
An E�cient Identi�cation Scheme Based on

Permuted Patterns

?

Shahrokh Saeednia

Universit�e Libre de Bruxelles, D�epartement d'Informatique

CP 212, Boulevard du Triomphe, 1050 Bruxelles, Belgium

saeednia@ulb.ac.be

Abstract. This paper proposes a new identi�cation scheme based on a

hard partition problem rather than factoring or discrete logarithm prob-

lems. The new scheme minimizes at the same time the communication

complexity and the computational cost required by the parties. Since

only simple operations are needed for an identi�cation, our scheme is

well suited for smart cards with very limited processing power. With a

"good" implementation, the scheme is much faster than the Fiat-Shamir

or Shamir's PKP schemes.

Keywords: Identi�cation, NP-completeness, Smart cards.

1 Introduction

Since the introduction of zero-knowledge proofs [3], many identi�cation schemes

have been proposed from which the Fiat-Shamir [1], the Guillou-Quisquater [4]

and the Schnorr [6] schemes have attracted most attention. The security of these

schemes is mainly based on the intractability assumption of either factoring large

integers or the discrete logarithm problem, two closely related problems that

actually constitute the basis of the public key cryptography. The major disad-

vantage of these schemes is the important computing cost required by modular

multiplications of very large integers, which is signi�cant when the computing

power o�ered by the processor in use is low, as is the case of smart cards.

Many e�orts have been devoted to create identi�cation schemes using other

hard problems allowing a fast implementation. In 1989, Shamir [7] proposed the

�rst identi�cation scheme that makes use of simple operations, while relying on

some NP-complete problem, known as Permuted Kernels. The scheme needs 5

moves at each iteration and 20 iterations to achieve a security level close to 10

�6

.

In 1993, Stern [8] proposed another linear scheme based on Syndrome Decoding

that is a three-move one, but requires about 34 iterations to attain the same

security level as in Shamir's scheme. In 1996, another scheme is proposed by

Pointcheval [5] based on the Permuted Perceptrons problem that uses the same

framework as Stern's scheme but needs more than 48 iterations in order to be

secure in practice.

?

Patent pending. This work is supported by the Belgian Ministry of Wallone Region,

grant no. 981/3743.



The problem with all these schemes is, however, the high communication rate

between the prover and the veri�er that considerably reduces the e�ciency of

the schemes. The problem is due to the number of iterations in the protocols,

which is closely connected to the high probability of fraud at each iteration,

namely, 1=2 for Shamir's, 2=3 for Stern's and 3=4 for Pointcheval's schemes.

In the following sections, we propose the �rst linear scheme in which the

probability of fraud at each iteration is not a constant value and depends on

some parameters of the scheme. This allows reducing that probability and subse-

quently, the number of iterations. Some initial analyses show that we may choose

system parameters in such a way that this probability be reduced to 1=100 (so

that, we only need 3 iterations to attain the security level of 1=1; 000; 000), while

a very fast implementation is assured. Since only basical operations such as byte-

multiplications are needed, the scheme may be implemented e�ciently on smart

cards with very limited computing power.

2 Notations and Problems

We call

{ a (k; p)-identity vector, a vector of size kp in which each value belonging to

Z

p

occurs exactly k times.

{ a (k; p)-partitionable vector, a vector of size kp in which each value belonging

to Z

p

occurs a multiple of p times (possibly 0); in other words, the vector may

be partitioned into k disjoint subvectors of size p, each of which containing

the same value from Z

p

.

So, any permutation of the vector

(0; : : : ; 0

| {z }

k

; 1; : : : ; 1

| {z }

k

; : : : ; p� 1; : : : ; p� 1

| {z }

k

)

is a (k; p)-identity vector, and any permutation of one of the p

k

vectors

(e

1

; : : : ; e

1

| {z }

p

; e

2

; : : : ; e

2

| {z }

p

; : : : ; e

k

; : : : ; e

k

| {z }

p

)

is a (k; p)-partitionable vector, where e

1

; : : : ; e

k

2 Z

p

(not necessarily distinct).

For example, (1; 1; 4; 1; 1; 4; 1; 4; 4; 1; 4; 1; 1; 1; 1) is a (3; 5)-partitionable vec-

tor, as it may be partitioned into (1; 1; 1; 1; 1), (1; 1; 1; 1; 1) and (4; 4; 4; 4; 4).

Problem 1 :

Input: Integers p � 2 and k � 1, an m � n matrix H of integers in Z

p

, where

n = kp, and a vector Y of size m of integers in Z

p

.

Question: Is there a (k; p)-identity vector X such that

Y = HX (mod p): (1)



The problem is NP-complete even for p = 2, since we can show that any

instance of the Ssyndrome Decoding problem [2] (page 280) may be reduced to

an instance of the above problem.

SYNDROME DECODING:

Input: An m�n matrix A of 0's and 1's, a vector Z of 0's and 1's and a positive

integer `.

Question: Is there a binary vectorX of size n with ` 1's such that AX (mod 2) =

Z?

Reduction: Suppose that we have a polynomial-time algorithm for problem

1. Now given an input (A;Z; `) for the syndrome decoding, we construct the

binary matrix H as follows:

H =

0 : : : : : : 0

.

.

.

0 : : : : : : 0

A

0 : : : : : : 0

.

.

.

.

.

.

0 : : : : : : 0

I

n

� -

n

� -

m

6

?

n

6

?

where I is the identity matrix of size n. We also construct the binary vector

Y = (Z k (1; : : : ; 1

| {z }

n�`

; (0; : : : ; 0

| {z }

`

)

of size m+ n. If we apply the algorithm for problem 1 to the matrix H and

the vector Y , we will obtain a (n; 2)-identity vector X as output, such that HX

(mod 2) = Y , if, of course, a solution exists. Then, the �rst n components of X

speci�es a solution to the original problem, since they contain obviously ` 1's

and n� ` 0's. If there is no solution for problem 1, then the orignal problem has

obviously no solution either.

Problem 2 :

Input: Integers p � 2 and k � 2, an m � n matrix H of integers in Z

p

, where

n = kp, and a vector Y of size m of integers in Z

p

.

Question: Is there a (k; p)-partitionable vectorX such that Y = HX (mod p).



Note that, unlike the problem 1, we require here that k > 1. The problem of

�nding a (k; p)-partitionable vector is somehow di�erent from the problem 1, be-

cause here we are not limited to �nd a permutation of a �xed vector, but a vector

whose entries are from a particular set of values. What makes this problem hard

is the predetermined number (that is a multiple of p) of each value appearing in

the solution. Even for k = 2, the problem is NP-complete, as any instance of the

3-Dimensional Matching problem [2] (page 221) may be transformed to problem

2.

3-DIMENSIONAL MATCHING (3DM):

Input: Set T � U � V �W , where U , V and W are disjoint sets having the

same number ` of elements.

Question: Is there a subset T

0

� T such that jT

0

j = ` and no two elements of

T

0

agree in any coordinate?

Reduction: First, let us noticee that any instance of 3DM may be seen as

a binary matrix A with 3` rows and jT j columns, where each element of T is

represented in a column of A:

for 1 � i � ` a

ij

=

�

1 if t

j1

= u

i

0 otherwise

1 � j � jT j

for `+ 1 � i � 2` a

ij

=

�

1 if t

j2

= v

i�`

0 otherwise

1 � j � jT j

for 2`+ 1 � i � 3` a

ij

=

�

1 if t

j3

= w

i�2`

0 otherwise

1 � j � jT j

In this case, the problem is to �nd ` columns whose sum is the vector

(1; : : : ; 1). In other words, we have to �nd a binary vector X

0

with ` 1's such

that AX

0

= (1; : : : ; 1).

Now, given a matrix A of this form, we construct the matrix H as

H =

0 : : : : : : 0

.

.

.

0 : : : : : : 0

A

0 : : : : : : 0

.

.

.

.

.

.

0 : : : : : : 0

I

jT j

� -

jT j

� -

3`

6

?

jT j

6

?



and the vector Y = (Y

0

k Y

1

), where

Y

0

= (1; : : : ; 1

| {z }

3`

) and Y

1

= (0; : : : ; 0

| {z }

`

; 1; : : : ; 1

| {z }

jT j�`

)

This is precisely an instance of problem 2 with k = 2 and p = jT j. Now,

suppose that we have a polynomial-time algorithm for problem 2 that outputs (if

a solution exists) a (2; jT j)-partitionable vector X such that HX (mod jT j) =

Y . Let us denote X = (X

0

k X

1

), where jX

0

j = jX

1

j = jT j.

Because of the presence of 0's and 1's in X

1

= Y

1

, we know that X has

exactly jT j 1's and jT j 0's (see the de�nition of (k; p)-partitionable vectors). So,

considering that

X

1

= (0; : : : ; 0

| {z }

`

; 1; : : : ; 1

| {z }

jT j�`

)

X

0

has obviously ` 1's and jT j � ` 0's.

On the other hand, because of the modulus jT j (and considering the number

of columns of A that is also jT j), one may be sure that no row of A has more than

one 1 in the positions corresponding to 1's in X

0

, otherwise AX

0

(mod jT j)

would not equal Y

0

. This precisely means that X

0

is a solution for the 3DM

problem.

It is easy to see that, if the problem 2 does not have any solution, the original

3DM problem has no solution either.

Remark: If k � m, the problem 2 may be solved in polynomial time. In fact,

the problem consists of �nding k integers e

1

; : : : ; e

k

2 Z

p

and k disjoint subsets

S

1

; : : : ; S

k

of the set (1; 2; : : : ; kp), each of which having p elements, such that

8i = 1; : : : ;m

k

X

`=1

e

`

(

X

j2S

`

h

ij

) (mod p) = y

i

Obviously, one can try to solve the problem by choosing an arbitrary partition

and form a system of equations with m equations and k unknowns (the e

i

's).

When k � m, this system may be solved in polynomial time by attributing

arbitrary values to k�m unknowns and solving the resulting m�m system. On

the Contrary, when k < m, one should solve a system in which the number of

unknowns is less than that of the equations. So, the system may have a solution

or not, depending on the chosen partition.

We may also combine the two problems as follows, which is more suitable for

the security analysis of our scheme.

The main problem :

Input: Integers p � 2 and k � 1, an m � n matrix H of integers in Z

p

, where

n = kp, and a vector Y of size m of integers in Z

p

.



Question: Is there a vector X as a combination of a (`; p)-identity vector and

a (k � `; p)-partitionable vector, for any value of 0 � ` � k, such that Y = HX

(mod p).

One may observe that the vector X is such that, for some permutation �

X

�

�1
= ((e

1

; : : : ; e

1

| {z }

p

; : : : ; e

k�`

; : : : ; e

k�`

| {z }

p

); (0; : : : ; p� 1); : : : ; (0; : : : ; p� 1)

| {z }

` times

):

It is easy to see that this problem is also NP-complete, since the problem 1

may obviously be reduced to it.

3 The Scheme

Initialization: The authority chooses a relatively small odd prime p and an

m� n matrix H of integers in Z

p

, where n = kp for some �xed k � 2.

Key Generation: Every user chooses a random permutation � over f1; : : : ; ng

as his secret key, forms the (k; p)-identity vector

X = (0; : : : ; 0

| {z }

k

; 1; : : : ; 1

| {z }

k

; : : : ; p� 1; : : : ; p� 1

| {z }

k

)

�

and computes his public key as Y = HX (mod p).

Protocol:

1.

�

A chooses a (k; p)-partitionable vector R by randomly and independently

selecting k numbers e

1

; : : : ; e

k

2 Z

p

and p permutations �

1

; : : : ; �

p

over

f1; : : : ; kg and computing

R = ((e

1

; : : : ; e

k

)

�

1

; : : : ; (e

1

; : : : ; e

k

)

�

p

)

�

and sends Z = HR (mod p) to

�

B.

2.

�

B selects a random number 0 < c < p and sends it to

�

A.

3.

�

A sends V = R+ cX (mod p) to

�

B.

4.

�

B veri�es whether V is a (k; p)-identity vector and whether Z + cY � HV

(mod p).

If after t rounds, A correctly answered to all

�

B's questions,

�

B accepts A.

4 Security assessment

4.1 Completeness

Theorem 1. If A follows the protocol,

�

B always accepts A's proof.



Proof. There exists a permutation � such that

R

�

�1
= (e

1

; : : : ; e

1

| {z }

p

; : : : ; e

k

; : : : ; e

k

| {z }

p

)

and

X

�

�1
= ((0; : : : ; p� 1); : : : ; (0; : : : ; p� 1)

| {z }

k times

):

Hence, since p is prime,

cX

�

�1
= ((0; : : : ; p� 1)

�

; : : : ; (0; : : : ; p� 1)

�

)

for some permutation �. Clearly, R

�

�1
+ cX

�

�1
is a (k; p)-identity vector and

any permutation of the latter remains so. Thus, (R

�

�1
+ cX

�

�1
)

�

= R + cX is

also (k; p)-identity.

The second part of the veri�cation, i.e., the fact that Z + cY � H(R + cX)

(mod p) is trivial.

4.2 Security from the veri�er's point of view (Soundness)

As usual, a cheating prover may guess the veri�er's question c in advance and

choose a (k; p)-identity vector V , compute Z = HV � cY and send it in step 1.

Evidently, if the veri�er's question happens to be c, then the cheating prover can

successfully answer to it. However, the probability of this event is just 1=(p� 1)

for one round and (

1

p�1

)

t

for the whole protocol.

To answer all veri�er's possible questions, an impersonator may clearly try

to �nd X or a similar (k; p)-identity vector satisfying (1). However, if he �nds a

combination of a (`; p)-identity vector and a (k�`; p)-partitionable vector for any

value of ` (for ` = 0, it will be a (k; p)-partitionable vector), he can still answer

correctly to all veri�er's questions. In fact, it su�ces to determine a permutation

� , such that

X

�

�1
= ((e

1

; : : : ; e

1

| {z }

p

; : : : ; e

k�`

; : : : ; e

k�`

| {z }

p

); (0; : : : ; p� 1); : : : ; (0; : : : ; p� 1)

| {z }

` times

)

and set R in step 1 of the protocol as

R = ((0; : : : ; p� 1); : : : ; (0; : : : ; p� 1)

| {z }

k�` times

; (e

1

; : : : ; e

1

| {z }

p

; : : : ; e

`

; : : : ; e

`

| {z }

p

))

�

This guarantees that for any 0 < c < p, cX + R is a (k; p)-identity vector.

However, as we mentionned above, �nding such vectors is as hard as �nding a

(k; p)-identity vector satisfying (1).

There are, however, particular vectors X allowing to answer to a number

1 < q < p � 1 of veri�er's questions. In other words, for some X there exist a

vector R such that R+cX is a (k; p)-identity vector for q values of c out of p�1.

The maximum value of q depends on k and p. A simulation shows that, when

k = 1 and p is prime, q is at most

p�1

2

, while for k > 1 or when p is composite,

q may be larger, but never equal to p� 1.



Example 1. For p = 13 and k = 1, if

X = (2; 0; 0; 4; 4; 7; 7; 8; 8; 9; 9; 10; 10)

we may �nd

R = (3; 3; 1; 3; 5; 3; 8; 9; 3; 10; 3; 3; 11)

which allows that R+cX be a (1; 13)-identity vector for c = 1; 2; 4; 8; 10; 11. It is

easy to verify that for no other value of 0 < c < p�1, R+cX is a (1; 13)-identity

vector.

In the following, we will show that �nding a solution of (1) allowing to answer

to more than one veri�er's question is computaionally equivalent to �nding an

identity or a partitionable vector or a combination of them satisfying (1). In

particular, we examine the case when we are looking for an X satisfying (1) and

for which q = 2, and we show that even �nding such a vector is di�cult.

To do so, we may adopt two approaches:

{ Choose two arbitrary (k; p)-identity vectors V

1

and V

2

corresponding to ar-

bitrary questions c

1

and c

2

, and compute X as (V

1

� V

2

)=(c

1

� c

2

). In this

case, if any permutation � of X is a solution of (1) then we can answer to

two questions out of p� 1, namely by (V

1

)

�

and (V

2

)

�

.

In fact, it su�ces to compute R = (V

1

� c

1

X)

�

and send Z = HR to the

veri�er in step 1 of the protocol. Now, if the veri�er's question happens to

be c

1

or c

2

, then (k; p)-identity vectors V

1

and V

2

will be the appropriate

answers, respectively.

However, �nding a permutation of such an X that satis�es (1) is actually

an instance of the Permuted Kernels problem, which is known to be NP-

complete in the strong sense [7].

{ Compute an X such that Y = HX and search two (k; p)-identity vectors V

1

and V

2

such that V

1

�V

2

= (c

1

� c

2

)X for some 0 < c

1

; c

2

< p

1

. In this case,

we may answer to veri�er's questions c

1

and c

2

. However, �nding V

1

and V

2

is actually an instance of the Numerical Two-Dimensional Matching that is

also NP-complete in the strong sense [2] (page 224).

Note that, in the latter case,X may contain subvectors that are (`; p)-identity

or (j; p)-partitionable, with j + ` < k. In this case, we may reduce the problem

to a smaller one by just considering the subvector with k� (`+ j) elements of X

that are neither in the (`; p)-identity nor in the (j; p)-partitionable subvectors.

4.3 Security from the prover's point of view (Zero-knowledge)

The above protocol is not zero-knowledge, because R (and consequently V ) is

at last permuted with �. In fact, a cheating veri�er who receives V = R + cX

would know that

V

�

�1
= R

�

�1
+cX

�

�1
= ((e

1

; : : : ; e

k

)

�

1

; : : : ; (e

1

; : : : ; e

k

)

�

p

)+c(0; : : : ; 0

| {z }

k

; : : : ; p� 1; : : : ; p� 1

| {z }

k

)

1

The necessary condition in order that such V

1

and V

2

exist is that

P

n

i=1

x

i

� 0

(mod p).



without knowing the partial permutations �

i

and the k values e

j

. So, in order

to �nd � or an equivalent permutation, he may compute a (k; p)-identity vector,

that we call V

�

0�1
, by attributing values to e

j

's and selecting some permutations

for �

i

's, which allows to derive �

0

afterward from it and V . Now, the correctness

of �

0

may be veri�ed by checking whether

H � (0; : : : ; 0

| {z }

k

; : : : ; p� 1; : : : ; p� 1

| {z }

k

)

�

0

(mod p) = Y:

The number of all possibilities in this case is straightforwardly p

k

(k!)

p

that

is also the number of possible choices for R. As we can see, this quantity grows

exponentially with both p and k, so that for appropriate values of them, �nding

� becomes infeasible in practice (see the following section).

Note that, the fact that the e

i

's are chosen independently in the protocol is

of particular importance, because otherwise, the knowledge of V would reveal

some signi�cant information about X . For example, if we require that e

j

's be

all di�erent (that is only possible when k � p), then no pair of entries in V

corresponding to equal values in X may never be equal. Consequently, by �xing

a position ` in V and discarding all positions that have the same value as V

`

,

after considering a polynomial number of vectors V , only k positions remain

that correspond obviously to those of equal values in X .

If we continue this way, we can sequentially identify all the p subvectors of X ,

each of them having the same value, without knowing their exact value. Hence,

trying p! permutations, X may be determined. The attack would obviously fail

for not too small values of p, but may succeed if p is small, whatever the value

of k.

To conclude this section, let us notice that if we interchange the role of X

and R in the protocol, i.e., if X is a (k; p)-partitionable vector and R is a (k; p)-

identity one, not only the protocol functions correctly, but also this allows us to

consider one additional veri�er's questions (c = 0). The reason why we did not

adopt this choice is just because the protocol would no longer remain secure as

it leaks enough information to retrieve X from some values of V .

5 Parameters and Performances

First of all, we recall that the number of iterations t is closely connected to

the value of p. As mentionned above, a cheating prover may prepare to answer

correctly to 1 veri�er's questions out of p� 1 possible questions. So, t should be

determined such that (p � 1)

t

is su�ciently high. For instance, for p = 101 we

need 3 iterations to achieve a security level of 10

�6

.

On the other hand, the number of possible vectors R relies on the choice of

k and p. In fact, the number of basic (k; p)-partitionable vectors (i.e., without

considering partial permutations �

i

) is p

k

, while the number of permutations in

each subvector (to which �

i

is applied) is k!. This means that, the total number

of possible (k; p)-partitionable vectors is p

k

(k!)

p

. We propose to choose p and k



such that this number be at least 2

512

, which is su�ciently large for our purposes.

For example, for the above choice of p and with k = 5, this number is almost

2

733

.

We also propose to take m = dn=2e = dkp=2e. Thus, H will be a large matrix

and it seems that we deal with a large matrix product HR. However, since we

know the number of occurrences of each value e

i

in R (that is p), we may reduce

the matrix product HR into an m� k matrix product, by means of k passes on

R, which minimize the computational cost required by the prover

2

.

The matrix product algorithm works as follows:

Z = (0; : : : ; 0)

FOR j = 1 to k DO

W = (0; : : : ; 0)

FOR i = 1 to n DO

IF r

i

= e

j

THEN

FOR ` = 1 to m DO w

`

:= w

`

+H

`i

END

END

END

FOR i = 1 to m DO z

i

:= z

i

+ (w

i

� e

j

) END

END

Although this algorithm performs kn tests (that are not necessary in classical

matrix product methods), the number of multiplications is reduced by 1=p, which

allows us to consider large matrices.

For the above values, a matrix product of this form needs mk = 1265 mul-

tiplications of 7-bit integers, in our case. Since we only need 3 iterations, the

prover has to perform 3795 byte-multiplications in the whole protocol that, is

less than what is needed for one multiplication of two 512-bit integers. If we

consider the kn tests, our scheme with only one key is more than 10 times faster

than the Fiat-Shamir scheme (with 5 keys), and may be e�ciently implemented

on smart cards with limited processing power.

The following table shows the security level, the number of possible R's and

the number of byte-multiplications for some choices of p and k.

n m t p

k

(k!)

p

Security level Byte multiplications

p = 17 , k = 30 510 255 5 � 2

1950

2

�20

38250

p = 37 , k = 14 518 259 4 � 2

1415

6

�8

14504

p = 101 , k = 5 505 253 3 � 2

737

10

�6

3795

To compare with other linear schemes, let us recall that, unlike all previous

proposals, in our scheme the probability of fraud at each iteration, is a function of

p and may be decreased arbirarily, by choosing larger values of p. In the following

table, we consider our scheme with p = 101 and k = 5 and we compare it with

Stern's syndrome decoding [8], Shamir's permuted kernels [7] and Poincheval's

2

The same technique allows the veri�er to compute HV e�ciently.



permuted perceptrons [5] protocols. We can see that our scheme is by far much

more e�cient than those schemes, from the computation and communication

points of view.

SDP PKP PPP New

Stern Shamir Pointcheval Scheme

Public key (bits) 256 296 144 1771

Secret key (bits) 512 384 117 3535

Bits sent by round 954 832 896 5306

Byte-multiplications by round (prover) 1260 1369 42676 1265

Number of rounds 34 20 48 3

Total bits sent 32436 16640 43008 15918

Total byte-multiplications (prover) 42840 27380 2048448 3795

Security level 970; 740

�1

968; 420

�1

993; 252

�1

1; 000; 000

�1

Note that the number of byte-multiplications, in the case of Stern's and

Pointcheval's schemes, is computed by transforming bit operation timings into

byte-multiplication clocks.

Since we believe that most permutations are suitable for our scheme, instead

of a mapping, we may choose the secret key as a vector of n = 505 bits that may

be used by a very simple permutation algorithm to form X and R. The storage

of the public key needs 1771 bits, but may be reduced to 128 bits if we consider

f(Y ) rather than Y itself, where f is a hash function. In this case, the veri�er

should check, in the last step, whether f(HV � Z (mod p)) equals the public

key.

As is the case of all other linear schemes, the storage of the common matrix

H is not necessary in our scheme. Since the above matrix product algorithm

performs operations on columns of H at the same time, entries of each column

of H may be generated by a simple pseudo-random function with i (i = 1; : : : ; n)

as the argument.

6 Conclusion

We proposed a new identi�cation scheme whose security depends on a new par-

tition problem. Unlike all previously proposed linear schemes, the probability of

fraud at each iteration of our scheme is not constant and may be decreased by

considering larger values of one of the system parameters. The scheme uses only

simple operations and needs a few iterations to attain a su�ciently high security

level. This precisely means that, it minimizes both computation and communi-

cation complexity. To compare with existing identi�cation schemes, our scheme

is about 10 times faster than the Fiat-Shamir scheme that is one of the fastest

and the most used scheme in practice.



References

1. A. Fiat and A. Shamir, "How to prove yourself: practical solutions to identi�ca-

tion and signature problems", Advances in Cryptology (Proceedings of Crypto '86),

Lecture Notes in Computer Science, vol. 263, Springer-Verlag, 1987, pp. 186-194

2. M. R. Garey and D. S. Johnson, "Computers and intractability, a guide to the

theory of NP-completeness", W. H. Freeman & Co, 1979

3. S. Goldwasser, S. Micali and C. Racko�, "The knowledge complexity of interactive

proof systems", SIAM J. Comp., vol. 18, 1989, pp. 186-208

4. L. Guillou and J. J. Quisquater, "A practical zero-knowledge protocol �tted to

security microprocessors minimizing both transmission and memory" Advances in

Cryptology (Proceedings of EuroCrypt '88), Lecture Notes in Computer Science, vol.

339, Springer-Verlag, 1989, pp. 123-128

5. D. Pointcheval, " A new identi�cation scheme based on the perceptrons problem"

Advances in Cryptology (Proceedings of EuroCrypt '95), Lecture Notes in Computer

Science, vol. 921, Springer-Verlag, 1995, pp. 319-328

6. C. Schnorr, "E�cient signature generation by smart cards", Journal of Cryptology,

vol. 4, no. 3, 1991, pp. 161-174

7. A. Shamir, "An e�cient identi�cation scheme based on permuted kernels" Advances

in Cryptology (Proceedings of Crypto '89), Lecture Notes in Computer Science, vol.

435, Springer-Verlag, 1990, pp. 606-609

8. J. Stern, "A new identi�cation scheme based on syndrome decoding" Advances in

Cryptology (Proceedings of Crypto '93), Lecture Notes in Computer Science, vol.

773, Springer-Verlag, 1994, pp. 13-21


