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Abstract. Boneh and Venkatesan have recently proposed a polynomial time
algorithm for recovering a “hidden” element « of a finite field IF',, of p elements
from rather short strings of the most significant bits of the remainder modulo
p of at for several values of ¢ selected uniformly at random from IF,. We use
some recent bounds of exponential sums to generalize this algorithm to the
case when t is selected from a quite small subgroup of IF;,. Namely, our results
apply to subgroups of size at least p'/3t for all primes p and to subgroups
of size at least p° for almost all primes p, for any fixed ¢ > 0. We also
use this generalization to improve (and correct) one of the statements of the
aforementioned work about the computational security of the most significant
bits of the Diffie-Hellman key.

1. Introduction

Let p be an n-bit prime and let g € IF, be an element of multiplicative order T,
where IF,, is the finite field of p elements.

For integers s and m > 1 we denote by (sremm) the remainder of s on
division by m. We also use log z to denote the binary logarithm of z > 0.

In the case of T = p — 1, that is, when ¢ is a primitive root, Boneh and
Venkatesan [2] have proposed a method of recovering a “hidden” element o € IF,
from about n'/2 most significant bits of (ag® remp), i =1,...,d, for d = (2711/2]
integers x1, ... , x4, chosen uniformly and independently at random in the interval
[0,p — 2]. This result has been applied to proving security of reasonably small
portions of bits of private keys of several cryptosystems. In particular, in Theorem 2
of [2] the security of the [n'/2] + [logn] most significant bits of the private key
(gab rem p) of the Diffie-Hellman cryptosystem with public keys (¢g®remp) and
(gb remp) with a,b € [0,p — 2] is considered.

Namely, a method has been given to recover, in polynomial time, the Diffie-
Hellman key (g“b rem p) from (g®remp) and (gb rem p), using an oracle which
gives only the [n'/2] + [logn] most significant bits of the Diffie-Hellman key.

Unfortunately the proof of Theorem 2 in [2] is not quite correct. Indeed, in
order to apply Theorem 1 of that paper to h = ¢® this element must be a primitive
root of IF,,. Thus the proof of Theorem 2 of [2] is valid only if ged(b,p—1) =1 (of
course the same result holds in the case ged(a,p—1) = 1 as well). However, even in
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the most favourable case when | = (p—1)/2 is prime, only 75% of pairs (a, b) satisfy
this condition. Certainly breaking a cryptosystem in 75% of the cases is already
bad enough (even in 0.75% is) but unfortunately for the attacker (using the above
oracle), these weak cases can easily be described and avoided by the communicating
parties. The proof of Theorem 3 of [2] suffers from a similar problem.

Here we use new bounds of exponential sums from [7] to extend some results
of [2] to the case of elements g of arbitrary multiplicative order T', provided that
T > p'/3+. This allows us to prove that the statement of Theorem 2 of [2] holds
for all pairs (a,b). We also prove that for almost all primes p similar results hold
already for T' > p®.

A survey of similar results for other functions of cryptographic interest has
recently been given in [5].

Throughout the paper the implied constants in symbols ‘O’ may occasiona-
lly, where obvious, depend on the small positive parameter € and are absolute
otherwise; they all are effective and can be explicitly evaluated.

2. Distribution of ¢* Modulo p

For integers A, r and h let us denote by N) 4 ,(r, h) the number of z € [0,T — 1]
for which (Ag” remp) € [r + 1,7 + h].

We need the following asymptotic formula which shows that Ny ,4,(r, h) is
close to its expected value Th/p, provided that T is of larger order than p'/3.

Lemma 2.1. For any € > 0 there exists § > 0 such that for any element g € IF,, of

multiplicative order T > p'/3t¢ the bound
Th _ 1—6
R v B A
holds.

Proof. We remark that Ny g,(r, k) is the number of solutions z € {0,... , T — 1}
of the congruence

Ag® =y (mod p), y=r+1,...,r+h.
Using the identity (see Exercise 11.a in Chapter 3 of [17])

p—1 .
. [0, fu#0 (modp);
Z%exp (2micu/p) = { p, ifu=0 (mod p);

we obtain
1 T—1 r+h p—1
Nagp(r,h) = =3 > Y exp(2mic(\g” —y) /p)
p =0 y=r+1 c=0
1 p—1T-1 r+h

= = Z Z exp (2wicAg” /p) Z exp (—2micy/p) .

p c=0 =0 y=r+1
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Separating the term Th/p corresponding to ¢ = 0 we obtain

Th 1 p—1|T-1 r+h
Nygp(r,h)——| < - Z exp (2micAg” /p) Z exp (—2micy/p)
p p c=1|z=0 y=r+1
1p—1 T—1 r+h
= - Z exp (2micAg” /p) Z exp (2micy/p)]| .
p c=1 |z=0 y=r+1
We estimate the sum over z by using the bound
T-1
max | exp (2micg”/p)| = O (B(T,p)), (1)
ged(e,p)=1 o
where
P2, if T > p*/3;
B(T,p) = p"/*T%5, if p>/* > T > p'/?; (2)

pU/STS/8 if pl/2 > T > pl/3,

which is essentially Theorem 3.4 of [7]. Using the estimate

p—1| r+h
. Sg}%ilz > exp (2micy/p)| = O(plogp),
c=1 |ly=r+1
see Exercise 11.c in Chapter 3 of [17], we obtain
Ny gp( h)—@ = O (B(T,p)logp)
o<rhep-1| 9P Pl IR

It is easy to see that for any & > 0 there exists § > 0 such that B(T, p) = O(T'~%)
for T > pl/?’+E and the result follows. O

In the next statement we show that for almost all primes the lower bound
T > p'/3+¢ can be brought down to T > p°.

Lemma 2.2. Let Q be a sufficiently large integer. For any € > O there exists § > 0
such that for all primes p € [Q,2Q)], except at most Q5/%%< of them, and any
element g € IF, of multiplicative order T' > p® the bound
Th
max_|Nyg,(r,h) ——|=0 (")
p

max
0<r,h<p—1gcd(A,p)=1

holds.

Proof. The proof is analogous to the proof of Lemma 2.1 using in this case The-

orem 5.5 of [7] instead of (1) and (2). For each prime p = 1 (mod T') we fix an
element g, r of multiplicative order 7. Then Theorem 5.5 of [7] claims that for



4 M. 1. Gonzélez Vasco and 1. E. Shparlinski

any U > 1 and any integer v > 2, for all primes p = 1 (mod T) except at most
O(U/logU) of them, the bound

T-1
Z exp (27ricg;f’T/p)
=0

max

"5 =0Tt (1))

holds. We remark that the value of the above exponential sum does not depend
on the particular choice of the element g, 7.
Taking

1
V= {—J +1  and U =QY*e/2
£

after simple computation we obtain that there exists some § > 0, depending only
on ¢, such that for any fixed 7' > Q/? the bound

T-1

> exp (2micgy +/p)| = O (T, (3)
x=0

max
ged(e,p)=1

holds for all except O(Q'/?+¢/2) primes p = 1 (mod T') in the interval p € [Q, 2Q)].
As it follows from (1) and (2), a similar bound also holds for T > Q'/3+¢/2. So
the total number of exceptional primes p for which (3) does not hold for at least
one T > p° > Q°/2 is O (Q%/%F%).

Using the bound (3) in the same way as we have used (1) and (2) in the proof
of Lemma 2.1 we derive the desired result. O

Certainly in both Lemma 1 and Lemma 3 the dependence of § on € can be
made explicit (as a linear function of ¢).

3. Lattices

As in [2], our results rely on rounding techniques in lattices. We therefore review
a few related results and definitions.

Let {by,...,bs} be a set of linearly independent vectors in IR®. The set of
vectors

L:{ZZZ:Ztibi, tl,...,tSEZ}
1=1

is called an s-dimensional full rank lattice. The set {by,... b} is called the basis
of L.

In [1] Babai describes a polynomial time algorithm which, for given a lattice
L and a vector r = (r1,...,7s) € IR®, finds a lattice vector v = (v1,...,vs)
satisfying the inequality

s 1/2 s 1/2
<Z (v; — ri)2> < 2%/*min (Z (2 — ri)2> , z=1(21,...,25) €L

i=1 i=1
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That is, a given vector can be rounded in polynomial time to an approximately
closest vector in a given lattice. The above algorithm uses the lattice basis re-
duction algorithm of Lenstra, Lenstra and Lovész [9], see also [14] for some more
recent and stronger results.

For integers z1,...,xq, selected in the interval [0, — 1], we denote by
Ly, (z1,...,2q) the d+ 1-dimensional lattice generated by the rows of the follow-
ing (d+ 1) x (d + 1)-matrix

p 0 0 ... 0 O
0 p O 0 0
: : (4)
0 0 0 ... p O
tl tQ tg N td 1/]3

where t; = (¢ remp), i =1,... ,d.
The following result is a generalization of Theorem 5 of [2] (which corresponds
to the case T'=p — 1).

Lemma 3.1. Let d =2 {nl/ﬂ and p = n1/2/2 + 3. Let « be a fized integer in the
interval [0,p — 1]. For any € > 0, sufficiently large p, and any element g € IF),
of multiplicative order T > p'/3t¢ the following statement holds. Choose integers

Z1,...,2q uniformly and independently at random in the interval [0,T — 1]. Then
with probability P > 1 — g—n'/? for any vector u = (uq,... ,uq,0) with
4 1/2
(Z ((ag™ remp) - >> <pat
i=1
all vectors v = (v1,... ,v4,va4+1) € Lgp (21,... ,2q) satisfying
d 1/2
(Z (vi — Uz‘)2> <p27*,
i=1

are of the form

v = ((Bg" remp),...,(Bg" remp), 3/p)
with some =« (mod p).

Proof. As in [2] we define the modular distance between two integers 3 and v as
dist »(6,7) = min |8 — v — bp| = min {((8 — 7) remp) ,p — (8 ~ ) remp)}.

Let = be an integer chosen uniformly at random in the interval [0, T — 1]. It follows
from Lemma 2.1 that for any § and v with 5 # v (mod p) the probability P(3, )
of

dist (89", vg") > p2~#*
for an integer x chosen uniformly at random in the interval [0,T — 1] is

PB,y)=1-2""24+0(T°)
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for some & > 0, depending only on . Hence

5

provided that p is large enough.
Therefore, for any 8 #Z « (mod p),

d
Pr[3i € [1,d] | dist, (89", ag™) > p2 1] =1 (1- P(a, )" 21— (25> ,

where probability is taken over integers x1,... , x4 chosen uniformly and indepen-
dently at random in the interval [0,7T — 1].

Since for 8 # « (mod p) there are only p — 1 possible values for (Srem p),
we obtain

Pr [Elﬁ Za (modp), Jie[l,d| dist,(B¢g", ag®) > p2_“+1]
d
5 _pl/2

because
d(p —log5) > [nl/i‘ n'/?2 42 [nl/Q—‘ (3 —1log5) > logp +n'/2.

The rest of the proof is identical to the proof of Theorem 5 of [2], we outline
it for the sake of completeness.
Let us fix some integers x1, ... ,xq with

min min dist Ti qg¥i) > p2 7T 5
BZa (mod p) i€[l,d] p(ﬂg g ) P ()

Let v be a lattice point satisfying

4 1/2
(Z (vi — Uz)2> <p27h.

i=1
Clearly, since v € Ly, (z1,... ,xq), there are integers (3, z1, ... , zq such that
A (Btl — 21Dy .- - 7ﬁtd — 24P, 5/29)7
where, as in (4), t; = (¢® remp), i =1,... ,d.
If 6 = a (mod p), then for all ¢ = 1,... ,d we have 8t; — z;p = (Bt; remp),

for otherwise there would be j € {1,... ,d} so that |v; —u;| > p27H.
Now suppose that S Z « (mod p). In this case we have

i€[1,d]

4 1/2
<Z (v; —ui)2> > min dist ,(6t;, u;)

i=1
> H[liI(li] (dist ,(Bti, at;) — dist p(ui, at;))
i€,
> p2 ML _paTH = poTH
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that contradicts to our assumption. As we have seen, the condition (5) holds with
probability exceeding 1 — 2-7""* and the result follows. O

For an integer k > 1 we define fi(t) by the inequalities

p p
(fi(t) = 1)27 < (tremp) < fk(t)27~
Thus, roughly speaking, f(t) is the integer defined by the k& most significant bits
of (tremp).
Using Lemma 3.1 in the same way as Theorem 5 is used in the proof of
Theorem 1 of [2] we obtain

Lemma 3.2. Let d = 2 {n1/2—| and k = (nl/Q] + [logn]. For any e > 0, sufficiently
large p and any element g € IF), of multiplicative order T' > pl/3te there exists a
deterministic polynomial time algorithm A such that for any integer o € [1,p — 1]

given 2d integers
t; = (g™ remp) and si = fr (aty), 1=1....,d,

its output satisfies

Pr [.A(tl,...,td;sl,...,sd):a]21—2_"1/2
Z1,...,24€[0,T7—1]
if x1,...,xq are chosen uniformly and independently at random in the interval
[0,T —1].

Proof. We follow the same arguments as in the proof Theorem 1 of [2] which we
briefly outline here for the sake of completeness. We refer to the first d vectors in

the defining matrix of Ly, (21,... ,24) as p-vectors.
Let us consider the vector r = (r1,... ,74,74+1) where
T‘i:Sig, iil,...7d7 and ’I"d+1:O.
2k

Multiplying the last row vector (t1,...,tq,1/p) of the matrix (4) by a and sub-
tracting certain multiples of p-vectors, we obtain a lattice point

Uy = (U1,...,uq,0/p) € Ly, (x1,...,24q)
such that
lu; — 15| < p27F, i=1,...,d.
Therefore,

d+1 1/2
(Z (ui — Ti)2> <p(d+1) 227k,

i=1
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Now we can use the Babai algorithm [1] to find in polynomial time a lattice vector

v =(v1,...,04,V441) € Lgp (x1,... ,xq) such that
4 1/2
(S 0-n)
i=1
a1 1/2
< 2@+1)/4 1hin (Z (z: — ri)2> , z=1(21,...,2d,2d+1) € L
i=1

< 2 Ap(d + 1) 227k < p27r,
where p = n'/? /2 + 3, provided that n is sufficiently large. We also have

d 1/2
(Z (Uz _ ,ri)2> < pd1/22—k < p2_“.
i=1

Applying Lemma 3.1, we see that v = u,, with probability at least 1 — 2’”1/2, and
therefore, o can be recovered in polynomial time. a

Accordingly, using Lemma 2.2 instead of Lemma 2.1, in a similar way we
obtain that for almost all primes much smaller values of T' can be considered.

Lemma 3.3. Let Q be a sufficiently large integer. For any € > 0 there exists § > 0
such that for all primes p € [Q,2Q)], except at most Q5/%%< of them, and any ele-
ment g € IF, of multiplicative order T' > p® there exists a deterministic polynomial
time algorithm A such that for any integer o € [1,p — 1] given 2d integers

t; = (g™ remp) and si = fr (aty), 1=1....,d,
its output satisfies
Pr [.A(tl,...,td;sl,...,sd):oz]21—2_"1/2
x1,...,£q€[0,T—1]
if x1,...,xq are chosen uniformly and independently at random in the interval
[0,T —1].

4. Security of the Most Significant Bits of the Diffie-Hellman Key

We are ready to prove the main results.
For each integer k define the oracle Oy as an ‘black box’ which given the
values of A = (g¢remp) and B = (g”remp) outputs the value of f (¢%¥).

Theorem 4.1. Let k = [nl/z] + [logn]. For any € > 0, sufficiently large p and

any element g € IF), of multiplicative order T > pl/3te  there exists a probabilistic
polynomial time algorithm which for any pair (a,b) € [0,T — 1]2, given the values
of A= (¢g°remp) and B = (g remp), makes O (n1/2) calls of the oracle Oy, and

computes (g“b remp) correctly with probability 1 + O (2*”1/2)‘
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Proof. Given a pair (a,b) € [0,7 — 1] let us select an integer r € [0,T — 1]
uniformly at random. We compute

gr = (Bg" remp)
thus g, = ¢ (mod p).

The probability that ged(b+r,T) > Tp~/375/3 is at most 7(T)T~p'/3+</3
where 7(T) is the number of positive integer divisors of T'. Indeed, for any divisor
D|T with D > Tp~'/37¢/3 there are at most T/D < p'/3+¢/3 values of s € [0, T—1]
with ged(s,T) = D.

Using the bound 7(T') = O (T/?), see Theorem 5.2 of Chapter 1 of [13], we
obtain that the probability of ged(b+ r,T) > Tp~1/3-¢/3 is at most

0 (T’1p1/3+2€/3> -0 (pfa/?)) -0 (27711/2) .

In the opposite case, when ged(a + 7, T) < Tp~1/37¢/3, the multiplicative
order of g, is
T
Tp——
" ged(b+1,T)

Let a,, = ¢g*®*") (mod p). Then

Jr(argy) = fr (gﬁaﬂ)) = fx (g(“”)(b*T)) .

Now we use the oracle Oy, with (¢g* Arem p) and (¢" Bremp) to compute fi (. g7¥)
for an integer x chosen uniformly at random in the interval [0,p — 1]. Because
T,|p—1 the values of (zrem T}.) are uniformly distributed in the interval [0, T}, — 1]
as well, thus Lemma 3.2 can be applied. Therefore, one can construct a probabilistic
polynomial time algorithm that:

> p1/3+5/3.

e Selects a random r € [0,7 — 1].

e Applies algorithm A from Lemma 3.2 (now g, plays the role of g in the
conditions of Lemma 3.2. This algorithm makes O (nl/ 2) calls to the oracle
O.

e Outputs the correct value «, with probability at least 1 — O (2_"1/2).

Indeed, the only possible source of error is either the case T, < p'/3t¢/3 or the
probability error of the algorithm of Lemma 3.2. The probability of both events is
0 (2—711/2)
Remarking that
9" =, A7"  (mod p),

we obtain the desired result. ad
It is easy to see that Theorem 4.1 is nontrivial for any 7 > p'/3*¢. In a

similar way, Lemma 3.2 produces a result which holds for almost all primes p and
is non-trivial for T' > p°.
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Theorem 4.2. Let k = [nl/Q] + [logn]. For any € > 0 and for all primes p €
[2n1, 2" — 1], except at most 20/6+2)" of them, and any element g € T, of mul-
tiplicative order T > p° the following statement holds: There exists a probabilistic
polynomial time algorithm which for any pair (a,b) € [0, T — 1)2, given the values
of A = (¢%remp) and B = (¢ remp), makes O (nl/z) calls of the oracle Oy and

computes (gab remp) correctly with probability 1 + O (2—"1/2>.

5. Remarks

First of all we note that the constants in above estimates are effective and can be
explicitly evaluated.

It would be very interesting to replace the condition T' > p° for the smallest
size of the multiplicative order of ¢ in Lemma 2.2 by a weaker condition of the form
T > (logp)¢ with some constant ¢. Although a more careful analysis of the proof
of Theorem 5.5 of [7] should allow to replace p® with a slower growing function, it
seems unlikely that the present method can be applied to T as small as a power
of log p.

Our results can also be applied to several other cryptosystems based on ex-
ponentiation in finite fields, which have been considered in [2], except the Shamir
message passing scheme, see [2, 3] (this scheme is also described in Protocol 12.22
n [11]). Unfortunately the proof of Theorem 3 in [2] suffers from the same prob-
lem as the proof of Theorem 2 of that paper. Namely, for the ElGamal scheme,
see [2, 3] as well as Section 8.4 from [11], it produces a result which applies only
to at most 50% of the cases and it cannot be applied to the the Shamir message
passing scheme at all. Indeed, in this scheme the exponent x of the corresponding
multiplier g* must satisfy the additional condition ged(bx + 1,p — 1) = 1, with
some b, ged(b,p — 1) = 1, thus g” runs through some special subset of I (even if
g is a primitive root) rather than through the whole IF; and thus Theorem 1 of [2]
does not apply. Our results in their present form cannot be used for this problem
directly, however it has been shown in [6] that a modification of the technique of
this paper, combined with some elementary sieve method produce similar results
for the Shamir message passing scheme.

Besides the mentioned in [2, 3] cryptosystems several other schemes can
be studied as well. For example, very similar results hold for the Matsumoto—
Takachima—Imai key-agreement protocol, see Section 12.6 of [11].

The results of [3] can be generalized in a similar way. To do so one can use
the bound of exponential sums of Theorem 3.4 of [7] to study the distribution of
the sums (¢ + ... + g remp) and thus obtain an analogue of Lemma 2.4 of [3].

One can also extend Theorem 4.1 to the case of Diffie-Hellman encryption
modulo an arbitrary composite integer m > 2. Indeed, using the well-known bound
T—1

Z exp (2mwicg” /m)
=0

max

<ml/2,
ged(c,m)=1 -
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see Theorem 10 of Chapter 1 in [8] or Theorem 8.2 in [12], instead of (1) and (2),
one can obtain similar results for elements g, gcd(g,m) = 1, of multiplicative
order T modulo m such that T > m!/2+¢. In fact, Lemma 3.2 can be extended
to elements t; chosen uniformly and independently at random from any subgroup
G of the group of units modulo m, provided that the cardinality of G satisfies
#G > ml/2+te

As we have mentioned, similar but somewhat more involved technique can be
applied to studying the bit security of the Shamir message passing scheme, see [6].

Finally, we remark that somewhat similar problem for extensions of finite
fields have been considered in [16]. The results of that paper and some of their
improvements in [15] have applications to the security of the new cryptosystem
designed in [4, 10].
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