lear in the CR2 setting

be
ause here there is one easy way for the adversary to make the veri�er a

ept: play \man in the

middle" between the veri�er and some prover instan
e, relaying messages ba
k and forth between

them until the veri�er a

epts. Yet, it is 
lear that this is not really an atta
k; there is no harm in

the veri�er a

epting under these 
onditions sin
e in fa
t it was a
tually talking to the prover. Rather

this example highlights the fa
t that the de�nitional issues of the se
ond setting are signi�
antly more


hallenging than those of the �rst setting: how exa
tly do we say what it means for the adversary

9



to win? Lu
kily, however, this problem has already been solved. The �rst proposed de�nition, due

to Bellare and Rogaway [9℄, is based on the idea of \mat
hing 
onversations" and 
orresponds to a

very stringent se
urity requirement. Another possible de�nition is that of [8℄ whi
h uses the idea of

\mat
hing session ids." (The idea goes ba
k to Bellare, Petrank, Ra
ko� and Rogaway, 1996.) We

will use the latter de�nitional approa
h.

View a session id shared between a prover instan
e and the veri�er as a \
onne
tion name," enabling

the veri�er to di�erentiate between di�erent prover instan
es. It is not se
ret, and in parti
ular will

be given to the adversary. (In setting one, even though there are many prover instan
es, a session id

is not ne
essary to di�erentiate them from the point of view of the veri�er be
ause only one prover

instan
e 
an intera
t with the veri�er at any time.) In the absen
e of an adversary, the session ids

output by a prover instan
e and the veri�er at the end of their intera
tion must be the same, but with

high probability no two di�erent prover instan
es should have the same session id, sin
e otherwise the

veri�er 
annot tell them apart. Vi
tory for the adversary now will 
orrespond to making the veri�er

a

ept with a session id not held by any prover instan
e. (We also de
lare the adversary vi
torious if

it \
onfuses" the veri�er by managing to make two di�erent prover instan
es output the same session

id.) The parameter Win

I

is set a

ordingly in Experiment

id-
r

ID;I

(k). Session ids are publi
 in the

sense that the adversary gets to see those 
reated by any instan
es with whi
h it intera
ts.

Definition of se
urity. The experiments indi
ate under what 
onditions adversaries are de
lared

to \win." The de�nition of the proto
ol is responsible for ensuring that both parties reje
t a re
eived


onversation pre�x if it is in
onsistent with their 
oins. It is also assumed that the adversary never

repeats an ora
le query. We 
an now provide de�nitions of se
urity for proto
ol ID.

De�nition 2.1 [Se
urity of an ID proto
ol in the CR1 setting℄ Let ID be an identi�
ation

proto
ol des
ription for the CR1 setting. Let I be an adversary (
alled an impersonator in this


ontext) and let k be the se
urity parameter. The advantage of impersonator I is

Adv

id-
r1

ID;I

(k) = Pr [Win

I

= true ℄

where the probability is with respe
t to Experiment

id-
r1

ID;I

(k). Proto
ol ID is said to be polynomially-

se
ure in the CR1 setting if Adv

id-
r1

ID

(�) is negligible for any impersonator I of time-
omplexity poly-

nomial in k.

We adopt the 
onvention that the time-
omplexity t(k) of an adversary I is the exe
ution time of

the entire experiment Experiment

id-
r1

ID;I

(k), in
luding the time taken for initialization, 
omputation

of replies to adversary ora
le queries, and 
omputation of Win

I

. We also de�ne the query-
omplexity

q(k) of I as the number of Send(prvmsg; �; �) queries made by I in Experiment

id-
r1

ID;I

(k). It is always

the 
ase that q(k) � t(k) so an adversary of polynomial time-
omplexity has polynomial query-


omplexity. These de�nitions and 
onventions 
an be ignored if polynomial-se
urity is the only 
on
ern,

but simplify 
on
rete se
urity 
onsiderations to whi
h we will pay some attention later.

A de�nition of se
urity for the CR2 setting 
an be found in [5℄.

De�nition 2.2 [Se
urity of an ID proto
ol in the CR2 setting℄ Let ID be an identi�
ation

proto
ol des
ription. Let I be an adversary (
alled an impersonator in this 
ontext) and let k be the

se
urity parameter. The advantage of impersonator I is

Adv

id-
r2

ID;I

(k) = Pr [Win

I

= true ℄

where the probability is with respe
t to Experiment

id-
r

ID;I

(k). Proto
ol ID is said to be polynomially-

se
ure in the CR2 setting if Adv

id-
r2

ID

(�) is negligible for any impersonator I of time-
omplexity poly-

nomial in k.

We adopt the same 
onventions regarding time and query 
omplexity as above.
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Prover Veri�er

pk; sk ; Coins: R

P

= " pk ; Coins: R

V

= 
h

V

start

-


h

V

�

sig DS(sign; sk;
h

V

)

sig

-

Output: de
ision = DS(vf; pk;
h

V

; sig)

ID(keygen; k) = DS(keygen; k) | ID has same key generation pro
ess as DS

ID(prvmsg; sk; x;R

P

) where jR

P

j = 0

{ Parse x as msg

1

k � � � kmsg

l

{ If l 62 f0; 2g then Return ?

{ If l = 0 then Return start

{ If jmsg

2

j 6= v
l(k) then Return ?

{ 
h

V

 msg

2

; sig DS(sign; sk;
h

V

)

{ Return sig

ID(prvsid; sk; x;R

P

) where jR

P

j = 0

{ Return "

ID(vfmsg; pk; x;R

V

) where jR

V

j = v
l (k)

{ Parse x as msg

1

k � � � kmsg

l

{ If l 6= 1 then Return ?

{ 
h

V

 R

V

{ Return 
h

V

ID(vfend; pk; x;R

V

) where jR

V

j = v
l(k)

{ Parse x as msg

1

k � � � kmsg

l

{ If l 6= 3 or msg

2

6= R

V

then Return ?

{ 
h

V

 msg

2

; sig msg

3

{ de
ision DS(vf ; pk;
h

V

; sig)

{ Return "kde
ision

Figure 4: Reset-se
ure identi�
ation proto
ol ID for the CR1 setting based on a deterministi
, stateless

digital signature s
heme DS: S
hemati
 followed by full proto
ol des
ription.

More. Appendix A 
ontains more information about the notions in
luding 
omparison with previous

de�nitions in the literature.

3 CR1-se
ure Identi�
ation proto
ols

Four paradigms are illustrated: signature based, en
ryption based, identi�
ation based, and zero-

knowledge based.

3.1 A signature based proto
ol

We assume knowledge of ba
kground in digital signatures as summarized in Appendix B.1.

Signature based identifi
ation. A natural identi�
ation proto
ol is for the veri�er to issue a

random 
hallenge 
h

V

and the prover respond with a signature of 
h

V


omputed under its se
ret key

sk. (Pre�x the proto
ol with an initial start move by the prover to request start of an identi�
ation

pro
ess, and you have a three move proto
ol.) This simple proto
ol 
an be proven se
ure in the

serial, non-resettable (ie. standard smart
ard) setting of [18℄ as long as the signature s
heme meets

the notion of se
urity of [23℄ provided in De�nition B.1. (This result seems to be folklore.) The same

proto
ol has also been proven to provide authenti
ation in the 
on
urrent, non-resettable (ie. standard

network) setting [3℄. (The intuition in both 
ases is that the only thing an adversary 
an do with a

prover ora
le is feed it 
hallenge strings and obtain their signatures, and if the s
heme is se
ure against


hosen-message atta
k this will not help the adversary forge a signature of a 
hallenge issued by the

veri�er unless it guesses the latter, and the probability of the last event 
an be made small by using
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a long enough 
hallenge.) This proto
ol is thus a natural 
andidate for identi�
ation in the resettable

setting.

However this proto
ol does not always provide se
urity in the resettable setting. The intuition

des
ribed above breaks down be
ause resetting allows an adversary to obtain the signatures of di�erent

messages under the same set of 
oins. (It 
an a
tivate a prover instan
e and then query it repeatedly

with di�erent 
hallenges, thereby obtaining their signatures with respe
t to a �xed set of 
oin tosses.)

As explained in Appendix B.1, this is not 
overed by the usual notion of a 
hosen-message atta
k used

to de�ne se
urity of signature s
hemes in [23℄. And indeed, for many signature s
hemes it is possible

to forge the signature of a new message if one is able to obtain the signatures of several messages

under one set of 
oins. Similarly, if the signing algorithm is stateful, resetting allows an adversary to

make the prover release several signatures 
omputed using one value of the state variable |e�e
tively,

the prover does not get a 
han
e to update its state is it expe
ts to| again leading to the possibility

of forgery on a s
heme se
ure in the standard sense.

The solution is simple: restri
t the signature s
heme to be stateless and deterministi
. In Appendix B.1we

explain how signatures s
hemes 
an be imbued with these attributes so that stateless, deterministi


signature s
hemes are available.

Proto
ol and se
urity. Let DS be a deterministi
, stateless signature s
heme. Figure 4 illus-

trates the 
ows of the asso
iated identi�
ation proto
ol IDand then provides the proto
ol des
ription.

(The latter in
ludes several 
he
ks omitted in the pi
ture but important for se
urity against resets.)A

parameter of the proto
ol is the length v
l(k) of the veri�er's random 
hallenge. The prover is deter-

ministi
 and has random tape " while the veri�er's random tape is 
h

V

. Refer to De�nition 2.1 and

De�nition B.1 for the meanings of terms used in the theorem below, and to Se
tion D.1 for the proof.

Theorem 3.1 [Con
rete se
urity of the signature based ID s
heme in the CR1 setting℄ Let

DS be a deterministi
, stateless signature s
heme, let v
l(�) be a polynomially-bounded fun
tion, and

let ID be the asso
iated identi�
ation s
heme as per Figure 4. If I is an adversary of time-
omplexity

t(�) and query-
omplexity q(�) atta
king ID in the CR1 setting then there exists a forger F atta
king

DS su
h that

Adv

id-
r1

ID;I

(k) � Adv

ds

DS;F

(k) +

q(k)

2

v
l(k)

: (1)

Furthermore F has time-
omplexity t(k) and makes at most q(k) signing queries in its 
hosen-message

atta
k on DS.

This immediately implies the following:

Corollary 3.2 [Polynomial-se
urity of the signature based ID s
heme in the CR1 setting℄

Let DS be a deterministi
, stateless signature s
heme, let v
l(k) = k, and let ID be the asso
iated

identi�
ation s
heme as per Figure 4. If DS is polynomially-se
ure then ID is polynomially-se
ure in

the CR1 setting.

Corollary 3.2 together with Proposition B.2 imply:

Corollary 3.3 [Existen
e of an ID s
heme polynomially-se
ure in the CR1 setting℄ Assume

there exists a one-way fun
tion. Then there exists an identi�
ation s
heme that is polynomially-se
ure

in the CR1 setting.

This means that we 
an prove the existen
e of an identi�
ation proto
ol se
ure in the CR1 setting

under the minimal 
omplexity assumption of a one-way fun
tion.
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Prover Veri�er

pk; sk ; Coins: R

P

= " pk ; Coins: R

V

= 
h

V

kR

e

start

-


txt AE(en
; pk;
h

V

;R

e

)


txt

�

ptxt AE(de
; sk;
txt)

ptxt

-

If 
h

V

= ptxt

then de
ision a

ept

else de
ision reje
t

Output: de
ision

ID(keygen; k) = AE(keygen; k) | ID has same key generation pro
ess as AE

ID(prvmsg; sk; x;R

P

) where R

P

= "

{ Parse x as msg

1

k � � � kmsg

l

{ If l 62 f0; 2g then Return ?

{ If l = 0 then Return start

{ 
txt msg

2

; ptxt AE(de
; sk;
txt)

{ If jptxtj 6= v
l(k) then Return ?

{ Return ptxt

ID(prvsid; sk; x;R

P

) where R

P

= "

{ Return "

ID(vfmsg; pk; x;R

V

)

{ Parse R

V

as 
h

V

kR

e

with j
h

V

j = v
l(k)

{ Parse x as msg

1

k � � � kmsg

l

{ If l 6= 1 then Return ?

{ 
txt AE(en
; pk;
h

V

;R

e

)

{ Return 
txt

ID(vfend; pk; x;R

V

)

{ Parse R

V

as 
h

V

kR

e

with j
h

V

j = v
l (k)

{ Parse x as msg

1

k � � � kmsg

l

{ If l 6= 3 then Return ?

{ ptxt msg

3

; sid 
h

V

{ If ptxt = 
h

V

then de
ision a

ept else de
ision reje
t

{ Return "kde
ision

Figure 5: Reset-se
ure identi�
ation proto
ol ID for the CR1 setting based on a 
hosen-
iphertext

atta
k se
ure asymmetri
 en
ryption s
heme AE: S
hemati
 followed by full proto
ol des
ription.

3.2 An en
ryption based proto
ol

En
ryption based identifi
ation. The idea is simple: the prover proves its identity by proving

its ability to de
rypt a 
iphertext sent by the veri�er. This basi
 idea goes ba
k to early work in

entity authenti
ation where the en
ryption was usually symmetri
 (ie. private-key based). These

early proto
ols however had no supporting de�nitions or analysis. The �rst \modern" treatment

is that of [15℄ who 
onsidered the paradigm with regard to providing deniable authenti
ation and

identi�ed non-malleability under 
hosen-
iphertext atta
k |equivalently, indistinguishability under


hosen-
iphertext atta
k [4, 15℄| as the se
urity property required of the en
ryption s
heme. Results

of [3, 17, 15℄ imply that the proto
ol is a se
ure identi�
ation s
heme in the 
on
urrent non-reset

setting, but reset atta
ks have not been 
onsidered before.

Proto
ol and se
urity. Let AE be an asymmetri
 en
ryption s
heme polynomially-se
ure against


hosen-
iphertext atta
k. Figure 5 illustrates the 
ows of the asso
iated identi�
ation proto
ol ID

and then provides the proto
ol des
ription. A parameter of this proto
ol is the length v
l(k) of the

veri�er's random 
hallenge. The veri�er sends the prover a 
iphertext formed by en
rypting a random


hallenge, and the prover identi�es itself by 
orre
tly de
rypting this to send the veri�er ba
k the


hallenge. The prover is deterministi
, having random tape ". We make the 
oins R

e

used by the
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Prover Veri�er

pk = (pk

CID

; pk

TDC

); sk = sk

CID

pk

Coins: R

P

= � Coins: R

V

= 
h

V

kR




start

-

td
om 

T DC(
mt; pk

TDC

;
h

V

;R




)

td
om

�

R

CID

 PRF(eval; �;td
om)


om CID(
mt; sk

CID

;R

CID

)


om

-


h

V

kR




�

If T DC(vf ; pk

TDC

;td
om;
h

V

kR




) = a

ept

then resp CID(resp; sk

CID

;
omk
h

V

;R

CID

)

else resp ?

resp

-

de
ision CID(vf; pk

CID

;
omk
h

V

kresp)

Output: de
ision

ID(keygen; k) = CID(keygen; k) and T DC(keygen; k)

Figure 6: Reset-se
ure identi�
ation proto
ol ID for the CR1 setting based on an identi�
ation s
heme

CID se
ure against non-resetting CR1 atta
ks

en
ryption algorithm expli
it, so that the veri�er's random tape 
onsists of the 
hallenge |a random

string of length v
l(k) where v
l is a parameter of the proto
ol| and 
oins suÆ
ient for one invo
ation

of the en
ryption algorithm. Refer to De�nition 2.1 and De�nition B.3 for the meanings of terms used

in the theorem below, and to Se
tion D.2 for the proof.

Theorem 3.4 [Con
rete se
urity of the en
ryption based ID s
heme in the CR1 setting℄

Let AE be an asymmetri
 en
ryption s
heme, let v
l(�) a polynomially-bounded fun
tion, and let ID

be the asso
iated identi�
ation s
heme as per Figure 5. If I is an adversary of time-
omplexity t(�) and

query-
omplexity q(�) atta
king ID in the CR1 setting then there exists an eavesdropper E atta
king

AE su
h that

Adv

id-
r1

ID;I

(k) � Adv

lr-

a

AE ;E

(k) +

2q(k) + 2

2

v
l(k)

: (2)

Furthermore E has time-
omplexity t(k), makes one query to its lr-en
ryption ora
le, and at most

q(k) queries to its de
ryption ora
le.

This immediately implies the following:

Corollary 3.5 [Polynomial-se
urity of the en
ryption based ID s
heme in the CR1 setting℄

Let AE be an asymmetri
 en
ryption s
heme, let v
l(k) = k, and let ID be the asso
iated identi�
ation

s
heme as per Figure 5. If AE is polynomially-se
ure against 
hosen-
iphertext atta
k then ID is

polynomially-se
ure in the CR1 setting.

3.3 An identi�
ation based proto
ol

Identifi
ation based proto
ol. As dis
ussed in the introdu
tion, proof of knowledge based

14



identi�
ation proto
ols of the Fiat-Shamir type 
annot be se
ure against reset atta
ks. In this se
tion,

however, we present a general transformation of su
h identi�
ation s
hemes into se
ure ones in the

CR1 setting. We start with identi�
ation s
hemes that 
onsists of three moves, an initial 
ommitment


om of the prover, a random value 
h

V

, the 
hallenge, of the veri�er and a 
on
lusive response resp

from the prover. We 
all a proto
ol obeying this stru
ture a 
anoni
al identi�
ation s
heme.

Loosely speaking, we will assume that the underlying 
anoni
al identi
al s
heme CID is se
ure

against non-resetting atta
ks in the CR1 model, i.e., against atta
ks where the adversary merely runs


on
urrent sessions with the prover without resets before engaging in a veri�
ation. In addition to

the Fiat-Shamir system [20℄, most of the well-known pra
ti
al identi�
ation s
hemes also a
hieve

this se
urity level, for example Ong-S
hnorr [29, 32℄ for some system parameters, Okamoto-Guillou-

Quisquater [25, 28℄ and Okamoto-S
hnorr [31, 28℄. Nonetheless, there are also proto
ols whi
h are

only known to be se
ure against sequential atta
ks (e.g. [33℄).

To avoid 
onfusion with the derived s
heme ID, instead of writing Send(prvmsg; : : :) and

Send(vfmsg; : : :), we denote the algorithms generating the 
ommitment, 
hallenge and response mes-

sage for the CID-proto
ol CID by CID(
mt; : : :), CID(
hall; : : :), and CID(resp; : : :), respe
tively,

and the veri�
ation step by CID(vf; : : :). We also write Adv

id-nr-
r1

CID;I

CID

(k) for the probability that an

impersonator I

CID

su

eeds in an atta
k on s
heme CID in the non-resetting CR1 setting.

Proto
ol and se
urity. Our solution originates from the work of [11℄ about resettable zero-

knowledge. In order to ensure that the adversary does not gain any advantage from resetting the

prover, we insert a new �rst round into the CID-identi�
ation proto
ol in whi
h the veri�er non-

intera
tively 
ommits to his 
hallenge 
h

V

. The parameters for this 
ommitment s
heme be
ome part

of the publi
 key. This keeps the adversary from resetting the prover to the 
hallenge-message and


ompleting the proto
ol with di�erent 
hallenges.

In addition, we let the prover determine the random values in his identi�
ation by applying a

pseudorandom fun
tion to the veri�er's initial 
ommitment. Now, if the adversary resets the prover

(with the same random tape) to the outset of the proto
ol and 
ommits to a di�erent 
hallenge

then the prover uses virtually independent randomness for this exe
ution, although having the same

random tape. On the other hand, using pseudorandom values instead of truly random 
oins does not

weaken the original identi�
ation proto
ol noti
eably. Essentially, this prunes the CR1 adversary into

a non-resetting one 
on
erning exe
utions with the prover.

In order to handle the intrusion try we use use a spe
ial, so-
alled trapdoor 
ommitment s
heme

T DC for the veri�er's initial 
ommitment. This means that there is a se
ret information su
h that

knowledge of this se
ret allows to generate a dummy 
ommitment and to �nd a valid opening to any

value later on. Furthermore, the dummy 
ommitment and the fake de
ommitment are identi
ally

distributed to an honestly given 
ommitment and opening to the same value. Without knowing the

se
ret a 
ommitment is still solidly binding. Trapdoor 
ommitment s
hemes exist under standard

assumptions like the intra
tability of the dis
rete-log or the RSA or fa
toring assumption [10℄ and

thus under the same assumptions that the aforementioned CID-identi�
ation proto
ols rely on.

Basi
ally, a trapdoor 
ommitment enables us to redu
e an intrusion try of an impersonator I in

the derived s
heme ID to one for the CID-proto
ol. If I initiates a session with the veri�er in ID

then we 
an �rst 
ommit to a dummy value 0

v
l(k)

without having to 
ommuni
ate with the veri�er in

CID. When I then takes the next step by sending 
om, we forward this 
ommitment to our veri�er

in CID and learn the veri�er's 
hallenge. Knowing the se
ret key sk

TDC

for the trapdoor s
heme we


an then �nd a valid opening for our dummy 
ommitment with respe
t to the 
hallenge. Finally, we

forward I's response in our atta
k.

The s
heme is displayed in Figure 6. See Appendix B.3 and B.4 for de�nitions and notions.

The dis
ussion above indi
ates that any adversary I for ID does not have mu
h more power than a

non-resetting impersonator atta
king CID and se
urity of ID follows from the se
urity of CID.
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Theorem 3.6 [Con
rete se
urity of the identi�
ation based s
heme in the CR1 setting℄ Let

CID be an CID-identi�
ation proto
ol and let v
l(�) be a polynomially-bounded fun
tion. Also, let

PRF be a pseudorandom fun
tion family and denote by T DC a trapdoor 
ommitment s
heme. Let

ID be the asso
iated identi�
ation s
heme as per Figure 6. If I is an adversary of time-
omplexity

t(�) and query-
omplexity q(�) atta
king ID in the CR1 setting then there exists an adversary I

CID

atta
king CID in a non-resetting CR1 atta
k su
h that

Adv

id-
r1

ID;I

(k) � q(k) �Adv

PRF

(t;q)

(k) +Adv

T DC

t

(k) +Adv

id-nr-
r1

CID;I

CID

(k) : (3)

Furthermore I

CID

has time-
omplexity t(k) and runs at most q(k) sessions with the prover before

trying to intrude.

As usual we have:

Corollary 3.7 [Polynomial-se
urity of the identi�
ation based s
heme in the CR1 setting℄

Let PRF be a polynomially-se
ure pseudorandom fun
tion family and let T DC be a polynomially-

se
ure trapdoor 
ommitment s
heme, set v
l(k) = k, and let ID be the asso
iated identi�
ation s
heme

as per Figure 6. If CID is a polynomially-se
ure CID-identi�
ation proto
ol in the non-resetting CR1

model then ID is polynomially-se
ure in the CR1 setting.

Note that the publi
 key in our CR1-se
ure identi�
ation s
heme 
onsists of two independent parts,

pk

CID

and pk

TDC

. For 
on
rete s
hemes the key generation may be 
ombined and simpli�ed. For

instan
e, for Okamoto-S
hnorr the publi
 key of the identi�
ation proto
ol des
ribes a group of prime

order q, two generators g

1

; g

2

of that group and the publi
 key X = g

x

1

1

g

x

2

2

for se
ret x

1

; x

2

2 Z

q

. The

prover sends 
om = g

r

1

1

g

r

2

2

and replies to the 
hallenge 
h

V

by transmitting y

i

= r

i

+
h

V

x

i

mod q for

i = 1; 2. In this 
ase, the publi
 key for the trapdoor 
ommitment s
heme 
ould be given by g

1

; g

3

= g

z

1

for random trapdoor z 2 Z

q

, and the 
ommitment fun
tion maps a value 
 and randomness R




to

g




1

g

R




3

.

3.4 A zero-knowledge based proto
ol

As we dis
ussed in the Introdu
tion the idea of [18℄ of proving identity by employing a zero knowledge

proof of knowledge has been the a

epted paradigm for identi�
ation proto
ols in the smart
ard

setting. Unfortunately, as we indi
ated, in the resettable setting this paradigm 
annot work.

Resettable Zero Knowledge Based Identity. We thus instead propose the following paradigm.

Let L be a hard NP language for whi
h there is no known eÆ
ient pro
edures for membership testing

but for whi
h there exists a randomized generating algorithm G whi
h outputs pairs (x;w), where

x 2 L and w is an NP-witness that x 2 L. (The distribution a

ording to whi
h (x;w) is generated

should be one for whi
h it is hard to tell whether x 2 L or not). Ea
h user Ali
e will run G to get a

pair (x;w) and will then publish x as its publi
 key. To prove her identity Ali
e will run a resettable

zero-knowledge proof that x 2 L.

Proto
ol. To implement the above idea we need resettable zero-knowledge proofs for L. For this we

turn to the work of [11℄. In [11℄ two resettable zero-knowledge proofs for any NP language are proposed:

one whi
h takes a non-
onstant number of rounds and works against a 
omputationally unbounded

prover, and one whi
h only takes a 
onstant number of rounds and works against 
omputationally

bounded provers (i.e argument) and requires the veri�ers to have published publi
-keys whi
h the

prover 
an a

ess. We propose to utilize the latter, for eÆ
ien
y sake. Thus, to implement the

paradigm, we require both prover and veri�er to have publi
-keys a

essible by ea
h other. Whereas

the prover's publi
 key is x whose membership in L it will prove to the veri�er, the veri�er's publi
 key

in [11℄ is used for spe
ifying a perfe
tly private 
omputationally binding 
ommitment s
heme whi
h
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the prover must use during the proto
ol. (Su
h 
ommitment s
hemes exist based for example on the

strong hardness of Dis
rete Log Assumption.)

Se
urity. We brie
y outline how to prove that the resulting ID proto
ol is se
ure in the CR1

setting. Suppose not, and that after laun
hing a CR1 atta
k, an imposter 
an now falsely identify

himself with a non-negligible probability. Then, we will 
onstru
t a polynomial time algorithm A to

de
ide membership in L. On input x, A �rst laun
hes the o�-line resetting atta
k using x as the publi


key and the simulator { whi
h exists by the zero-knowledge property { to obtain views of the proto
ol

exe
ution. (This requires that the simulator be bla
k-box, but this is true in the known proto
ols.) If

x 2 L, this view should be identi
al to the view obtained during the real exe
ution, in whi
h 
ase a

su

essful atta
k will result, whi
h is essentially a way for A to �nd a language membership proof. If

x not in L, then by the soundness property of a zero-knowledge proof, no matter what the simulator

outputs, it will not be possible to prove membership in L.
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A Remarks about the notions of se
urity

The identifi
ation problem being 
onsidered. We are 
onsidering unilateral identi�
ation.

(One party, the prover, wants to identify itself to another party, the veri�er. The other possibility

is multilateral identi�
ation in whi
h both parties want to identify themselves to ea
h other.) We

are in a publi
-key setting, also 
alled the asymmetri
 setting. (The prover's publi
 key is known

to the veri�er. Other possibilities are that the identi�
ation is based on shared keys, also 
alled the

symmetri
 setting, or involves a trusted authenti
ation server, the so-
alled three party setting.) In

some 
ontexts |notably that of authenti
ated session-key ex
hange in a 
on
urrent setting| the

identi�
ation problem has been 
alled the entity authenti
ation problem. It is the same problem.

Identifi
ation as a prelude to se
ure sessions and the role of session keys. Identi�
ation

is hardly an end in itself: an entity goes through an identi�
ation pro
ess in order to then 
ondu
t

some transa
tion that is allowed only to this entity. For example, you �rst identify yourself to the

ATM ma
hine and then withdraw 
ash. As this example indi
ates we imagine the transa
tion as an

ex
hange between prover and veri�er taking pla
e after the veri�er has a

epted in the identi�
ation

proto
ol. In the smart
ard setting (setting one) this pi
ture is valid be
ause on
e identi�
ation is


ompleted, an adversary 
annot step in. (Your 
ard is in the ATM ma
hine and until it is removed the

adversary is 
ut o�.) In the Internet setting (setting two) however, identi�
ation by itself is largely

useless be
ause an adversary 
an \hija
k" the ensuing session, meaning impersonate the prover in

the transa
tion 
ows that follow the identi�
ation, by simply waiting for the veri�er to a

ept and

then sending its own messages to the veri�er. To have se
ure transa
tions, some information from

the identi�
ation pro
ess must be used to authenti
ate 
ows in the transa
tion. This information is

usually a session key. Identi�
ation without session key ex
hange is for pra
ti
al purposes hardly useful

in setting two, whi
h is why previous works su
h as [9, 8℄ have looked at the problems in 
ombination.

In this paper however our fo
us is the new issues raised by reset atta
ks and in order to get a better

understanding of them in setting two we simplify by de
oupling the identi�
ation and the session key

ex
hange. Our proto
ols 
an be modi�ed to also distribute a session key.

The need for multiple prover instan
es. Could we simplify the model by providing only a

single prover-instan
e ora
le? The answer is no. We 
an give an example proto
ol that is se
ure if

the adversary 
an a

ess only a single prover instan
e, but is inse
ure if the adversary 
an a

ess

polynomially-many prover instan
es.

B Primitives used and their se
urity

Our proto
ols make use of signature s
hemes satisfying some spe
ial properties, and of standard


hosen-
iphertext se
ure en
ryption s
hemes. This se
tion re
alls the ne
essary ba
kground.
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(pk; sk) DS(keygen; k) | Generate publi
 key pk and mat
hing se
ret key sk

sig DS(sign; sk;msg) | Compute signature of message msg

de
ision DS(vf; pk;msg; sig) | Verify that sig is a valid signature of msg (a

ept or reje
t)

Figure 7: The digital signature s
heme des
ription DS des
ribes all fun
tionalities asso
iated to the

signature s
heme.

B.1 Stateless digital signature s
hemes

Signature s
hemes. A digital signature s
heme is spe
i�ed by a des
ription fun
tion DS, whi
h, as

indi
ated in Figure 7, spe
i�es how keys are generated, how messages are signed, and how 
andidate

signatures are veri�ed. (As usual it is required that true signatures |meaning those generated by

DS(sign; sk; �)| always su

essfully pass the veri�
ation test.) The key generation algorithm is prob-

abilisti
 and the veri�
ation algorithm is deterministi
. The signature algorithm merits a separate

dis
ussion whi
h will 
ome later.

Se
urity of a signature s
heme. The usual de�nition of se
urity against 
hosen-message atta
k

is adopted [23℄.

De�nition B.1 [Se
urity of a digital signature s
heme℄ Let DS be a digital signature s
heme

des
ription, F an adversary (
alled a forger in this 
ontext) having a

ess to an ora
le, and k the

se
urity parameter. De�ne

Experiment

ds

DS;F

(k)

(pk; sk) DS(keygen; k) ; Win

F

 false

(msg; sig) F

DS(sign;sk;�)

(pk)

If DS(vf;pk;msg; sig) = a

ept and F never made ora
le query msg

then Win

F

 true

The advantage of forger F is

Adv

ds

DS;F

(k) = Pr [Win

F

= true ℄

where the probability is with respe
t to Experiment

ds

DS;F

(k). Digital signature s
heme DS is said

to be polynomially-se
ure if Adv

ds

DS

(�) is negligible for any forger F of time-
omplexity polynomial in

k.

The time-
omplexity t(k) of adversary F is de�ned as the exe
ution time of Experiment

ds

DS;F

(k), as

with previous de�nitions.

State and randomization in signing. The signing algorithm DS(sign; sk; �) might be stateful (and

possibly randomized); randomized but not stateful; or deterministi
 and stateless. We label a s
heme

in this regard a

ording to the attribute of its signing algorithm, meaning the s
heme is referred to as

stateful (resp. stateless, randomized, deterministi
) if the signing algorithm is stateful (resp. stateless,

randomized, deterministi
). The di�eren
e is important to the appli
ation to identi�
ation so we detail

it. In a stateful s
heme |this is 
alled \history dependent" in some works [23℄| the signer maintains

some state information state a
ross invo
ations of the signing pro
edure. When a message is re
eived,

the signer 
ips some 
oins; then produ
es a signature as a fun
tion of state, the 
oins 
ipped, the

message and the keys; then updates state as a fun
tion of the 
oins and message; �nally stores state

so that it is available at the next invo
ation of the signing pro
edure. In a randomized but stateless

s
heme, the signing algorithm 
ips 
oins upon ea
h invo
ation, but no global state is maintained a
ross

invo
ations. In the simplest 
ase the signing algorithm is not randomized (ie. deterministi
) and not

stateful (ie. stateless). It asso
iates to any message a unique signature.
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De�nition B.1 applies regardless of whether the signing pro
edure is stateful or stateless, ran-

domized or deterministi
. But we stress that the ora
le DS(sign; sk; �) provided to the forger F in

De�nition B.1 is responsible for implementing any statefulness or randomization in the signing pro
ess

and does so as des
ribed above. In parti
ular, if the s
heme is randomized, fresh 
oins are pi
ked and

used upon ea
h invo
ation of the ora
le; if the s
heme is stateful, the ora
le maintains and updates

the state. (In parti
ular the adversary has no way to for
e the ora
le to reuse a parti
ular set of 
oins

for two signatures. This will be important later.)

The basi
 versions of the s
hemes of [23, 7, 26, 35℄ are (randomized and) stateful. The more eÆ-


ient s
hemes of [16, 12℄ are also (randomized and) stateful. Examples of (randomized but) stateless

s
hemes are those of [24, 14℄. Although there seem to be few s
hemes that are \naturally" stateless,

deterministi
 and se
ure, any signature s
heme 
an be made stateless and deterministi
 while preserv-

ing se
urity. A well-known transformation |attributed in [23℄ to Goldrei
h and Levin| transforms

a stateful s
heme into a (randomized but) stateless one by using a binary tree stru
ture. A stateless

signing algorithm 
an be derandomized |while preserving statelessness and se
urity| via the follow-

ing (folklore) tri
k: the se
ret key is expanded to in
lude a key � spe
ifying an instan
e PRF(eval; �; �)

of a family of pseudorandom fun
tions (see [21℄ or Appendix B.3), and to sign message msg 
ompute

R

msg

= PRF(eval; �;msg) and use R

msg

as the 
oins f or the signing algorithm. Combining this

with Rompel's result [35℄ implies:

Proposition B.2 If there exists a one-way fun
tion then there exists a stateless, determinsti
 polynomially-

se
ure digital signature s
heme.

This addresses the \theoreti
al" question of the existen
e of stateless, deterministi
 signature s
hemes

by indi
ating they exist under the minimal possible 
omplexity assumption. The next question |on

the \pra
ti
al" side| is about the 
ost of available solutions. The most eÆ
ient known signature

s
hemes that are provably-se
ure under standard |meaning non-random ora
le| assumptions are

those of [24, 14℄. These s
hemes are randomized but stateless. Derandomization is 
heap if properly

implemented: Instantiate the pseudorandom fun
tion used in the derandomization pro
ess dis
ussed

above with a blo
k 
ipher, and the impa
t on the 
ost of signing |already involving publi
 key

operations| is negligible. In this way we get eÆ
ient, stateless, deterministi
 signature s
hemes that

are provably polynomially-se
ure under standard assumptions. (One 
an also 
onsider the earlier

s
hemes of [16, 12℄ but they are less eÆ
ient than those of [24, 14℄ and also are stateful. Making a

stateful s
heme stateless seems to be more 
ostly than derandomizing an already stateless s
heme.)

B.2 CCA2-se
ure En
ryption s
hemes

En
ryption s
hemes. An asymmetri
 en
ryption s
heme is spe
i�ed by a des
ription fun
tion

AE , whi
h as indi
ated, in Figure 8, spe
i�es how keys are generated, how messages are en
rypted,

and how 
iphertexts are de
rypted. (As usual it is required that if 
iphertext 
txt is generated

via AE(en
;pk;msg) then AE(de
;pk; sk;
txt) returns msg.) The key generation and en
ryption

algorithms are probabilisti
 while the de
ryption algorithm is deterministi
.

Se
urity of an en
ryption s
heme. We require indistinguishability against 
hosen-
iphertext

atta
k. The version of the de�nition we adopt, from [1℄, allows the adversary multiple \test" message

pairs rather than a single one, and was shown by them to be polynomially equivalent to the more

standard formuation of [34℄. De�ne LR(msg

0

;msg

1

; b) = msg

b

for any equal-length strings msg

0

;msg

1

and bit b.

De�nition B.3 [Se
urity of an en
ryption s
heme under 
hosen-
iphertext atta
k℄ Let AE

be an asymmetri
 en
ryption s
heme des
ription. Let E be an adversary (
alled an eavesdropper in
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(pk; sk) AE(keygen; k) | Generate publi
 key pk and mat
hing se
ret key sk


txt AE(en
; pk;msg) | Compute en
ryption of message msg

out  AE(de
; pk; sk;
txt) | The de
ryption pro
edure takes the publi
 key, se
ret key and a


iphertext 
txt and returns out whi
h is either a message msg or the spe
ial symbol ? to indi
ate

it 
onsidered the 
iphertext invalid.

Figure 8: The asymmetri
 en
ryption s
heme des
ription AE des
ribes all fun
tionalities asso
iated

to the en
ryption s
heme.

this 
ontext) having a

ess to two ora
les, the �rst taking as input any two strings of equal length and

the se
ond any string. Let k be the se
urity parameter. De�ne

Experiment

lr-

a

AE ;E

(k)

(pk; sk) AE(keygen; k) ; Win

E

 false


b

R

 f0; 1g // Random 
hallenge bit //

gb E

AE(en
;pk;LR(�;�;
b));AE(de
;pk;sk;�)

(pk) // Eavesdropper's guess bit //

If gb = 
b and AE(de
;pk; sk; �) was never 
alled on a 
iphertext

returned by AE(en
;pk; LR(�; �;
b))

then Win

E

 true

The advantage of eavesdropper E is

Adv

ds

AE ;E

(k) = 2 � Pr [Win

E

= true ℄� 1

where the probability is with respe
t to Experiment

lr-

a

AE ;E

(k). Asymmetri
 en
ryption s
heme AE is

said to be polynomially-se
ure if Adv

lr-

a

AE

(�) is negligible for any eavesdropper E of time-
omplexity

polynomial in k.

We 
all AE(en
;pk; LR(�; �;
b)) the \lr-en
ryption ora
le" where \lr" stands for \left or right."

B.3 Pseudorandom fun
tions

Pseudorandom fun
tions. We keep the de�nition as simple as possible for our purpose. A pseu-

dorandom fun
tion family is a fun
tion PRF(eval; �; �) in two arguments. The �rst argument, 
alled

the key, has k bits and de�nes in a straightforward way a fun
tion PRF(eval; �; �) for any � 2 f0; 1g

k

.

For every � 2 f0; 1g

k

the fun
tion PRF(eval; �; �) has input and output length inl(k) and outl(k); the

a
tual 
hoi
e of inl(�) and outl(�) depends on the appli
ation.

Se
urity of a pseudorandom fun
tions. We adopt the de�nition of pseudorandom fun
tions

being indistinguishable from random fun
tions [21℄:

De�nition B.4 [Se
urity of a pseudorandom fun
tion family℄ Let PRF be a pseudorandom

fun
tion family, D an adversary (
alled a distinguisher in this 
ontext) having a

ess to an ora
le, and

k the se
urity parameter. De�ne

Experiment

prf-dist

PRF ;D

(k; b)

If b = 0 then �

R

 f0; 1g

k

and let O(�) = PRF(eval; �; �)

If b = 1 then let O(�) be a random fun
tion with input/output length inl(k) and outl(k)

gb

b

 D

O(�)

(k)

The advantage of distinguisher D is

Adv

prf-ind

PRF ;D

(k) = jPr [ gb

1

= 1 ℄� Pr [ gb

0

= 1 ℄ j
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(pk; sk) T DC(keygen; k) | Generate publi
 key pk and se
ret key sk

td
om T DC(
mt; pk; 
;R




) | Compute 
ommitment of value 
 with randomness R




de
ision  T DC(vf ; pk;td
om; 
kR




) | Verify that td
om is 
ommitment of 
 and randomness

R




(


0

; R

0




); T DC(fake; sk; 
kR




; 


0

) | Given a value 
 and randomness R




and another value 


0

use

the se
ert key sk to �nd R

0




su
h that 


0

; R

0




and 
; R




yield the same 
ommitment

Figure 9: The trapdoor 
ommitment s
heme des
ription T DC des
ribes all fun
tionalities asso
iated

to the trapdoor 
ommitment s
heme.

where the probabilities are with respe
t to Experiment

prf-dist

PRF ;D

(k; b). The time-
omplexity t(k) of

D is de�ned as the maximum exe
ution time Experiment

prf-dist

PRF ;D

(k; b) for b = 0; 1, and the query-


omplexity is the maximum number of queries D makes to the ora
le in either experiment. Set

Adv

PRF

(t;q)

(k) to be the maximum Adv

prf-ind

PRF ;D

(k) over all distinguishers D with time-
omplexity t(k)

and query-
omplexity q(k). The pseudorandom fun
tion family PRF is 
alled polynomially-se
ure if

Adv

prf-ind

PRF ;D

(�) is negligible for any distinguisher D of time-
omplexity polynomial in k.

B.4 Trapdoor 
ommitments

Trapdoor 
ommitment s
hemes. A (non-intera
tive) trapdoor 
ommitment s
heme is de�ned by

a fun
tion T DC as displayed in Figure 9. The fun
tion T DC spe
i�es a key generation algorithm, a


ommitment algorithm, a veri�
ation fun
tion de
iding the 
orre
tness of a given 
ommitment, and

a faking algorithm that allows to open a 
ommitment with any value 


0

given the se
ret key. We

demand that a 
ommitment and su
h a faked opening is identi
ally distributed to a 
ommitment with

the 
orre
t opening for the same value 


0

. In parti
ular, this implies that the 
ommitment s
heme

provides perfe
t se
re
y, i.e., a 
ommitment is distributed independently of the a
tual value.

Se
urity of a trapdoor 
ommitment s
heme. We require that it is infeasible to �nd a 
ommit-

ment and ambiguous de
ommitments.

De�nition B.5 [Se
urity of a trapdoor 
ommitment s
heme℄ Let T DC be a trapdoor 
ommit-

ment s
heme des
ription. Let C be an adversary (
alled a 
ollision-�nder in this 
ontext) and let k

be the se
urity parameter. Set

Experiment

td
-
oll

T DC;C

(k)

(pk; sk) T DC(keygen; k) ; Win

C

 false

(td
om; 
kR




; 


0

kR

0




) C(k;pk)

If T DC(vf;pk;td
om; 
kR




) = T DC(vf;pk;td
om; 


0

kR

0




) = a

ept and 
 6= 


0

then Win

C

 true

The advantage of the 
ollision-�nder C is

Adv

td
-
oll

T DC;C

(k) = Pr [Win

C

= true ℄

where the probability is with respe
t to Experiment

td
-
oll

T DC;C

(k). The trapdoor 
ommitment s
heme is

said to be polynomially-se
ure if Adv

td
-
oll

T DC;C

(�) is negligible for any eavesdropper C of time-
omplexity

polynomial in k. Set Adv

T DC

t

(k) to be the maximum Adv

td
-
oll

T DC;C

(k) over all 
ollision-�nder C with

running time t(k).

ID-based trapdoor 
ommitment s
heme. For an ID-based trapdoor 
ommitment s
heme the

key generation algorithm returns a uniformly distributed string sid

TDC

2 f0; 1g

v
l(k)

as part of the
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se
ret key. Yet, the publi
 key is distributed independently of this string sid

TDC

. The 
ommitment

algorithm T DC(
mt;pk; �) now takes as input a string sid 2 f0; 1g

v
l (k)

, a value 
 and randomness R




and returns a 
ommitment.

Se
urity for ID-based trapdoor 
ommitment s
hemes is de�ned with respe
t to a 
ollision-�nder

that gets k;pk and sk (in
luding sid

TDC

) as input and is 
onsidered to win if it outputs a 
ommitment

with valid openings for two di�erent values 
; 


0

and the same sid, where sid is di�erent from sid

TDC

.

In other words, the trapdoor property is tied to sid

TDC

and does not help to over
ome the binding

property for other IDs.

As an example of an ID-based trapdoor 
ommitment s
heme we sket
h a solution based on Ped-

ersen's dis
rete-log 
ommitment s
heme [30℄; similar solutions 
an be ere
ted for RSA and fa
toring.

The publi
 key 
onsists of a group of prime order q and two random generators g

1

; g

2

of the group,

as well as another generator g

3

. The latter generator is de�ned by g

3

= g

�sid

TDC

1

g

z

2

for random

sid

TDC

2 f0; 1g

v
l(k)

and random z 2 Z

q

. Clearly, g

3

hides sid

TDC

information-thereoti
ally.

A 
ommitment to (sid; 
; R




) is de�ned by (g

sid

1

g

3

)




g

R




2

. The trapdoor sk

TDC

equals sid

TDC

and z.

Be
ause g

sid

TDC

1

g

3

= g

z

2

is is easy to adapt a de
ommitment for sid

TDC

by the dis
rete-log trapdoor

property [10℄. Namely, given 
;R




; sid

TDC

; z and 


0

let R

0




= z
+R




� z


0

mod q su
h that

(g

sid

TDC

1

g

3

)




0

g

R

0




2

= g

z


0

+R

0




2

= g

z
+R




2

= (g

sid

TDC

1

g

3

)




g

R




2

On the other side, for distin
t 
 6= 


0

an ambiguous de
ommitment (
;R




), (


0

; R

0




) for the same

sid 6= sid

TDC

implies

(g

sid

1

g

3

)




g

R




2

= (g

sid

1

g

3

)




0

g

R

0




2

or equivalently,

g

(sid�sid

TDC

)(
�


0

)

1

= g

(R

0




+z


0

)�(R




+z
)

2

:

Sin
e sid�sid

TDC

; 
�


0

6= 0 one 
an easily 
ompute log

g

1

g

2

, 
ontradi
ting the dis
rete-log assumption.

C CR2-se
ure Identi�
ation proto
ols

The proto
ols of Se
tion 3 are not se
ure in the CR2 setting. We show how the same paradigms 
an

be applied to yield modi�ed proto
ols that are se
ure in the CR2 setting.

C.1 A signature based proto
ol

The signature based proto
ol of Figure 4 whi
h we proved se
ure in the CR1 setting is not se
ure in

the CR2 setting, even in the absen
e of reset atta
ks, sin
e there are no session ids. Indeed, if an

adversary a
tivates two prover instan
es and plays the role of the veri�er with ea
h, then both a

ept

with the same session id, so the adversary wins as per our de�nition. In fa
t any identi�
ation proto
ol

in whi
h the session ids have length O(log k) is not polynomially-se
ure in the CR2 setting.

We modify the proto
ol of Figure 4 by having the prover sele
t a random \
hallenge" and sign

the 
on
atenation of this with the veri�er's 
hallenge. The session id (for both the prover and the

veri�er) is the 
on
atenation of the two 
hallenges. We will prove that this proto
ol is se
ure in the

CR2 setting.

Proto
ol and se
urity. Let DS be a deterministi
, stateless signature s
heme. Figure 10 illus-

trates the 
ows of the asso
iated identi�
ation proto
ol ID and then provides the proto
ol des
ription.

(The latter in
ludes several 
he
ks omitted in the pi
ture but important for se
urity against resets.)

Parameters of the proto
ol are the length v
l(k) of the veri�er's random 
hallenge and the length

p
l(k) of the prover's random 
hallenge. The random tape, for ea
h party, is its 
hallenge. Refer to
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Prover Veri�er

pk; sk ; Coins: R

P

= 
h

P

pk ; Coins: R

V

= 
h

V

start

-


h

V

�

sig DS(sign; sk;
h

V

k
h

P

)


h

P

ksig

-

Output: sid

P

= 
h

V

k
h

P

Output: sid

V

= 
h

V

k
h

P

and: de
ision = DS(vf ; pk;


h

V

k
h

P

; sig)

ID(keygen; k) = DS(keygen; k) | ID has same key generation pro
ess as DS

ID(prvmsg; sk; x;R

P

) where jR

P

j = p
l(k)

{ Parse x as msg

1

k � � � kmsg

l

{ If l 62 f0; 2g then Return ?

{ If l = 0 then Return start

{ If jmsg

2

j 6= v
l(k) then Return ?

{ 
h

V

 msg

2

; 
h

P

 R

P

{ sig DS(sign; sk;
h

V

k
h

P

)

{ Return 
h

P

ksig

ID(prvsid; sk; x;R

P

) where jR

P

j = p
l (k)

{ Parse x as msg

1

k � � � kmsg

l

{ If l 6= 3 or jmsg

2

j 6= v
l (k) then Return ?

{ 
h

V

 msg

2

; sid

P

 
h

V

kR

P

{ Return sid

P

ID(vfmsg; pk; x;R

V

) where jR

V

j = v
l (k)

{ Parse x as msg

1

k � � � kmsg

l

{ If l 6= 1 then Return ?

{ 
h

V

 R

V

{ Return 
h

V

ID(vfend; pk; x;R

V

) where jR

V

j = v
l(k)

{ Parse x as msg

1

k � � � kmsg

l

{ If l 6= 3 or msg

2

6= R

V

then Return ?

{ Parse msg

3

as 
h

P

ksig with j
h

P

j = p
l(k)

{ 
h

V

 msg

2

; sid

V

 
h

V

k
h

P

{ de
ision DS(vf ; pk;
h

V

k
h

P

; sig)

{ Return (sid; de
ision)

Figure 10: Reset-se
ure identi�
ation proto
ol ID for the CR2 setting based on a deterministi
,

stateless digital signature s
heme DS: S
hemati
 followed by full proto
ol des
ription.

De�nition 2.2 and De�nition B.1 for the meanings of terms used in the theorem below. The proof is

similar to that of Theorem 3.1 and is omitted.

Theorem C.1 [Con
rete se
urity of the signature based ID s
heme in the CR2 setting℄

Let DS be a deterministi
, stateless signature s
heme, let v
l(�) and p
l(�) be polynomially-bounded

fun
tions, and let ID be the asso
iated identi�
ation s
heme as per Figure 10. If I is an adversary

of time-
omplexity t(�) and query-
omplexity q(�) atta
king ID in the CR2 setting then there exists a

forger F atta
king DS su
h that

Adv

id-
r2

ID;I

(k) � Adv

ds

DS;F

(k) +

q(k)

2

v
l(k)

+

q(k)

2

� q(k)

2

p
l(k)+1

: (4)

Furthermore F has time-
omplexity t(k) and makes at most q(k) signing queries in its 
hosen-message

atta
k on DS.

As before we get two 
orollaries:

Corollary C.2 [Polynomial-se
urity of the signature based ID s
heme in the CR2 set-

ting℄ Let DS be a deterministi
, stateless signature s
heme, let v
l(k) = p
l (k) = k, and let ID

be the asso
iated identi�
ation s
heme as per Figure 10. If DS is polynomially-se
ure then ID is

polynomially-se
ure in the CR2 setting.
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Prover Veri�er

pk; sk ; Coins: R

P

= non
e

P

pk ; Coins: R

V

= 
h

V

kR

e

non
e

P

-


txt AE(en
; pk;non
e

P

k
h

V

;R

e

)


txt

�

ptxt AE(de
; pk; sk;
txt)

Parse ptxt as non
e

P

k
h

P


h

P

-

If 
h

V

= 
h

P

then de
ision a

ept else de
ision reje
t

Output: sid

P

= non
e

P

k
h

P

Output: sid

V

= non
e

P

k
h

V

and: de
ision

ID(keygen; k) = AE(keygen; k) | ID has same key generation pro
ess as AE

ID(prvmsg; sk; x;R

P

) where jR

P

j = p
l(k)

{ Parse x as msg

1

k � � � kmsg

l

{ If l 62 f0; 2g then Return ?

{ If l = 0 then Return R

P

{ 
txt msg

2

; ptxt AE(de
; sk;
txt)

{ If jptxtj 6= p
l(k)+v
l(k) then Return ?

{ Parse ptxt as non
e

P

k
h

P

with

jnon
e

P

j = p
l(k) and j
h

P

j = v
l(k)

{ If non
e

P

6= R

P

then Return ?

{ Return 
h

P

ID(prvsid; sk; x;R

P

) where jR

P

j = p
l(k)

{ Parse x as msg

1

k � � � kmsg

l

{ If l 6= 3 then Return ?

{ 
h

P

 msg

3

; sid R

P

k
h

P

{ If j
h

P

j 6= v
l(k) then Return ?

{ Return sid

ID(vfmsg; pk; x;R

V

)

{ Parse R

V

as 
h

V

kR

e

with j
h

V

j = v
l(k)

{ Parse x as msg

1

k � � � kmsg

l

{ If l 6= 1 then Return ?

{ If jmsg

1

j 6= p
l(k) then Return ?

{ 
txt AE(en
; pk;msg

1

k
h

V

;R

e

)

{ Return 
txt

ID(vfend; pk; x;R

V

)

{ Parse R

V

as 
h

V

kR

e

with j
h

V

j = v
l(k)

{ Parse x as msg

1

k � � � kmsg

l

{ If l 6= 3 then Return ?

{ If jmsg

1

j 6= p
l(k) then Return ?

{ sid msg

3

k
h

V

{ If msg

3

= 
h

V

then de
ision a

ept else de
ision reje
t

{ Return (sid; de
ision)

Figure 11: Reset-se
ure identi�
ation proto
ol ID for the CR2 setting based on a 
hosen-
iphertext

atta
k se
ure asymmetri
 en
ryption s
heme AE: S
hemati
 followed by full proto
ol des
ription.

Corollary C.3 [Existen
e of an ID s
heme polynomially-se
ure in the CR2 setting℄ Assume

there exists a one-way fun
tion. Then there exists an identi�
ation s
heme that is polynomially-se
ure

in the CR2 setting.

C.2 An en
ryption based proto
ol

The en
ryption based proto
ol of Figure 5 (whi
h we proved se
ure in the CR1 setting) does not have

session ids, so the dis
ussion above implies that it is not se
ure in the CR2 setting. Modifying this

proto
ol to make it se
ure in the CR2 setting is more tri
ky than in the 
ase of the signature based

proto
ol. The �rst thought is to have the prover pi
k some random 
hallenge 
h

P

and 
onvey it, in

the 
lear, along with ptxt. Both parties then set their session id to 
h

P

kptxt. But this proto
ol is

inse
ure. An adversary 
an modify 
h

P

after the prover sends it, and the veri�er would still a

ept,

but with a session id not shared by any prover instan
e, so that the adversary wins. (Modi�
ation
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of 
h

P

by the veri�er in the proto
ol of Figure 10 would lead to the veri�er reje
ting be
ause of the

atta
hed signature, but we do not want to use signatures here.) Instead we have the prover send a

non
e (random string) in its �rst move, and have the veri�er en
rypt the 
on
atenation of the prover

and veri�er 
hallenges.

Proto
ol and se
urity. Let AE be an asymmetri
 en
ryption s
heme polynomially-se
ure against


hosen-
iphertext atta
k. Figure 11 illustrates the 
ows of the asso
iated identi�
ation proto
ol ID

and then provides the proto
ol des
ription. Parameters of the proto
ol are the length v
l(k) of the

veri�er's random 
hallenge and the length p
l(k) of the prover's random 
hallenge. The random tape of

the prover is its non
e, and that of the veri�er is its 
hallenge together with 
oins R

e

suÆ
ient for one

invokation of the en
ryption algorithm. Refer to De�nition 2.2 and De�nition B.3 for the meanings of

terms used in the theorem below. The proof is similar to that of Theorem 3.4 and is omitted.

Theorem C.4 [Con
rete se
urity of the en
ryption based ID s
heme in the CR2 setting℄ Let

AE be an asymmetri
 en
ryption s
heme, let v
l(�) and p
l(�) be polynomially-bounded fun
tions, and

let ID be the asso
iated identi�
ation s
heme as per Figure 11. If I is an adversary of time-
omplexity

t(�) and query-
omplexity q(�) atta
king ID in the CR2 setting then there exists an eavesdropper E

atta
king AE su
h that

Adv

id-
r2

ID;I

(k) � Adv

lr-

a

AE ;E

(k) +

2q(k) + 2

2

v
l(k)

+

q(k)

2

� q(k)

2

p
l(k)

: (5)

Furthermore E has time-
omplexity t(k), makes one query to its lr-en
ryption ora
le, and at most

q(k) queries to its de
ryption ora
le.

As before we get the 
orollary:

Corollary C.5 [Polynomial-se
urity of the en
ryption based ID s
heme in the CR2 setting℄

Let AE be an asymmetri
 en
ryption s
heme, let v
l(k) = p
l (k) = k, and let ID be the asso
iated

identi�
ation s
heme as per Figure 11. If AE is polynomially-se
ure against 
hosen-
iphertext atta
k

then ID is polynomially-se
ure in the CR2 setting.

C.3 An identi�
ation based proto
ol

We modify the CR1 se
ure identi�
ation s
heme in Se
tion 3.3 to a
hieve CR2 se
urity. For this we

de�ne an adversarial su

ess slightly more stingent: the impersonator is not 
onsidered to be vi
torious

anymore if it 
onfuses the veri�er and generates session ID 
ollisions in the exe
utions with the prover.

Rather, the only way for the adversary to win is by passing the veri�er's examination for a fresh session

ID. We write Adv

weak-id-
r2

ID;I

(k) for the su

ess probability of adversary I winning under this slightly

weaker se
urity notion in a CR2-atta
k against ID.

Proto
ol and se
urity. The key to a

omplish CR2-se
urity lies in the extension of the trapdoor


ommitment s
heme to an ID-based one: the key generation algorithm outputs (pk

TDC

; sk

TDC

) su
h

that sk

TDC

in
ludes a uniformly distributed string sid

TDC

of length v
l(k), and su
h that pk

TDC

is distributed independently of sid

TDC

. The input to the 
ommitment fun
tion takes an additional

string of length v
l(k). Given a 
ommitment involving sid

TDC

it is easy to open this 
ommitment

with any value later. But it is still infeasible to �nd ambiguous de
ommitments for a 
ommitment

with sid 6= sid

TDC

, even if one knows sk

TDC

. An example based on the dis
rete logarithm is given in

Se
tion B.4.

Roughly, an ID-based trapdoor 
ommitment s
hemes links a session ID to the trapdoor property.

So if we simulate the adversary I to derive an impersonater for I

CID

, as done in the CR1 setting, we


an later use the previously generated sid

TDC

in the adversary's intrusion attempt. This means that

the adversary 
annot use this session ID in its exe
utions with the prover (otherwise the adversary
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Prover Veri�er

pk = (pk

CID

; pk

TDC

); sk = sk

CID

pk

Coins: R

P

= � Coins: R

V

= sidk
h

V

kR




start

-

td
om T DC(
mt; pk

TDC

; sidk
h

V

;R




)

sidktd
om

�

R

CID

 PRF(eval; �; sidktd
om)


om CID(
mt; sk

CID

;R

CID

)


om

-


h

V

kR




�

If T DC(vf ; pk

TDC

;td
om; sidk
h

V

kR




) = a

ept

then resp CID(resp; sk

CID

;
omk
h

V

;R

CID

)

else resp ?

resp

-

de
ision CID(vf; pk

CID

;
omk
h

V

kresp)

Output: sid

P

= sid Output: sid

V

= sid and de
ision

ID(keygen; k) = CID(keygen; k) and T DC(keygen; k)

Figure 12: Reset-se
ure identi�
ation proto
ol ID for the CR2 setting based on se
ure CID-

identi�
ation s
heme

is not 
onsidered vi
torious a

ording to the de�nition). But if the impersonator forgos using sid

TDC

then all its 
ommitments for other session IDs are binding and a similar argument to the one in the

CR1 model applies. Sin
e the publi
 key of the trapdoor s
heme hides sid

TDC

perfe
tly, we 
an later


laim that the veri�er has 
hosen sid

TDC

only then.

The di�eren
e to the CR1 setting is that the impersonator I may now interleave the exe
ution with

the veri�er and the ones with prover. Let Adv

id-nr-
r2

CID;I

CID

(k) be the su

ess probability of I

CID

breaking

CID in a non-resetting CR2-atta
k. Although CID-proto
ols fail to be se
ure against su
h atta
ks

in general, e.g., the woman-in-the-middle adversary breaks su
h s
hemes in this setting, lu
kily they

remain se
ure under a 
ertain 
ondition on the adversary. Therefore, we will still able to start with

the previously mentioned known CID-proto
ols.

To spe
ify the 
ondition under whi
h CID-s
hemes remain se
ure, 
onsider an exe
ution of an

impersonator I

CID

atta
king CID in a non-resetting CR2 atta
k. At some step the veri�er sends a

random 
hallenge 
h

V

to I

CID

and the adversary then �nishes the atta
k, either su

essfully or not.

De�ne a 
hallenge reset to be the following a
tion: reset the state of the prover, the adversary and

the veri�er to the point before sending 
h

V

; then transmit another random 
h

0

V

instead and 
ontinue

the adversary's atta
k on this new 
hallenge. The reason for 
onsidering su
h 
hallenge-resets is that

they are normally used to prove se
urity for CID s
hemes, refer to [18℄ for details.

Next we look at what happens on the prover's side in 
hallenge resets. We are espe
ially interested

in exe
utions in whi
h the prover has sent a 
ommitment 
om before the adversary re
eived 
h

V

, and

in whi
h the impersonator has answered with some 
hallenge 
h in that exe
ution with the prover

after re
eiving 
h

V

. This implies that after a 
hallenge reset the adversary may now de
ide to send a

di�erent 
hallenge 
h

0

instead of 
h. We say that the impersonator never �nishes an exe
ution with

the prover ambiguously if this never happens. For a fun
tion 
hr (�) we say that an CID-identi�
ation

proto
ol is 
hr-
hallenge-resettable for I

CID

if the impersonator I

CID

never �nishes an exe
ution with
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the prover ambiguously, even if 
hr (k) 
hallenge resets o

ur. As for the asymptoti
 behavior, it is

understood that a polynomially-se
ure CID-proto
ol in the non-resetting CR2 setting refers to se
urity

against any polynomially-bounded, non-resetting CR2-adversary I

CID

for whi
h the proto
ol is 
hr -


hallenge-resettable for any polynomial 
hr(�).

To 
larify the notion we 
onsider two examples. No CID-s
heme is even 2-
hallenge-resettable for

the woman-in-the-middle adversary. The reason is su
h an adversary dupli
ates all messages of the

prover and the veri�er and if we exe
ute a 
hallenge reset then the adversary imitates this, too. In


ontrast, for any non-resetting CR1-adversary any CID-proto
ol is 
hallenge-resettable be
ause the

exe
utions with the prover are already �nished when the intrusion try starts.

In 
omparison to the CR1-se
ure s
heme, here the veri�er 
hooses a random session ID and the

ID-based trapdoor s
heme is applied to 
ommit to the session ID and the 
hallenge at the beginning

of an exe
ution. The session ID is also transmitted in 
lear together with the 
ommitment. Ex
ept

for this modi�ed 
ommitment the rest of the proto
ol remains un
hanged. The 
ommon session ID is

set to the veri�er's 
hoi
e (and thus it is easy for the adversary to make sessions with the prover end

up with the same ID).

Theorem C.6 [Con
rete se
urity of the identi�
ation based s
heme in the CR2 setting℄ Let

CID be an CID-identi�
ation proto
ol and let 
hr (�); v
l(�) be polynomially-bounded fun
tions. Also,

let PRF be a pseudorandom fun
tion family and denote by T DC an ID-based trapdoor 
ommitment

s
heme. Let ID be the asso
iated identi�
ation s
heme as per Figure 12. If I is an adversary of

time-
omplexity t(�) and query-
omplexity q(�) atta
king ID in the CR2 setting then there exists

an adversary I

CID

atta
king CID in a non-resetting CR2 atta
k su
h that CID is 
hr(�)-
hallenge-

resettable for I

CID

and

Adv

weak-id-
r2

ID;I

(k) � q(k) �Adv

PRF

(t;q)

(k) +Adv

T DC

t�
hr

(k) +Adv

id-nr-
r2

CID;I

CID

(k) : (6)

For the asymptoti
 
ounterpart we have:

Corollary C.7 [Polynomial-se
urity of the identi�
ation based s
heme in the CR2 setting℄

Let PRF be a polynomially-se
ure pseudorandom fun
tion family and let T DC be a polynomially-

se
ure ID-based trapdoor 
ommitment s
heme, set v
l(k) = k, and let ID be the asso
iated identi-

�
ation s
heme as per Figure 12. If CID is a polynomially-se
ure CID-identi�
ation proto
ol in the

non-resetting CR2 setting then ID is polynomially-se
ure in the CR2 setting.

D Proofs

D.1 Proof of Theorem 3.1

Figure 13 des
ribes the forging algorithm F atta
king DS. It runs I as a subroutine, itself responding

to the latter's ora
le queries so as to provide a \simulation" of the environment provided to I in

Experiment

id-
r

ID;I

(k), and eventually outputs a forgery. The forger is not in possession of the se
ret

key sk whi
h is used by prover instan
es but 
an 
ompensate using its a

ess to the signing ora
le.

Important to the fa
t that the time-
omplexity of F is t(k) |the same as that of I| are our 
onven-

tions under whi
h the time measured pertains to the entire experiment. (In parti
ular the time used

by the signing ora
le is not an \extra" for the forger sin
e it 
orresponds to invo
ations of the signing

algorithm by prover instan
es in Experiment

id-
r

ID;I

(k).) It remains to verify Equation (1).

We 
laim that the simulation is \perfe
t" in the sense that from the point of view of I it is in

Experiment

id-
r

ID;I

(k). Barring the use of the signing ora
le to 
ompute the signatures, the forger

mimi
s Experiment

id-
r

ID;I

(k) faithfully, so what we need to 
he
k is that the values returned to the

impersonator via the signing ora
le are the same as those it would get from prover instan
es in
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Adversary F

DS(sign;sk;�)

(pk) | Forger given signing ora
le

Initialization:

(1) Choose R

V

= 
h

V

of length v
l(k) at random ; C

V

 0 // Coins and message 
ounter for

veri�er //

(2) p 0 // Number of a
tive prover instan
es //

Exe
ute adversary I on input pk and reply to its ora
le queries as follows:

� When I makes query WakeNewProver // A
tivate a new prover instan
e //

(1) p p+ 1 ; R

p

 " ; Return p

� When I makes query Send(prvmsg; i;msg

1

k � � � kmsg

2j

) with 0 � 2j < 3 and 1 � i � p

(1) If C

V

6= 0 then Return ?

(2) If 2j = 0 then Return start

(3) If 2j = 2 then // msg

1

= start and msg

2

is veri�er 
hallenge //

If jmsg

2

j 6= v
l (k) then Return ?

msg

3

 DS(sign; sk;msg

2

) // Invoke signing ora
le //

Return msg

3

� When I makes query Send(vfmsg;msg

1

k � � � kmsg

2j�1

) with 1 � 2j � 1 � 3

(1) C

V

 C

V

+2

(2) If 2j < C

V

then Return ? // Not allowed to reset the veri�er //

(3) If 2j�1 = 1 then msg

2

 
h

V

; Return msg

2

(4) If 2j�1=3 then

sig msg

3

de
ision DS(vf ; pk;
h

V

; sig)

Return "kde
ision

Forgery: Return (
h

V

; sig) // Output of the forger //

Figure 13: Forger F atta
king DS, using as subroutine an impersonator I atta
king the signature

based ID proto
ol ID of Figure 4.

Experiment

id-
r

ID;I

(k), even in the presen
e of resets. This is true be
ause the signing algorithm is

stateless and deterministi
. (Had the signing algorithm been probabilisti
 or stateful, the signature

returned by a prover instan
e after a reset would not be obtainable via the signing ora
le sin
e the

latter uses fresh 
oins ea
h time or updates its state in the normal way while the reset prover instan
e

would reuse signing 
oins or state.) This 
laim about the quality of the simulation is used to erase the

distin
tion between the experiments in the relevant probabilities below.

Let GuessChall be the event that I makes a query Send(prvmsg; p; startkmsg

2

) in whi
h msg

2

= 
h

V

equals the random 
hallenge R

V

= 
h

V


hosen for the veri�er in the initialization phase. As long as

this event does not o

ur, F does not invoke its signing ora
le on its output message 
h

V

, and thus,

as per De�nition B.1, wins if DS(vf;pk;
h

V

; sig) = a

ept. We now bound the advantage of I as

follows:

Pr [Win

I

= true ℄ = Pr

h

Win

I

= true ^ GuessChall

i

+ Pr [Win

I

= true ^ GuessChall ℄

= Pr [Win

F

= true ℄ + Pr [Win

I

= true ^ GuessChall ℄

� Pr [Win

F

= true ℄ + Pr [GuessChall ℄ :

30



Adversary E

AE(en
;pk;LR(�;�;
b));AE(de
;pk;sk;�)

(pk) | Eavesdropper given lr-en
ryption ora
le and de-


ryption ora
le

Initialization:

(1) C

V

 0 // Message 
ounter for veri�er, but no 
oins. //

(2) p 0 // Number of a
tive prover instan
es //

Exe
ute adversary I on input pk and reply to its ora
le queries as follows:

� When I makes query WakeNewProver // A
tivate a new prover instan
e //

(1) p p+ 1 ; Pi
k a tape R

p

at random ; Return p

� When I makes query Send(prvmsg; i;msg

1

k � � � kmsg

2j

) with 0 � 2j < 3 and 1 � i � p

(1) If C

V

6= 0 then Return ?

(2) If 2j = 0 then Return start

(3) If 2j = 2 then // msg

1

= start and msg

2

is 
iphertext //

msg

3

 AE(de
; sk;msg

2

) // Invoke de
ryption ora
le //

If jmsg

3

j 6= v
l (k) then Return ? else Return msg

3

� When I makes query Send(vfmsg;msg

1

k � � � kmsg

2j�1

) with 1 � 2j � 1 � 3

(1) C

V

 C

V

+2

(2) If 2j < C

V

then Return ? // Not allowed to reset the veri�er //

(3) If 2j�1 = 1 then

Let 
h

0

;
h

1

be random but distin
t strings of length v
l(k)


txt  AE(en
; pk; LR(
h

0

;
h

1

;
b)) // Invoke lr-en
ryption ora
le on the messages


h

0

;
h

1

//

msg

2

 
txt Return msg

2

(4) If 2j�1=3 then

If msg

3

= 
h

0

then gb 0

else If msg

3

= 
h

1

then gb 1

else let gb be a random bit

// The eavesdropper sets its guess bit and terminates. Nothing is returned to I in reply to

this query sin
e it is the last query and the eavesdropper has everything it needs anyway. //

Output: Return gb // Guess bit returned by eavesdropper //

Figure 14: Eavesdropper E atta
king AE , using as subroutine an impersonator I atta
king the en-


ryption based ID proto
ol ID of Figure 5.

Now note the probability of GuessChall is at most q(k)=2

v
l(k)

sin
e we have assumed that the

number of Send(prvmsg; �; �) queries made by I is at most q(k) and no information about R

V

is provided

during the simulation of Send(prvmsg; �; �) queries. This yields Equation (1) as desired.

D.2 Proof of Theorem 3.4

Figure 14 des
ribes the eavesdropping algorithm E atta
king AE . It runs I as a subroutine, itself

responding to the latter's ora
le queries so as to provide a \simulation" of the environment provided

to I in Experiment

id-
r

ID;I

(k). The eavesdropper is not in possession of the se
ret key sk whi
h is

used by prover instan
es but 
an 
ompensate using its a

ess to the de
ryption ora
le. As usual

our 
onventions on the way time-
omplexity is measured are important to it being the 
ase that the
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time-
omplexity of E is t(k), the same as that of I. It remains to verify Equation (2).

We 
laim that the simulation is \perfe
t" |in the sense that from the point of view of I it is in

Experiment

id-
r

ID;I

(k)| ex
ept for there being no reply made to the very last query of I, this being

its third move message to the veri�er. Indeed, the answers provided to Send(prvmsg; �; �; �) queries are


learly the same in the simulation as in the real experiment due to invo
ation of the same de
ryption

pro
edure, even though in the real experiment it is dire
tly invoked and in the simulation it is invoked

as an ora
le without dire
t a

ess to the underlying se
ret key. Now 
onsider Send(vfmsg; �) queries.

Sin
e both 
h

0

and 
h

1

are 
hosen at random, the 
iphertext msg

2

returned by the simulated veri�er

is formed by en
rypting a random string, regardless of the value of the (unknown to E) 
hallenge

bit 
b, and this is distributed like the 
orresponding 
iphertext in the real experiment. In reply to

its last query to the veri�er, I would expe
t to re
eive the veri�er de
ision. This is not provided in

the simulation (indeed E does not know how to provide this sin
e it does not know 
b) but this is

immaterial sin
e E is in possession of I's guess msg

3

at the 
hallenge and, using this, outputs its own

guess bit gb. This 
laim about the quality of the simulation is used to erase the distin
tion between

the experiments in the relevant probabilities below.

Let GuessCiph be the event that I makes a query Send(prvmsg; p; startkmsg

2

) in whi
h msg

2

= 
txt

equals the 
iphertext that E obtained via its query to its lr-en
ryption ora
le. As long as this event

does not o

ur, E does not invoke its de
ryption ora
le on any 
iphertext returned by its lr-en
ryption

ora
le, and thus, as per De�nition B.3, wins if gb = 
b. We 
an lower bound the probability that E

wins as follows:

Pr [Win

E

= true ℄ = Pr

h

gb = 
b ^ GuessCiph

i

� Pr [ gb = 
b ℄� Pr [GuessCiph ℄ : (7)

On the other hand

Pr [ gb = 
b ℄ = Pr [ gb = 
b j Win

I

= true ℄ � Pr [Win

I

= true ℄

+ Pr [ gb = 
b j Win

I

6= true ℄ � Pr [Win

I

6= true ℄

= 1 � Pr [Win

I

= true ℄ +

�

1

2

�

1

2

v
l(k)

� 1

�

� (1� Pr [Win

I

= true ℄)

=

1

2

�

1

2

v
l(k)

� 1

+

�

1

2

+

1

2

v
l(k)

� 1

�

� Pr [Win

I

= true ℄ : (8)

Above the 1=(2

v
l(k)

� 1) represents the probability that I does not 
orre
tly de
rypt the 
hallenge


iphertext but, unlu
kily for us, provides the plaintext 
h

1�
b

. From Equation (8) we get

Pr [Win

I

= true ℄ =

2(2

v
l(k)

� 1)

2

v
l(k)

+ 1

�

�

Pr [ gb = 
b ℄�

1

2

+

1

2

v
l(k)

� 1

�

� 2 � Pr [ gb = 
b ℄� 1 +

2

2

v
l(k)

+ 1

:

Using Equation (7) and the de�nition of the advantage from De�nition B.3 we get

Pr [Win

I

= true ℄ � 2 � (Pr [Win

E

= true ℄ + Pr [GuessCiph ℄)� 1 +

2

2

v
l(k)

+ 1

= Adv

lr-

a

AE ;E

(k) + 2 � Pr [GuessCiph ℄ +

2

2

v
l(k)

+ 1

� Adv

lr-

a

AE ;E

(k) + 2 �

q(k)

2

v
l(k)

+

2

2

v
l(k)

= Adv

lr-

a

AE ;E

(k) +

2q(k) + 2

2

v
l(k)

:
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Adversary I

CID

(pk

CID

) | Non-resetting CR1 atta
ker for CID

Initialization:

(1) C

V

 0 // Message 
ounter for veri�er //

(2) pi
k random string R


om

// for assimilated trapdoor 
ommitment //

(3) p 0 // Number of a
tive prover instan
es //

(4) (pk

TDC

; sk

TDC

) T DC(keygen; k) // Keys for trapdoor 
ommitment s
heme //

Exe
ute adversary I on input pk = (pk

CID

; pk

TDC

) and reply to its ora
le queries as follows:

� When I makes query WakeNewProver // A
tivate a new prover instan
e //

(1) p p+ 1 ; Pi
k a tape R

p

at random ; Return p

� When I makes query Send(prvmsg; i;msg

1

k � � � kmsg

2j

) with 0 � 2j < 5 and 1 � i � p

(1) If C

V

6= 0 then Return ?

(2) If 2j = 0 then Return start

(3) If 2j = 2 then // msg

1

= start and msg

2

is trapdoor 
ommitment //

msg

3

 CID(
mt; sk

CID

; �;R

i

) // Fet
h 
ommitment of CID-prover //

Return msg

3

(4) If 2j = 4 then // msg

4

is opening of trapdoor 
ommitment msg

2

//

parse msg

4

as 
kR

If T DC(vf ; pk

TDC

;msg

2

;msg

4

) = a

ept

then msg

5

 CID(resp; sk

CID

;msg

3

k
;R

i

) // Get response from CID-prover //

else msg

5

 ?

Return msg

5

� When I makes query Send(vfmsg;msg

1

k � � � kmsg

2j�1

) with 1 � 2j � 1 � 5

(1) C

V

 C

V

+2

(2) If 2j < C

V

then Return ? // Not allowed to reset the veri�er //

(3) If 2j�1 = 1 then // Start: 
ompute dummy trapdoor 
ommitment for 0

v
l(k)

//

msg

2

 T DC(
mt; pk

TDC

; 0

v
l(k)

;R


om

)

Return msg

2

(4) If 2j�1 = 3 then // Forward 
om, get veri�er's 
hallenge and adapt dummy 
ommitment

//


h

V

 CID(
hall; pk

CID

;msg

3

)

msg

4

 T DC(fake; sk

TDC

; 0

v
l(k)

kR


om

;
h

V

)

Return msg

4

(5) If 2j�1=5 then // Adversary and we �nish exe
ution with veri�er //

forward msg

3

k
h

V

kmsg

5

to veri�er in CID

Figure 15: Impersonater I

CID

atta
king CID in a non-resetting CR1 model, using as subroutine an

impersonator I atta
king the proto
ol ID of Figure 6 in the CR1 setting.

Above we upper bounded Pr [GuessCiph ℄ by the probability of guessing the underlying plaintext,

using the fa
t that de
ryption is assumed unique (meaning 
iphertexts of distin
t plaintexts are always

distin
t). This yields Equation (2) as desired.
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D.3 Proof of Theorem 3.6

Figure 15 shows the adversary atta
king the CID-identi�
ation proto
ol in the non-resetting CR1

model. This algorithm gets pk

CID

as input and tries to pass the veri�er's examination by running the

adversary I for ID as a subroutine.

Algorithm I

CID

basi
ally simulates the CR1-adversary I with the CID-proto
ol by assimilating all

additional steps of ID. Spe
i�
ally, I

CID

generates a random key pair (pk

TDC

; sk

TDC

) of the trapdoor


ommitment s
heme and starts the simulation of I on pk

CID

and pk

TDC

. If this algorithm I 
ommits

to some td
om in some instan
e with the prover then I

CID


alls the prover in CID to obtain 
om and

passes this 
ommitment on to I. If I opens a 
ommitment td
om then I

CID


he
ks the 
orre
tness; if

the opening is valid then forward the 
hallenge to the prover and hand the answer to I. If the de
om-

mitment is in
orre
t then return ? to I without involving the prover. For a 
orre
t de
ommitment

I

CID

fet
hes the prover's response for the 
hallenge and hands it to I.

When I �nishes the phase with the prover and starts an exe
ution with the veri�er, I

CID


ommits to

a dummy value 0

v
l(k)

. Then I sends a 
ommitment to the veri�er whi
h I

CID

passes to the veri�er in

CID to obtain a 
hallenge 
h

V

from the veri�er. Exploiting the trapdoor property and knowledge of

sk

TDC

, adversary I

CID

�nds an appropriate opening for this 
hallenge 
h

V

for the dummy 
ommitment.

Note that this de
ommitment is identi
ally distributed as if I

CID

would have 
ommitted to 
h

V

right

away. I

CID

gives this de
ommitment to I and returns the answer to the veri�er in CID.

In 
ontrast to the prover in proto
ol ID the prover in CID uses random 
oins instead of a pseudo-

random fun
tion. The �rst step is to verify that pseudorandom values R

i

 PRF(eval; �;td
om)

instead of truly random R

i

do not help I too mu
h. To this end, we re
all the hybrid model of [11℄

in whi
h we repla
e the pseudorandom fun
tion by a random one. Namely, given proto
ol ID in the

CR1 setting we denote by ID

rand

the identi�
ation s
heme in whi
h ea
h prover instan
e, instead

of applying a pseudorandom fun
tion to td
om, evaluates a random fun
tion on this value, where

an independent fun
tion is sele
ted for ea
h prover in
arnation. Although random fun
tions are not

eÆ
iently 
omputable, they 
an be simulated by assigning ea
h new argument an independent random

string, and by repeating previously given answers for the same queries. The next 
laim relates the

advantage the adversary I might gain in ID 
ompared to ID

rand

to the pseudorandomness of PRF :

Claim D.1 Let ID be the identi�
ation proto
ol in Figure 6 and let v
l(�) a polynomially-bounded

fun
tion. Also, let PRF be a pseudorandom fun
tion family. If I is an adversary of time-
omplexity

t(�) and query-
omplexity q(�) atta
king ID in the CR1 setting then

Adv

id-
r1

ID;I

(k) � q(k) �Adv

PRF

(t;q)

(k) +Adv

id-
r1

ID

rand

;I

(k) : (9)

Proof: Given an adversary I we 
onstru
t a distinguisher D for the pseudorandom fun
tion ensemble

PRF as follows. D essentially plays the role of the honest parties, i.e., the prover and veri�er,

but is given ora
le a

ess to a sequen
e of fun
tions f

1

; : : : ; f

q(k)

whi
h are either pseudorandom

or truly random. D generates a random key pair (pk; sk)  ID(keygen; k) and starts to emulate

the atta
k. This is done by performing all steps of the prover's in
arnations and the veri�er as

de�ned by the proto
ol, ex
ept for the step where some prover instan
e i is supposed to 
ompute

R

i

 PRF(eval; �;td
om). Instead, algorithm D replies by querying ora
le f

i

about td
om and


ontinuing this prover's simulation for random tape R

i

. The distinguisher outputs 1 if and only if the

adversary is su

essful.

Clearly, if f

1

; : : : ; f

q(k)

is a sequen
e of pseudorandom fun
tions then D outputs 1 exa
tly if the

adversary breaks ID. On the other hand, if the fun
tions are truly random then D outputs 1 if and
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only if the adversary breaks ID

rand

. The running time of D is bounded by t(k) and the number of

queries is at most q(k). An hybrid argument now shows that this yields an algorithm distinguishing

a single pseudorandom fun
tion from PRF and a random one; the distinguishing advantage drops by

a fa
tor q(k) at most (see [2℄).

Hen
e, if the adversary I never queries a prover 
opy for the same pre�x twi
e, the hybrid s
heme


orresponds to the setting where ea
h prover in
arnation uses an independent random tape, like

the prover instan
es in CID. Be
ause su
h double queries 
an be easily eliminated by table-lookup

te
hniques, we assume in the sequel for simpli
ity that I never sends the same message to the same

prover instan
e twi
e.

Next we bound the probability that I �nds distin
t openings to a 
ommitment td
om sent to the

prover in ID

rand

by the maximal probability Adv

T DC

t

(k) of an algorithm �nding a 
ommitment with

ambiguous de
ommitments and running in time t(k). If this does not happen then I virtually mounts

a non-resetting CR1 atta
k on ID

rand

, and therefore I

CID

a 
orresponing atta
k on CID.

Claim D.2 If I is an adversary of time-
omplexity t(�) and query-
omplexity q(�) atta
king ID

rand

in the CR1 setting then for I

CID

atta
king CID as de�ned in Figure 15 we have

Adv

id-
r1

ID

rand

;I

(k) � Adv

T DC

t

(k) +Adv

id-nr-
r1

CID;I

CID

(k) : (10)

Proof: Conditioning on the event Unambiguity that the impersonator I does not send td
om with

two valid de
ommitments to some prover in
arnation, it is 
lear that I runs a non-resetting CR1 atta
k

only. In this 
ase, adversary I

CID

wins whenever I wins. It therefore suÆ
es to bound the probability

of event Unambiguity.

We 
laim that Pr

h

Unambiguity

i

is at mostAdv

T DC

t

(k). This 
an be seen as follows. Given a publi


key pk

TDC

of the trapdoor 
ommitment s
heme we 
hoose a pair (pk

CID

; sk

CID

) for the identi�
ation

proto
ol and run an atta
k of I on ID

rand

by impersonating the honest prover and veri�er. If I outputs

a 
ommitment td
om with distin
t openings with respe
t to pk

TDC

then we output this 
ommitment

with the openings, too. Apparently, the probability that we �nd su
h ambiguous de
ommitments

equals the probability Pr

h

Unambiguity

i

, and the running time of our algorithm is bounded by

t(k). This 
ompletes the proof.

Colle
ting the probabilities from Claims D.1 and D.2 yields the theorem.
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