
ACE:

The Advan
ed Cryptographi
 Engine

�

Thomas S
hweinberger, Vi
tor Shoup

IBM Zuri
h Resear
h Laboratory

S�aumerstr. 4, 8803 R�us
hlikon

Switzerland

fths,shog�zuri
h.ibm.
om

August 14, 2000

Abstra
t

This do
ument des
ribes the Advan
ed Cryptographi
 Engine (ACE). It spe
-

i�es a publi
 key en
ryption s
heme as well as a digital signature s
heme with

enough detail to ensure interoperability between di�erent implementations. These

s
hemes are almost as eÆ
ient as
ommer
ially used s
hemes, yet unlike su
h

s
hemes,
an be proven se
ure under reasonable and well-de�ned intra
tability

assumptions. A
on
rete se
urity analysis of both s
hemes is presented.

�

Change log:

First draft, Mar
h 1, 2000.

Se
ond draft, August 14, 2000: minor
orre
tions.

Contents

1 Introdu
tion 1

2 Se
urity goals 1

2.1 Provable se
urity . 1

2.2 Se
ure publi
 key en
ryption . 3

2.3 Se
ure digital signatures . 5

2.4 Intra
tability assumptions . 6

2.5 The Computational and De
isional DiÆe-Hellman assumption 6

2.6 The RSA and strong RSA assumptions 8

2.7 SHA-1 se
ond preimage
ollision resistan
e 9

2.8 MARS sum/
ounter mode pseudo-randomness 10

3 Terminology and Notation 11

3.1 Basi
 mathemati
al notation . 11

3.2 Basi
 string notation . 12

3.3 Bits, bytes, and words . 12

3.4 Conversion operators . 12

3.5 Other operators . 13

3.6 Algorithmi
 notation . 14

4 En
ryption S
heme 15

4.1 En
ryption Key Pair . 15

4.2 Key Generation . 15

4.3 Ciphertext Representation . 16

4.4 En
ryption Operation . 16

4.5 De
ryption Operation . 18

4.6 Pseudo-Random Bit Generator . 20

4.7 Entropy-Smoothing Hash Fun
tion . 21

4.8 AXU Hash Fun
tion . 22

4.9 Universal One-Way Hash Fun
tion . 22

4.10 Se
urity analysis . 23

4.11 Further dis
ussion and implementation notes 29

5 Signature S
heme 32

5.1 Signature Key Pair . 32

5.2 Key Generation . 32

5.3 Signature Representation . 33

i

5.4 Signature Generation Operation . 33

5.5 Certi�ed prime generation . 34

5.6 UOWHash variants with length en
oding and padding 36

5.7 Signature Veri�
ation Operation . 36

5.8 Se
urity analysis . 38

5.9 Further dis
ussion and implementation notes 41

6 ASN.1 Key Syntax 42

6.1 En
ryption Key Pair . 42

6.2 Signature Key Pair . 43

7 Performan
e 44

ii

1 Introdu
tion

The Advan
ed Cryptographi
 Engine (ACE) is a library of software routines that im-

plement a publi
 key en
ryption s
heme as well as a digital signature s
heme. Sin
e

names are sometimes
onvenient, we
all the en
ryption s
heme \ACE En
rypt" and

the signature s
heme \ACE Sign." These s
hemes are almost as eÆ
ient as
ommer-

ially used s
hemes, yet unlike su
h s
hemes,
an be proven se
ure under reasonable

and well-de�ned intra
tability assumptions. The s
hemes implemented are parti
ular

variants of the Cramer-Shoup en
ryption s
heme [CS98℄ and the Cramer-Shoup signa-

ture s
heme [CS99℄. These variants have been �nely tuned to strike a good balan
e

between eÆ
ien
y and se
urity. The papers [CS98℄ and [CS99℄, as well as the related

ba
kground papers [Sho00a℄, [Sho00b℄, and also [Sho98℄ are available on line at the

following URL:

http://www.zuri
h.ibm.
om/Te
hnology/Se
urity/extern/a
e

In this do
ument, we spe
ify these s
hemes with enough detail to ensure interoperability

between di�erent implementations. We also present a
on
rete se
urity analysis of both

s
hemes.

Before doing this, however, we sket
h the se
urity goals that these s
hemes are meant

to a
hieve, and the assumptions under whi
h these goals are a
tually a
hieved.

2 Se
urity goals

2.1 Provable se
urity

One of the goals of modern
ryptography is to design
ryptographi
 primitives, su
h as

signatures and en
ryption s
hemes, and to reason about their se
urity. This task
an

be divided into three sub-tasks:

� to de�ne an appropriate notion of se
urity, in
luding a formal model that de-

s
ribes how an adversary intera
ts with the system, and what
onstitutes \break-

ing" the system;

� to design
ryptographi
 s
hemes;

� to prove the se
urity of
ryptographi
 s
hemes.

The importan
e of the de�nitional aspe
t
annot be overemphasized. It has taken a

number of years for the \right" de�nitions for many
ryptographi
 primitives to emerge,

and there is still work to be done in de�ning se
urity for more
omplex systems. Many

ryptographi
 s
hemes have been \broken" only be
ause the designers of the s
heme

did not anti
ipate
ertain modes of atta
k.

In terms of proving se
urity, the ultimate goal would be to prove that a s
heme
annot

be broken|period. While this
an be a
hieved for
ertain
ryptographi
 problems,

the solutions are generally quite impra
ti
al, and require a very spe
ial set of physi
al

assumptions. We refer the reader to Maurer's survey on this area of information-

theoreti

ryptography [Mau99℄.

1

The next most ambitious goal for proving se
urity would be to prove that a s
heme

an not be broken without the use of an inordinate amount of
omputing resour
es.

Unfortunately, given the
urrent state of mathemati
al knowledge, we
annot hope

to prove the se
urity of any s
heme in this absolute sense. Rather, by a \provably

se
ure" s
heme,
ryptographers usually mean se
urity in a
onditional sense, based

upon \reasonable and natural" intra
tability assumptions, e.g., the assumption that

fa
toring large numbers is hard. This is the sense in whi
h we shall use the term

\provably se
ure."

Although provable se
urity in this
onditional sense may not be as strong a notion as

one would like, it is still a very powerful notion. It guarantees that there
an be no

\short
uts" in breaking a
ryptographi
 system|an adversary attempting to break the

system must atta
k the underlying \hard" problems dire
tly. There are several exam-

ples of
ryptographi
 systems that have been proposed, and even deployed, only later

to be broken via a \short
ut"|that is, without solving the underlying \hard" prob-

lem. One of the more spe
ta
ular su
h examples is Blei
henba
her's
hosen
iphertext

atta
k on RSA's en
ryption s
heme, PKCS #1 [Ble98℄. Even though the underlying

en
ryption s
heme is based on the RSA problem (see x2.6), Blei
henba
her's atta
k

leverly breaks the s
heme without solving this problem. This atta
k rendered inse-

ure the widely deployed SSL key agreement proto
ol, whi
h is based on this en
ryption

s
heme. Another re
ent example is an atta
k on the ISO 9761-1 standard for digital

signatures [CNS99, CHJ99℄. Again, even though the s
heme is based on the RSA

problem, the atta
k
leverly breaks the s
heme without solving this problem.

Random ora
le arguments

There are a number of examples in the literature of
ryptographi
 s
hemes that are

either provably se
ure but hopelessly impra
ti
al, or pra
ti
al but la
king a proof of

se
urity (or even broken). S
hemes that are both truly pra
ti
al and provably se
ure

are hard to
ome by. Be
ause of this, a new trend has emerged in the
ryptographi

resear
h
ommunity: proofs of se
urity in an idealized model of
omputation wherein

a
ryptographi
 hash fun
tion (like MD5 or SHA-1) is treated as if it were a random

ora
le, i.e., a \bla
k box" that
ontains a random fun
tion whi
h
an only be evaluated

by making an expli
it query. This \random ora
le" model for se
urity analysis was

informally introdu
ed by [FS87℄, and later formalized by [BR93℄. It has been used to

analyze numerous
ryptographi
 systems (see, e.g., [BR94℄ and [PS96℄). However, we

must emphasize that making use of random ora
les is not just another assumption|a

ryptographi
 hash fun
tion is not, and never
an be, a random ora
le. It is entirely

possible that a
ryptographi
 s
heme that is se
ure in the random ora
le model
an be

broken without either breaking the underlying hard problem, or �nding any parti
ular

weakness in the
ryptographi
 hash fun
tion. Indeed, this is amply demonstrated in

[CGH98℄. Our point of view is that a se
urity analysis in the random ora
le model

is best viewed as heuristi
 eviden
e for the se
urity of a s
heme. If the only pra
ti
al

solutions to a problem rely on a random ora
le argument for their proof of se
urity,

�ne|this is mu
h better than no se
urity analysis at all; but if a pra
ti
al solution
an

be obtained without relying on a random ora
le argument, so mu
h the better.

Shortly after RSA's PKCS #1 was shown to be vulnerable to a
hosen
iphertext

atta
k, it was modi�ed so as to utilize Bellare and Rogaway's OAEP en
ryption s
heme

[BR94℄. This s
heme is provably se
ure in the random ora
le model (assuming the

2

RSA problem is hard). The en
ryption s
heme des
ribed in this do
ument is provably

se
ure|without making random ora
le arguments|and is not too mu
h less eÆ
ient

than OAEP. Although there may be s
enarios where the engineering requirements are so

onstraining that even this slight loss of eÆ
ien
y
annot be tolerated, we believe that

there are other s
enarios where this tradeo� between eÆ
ien
y and provably se
urity

is
ertainly worth making.

Choosing intra
tability assumptions

The notion of \provable se
urity" is not entirely pre
ise, sin
e one has a
ertain
exi-

bility in
hoosing the \reasonable and natural" intra
atbility assumptions on whi
h a

proof of se
urity
an be based.

There are several
hara
teristi
s that are desirable in an intra
tability assumption.

Ideally, the \hard" problem should be well studied. Failing that, the problem should

at least be fairly natural and easy to des
ribe, so that it
an be understood and studied

by a reasonable number of people. At the very least, we believe that the problem

should be non-intera
tive, that is, of the form: given an instan
e of a problem (e.g.,

the produ
t of two large, random primes), it is hard to solve the problem (e.g., fa
tor

the number). The reason for this is that
ryptographi
 primitives and proto
ols
an

be atta
ked in quite
ompli
ated and subtle ways by an adversary that intera
ts with

the system, and su
h intera
tion is quite subtle to analyze. Redu
ing the se
urity of a

omplex, intera
tive system to the hardness of a non-intera
tive problem
an be seen

as one of the main a
tivities of modern theoreti
al
ryptography. Another ni
e feature

of requiring non-intera
tive assumptions is that it rules out the \proof te
hnique" of

proving a
ryptosystem is se
ure by assuming a priori that it is se
ure.

The reason we spend some time dis
ussing what we believe
onstitutes a \reasonable

and natural" intra
tability assumption is that some resear
hers apparently have a mu
h

more liberal interpretation of the term. For example, in [ZS92℄, the authors prove the

se
urity of an en
ryption s
heme based on an assumption of the form: an arbitrary

adversary
an be repla
ed by an essentially equivalent adversary that behaves in a

ertain ni
e way. As one
an see, by our standards, this is not a reasonable intra
tability

assumption|it is really just a proof of se
urity against a restri
ted
lass of adversaries.

As another example, in [ABR98℄, the authors make intra
tability assumptions that

are intera
tive; indeed, these intra
tability assumptions amount to little more than a

restatement of the de�nition of se
urity in terms of the parti
ular implementation that

they propose. We believe this misses the whole point of \provable se
urity," and it

ertainly does not meet our standard of a reasonable intra
tability assumption.

2.2 Se
ure publi
 key en
ryption

The development of a pra
ti
ally useful and mathemati
ally meaningful de�nition of

se
ure publi
 key en
ryption took the
ryptographi
 resear
h
ommunity a number of

years. There are a number of weak, ad ho
, notions of se
urity whi
h are not very useful.

These in
lude (1) the requirement that the private key should be hard to re
over, and

(2) the requirement that individual
iphertexts should be hard to de
rypt.

The �rst step towards a workable de�nition was the formulation of the notion of seman-

ti
 se
urity by [GM84℄. This de�nition of se
urity
aptures the notion that a
iphertext

3

leaks no information about the
orresponding
leartext to a (
omputationally bounded)

eavesdropper.

We sket
h this de�nition in more detail. Brie
y, se
urity in this sense means that it is

infeasible for an adversary to gain a non-negligible advantage in the following game. A

publi
 key/private key pair for the s
heme is generated, and the adversary is given the

publi
 key. Then the adversary generates two equal length messages m

0

;m

1

, and gives

these to an en
ryption ora
le. We assume these two messages have non-zero length.

1

The en
ryption ora
le
hooses a bit b 2 f0; 1g at random, en
rypts m

b

, and gives the

adversary the
orresponding target
iphertext

0

. Finally, the adversary outputs his

guess at b. The adversary's advantage is de�ned to be the distan
e from 1=2 of the

probability that his guess is
orre
t.

As mentioned above, the formal de�nition of semanti
 se
urity
aptures the intuitive

notion that no information about an en
rypted message is leaked to a passive adversary

that only eavesdrops. In proto
ol design and analysis, a mu
h more robust de�nition is

often required that
aptures the intuitive notion of se
urity against an a
tive atta
k, in

whi
h the adversary not only
an eavesdrop, but
an inje
t his own messages into the

network. The type of se
urity one needs in this setting is non-malleability, also
alled

se
urity against
hosen
iphertext atta
k, a notion that was formalized in the sequen
e

of papers [NY90, RS91, DDN91℄.

The de�nition of non-malleability is the same as for semanti
 se
urity, but with the

following essential di�eren
e. The adversary is given a

ess to a de
ryption ora
le

throughout the entire game; the adversary may request the de
ryption of
iphertexts

 of his
hoosing, subje
t only to the (obviously ne
essary) restri
tion that after the

target
iphertext

0

has been generated, the adversary may not request the de
ryption

of

0

itself.

Another intuitive way to understand non-malleability (and the motivation for its name)

is that a non-malleable en
ryption s
heme essentially provides a se
ure envelope, that

is, an envelope whose
ontents
an neither be seen nor modi�ed by an adversary.

Non-malleability is a fundamental notion that is ne
essary to ensure the se
urity of

numerous proto
ols that use publi
-key en
ryption. Sometimes, se
urity engineers

appear to impli
itly assume that a given en
ryption s
heme is non-malleable, even if

there is no justi�
ation for this. A
ase in point is Blei
henba
her's atta
k on SSL (see

x2.1).

For further dis
ussion on the importan
e of non-malleability, see [Sho98℄.

The above de�nitions for semanti
 se
urity and non-malleability may seem somewhat

limited at �rst sight|in parti
ular, one might ask what se
urity properties are guar-

anteed in a ri
her atta
k s
enario where there are many users with publi
 keys and

many messages are en
rypted under these publi
 keys. However, the above de�ni-

tions are quite robust, and it is well known that they are essentially equivalent to just

about any reasonable generalization one might
onsider in a multi-user/multi-message

environment. For a detailed a

ount of this issue, see [BBM00℄.

1

A user might en
rypt a zero length message, but this is not interesting from a se
urity point of

view.

4

Con
rete se
urity analysis

In this do
ument, we want to
arry out a
on
rete (or exa
t) exa
t se
urity analysis.

That is, we want to develop an expli
it, quantitative relationship between the hardness

of breaking a
ryptosystem and the hardness of the underlying problems on whi
h it is

based. In order to fa
ilitate this, we de�ne

AdvEn
(t; �; l)

to be the advantage in the above game de�ning non-malleability, where we
onsider an

adversary that runs in time at most t, makes at most � de
ryption requests, and l is

an upper bound on the length (in bytes, say) of the test messages m

0

;m

1

.

This fun
tion impli
itly depends on the se
urity parameters
hosen to de�ne the sig-

nature s
heme.

Also note that this fun
tion depends on the model of
omputation, sin
e the notion

of \time" depends on the details of this model. We do not want to get mired in the

details of this. A perfe
tly a

eptable model is to �x a simple stored-program ma
hine

model with a �xed word size (32 or 64 bits) and a
onvenient and realisti
 instru
tion

set, and then to measure time by
ounting the number of instru
tions exe
uted. We

also
ount in the running time the size of the program, as well as any pre-initialized

data tables.

Note that for simpli
ity, in the adversary's time we
ount the time spent by the key

generation algorithm, en
ryption algorithm, and de
ryption algorithm|that is, the

entire running time of the atta
k game is \
harged" to the adversary. Also, we shall

view t as a stri
t bound on the running time, and not, say, an expe
ted value.

2.3 Se
ure digital signatures

The notion of se
urity we want is that of se
urity against existential forgery against

adaptive
hosen message atta
k, as de�ned in [GMR88℄. This is the strongest, and

most useful notion of se
urity, allowing a signature s
heme to be used in an arbitrary

appli
ation without restri
tions.

Brie
y, se
urity in this sense means that it is infeasible for an adversary to win the

following game. A publi
 key/private key for the s
heme is generated, and the adversary

is given the publi
 key. The adversary then makes a sequen
e of signing requests. The

messages for whi
h the adversary requests signatures
an be adaptively
hosen, i.e.,

they may depend on previous signatures. The adversary wins the game if he
an

forge a signature, i.e.,
an output a message other than one for whi
h he requested a

signature, along with a valid signature on that message.

Con
rete se
urity analysis

In order to fa
ilitate
on
rete se
urity analysis, we de�ne

AdvSig(t; �; l)

to be the probability that an adversary wins the above game, where we
onsider adver-

saries that run in time at most t, make at most � signing requests, and l is an upper

bound on the total length (in bytes, say) of all the signed messages.

5

All of the te
hni
al
aveats on the de�nition of AdvEn
 apply to the de�nition of AdvSig

as well.

2.4 Intra
tability assumptions

The signature s
heme and en
ryption s
heme in ACE
an be proven se
ure under

reasonable and natural intra
tability assumptions, without resorting to random ora
le

arguments. However, we do make use of
ryptographi
 hash fun
tions as a \hedge": in

the random ora
le model, the s
hemes in ACE
an be proven se
ure under even weaker

intra
tability assumptions.

The four basi
 assumptions we need are as follows:

(1) The De
isional DiÆe-Hellman (DDH) assumption.

(2) The Strong RSA assumption.

(3) SHA-1 se
ond preimage
ollision resistan
e.

(4) MARS sum/
ounter mode pseudo-randomness.

We need assumptions (1), (3), and (4) to prove the se
urity of the en
ryption s
heme,

and we need assumptions (2), (3), and (4) to prove the se
urity of the signature s
heme.

In the random ora
le model, assumptions (1) and (2)
an be repla
ed by

(1

0

) The Computational DiÆe-Hellman (CDH) assumption.

(2

0

) The RSA assumption.

Thus, although we need to make somewhat strong intra
tability assumptions to get

a true proof of se
urity, our s
hemes are in a sense no less se
ure than more tradi-

tional s
hemes that are based on assumptions (1

0

) and (2

0

), but whi
h (at best)
an be

analyzed only in the random ora
le model.

We now des
ribe these assumptions in some detail.

2.5 The Computational and De
isional DiÆe-Hellman assumption

Let G be a group of large prime order q and let g 2 G be a generator. The Compu-

tational DiÆe-Hellman (CDH) assumption, introdu
ed by [DH76℄, is the assumption

that
omputing g

xy

from g

x

and g

y

is hard. It is a widely held belief that the se
urity

of
ertain key ex
hange proto
ols (su
h as STS [DvOW92℄) is implied by the CDH

assumption. This is simply false|under any reasonable de�nition of se
urity|ex
ept

in the random ora
le model of se
urity analysis. What is almost always needed, but

often not expli
itly stated, is the De
isional DiÆe-Hellman (DDH) assumption.

For g

1

; g

2

; u

1

; u

2

2 G, de�ne DHP(g

1

; g

2

; u

1

; u

2

) to be 1 if there exists x 2 Z

q

su
h that

u

1

= g

x

1

and u

2

= g

x

2

, and 0 otherwise. A \good" algorithm for DHP is an eÆ
ient,

probabilisti
 algorithm that
omputes DHP
orre
tly with negligible error probability

on all inputs. The DDH assumption is the assumption that there is no good algorithm

for DHP .

6

This formulation is equivalent to the more usual one where

g

1

= g; g

2

= g

x

; u

1

= g

y

; u

2

= g

xy

:

The DDH assumption is a potentially stronger assumption than the CDH assumption,

but at the present time, the only known method for breaking either assumption is to

solve the Dis
rete Logarithm problem.

The DDH assumption appears to have �rst surfa
ed in the
ryptographi
 literature in

a paper by S. Brands [Bra93℄. See [Bon98, CS98, NR97, Sta96℄ for further appli
ations

of and dis
ussions about the DDH assumption.

The groups G that are used in ACE are prime-order subgroups of the multipli
ative

group of units modulo a large prime. These subgroups have order roughly 2

256

.

Random self redu
tion and an equivalent formulation of the DDH

There are a few useful random self-redu
tions that allow us to transform arbitrary

inputs to DHP into random inputs on whi
h DHP evaluates to the same value.

Let g

1

; g

2

; u

1

; u

2

be given su
h that g

1

6= 1 and g

2

6= 1. We
an randomize u

1

and u

2

as follows:

~u

1

= u

a

1

g

b

1

; ~u

2

= u

a

2

g

b

2

;

where a; b 2 Z

q

are
hosen at random. Suppose that u

1

= g

x

1

and u

2

= g

y

2

. If x = y,

then (~u

1

; ~u

2

) is a random pair of group elements, subje
t to log

g

1

(~u

1

) = log

g

2

(~u

2

): If

x 6= y, then (~u

1

; ~u

2

) is a pair of random, independent group elements.

Next, we
an randomize g

2

as follows:

~g

2

= g

2

; ~u

1

= u

a

1

g

b

1

; ~u

2

= u

a

2

g

b

2

;

where
 2 Z

q

is
hosen at random.

Additionally, we
an randomize g

1

as follows:

~g

1

= g

d

1

; ~g

2

= g

2

; ~u

1

= u

ad

1

g

bd

1

; ~u

2

= u

a

2

g

b

2

;

where d 2 Z

q

is
hosen at random.

With this transformation, we see that we
an transform an arbitrary input to DHP to

an equivalent, random input. From this, it follows that the two distributions

R : (g

1

; g

2

; g

x

1

; g

y

2

); random g

1

; g

2

2 Gnf1g; x; y 2 Z

q

;

and

D : (g

1

; g

2

; g

x

1

; g

x

2

); random g

1

; g

2

2 Gnf1g; x 2 Z

q

are
omputationally indistinguishable under the DDH assumption. This random self-

redu
ibility property was �rst observed by Stadler [Sta96℄ (and also independently in

[NR97℄).

7

Con
rete se
urity analysis

In order to fa
ilitate
on
rete se
urity analysis, we de�ne

AdvDDH(t)

to be the maximum over all statisti
al tests T that run in time at most t and output

0; 1 of

�

�

�

Pr[T (R) = 1℄� Pr[T (D) = 1℄

�

�

�

:

2.6 The RSA and strong RSA assumptions

The RSA problem is the following. Given a randomly generated RSA modulus n, an

exponent r, and a random z 2 Z

�

n

, �nd y 2 Z

�

n

su
h that y

r

= z. The exponent r

is drawn from a parti
ular distribution|parti
ular distributions give rise to parti
ular

versions of the RSA problem. The RSA assumption is the assumption that this problem

is hard to solve.

The
exible RSA problem is the following. Given an RSA modulus n and a random

z 2 Z

�

n

, �nd r > 1 and y 2 Z

�

n

su
h that y

r

= z. The
hoi
e of r may be restri
ted

in some fashion|parti
ular restri
tions give rise to parti
ular versions of the
exible

RSA problem. The strong RSA assumption is the assumption that this problem is

hard to solve. Note that this di�ers from the ordinary RSA assumption, in that for

the RSA assumption, the exponent r is
hosen independently of z, whereas for the

strong RSA assumption, r may be
hosen in a way that depends on z. The strong RSA

assumption is a potentially stronger assumption than the RSA assumption, but at the

present time, the only known method for breaking either assumption is to solve the

integer fa
torization problem.

The strong RSA assumption was introdu
ed in [BP97℄, and has subsequently been used

in the analysis of several
ryptographi
 s
hemes (see, e.g., [FO99, GHR99℄).

Con
rete se
urity analysis

We de�ne

AdvRSA(t)

to be the maximum over all algorithms that run in time at most t of the probability of

solving the RSA problem. We also de�ne

AdvFlexRSA(t)

to be the
orresponding probability for solving the
exible RSA problem.

Random Self Redu
tion

One of the ni
e features about the RSA problem is that it is random self-redu
ible.

That is, having �xed n and r, then the problem of
omputing y = z

1=r

for an arbitrary

z 2 Z

�

n

an be redu
ed to the problem of
omputing ~y = ~z

1=r

for random ~z 2 Z

�

n

. This

means that given an eÆ
ient algorithm to solve the latter problem, one
an eÆ
iently

8

solve the former problem. This is a well-known and quite trivial redu
tion: given z,

hoose s 2 Z

�

n

at random, and set ~z = s

r

z. Then we have y = ~y=s.

The existen
e of su
h a random self redu
tion adds
redibility to the RSA assumption,

sin
e if there is an algorithm that solves the RSA problem for a given n and for a

non-negligible fra
tion of
hoi
es of z, then there is another algorithm that solves the

RSA problem for the same n for all
hoi
es of z.

There is also a random self redu
tion for the
exible RSA problem, at least in the

parti
ular version that we need to prove the se
urity of the signature s
heme. Just as

for the RSA problem, this random self redu
tion adds
redibility to the strong RSA

assumption. This redu
tion appears not to be so well known, and is des
ribed in detail

in the full-length version of [CS99℄.

2.7 SHA-1 se
ond preimage
ollision resistan
e

The notion of a UOWHF was introdu
ed by Naor and Yung [NY89℄. A UOWHF is

a keyed hash fun
tion with the following property: if an adversary
hooses a message

x, and then a key K is
hosen at random and given to the adversary, it is hard for he

adversary to �nd a di�erent message x

0

6= x su
h that H

K

(x) = H

K

(x

0

).

As a
ryptographi
 primitive, a UOWHF is an attra
tive alternative to the more tradi-

tional notion of a
ollision-resistant hash fun
tion (CRHF), whi
h is
hara
terized by

the following property: given a random key K, it is hard to �nd two di�erent messages

x; x

0

su
h that H

K

(x) = H

K

(x

0

).

A UOWHF is an attra
tive alternative to a CRHF be
ause

(1) it seems easier to build an eÆ
ient and se
ure UOWHF than to build an eÆ
ient

and se
ure CRHF, and

(2) in many appli
ations, most importantly for building digital signature s
hemes, a

UOWHF is suÆ
ient.

As eviden
e for
laim (1), we point out the re
ent atta
ks on MD5 [dBB93, Dob96℄.

We also point out the
omplexity-theoreti
 result of Simon [Sim98℄ that shows that

there exists an ora
le relative to whi
h UOWHFs exist but CRHFs do not. CRHFs

an be
onstru
ted based on the hardness of spe
i�
 number-theoreti
 problems, like

the dis
rete logarithm problem [Dam87℄. Simon's result is strong eviden
e that CRHFs

annot be
onstru
ted based on an arbitrary one-way permutation, whereas Naor and

Yung [NY89℄ show that a UOWHF
an be so
onstru
ted.

As we shall see, ACE needs only a UOWHF. We
onstru
t su
h a UOWHF by using

the
omposition theorem in [Sho00a℄, together with the SHA-1 low-level
ompression

fun
tion

C : f0; 1g

672

! f0; 1g

160

as the basi
 primitive. The assumption we make about C is that it is se
ond preimage

ollision resistant, i.e., if a random input x 2 f0; 1g

672

is
hosen, then it is hard to

�nd di�erent input x

0

6= x su
h that C(x) = C(x

0

). This assumption seems to be

mu
h weaker than assumption that no
ollisions in C
an be found at all (whi
h as

an intra
tability assumption does not even make sense). Indeed, the te
hniques used

to �nd
ollisions in MD5 [dBB93, Dob96℄ do not appear to help in �nding se
ond

preimages.

9

Note that from a
omplexity theoreti
 point of view, se
ond preimage
ollision resis-

tan
e is no stronger than the UOW property. Indeed, if H

K

(x) is a UOWHF, then the

fun
tion sending (K;x) to (K;H

K

(x)) is se
ond preimage
ollision resistant.

All of the above tends to indi
ate that the assumption that C is se
ond preimage

ollision resistant is mu
h more reasonable than the assumption that C is
ollision

resistant. Also note that from a
on
rete, quantitative se
urity point of view, se
ond

preimage
ollision resistan
e is also quite attra
tive. The SHA-1
ompression fun
tion

C has a 160-bit output. Be
ause of the birthday paradox,
ollisions
an be found by

brute-for
e sear
h in 2

80

steps, but a brute-for
e sear
h for a se
ond preimage would

require 2

160

steps. In not too many years, an atta
k that takes 2

80

steps may be

near the threshold of feasibility; in this situation, a s
heme that relies on the
ollision

resistan
e for C
an no longer be
onsidered se
ure, whereas a s
heme that relies only

on se
ond preimage
ollision resistan
e may still be
onsidered se
ure, provided no

atta
k substantially better than a brute-for
e atta
k is dis
overed.

Con
rete se
urity analysis

We de�ne

AdvSHA(t)

to be the maximum over all algorithms that run in time at most t of the probability of

�nding se
ond preimages for SHA-1, as de�ned above.

2.8 MARS sum/
ounter mode pseudo-randomness

We will make use of the MARS blo
k
ipher [BCD

+

98℄ in sum/
ounter mode to generate

sequen
es of pseudo-random bits.

Let f(k; x) denote the evaluation of the blo
k
ipher MARS using a 256-bit key k and

a 128-bit input blo
k x, yielding a 128-bit output blo
k. The assumption we make

about MARS is that when used in sum/
ounter mode, the resulting sequen
e of bits is

pseudo-random.

More pre
isely,
onsider the following two distributions, for a given length parameter

l > 0:

P

l

: (x; f(k; x) � f(k; x+ 1); : : : ; f(k; x+ 2l � 2)� f(k; x+ 2l � 1));

where k is a random 256-bit string and x is a random 128-bit string, and

R

l

: (x; r

0

; : : : ; r

l�1

);

where x; r

0

; : : : ; r

l�1

are random 128-bit strings. Here, we interpret \x + j," for 0 �

j < 2l in the natural way as the 128-bit blo
k representing x+ j redu
ed modulo 2

128

.

The pseudo-randomness assumption we make is that the two distributions P

l

and R

l

are
omputationally indistinguishable.

Con
rete se
urity analysis

In order to fa
ilitate
on
rete se
urity analysis, we de�ne

AdvMARS(t; l)

10

to be the maximum over all statisti
al tests T that run in time at most t and output

0; 1 of

�

�

�

Pr[T (R

l

) = 1℄� Pr[T (P

l

) = 1℄

�

�

�

:

Summed MARS

Note that in this
onstru
tion, instead of using the output of MARS in
ounter mode

dire
tly, we take the ex
lusive or of
onse
utive pairs of MARS outputs. This of
ourse

degrades the speed by a fa
tor of two, but there are some advantages from a se
urity

pont of view.

First, sin
e the adversary does not see any MARS input/output pairs, but only the

ex
lusive ors of outputs,
ertain types of
ryptanalysis should be less feasible.

Se
ond, and more important, this
onstru
tion goes a long way to hiding the fa
t that

MARS a
tually behaves like a random permutation, and not a random fun
tion. In-

deed, if we just use MARS dire
tly in
ounter mode, then we
an distinguish its output

from random with an advantage
lose to l

2

=2

128

, simply be
ause in a sequen
e of ran-

dom blo
ks, we would expe
t a
ollision, but none is forth
oming from MARS. Re
ent

results of [BI99℄ imply that the sum/
ounter mode
onstru
tion redu
es the advantage

to something mu
h
loser to l=2

128

. A similar result has also been independently ob-

tained by [Lu
00℄. The latter result is based on a mu
h more elementary proof, and is

somewhat weaker; however, for l < 2

64

, the result in [Lu
00℄ is nearly as good as that

in [BI99℄.

3 Terminology and Notation

In order to des
ribe the en
ryption and signature s
hemes pre
isely, we need to establish

some notational
onventions.

3.1 Basi
 mathemati
al notation

- Z

The set Z of integers.

- F

2

[T ℄

The set F

2

[T ℄ of univariate polynomials with
oeÆ
ients in the �nite �eld F

2

of

ardinality 2.

- A rem n

For A 2 Z and integer n > 0, then A rem n is de�ned to be the integer r 2

f0; : : : ; n� 1g su
h that A � r (mod n).

- A rem f

For A; f 2 F

2

[T ℄ with f 6= 0, A rem f is de�ned to be the polynomial r 2 F

2

[T ℄

with deg(r) < deg(f) su
h that A � r (mod f).

11

3.2 Basi
 string notation

Fix a set A. A

�

denotes the set of all strings, i.e., �nite sequen
es, over the set A. For

n � 0, A

n

denotes the set of all sequen
es of length n over A.

For a string x 2 A

�

, L(x) denotes its length. The string of length zero is denoted �

A

.

Let x = (a

0

; : : : ; a

m�1

) 2 A

m

be a string of length m, where a

i

2 A for 0 � i < m. For

0 � i � j � m, we de�ne the substring operation

[x℄

j

i

def

= (a

i

; : : : ; a

j�1

) 2 A

j�i

:

For 0 � i � m� 1, we de�ne the sele
tion operation

x[i℄

def

= a

i

2 A:

For x; y 2 A

�

, we de�ne z = x k y to be the
on
atenation of x and y. That is, z 2 A

�

is the unique string su
h that L(z) = L(x) + L(y), [z℄

L(x)

0

= x, and [z℄

L(z)

L(x)

= y.

3.3 Bits, bytes, and words

De�ne b

def

= f0; 1g, the set of bits. We will work with sets of the form

b; b

n

1

; (b

n

1

)

n

2

; : : : :

For su
h a set A, we de�ne the \zero element" 0

A

2 A re
ursively, as follows:

0

b

def

= 0 2 b;

0

A

n

def

= (0

A

; : : : ; 0

A

) 2 A

n

for n � 0.

We de�ne B

def

= b

8

, the set of bytes.

We de�ne W

def

= b

32

, the set of words.

For x 2 A

�

with A 2 fb;B;Wg, and for l � 0, we de�ne a padding operator

pad

l

(x)

def

=

(

x if L(x) � l;

x k 0

A

l�L(x)

otherwise:

For x 2 A

�

with A 2 fb;B;Wg, we say that x is normalized if x is not of the form

y k 0

A

n

for some y 2 A

�

and some n > 0.

3.4 Conversion operators

We de�ne a number of
onversions among Z;F

2

[T ℄;b

�

;B

�

;W

�

. The general notation

for a
onversion operator is

I

dst

sr

: sr
 ! dst ;

whi
h is a fun
tion that
onverts an element of the set sr
 to an element of the set dst .

All of these
onversion operators are quite simple and natural, even though their formal

spe
i�
ation is a little tedious. The only thing to really noti
e is that the
onversion

between byte strings and word strings follows what is sometimes
alled the \little

endian" ordering
onvention.

12

- I

Z

b

�

(x)

def

=

P

L(x)�1

i=0

x[i℄2

i

:

- I

b

�

Z

(n)

def

= x, where x 2 b

�

is the unique, normalized bit string su
h that I

Z

b

�

(x) = jnj.

- I

F

2

[T ℄

b

�

(x)

def

=

P

L(x)�1

i=0

x[i℄T

i

:

- I

b

�

F

2

[T ℄

(f)

def

= x, where x 2 b

�

is the unique, normalized bit string su
h that I

F

2

[T ℄

b

�

(x) =

f .

- I

b

�

B

�

(x)

def

= x[0℄ kx[1℄ k � � � kx[L(x) � 1℄:

- I

B

�

b

�

(x)

def

= y, where y 2 B

�

is the unique byte string with L(y) = dL(x)=8e and

I

b

�

B

�

(y) = pad

8L(y)

(x).

- I

b

�

W

�

(x)

def

= x[0℄ kx[1℄ k � � � kx[L(x) � 1℄:

- I

W

�

b

�

(x)

def

= y, where y 2 W

�

is the unique word string with L(y) = dL(x)=32e and

I

b

�

W

�

(y) = pad

32L(y)

(x).

- I

B

�

W

�

(x)

def

= y, where y 2 B

�

is the unique byte string su
h that I

b

�

B

�

(y) = I

b

�

W

�

(x).

- I

W

�

B

�

(x)

def

= y, where y 2 W

�

is the unique word string with L(y) = dL(x)=4e and

I

B

�

W

�

(y) = pad

4L(y)

(x).

- I

Z

B

�

(x)

def

= I

Z

b

�

(I

b

�

B

�

(x))

- I

B

�

Z

(n)

def

= I

B

�

b

�

(I

b

�

Z

(n))

- I

F

2

[T ℄

B

�

(x)

def

= I

F

2

[T ℄

b

�

(I

b

�

B

�

(x))

- I

B

�

F

2

[T ℄

(f)

def

= I

B

�

b

�

(I

b

�

F

2

[T ℄

(f))

- I

Z

W

�

(x)

def

= I

Z

b

�

(I

b

�

W

�

(x))

- I

W

�

Z

(n)

def

= I

W

�

b

�

(I

b

�

Z

(n))

- I

F

2

[T ℄

W

�

(x)

def

= I

F

2

[T ℄

b

�

(I

b

�

W

�

(x))

3.5 Other operators

For x; y 2 b, we de�ne z = x � y 2 b to be the ex
lusive-or of x and y, i.e., z =

(x+ y) rem 2. We
an extend the � operator element-wise to equal-length bit strings.

This de�nes an � operator on B and W, whi
h we
an then extend to equal-length

byte and word strings.

For
onvenien
e, for n 2 Z, we de�ne

L

b

(n)

def

= L(I

b

�

Z

(n));

L

B

(n)

def

= L(I

B

�

Z

(n));

L

W

(n)

def

= L(I

W

�

Z

(n)):

13

It will also be
onvenient to de�ne a simple \in
rement" operator on word strings. Let

x 2W

n

for some n > 0. Then

x+ 1

def

= pad

n

(I

W

�

Z

((I

Z

W

�

(x) + 1) rem 2

32n

)) 2W

n

:

We will make use of the following low-level
ryptographi
 transformations:

- MARS

MARS en
ryption fun
tion as spe
i�ed in [BCD

+

98℄, used with 256-bit keys; that

is

MARS :W

8

�W

4

!W

4

;

where an input (k;m)
onsists of the key k and the input blo
km to be en
rypted,

and the output is the resulting en
rypted blo
k; we do not make use of the

orresponding de
ryption fun
tion.

- CSHA1

SHA-1
ore
ompression fun
tion as des
ribed in [SHA95℄; that is

CSHA1 :W

5

�W

16

!W

5

;

where an input (h;m)
onsists of the initial hash state h and a text input m, and

the output is the resulting �nal hash state.

3.6 Algorithmi
 notation

We use a fairly standard notation for des
ribing algorithms. We use the notation

A B to denote the a
tion of assigning the value of B to the variable A. All of our

algorithms are written as \pure" fun
tions that take an input and return an output

using a \return" statement, and do not have any \side e�e
ts." Some fun
tions may

return one of several symboli
 values (A

ept;Reje
t;Prime;Composite).

Random numbers

At some points in the des
ription of algorithms, we say something like \generate a

random su
h and su
h." To implement this, one would need a

ess to a sour
e of

true random bits. However, most implementations will not have a

ess to su
h a

sour
e. Instead, it is presumed that a pseudo-random sour
e is used. In all
ases,

the implementor should use a
ryptographi
ally strong sour
e of pseudo-random bits or

numbers, and ensure that the
onstru
ted obje
ts have distributions as
lose as possible

to truly random obje
ts.

An implementation tip

When we des
ribe algorithms, there are several pla
es where
onversions are performed

between byte and word strings. In a
areful implementation, one should
onvert all

byte strings to word strings as early as possible, and thereafter work ex
lusively with

word strings, sin
e all the low-level operations work dire
tly on words, not bytes.

14

4 En
ryption S
heme

This se
tion de�nes the publi
 key en
ryption s
heme. It is a variant of the hybrid

version of [CS98℄ des
ribed in [Sho00b℄.

4.1 En
ryption Key Pair

The en
ryption s
heme de�ned in this do
ument employs two key types, whose repre-

sentation
onsists of the following tuples:

ACE En
ryption publi
 key: (P; q; g

1

; g

2

;
; d; h

1

; h

2

; k

1

; k

2

).

ACE En
ryption private key: (w; x; y; z

1

; z

2

).

For a given size parameter m, with 1024 � m � 16; 384, the
omponents are as follows:

q { a 256-bit prime number.

P { an m-bit prime number with P � 1 (mod q).

g

1

; g

2

;
; d; h

1

; h

2

{ elements of f1; : : : ; P � 1g (whose multipli
ative order modulo P

divides q).

w; x; y; z

1

; z

2

{ elements of f0; : : : ; q � 1g.

k

1

; k

2

{ elements of B

�

, with L(k

1

) = 20l

0

+ 64 and L(k

2

) = 32dl=16e + 40, where

l = dm=8e and l

0

= L

b

(d(2dl=4e + 4)=16e).

4.2 Key Generation

Algorithm 4.2.1 generates an ACE en
ryption key pair.

Algorithm 4.2.1 Key generation for the ACE publi
-key en
ryption s
heme.

Input: A size parameter 1024 � m � 16; 384.

Output: A publi
 key/private key pair, as des
ribed in x4.1.

1. Generate a random prime q, where 2

255

< q < 2

256

.

2. Generate a random prime P , 2

m�1

< P < 2

m

, su
h that P � 1 (mod q).

3. Generate a random integer g

1

2 f2; : : : ; P � 1g su
h that g

1

q

� 1 (mod P).

4. Generate random integers w 2 f1; : : : ; q � 1g and x; y; z

1

; z

2

2 f0; : : : ; q � 1g.

5. Compute the following integers in f1; : : : ; P � 1g:

g

2

 g

1

w

rem P;

 g

1

x

rem P;

d g

1

y

rem P;

h

1

 g

1

z

1

rem P;

h

2

 g

1

z

2

rem P:

15

6. Generate random byte strings k

1

2 B

20l

0

+64

, and k

2

2 B

32dl=16e+40

, where

l = L

B

(P) and l

0

= L

b

(d(2dl=4e + 4)=16e).

7. Return the publi
 key/private key pair

((P; q; g

1

; g

2

;
; d; h

1

; h

2

; k

1

; k

2

); (w; x; y; z

1

; z

2

)):

4.3 Ciphertext Representation

Consider a publi
 key (P; q; g

1

; g

2

;
; d; h

1

; h

2

; k

1

; k

2

) for the ACE en
ryption s
heme,

as des
ribed in x4.1. A
iphertext of the ACE en
ryption s
heme has the form

(s; u

1

; u

2

; v; e);

where the
omponents are as follows:

u

1

; u

2

; v { integers in f1; : : : ; P � 1g (whose multipli
ative order modulo P divides q).

s { an element of W

4

.

e { an element of B

�

.

We
all the s; u

1

; u

2

; v the preamble, and e the
ryptogram. If a
leartext is an l-byte

string, then the length of e is l + 16dl=1024e.

We introdu
e the fun
tion CEn
ode that is used to map a
iphertext to its byte-string

representation, and the inverse fun
tion CDe
ode . For integer l > 0, word string

s 2W

4

, integers 0 � u

1

; u

2

; v < 256

l

, and byte string e 2 B

�

,

CEn
ode(l; s; u

1

; u

2

; v; e)

def

= I

B

�

W

�

(s) k pad

l

(I

B

�

Z

(u

1

)) k pad

l

(I

B

�

Z

(u

2

)) k pad

l

(I

B

�

Z

(v)) k e

2 B

�

:

For integer l > 0 and byte string 2 B

�

with L() � 3l + 16,

CDe
ode(l;)

def

= (I

W

�

B

�

([℄

16

0

); I

Z

B

�

([℄

16+l

16

); I

Z

B

�

([℄

16+2l

16+l

); I

Z

B

�

([℄

16+3l

16+2l

); [℄

L()

16+3l

)

2 W

4

� Z� Z� Z�B

�

:

4.4 En
ryption Operation

Algorithm 4.4.1 uses an ACE en
ryption publi
 key to en
rypt a message, and outputs

the resulting
iphertext.

Algorithm 4.4.1 ACE asymmetri
 en
ryption operation.

Input: A publi
 key (P; q; g

1

; g

2

;
; d; h

1

; h

2

; k

1

; k

2

) as des
ribed in x4.1, and a byte

string M 2 B

�

.

Output: The byte-string en
oded
iphertext of M as des
ribed in x4.3.

1. Generate r 2 f0; : : : ; q � 1g at random.

2. Generate the
iphertext preamble:

16

2.1 Generate s 2W

4

at random.

2.2 Compute u

1

 g

1

r

rem P , u

2

 g

2

r

rem P .

2.3 Compute � UOWHash

0

(k

1

; L

B

(P); s; u

1

; u

2

) 2 Z (using

Algorithm 4.9.2); note that 0 � � < 2

160

.

2.4 Compute v

r

d

�r

rem P .

3. Compute the key for the symmetri
 en
ryption operation:

3.1

~

h

1

 h

1

r

rem P;

~

h

2

 h

2

r

rem P .

3.2 Compute k ESHash(k

2

; L

B

(P); s; u

1

;

~

h

1

;

~

h

2

) 2W

8

(using

Algorithm 4.7.1).

4. Compute the
ryptogram e SEn
(k; s; 1024;M) as des
ribed in

Algorithm 4.4.2.

5. En
ode the
iphertext as spe
i�ed in x4.3:

 CEn
ode(L

B

(P); s; u

1

; u

2

; v; e):

6. Return .

Before presenting the details of the symmetri
 key en
ryption algorithm, we give a

high-level des
ription. An input message M 2 B

�

is broken up into blo
ks M

1

; : : : ;M

t

,

where ea
h blo
k ex
ept possibly the last has m = 1024 bytes. Ea
h blo
k is en
rypted

using a stream
ipher, yielding en
rypted blo
ks E

1

; : : : ; E

t

, where L(E

i

) = L(M

i

) for

1 � i � t. Also, for ea
h en
rypted blo
k E

i

, a 16-byte message authenti
ation
ode

C

i

is
omputed. The resulting
ryptogram is then

e = E

1

kC

1

k � � � kE

t

kC

t

:

Thus, L(e) = L(M) + 16dL(M)=me. Note that if L(M) = 0, then L(e) = 0.

Algorithm 4.4.2 Symmetri
 en
ryption operation SEn
.

Input: A tuple (k; s;m;M) 2W

8

�W

4

� Z�B

�

, with m > 0.

Output: e 2 B

l

; l = L(M) + 16dL(M)=me.

1. If M = �

B

, then return �

B

.

2. Initialize a pseudo-random generator state, using Algorithm 4.6.1:

genState InitGen(k; s) 2 GenState:

3. Generate the AXUHash key k

AXU

(using Algorithm 4.6.3):

(k

AXU

; genState) GenWords((5L

b

(dm=64e) + 24); genState):

4. e �

B

; i 0.

5. While i < L(M) perform the following:

17

5.1 r min(L(M)� i;m).

5.2 Generate mask values for the en
ryption and MAC:

5.2.1 (mask

m

; genState) GenWords(4; genState).

5.2.2 (mask

e

; genState) GenBytes(r; genState) (using Algorithm 4.6.2).

5.3 En
rypt the plaintext: en
 [M ℄

i+r

i

�mask

e

.

5.4 Generate the message authenti
ation
ode:

5.4.1 If i+ r = L(M), then lastBlo
k 1; otherwise lastBlo
k 0.

5.4.2 ma
 AXUHash(k

AXU

; lastBlo
k ; en
) 2W

4

(using

Algorithm 4.8.1).

5.5 Update the
iphertext: e e k en
 k I

B

�

W

�

(ma
 �mask

m

).

5.6 i i+ r.

6. Return e.

4.5 De
ryption Operation

Algorithm 4.5.1 uses an ACE en
ryption key pair to de
rypt messages that have been

en
rypted with the
orresponding publi
 key a

ording to Algorithm 4.4.1.

Algorithm 4.5.1 ACE de
ryption operation.

Input: A publi
 key (P; q; g

1

; g

2

;
; d; h

1

; h

2

; k

1

; k

2

) and
orresponding private key

(w; x; y; z

1

; z

2

) as des
ribed in x4.1, as well as a byte string 2 B

�

.

Output: The de
ryption M 2 B

�

[fReje
tg of .

1. De
ode the
iphertext as spe
i�ed in x4.3:

1.1 If L() < 3 � L

B

(P) + 16, then return Reje
t.

1.2 Compute

(s; u

1

; u

2

; v; e) CDe
ode(L

B

(P);) 2W

4

� Z� Z� Z�B

�

;

note that 0 � u

1

; u

2

; v < 256

l

, where l = L

B

(P).

2. Verify the
iphertext preamble:

2.1 If u

1

� P or u

2

� P or v � P then return Reje
t.

2.2 If u

1

q

6= 1 rem P , then return Reje
t.

2.3 reje
t 0.

2.4 If u

2

6= u

1

w

rem P , then reje
t 1.

2.5 Compute � UOWHash

0

(k

1

; L

B

(P); s; u

1

; u

2

) 2 Z (using

Algorithm 4.9.2); note that 0 � � < 2

160

.

2.6 If v 6= u

1

x+�y

rem P , then reje
t 1.

2.7 If reje
t = 1, then return Reje
t.

18

3. Compute the key for the symmetri
 de
ryption operation:

3.1

~

h

1

 u

1

z

1

rem P;

~

h

2

 u

1

z

2

rem P .

3.2 Compute k ESHash(k

2

; L

B

(P); s; u

1

;

~

h

1

;

~

h

2

) 2W

8

(using

Algorithm 4.7.1).

4. Compute M SDe
(k; s; 1024; e) as des
ribed in Algorithm 4.5.2; note that

SDe
 may return Reje
t.

5. Return M .

Algorithm 4.5.2 De
ryption operation SDe
.

Input: A tuple (k; s;m; e) 2W

8

�W

4

� Z�B

�

, with m > 0.

Output: The de
ryption M 2 B

�

[fReje
tg of e.

1. If e = �

B

, then return �

B

.

2. Initialize a pseudo-random generator state, using Algorithm 4.6.1:

genState InitGen(k; s) 2 GenState:

3. Generate the AXUHash key k

AXU

(using Algorithm 4.6.3):

(k

AXU

; genState

0

) GenWords((5L

b

(dm=64e) + 24); genState):

4. M �

B

; i 0.

5. While i < L(e) perform the following:

5.1 r min(L(e)� i;m+ 16)� 16.

5.2 If r � 0, then return Reje
t.

5.3 Generate mask values for the en
ryption and MAC:

5.3.1 (mask

m

; genState) GenWords(4; genState).

5.3.2 (mask

e

; genState) GenBytes(r; genState) (using Algorithm 4.6.2).

5.4 Verify the message authenti
ation
ode:

5.4.1 If i+ r + 16 = L(M), then lastBlo
k 1; otherwise lastBlo
k 0.

5.4.2 ma
 AXUHash(k

AXU

; lastBlo
k ; [e℄

i+r

i

) 2W

4

(using

Algorithm 4.8.1).

5.4.3 If [e℄

i+r+16

i+r

6= I

B

�

W

�

(ma
 �mask

m

), then return Reje
t.

5.5 Update the plaintext: M M k ([e℄

i+r

i

�mask

e

).

5.6 i i+ r + 16.

6. Return M .

19

4.6 Pseudo-Random Bit Generator

This se
tion de�nes a pseudo-random bit generator, based on the blo
k
ipher MARS .

The state of the generator is an element of the set

GenState =W

8

�W

4

�B

16

� f0; : : : ; 16g:

It produ
es an unlimited sequen
e of bytes. The generator works by using MARS in

\sum/
ounter mode," but with a randomized starting value.

First
omes the initialization routine. The �rst input parameter k should be random

and se
ret|it is used as aMARS key. The se
ond input parameter s should be random,

but need not be se
ret|it is used to initialize a
ounter.

Algorithm 4.6.1 Pseudo-Random Bit Generator: InitGen.

Input: A tuple (k; s) 2W

8

�W

4

.

Output: A state genState 2 GenState.

1. genState (k; s; 0

B

16
; 16) 2 GenState.

2. Return genState.

The next algorithm is used to generate pseudo-random byte strings.

Algorithm 4.6.2 Pseudo-Random Bit Generator: GenBytes.

Input: (n; genState) 2 Z�GenState, with n � 0.

Output: (out

b

; genState

0

), where out

b

2 B

n

and genState

0

2 GenState is the new

state of the generator.

1. Set

(k; s; buf ; iread) genState 2W

8

�W

4

�B

16

� f0; : : : ; 16g:

2. Set out

b

 �

B

.

3. While n > 0 do the following:

3.1 If iread � 16, re-load the bu�er:

3.1.1 buf I

B

�

W

�

(MARS (k; s)).

3.1.2 s s+ 1:

3.1.3 buf buf � I

B

�

W

�

(MARS (k; s)).

3.1.4 s s+ 1:

3.1.5 iread 0.

3.2 A

umulate up to 16 output bytes:

3.2.1 r min(iread + n; 16).

3.2.2 out

b

 out

b

k [buf ℄

r

iread

.

20

3.2.3 n n� r + iread ; iread r.

4. genState

0

 (k; s; buf ; iread):

5. Return (out

b

; genState

0

).

For
onvenien
e, the following variation outputs word strings.

Algorithm 4.6.3 Pseudo-Random Bit Generator: GenWords.

Input: (n; genState) 2 Z�GenState, with n � 0.

Output: (out

w

; genState

0

), where out

w

2 W

n

and genState

0

2 GenState is the new

state of the generator.

1. Compute (out

b

; genState

0

) GenBytes(4n; genState) using Algorithm 4.6.2.

2. Set out

w

 I

W

�

B

�

(out

b

).

3. Return (out

w

; genState

0

).

4.7 Entropy-Smoothing Hash Fun
tion

This se
tion de�nes an entropy-smoothing hash fun
tion.

Algorithm 4.7.1 Entropy smoothing hash transformation ESHash.

Input: A tuple (k; l; s; u

1

;

~

h

1

;

~

h

2

) 2 B

�

�Z�W

4

�Z�Z�Z, where L(k) = 32m+40

for some integer m with m � dl=16e, and 0 �

~

h

1

;

~

h

2

; u

1

< 256

l

.

Output: A hash value h 2W

8

.

1. Set l

1

 dl=4e; l

2

 dl

1

=4e; l

3

 d(3l

1

+ 4)=16e:

2. k

0

 I

W

�

B

�

(k):

3. En
ode (s; u

1

;

~

h

1

;

~

h

2

) as a word string M , padding to a multiple of 16 words:

M pad

16l

3

�

s k pad

l

1

(I

W

�

Z

(u

1

)) k pad

l

1

(I

W

�

Z

(

~

h

1

)) k pad

l

1

(I

W

�

Z

(

~

h

2

))

�

2W

16l

3

:

4. Compute a simpli�ed SHA-1 hash (twi
e):

4.1 s [k

0

℄

5

0

.

4.2 For i = 1 to l

3

do: s CSHA1 (s; [M ℄

16i

16(i�1)

):

4.3 s

0

 [k

0

℄

10

5

.

4.4 For i = 1 to l

3

do: s

0

 CSHA1 (s

0

; [M ℄

16i

16(i�1)

):

5. En
ode (

~

h

1

;

~

h

2

) as a word string M

0

, padding to a multiple of 8 words:

M

0

 pad

8l

2

�

pad

l

1

(I

W

�

Z

(

~

h

1

)) k pad

l

1

(I

W

�

Z

(

~

h

2

))

�

2W

8l

2

:

21

6. Compute

l

2

X

i=1

�

I

F

2

[T ℄

W

�

([M

0

℄

8i

8(i�1)

)I

F

2

[T ℄

W

�

([k

0

℄

8i+10

8i+2

)

�

rem f 2 F

2

[T ℄;

where f = T

256

+ T

10

+ T

5

+ T

2

+ 1.

7. Compute h pad

8

(I

W

�

F

2

[T ℄

(
)) � (s k [s

0

℄

3

0

) 2W

8

.

8. Return h.

4.8 AXU Hash Fun
tion

This se
tion de�nes an \almost XOR-universal hash fun
tion," denoted AXUHash.

Algorithm 4.8.1 Almost XOR-universal hash fun
tion AXUHash.

Input: A tuple (k; lastBlo
k ;M) 2W

�

� f0; 1g �B

�

, where L(M) > 0, and L(k) =

5m+ 24 for some integer m � L

b

(dL(M)=64e).

Output: The hash value res 2W

4

of M under the key k.

1. Compute h UOWHash([k℄

L(k)�8

0

; I

W

�

B

�

(pad

l

(M))) 2W

5

, where

l = 64dL(M)=64e, using Algorithm 4.9.1.

2.

1

 I

F

2

[T ℄

W

�

([h℄

4

0

) 2 F

2

[T ℄.

3. d

1

 I

F

2

[T ℄

W

�

([k℄

L(k)�4

L(k)�8

) 2 F

2

[T ℄.

4.

2

 I

F

2

[T ℄

W

�

([h℄

5

4

k I

W

�

Z

(2 � L(M) + lastBlo
k)) 2 F

2

[T ℄.

5. d

2

 I

F

2

[T ℄

W

�

([k℄

L(k)

L(k)�4

) 2 F

2

[T ℄.

6. res pad

4

(I

W

�

F

2

[T ℄

((

1

d

1

+

2

d

2

) rem f)), where f = T

128

+ T

7

+ T

2

+ T + 1.

7. Return res .

4.9 Universal One-Way Hash Fun
tion

This se
tion de�nes a universal one-way hash fun
tion.

First
omes a \low level" version, denoted UOWHash, that performs no length en
oding

or padding on the message input.

Algorithm 4.9.1 Universal one-way hash fun
tion UOWHash.

Input: A tuple (k;M) 2W

�

�W

�

, where L(M) = 16n for some integer n > 0, and

L(k) = 5m+ 16 for some integer m � L

b

(n).

Output: The hash value h 2W

5

of M under key k.

1. Initialize h 0

W

5
2W

5

, msk [k℄

16

0

2W

16

.

22

2. For i = 1 to n do the following:

2.1 Compute the key index j su
h that i = 2

j

d for odd d 2 Z.

2.2 Compute the next initial SHA-1 hash state s h� [k℄

5j+21

5j+16

2W

5

.

2.3 Compute a SHA-1 input blo
k m [M ℄

16i

16(i�1)

�msk 2W

16

.

2.4 Perform the
ore SHA-1 state transformation: h CSHA1 (s;m).

3. Return h.

Next
omes UOWHash

0

whi
h en
odes its input in a spe
ial way before
alling

UOWHash.

Algorithm 4.9.2 Universal one-way hash fun
tion UOWHash

0

.

Input: A tuple (k; l; s; u

1

; u

2

) 2 B

�

�Z�W

4

�Z�Z, where l > 0, 0 � u

1

; u

2

< 256

l

,

L(k) = 20L

b

(d(2dl=4e + 4)=16e) + 64.

Output: The hash value a 2 Z, where 0 � a < 2

160

.

1. Set l

1

 dl=4e; l

2

 d(2dl=4e + 4)=16e.

2. En
ode (s; u

1

; u

2

) as a word string, padding to a multiple of 16 words:

u pad

16l

2

�

s k pad

l

1

(I

W

�

Z

(u

1

)) k pad

l

1

(I

W

�

Z

(u

2

))

�

2W

16l

2

:

3. Compute

a

0

 UOWHash(I

W

�

B

�

(k); u) 2W

5

;

using Algorithm 4.9.1.

4. Compute a I

Z

W

�

(a

0

) 2 Z.

5. Return a.

4.10 Se
urity analysis

We analyze the se
urity properties of the above en
ryption s
heme.

The
on
rete se
urity of our en
ryption s
heme is straightforward, if somewhat tedious,

to analyze, based upon the arguments in [CS98℄ and [Sho00a℄. Consider an adversary

that runs in time at most t, makes at most � de
ryption requests, and presents test

messages whose length in bytes is at most l. The adversary's advantage, AdvEn
(t; �; l)

(as de�ned in x2.2)
an be expli
itly bounded in terms of

� the advantage the adversary has in solving the DDH (see AdvDDH, de�ned in

x2.5),

� the advantage the adversary has in �nding se
ond preimages in SHA-1 (see

AdvSHA, de�ned in x2.7), and

23

� the advantage the adversary has in distinguishing MARS output from random

(see AdvMARS, de�ned in 2.8).

Also, we let l

0

= L

B

(P). Re
all that q is the order of the subgroup of the multipli
ative

group of units modulo P in whi
h we are working.

Theorem 4.10.1 We have:

AdvEn
(t; �; l) � AdvDDH(O(t)) +

AdvSHA(O(t))(dl=64e+ d(2dl

0

=4e + 4)=16e) +

AdvMARS(O(t); 65dl=1024e+ 7) � 2 +

2�+ 1

q

+

�+ 2

2

128

: (1)

The running times O(t) re
e
t the running times of simulators that do little more than

run the adversary, plus just a little additional bookkeeping whi
h
an e�e
tively be

ignored.

We shall prove this theorem, referring the reader at times to arguments in [CS98℄

and [Sho00a℄. We
an assume l > 0, sin
e otherwise the adversary's advantage is by

de�nition zero.

We shall repeatedly make use of the following simple lemma, whi
h we re
ord here for

onvenien
e.

Lemma 4.10.1 Let E, E

0

, F , and F

0

be events de�ned on a probability spa
e su
h

that Pr[Ej:F ℄ = Pr[E

0

j:F

0

℄ and � = Pr[F ℄ = Pr[F

0

℄. Then we have

�

�

�

Pr[E℄� Pr[E

0

℄

�

�

�

� �:

This follows from a simple
al
ulation. We have

Pr[E℄ = Pr[Ej:F ℄(1 � �) + Pr[EjF ℄�

and

Pr[E

0

℄ = Pr[E

0

j:F

0

℄(1� �) + Pr[E

0

jF

0

℄�:

Subtra
ting these two equations and taking absolute values, we have

�

�

�

Pr[E℄� Pr[E

0

℄

�

�

�

= �

�

�

�

Pr[EjF ℄ � Pr[E

0

jF

0

℄

�

�

�

� �:

That
ompletes the proof of the lemma.

Some notational
onventions. Re
all that a
iphertext is of the form =

(s; u

1

; u

2

; v; e), as des
ribed in x4.3. Re
all also that � = (s; u

1

; u

2

; v) is
alled the

preamble of , and e is
alled the
ryptogram of . In the proof below, whenever we

refer to a generi

iphertext , the values s; u

1

; u

2

; v; e, as well as �, are impli
itly

de�ned as above. Also impli
itly de�ned is the hash value � of (s; u

1

; u

2

), as
omputed

in step 2 of Algorithm 4.5.1, as well as the values

~

h

1

,

~

h

2

, and k, as
omputed in step

3 of Algorithm 4.5.1. We shall always refer to the target
iphertext, i.e., the
iphertext

output by the en
ryption ora
le in the atta
k, as

0

, and the values

s

0

; u

0

1

; u

0

2

; v

0

; e

0

; �

0

; �

0

;

~

h

0

1

;

~

h

0

2

; k

0

are analogously de�ned for the target
iphertext.

24

The following de�nition is also
onvenient.

De�nition 4.10.1 A
iphertext = (s; u

1

; u

2

; v; e) is
alled valid if log

g

1

u

1

=

log

g

2

u

2

, where the dis
rete logarithms are with respe
t to the multipli
ative group of

units modulo P ; otherwise, is invalid.

We now turn to the proof of the theorem.

Consider the atta
k game de�ned in x2.2 with respe
t to a spe
i�
 adversary that runs

in time at most t, makes at most � de
ryption requests, and submits test messages of

length at most l.

Call the original atta
k game G

0

. Let S

0

be the event that the adversary guesses the

value of the hidden bit b in game G

0

. We have

AdvEn
(t; �; l) =

�

�

�

Pr[S

0

℄� 1=2

�

�

�

: (2)

We shall make several transformations of the game, obtaining games G

1

, G

2

, et
. In

order to relate probabilities of
ertain events in di�erent games,
on
eptually, these

games all are run on the same underlying probability distribution|only the
omputa-

tion rules
hange. In ea
h game G

i

, for i = 1; 2, et
., we let S

i

denote the event that

the adversary guesses the value of the hidden bit b in game G

i

.

Game G

1

. In the �rst transformation, game G

1

, we repla
e the the private key by

x

1

; x

2

; y

1

; y

2

; z

11

; z

12

; z

21

; z

22

;

where ea
h of these is
hosen at random modulo q. Also, we
ompute the publi
 key

as follows. We
hoose g

1

; g

2

to be random numbers whose order modulo P is equal to

q. Then we
ompute

 g

x

1

1

g

x

2

2

rem P; d g

y

1

1

g

y

2

2

rem P; h

1

 g

z

11

1

g

z

12

2

rem P; h

2

 g

z

21

1

g

z

22

2

rem P:

Further, in the de
ryption algorithm, we verify the
iphertext preamble (step 2 in

Algorithm 4.5.1) with the following test:

u

q

1

� 1 (mod P); u

q

2

� 1 (mod P); and u

x

1

+y

1

�

1

u

x

2

+y

2

�

2

� v (mod P):

Finally, in the derivation of the de
ryption key (step 3.2 in Algorithm 4.4.1 and step

3.2 in Algorithm 4.5.1), we
ompute

~

h

1

 u

z

11

1

u

z

12

2

rem P;

~

h

2

 u

z

21

1

u

z

22

2

rem P:

That
ompletes the des
ription of game G

1

. We view G

1

and G

0

as operating on a

ommon probability spa
e de�ned in terms of the variables

w; x; y; z

1

; z

2

;

and

x

1

; x

2

; y

1

; y

2

; z

11

; z

12

; z

21

; z

22

;

where the �rst set of variables are only impli
itly de�ned in G

1

and the se
ond set of

variables are only impli
itly de�ned in G

0

. Let U

1

to be event that some invalid
ipher-

text is not reje
ted in game G

1

. Following the arguments in [CS98℄, the probability

25

that any single invalid
iphertext is not reje
ted is at most 1=q, from whi
h it follows

that

Pr[U

1

℄ �

�

q

: (3)

Also, one
an easily
he
k that so long as event U

1

does not o

ur, the adversary's

atta
k in game G

1

pro
eeds just as in game G

0

. That is,

Pr[S

1

j:U

1

℄ = Pr[S

0

j:U

1

℄: (4)

Now apply Lemma 4.10.1 with (E;E

0

; F; F

0

) = (S

0

; S

1

; U

1

; U

1

), and we obtain

�

�

�

Pr[S

1

℄� Pr[S

0

℄

�

�

�

�

�

q

: (5)

Game G

2

. In the se
ond transformation, game G

2

, we modify the behavior of the

en
ryption ora
le in the same way as is done in the se
urity argument in [CS98℄. That

is, in
omputing

0

, instead of following the en
ryption algorithm, we simply
hoose

u

0

1

and u

0

2

as random numbers whose order modulo P divides q. Also, the en
ryption

ora
le
omputes v

0

using the algorithm used by the de
ryption algorithm:

v

0

 (u

0

1

)

x

1

+y

1

�

0

(u

0

2

)

x

2

+y

2

�

0

rem P:

As in [CS98℄, one easily veri�es that

�

�

�

Pr[S

2

℄� Pr[S

1

℄

�

�

�

� AdvDDH(O(t)): (6)

Game G

3

. In the third transformation, game G

3

, we modify game G

2

as follows.

Let V

2

be the event that that the adversary in game G

2

ever submits a
iphertext

for de
ryption with (s; u

1

; u

2

) 6= (s

0

; u

0

1

; u

0

2

), but with � = �

0

. In game G

3

, we move

the
omputation of �

0

(along with the derived values �

0

,

~

h

0

1

,

~

h

0

2

, and k

0

) to the very

beginning of the atta
k, and if event V

2

o

urs, we simply stop the atta
k. From the

analysis in [Sho00a℄, we have

Pr[V

2

℄ � AdvSHA(O(t)) � d(2dl

0

=4e + 4)=16e: (7)

Note that the quantity d(2dl

0

=4e + 4)=16e is the number of 512-bit input blo
ks to the

hash fun
tion. Be
ause of the way G

3

was derived from G

2

, one easily veri�es that

Pr[S

2

j:V

2

℄ = Pr[S

3

j:V

2

℄: (8)

Applying Lemma 4.10.1 with (E;E

0

; F; F

0

) = (S

2

; S

3

; V

2

; V

2

), we obtain

�

�

�

Pr[S

3

℄� Pr[S

2

℄

�

�

�

� AdvSHA(O(t)) � d(2dl

0

=4e + 4)=16e: (9)

Game G

4

. In the next transformation, game G

4

, we modify the en
ryption ora
le

yet again. Instead of
omputing

~

h

0

1

and

~

h

0

2

as in the en
ryption algorithm, we simply

hoose them as random numbers whose order modulo P divides q. Let W

3

be the event

that either

� log

g

1

u

0

1

= log

g

2

u

0

2

in game G

3

, or

� some invalid
iphertext with � 6= �

0

is not reje
ted in game G

3

.

26

Note that the target
iphertext

0

is itself invalid when log

g

1

u

0

1

6= log

g

2

u

0

2

. From the

analysis in [CS98℄, the probability that any single invalid
iphertext is not reje
ted,

given that log

g

1

u

0

1

6= log

g

2

u

0

2

, is at most 1=q, from whi
h it follows that

Pr[W

3

℄ �

�+ 1

q

: (10)

We
an de�ne an analogous event W

4

for game G

4

. Note that events W

3

and W

4

are

not the same; nevertheless, by the analysis in [CS98℄, one sees that

Pr[W

3

℄ = Pr[W

4

℄ and Pr[S

4

j:W

4

℄ = Pr[S

3

j:W

3

℄: (11)

Applying Lemma 4.10.1 with (E;E

0

; F; F

0

) = (S

3

; S

4

;W

3

;W

4

), we obtain

�

�

�

Pr[S

4

℄� Pr[S

3

℄

�

�

�

�

�+ 1

q

: (12)

Game G

5

. In the next transformation, game G

5

, we repla
e the derived symmetri

key k

0

omputed by the en
ryption ora
le by a random key. Also, when the de
ryption

ora
le is presented with a
iphertext with � = �

0

, it uses the same random key k

0

.

By the Entropy Smoothing Theorem (a.k.a., the Leftover Hash Lemma; see Chapter 8

of [Lub96℄ or [IZ89℄), and the fa
t that (

~

h

0

1

;

~

h

0

2

) is
hosen at random from a set of size

at least 2

a

, where a = 2� 255 = 256 + 2� 127, we have

�

�

�

Pr[S

5

℄� Pr[S

4

℄

�

�

�

�

2

2

128

: (13)

Game G

6

. In the next transformation, game G

6

, we modify the de
ryption ora
le as

follows. Suppose the de
ryption ora
le is presented with a
iphertext with � = �

0

and L(e) 6= 0. Then we simply let the de
ryption ora
le reje
t . Let X

5

be the event

that su
h a
iphertext is not reje
ted in game G

5

. We
laim that

Pr[X

5

℄ � AdvMARS(O(t); 65dl=1024e+ 7) +

AdvSHA(O(t)) � dl=64e+

�

2

128

: (14)

From this, it will follow by an appli
ation of Lemma 4.10.1 with (E;E

0

; F; F

0

) =

(S

5

; S

6

;X

5

;X

5

) that

�

�

�

Pr[S

6

℄� Pr[S

5

℄

�

�

�

� Pr[X

5

℄: (15)

To prove (14), �rst re
all that a
ryptogram is split into 1024-byte blo
ks, and ea
h

blo
k is individually authenti
ated using a message authenti
ation
ode (MAC). Also

note that not only is the
ontent of ea
h blo
k authenti
ated, but also its status as the

last blo
k, and its length (whi
h is only relevant in
ase the blo
k is the last blo
k of the

message). Suppose the target
ryptogram
onsists of b blo
ks, i.e., b = dl=1024e. Let

Y be the event that for some submitted for de
ryption, with L(e) 6= 0 and � = �

0

,

either

�

0

has not yet been generated and the �rst blo
k of e has a valid MAC, or

�

0

has been generated, and the �rst blo
k of e that di�ers from that of e

0

has a

valid MAC.

27

We observe that

Pr[X

5

℄ � Pr[Y ℄: (16)

To bound Y , we make a transformational argument, de�ning a sequen
e of transformed

games G

(1)

5

, G

(2)

5

, G

(3)

5

, and de�ning the events Y

(i)

, for i = 1; 2; 3, to be the events

orresponding to Y , but in game G

(i)

5

. First, we repla
e G

5

by the game G

(1)

5

in whi
h

we halt the game as soon as event Y o

urs. Clearly,

Pr[Y

(1)

℄ = Pr[Y ℄: (17)

Note that in game G

(1)

5

, when the de
ryption ora
le is presented with a
iphertext

 with � = �

0

, it never pro
esses more than b blo
ks of the
ryptogram e. Se
ond,

we repla
e game G

(1)

5

with game G

(2)

5

, in whi
h the output of the pseudo-random bit

generator in the en
ryption ora
le is �rst extended (by less than 1024 bytes) so as to

over b full blo
ks of text, and is then repla
ed by a random string of the same length.

The same random bit string is used by the de
ryption ora
le whenever a
iphertext

with � = �

0

is presented for de
ryption. We have

�

�

�

Pr[Y

(2)

℄� Pr[Y

(1)

℄

�

�

�

� AdvMARS(O(t); 65dl=1024e+ 7): (18)

Next, G

(2)

5

is repla
ed by the game G

(3)

5

in whi
h the adversary is modi�ed so as to

simply halt if

0

has already been generated, and the evaluation of AXUHash during

de
ryption of a
iphertext with � = �

0

and L(e) = L(e

0

) produ
es a
ollision in

SHA-1. Again using the analysis in [Sho00a℄, an appli
ation of Lemma 4.10.1 yields

�

�

�

Pr[Y

(3)

℄� Pr[Y

(2)

℄

�

�

�

� AdvSHA(O(t)) � dl=64e: (19)

Finally, using standard arguments for message authenti
ation
odes based on universal

hashing (see, e.g., [Kra94℄), one sees that

Pr[Y

(3)

℄ �

�

2

128

: (20)

Inequality (14) now follows dire
tly from in inequalities (16), (17), (18), (19), and (20).

Game G

7

. In the �nal transformation, game G

7

, we simply modify game G

6

so that

the output of the pseudo-random bit generator in the en
ryption ora
le is repla
ed by

a random string of
orresponding length. Then we have

�

�

�

Pr[S

7

℄� Pr[S

6

℄

�

�

�

� AdvMARS(O(t); 65dl=1024e+ 7): (21)

It is easy to see that

Pr[S

7

℄ =

1

2

: (22)

The theorem now follows from inequalities (2), (5), (6), (9), (12), (13), (14), (15), (21),

and (22).

That
ompletes the proof of Theorem 4.10.1

28

Remarks. One should note that this redu
tion is quite tight.

In the above
al
ulation, we have assumed the the random numbers used by the key

generation and en
ryption algorithms are perfe
t. If instead, a sour
e of pseudo-random

bits is used, then to the above advantage for breaking the en
ryption s
heme, one must

add the adversary's advantage in distinguishing these pseudo-random bits from truly

random bits.

One strange thing about this theorem is the
oeÆ
ient of 2 that appears in the

AdvMARS term. It is not
lear if this \2"
annot be repla
ed by a \1"; however,

at the moment, we do not see how to do this.

4.11 Further dis
ussion and implementation notes

Random ora
les

As we have already mentioned in x2.4, in the random ora
le model, one
an repla
e the

DDH assumption by the potentially weaker CDH assumption. The se
urity analysis in

this
ase
an be found in [Sho00b℄. We do not
arry out a
on
rete se
urity analysis in

this
ase, but we note that the redu
tion in this
ase is not very eÆ
ient. But sin
e the

random ora
le model is anyway a heuristi
, we do not view this as a major problem.

Hiding the length of a message

Note that the en
ryption algorithm does not make any attempt to hide the length of a

message, and indeed, the length of the
leartext is easily
al
ulated from the length of

the
orresponding
iphertext. Thus an en
ryption of "yes"
an easily be distinguished

from an en
ryption of "no". This problem is easily avoided by appropriately padding

the
leartext (e.g., en
rypting "no " instead of "no"). We emphasize that it is up to

the appli
ation using the en
ryption s
heme to format and pad
leartexts as ne
essary

so as to hide information that
ould be derived from the length of a message.

Optimizations

All �ve of the exponentiations performed in the de
ryption algorithm are to the base

u

1

, and hen
e standard algorithmi
 te
hniques
an be used to
ompute this faster

than �ve exponentiations. Also note that in step 2.4 of Algorithm 4.4.1, the quantity

r

d

ar

rem P
an be
omputed faster than two exponentiations, also using standard

algorithmi
 te
hniques. We refer the reader to x14.6 of [MvOV97℄ for these algorithmi

details.

Timing information

Note that in step 2.2 in algorithm Algorithm 4.5.1, we set reje
t to 1, and delay re-

turning from the fun
tion until later. We do this to prevent timing information from

being leaked to an adversary playing in game G

0

that is not available in game G

1

(see

the proof of Theorem 4.10.1). We re
ommend that all implementations follow a similar

pra
ti
e. The point of making this transformation is to get a simpler and more eÆ-

ient de
ryption algorithm. Although this implementation prevents an adversary from

29

potentially taking advantage of some \
rude" timing information, we make absolutely

no
laims about its se
urity against timing atta
ks [Ko
96℄ or power analysis [KJJ99℄

in general.

Early dete
tion of a
orrupted
iphertext

Note that when en
rypting the a
tual payload, we use a symmetri

ipher with an

authenti
ation
ode. The
ryptogram is broken up into 1024-byte blo
ks, and ea
h of

these is individually authenti
ated. This is done so that a re
eiver
an stop pro
essing

a
orrupted stream of en
rypted data almost as soon as the
orruption as o

ured. This

seems desirable from a se
urity point of view to the alternative approa
h of authenti-

ating the message as a whole, for the following reason. While de
rypting a very long

message, the re
eiver may have to store the
leartext on disk, perhaps only to reje
t

it. However, while the
leartext is on disk, it may be more vulnerable than it would be

in main memory. Thus, it seems desirable to dete
t and reje
t a
orrupted message as

soon as is pra
ti
able.

Note that no useful timing information is leaked to the adversary when the pro
essing

of a
orrupted stream is terminated. Intuitively, the adversary already \knows" where

the stream is
orrupted.

\Salted" MARS

Note that the pseudo-random bit string is derived using MARS in sum/
ounter mode,

starting with the
ounter initialized to a random value s. The value s is
hosen at ran-

dom with every en
ryption. This \salting" te
hnique should have the e�e
t in pra
ti
e

of for
ing any
ryptanalysis on MARS to fo
us its e�orts on individual
iphertexts.

Note that to make the proof of se
urity in the random ora
le model in [Sho00b℄ work,

it is essential that s be an input to the
ryptographi
 hash in the entropy smoothing

hash fun
tion.

The multi-user/multi-message environment

As already mentioned, at least in an asymptoti
 sense, the de�nition of se
urity we have

used implies se
urity in a multi-user/multi-message environment. Using a standard

\hybrid" argument, one sees that se
urity essentially degrades by a fa
tor of

number of users � max # of messages per user: (23)

We believe that our
hoi
es of parameters allow suÆ
ient \head room" so that one still

obtains a meaninful level of se
urity even
onsidering fairly large systems of users.

Our algorithm design
ould be somewhat improved in this regard, however. By follow-

ing the suggestion in [BBM00℄ that all users work with a
ommon group, and also by

having all users work with the same UOWH key, one gets a quantitatively better se
u-

rity proof in the multi-user setting, where the se
urity degrades by a fa
tor proportional

to the total number of messages en
rypted, whi
h may be signi�
antly less than (23).

However, this
omes at a
ost: all users must use the same de�ning paramaters, whi
h

may be both in
onvenient, and also introdu
es a new \trust" problem. Moreover, it

allows an atta
ker to fo
us all of his
omputational resour
es on a single group, whi
h

an potentially lead to a
atastrophi
 se
urity lapse.

30

En
rypting the empty message

We
omment about en
rypting the empty message. From a se
urity point of view, it

hardly makes sense to en
rypt the empty message. Nevertheless, we allow this, if only

for the sake of a
exible interfa
e. The en
ryption (s; u

1

; u

2

; v; e) of the empty message

onsists of an ordinary preamble (s; u

1

; u

2

; v), but an empty
ryptogram e = �

B

. Note

that a user may
reate an en
ryption of (s; u

1

; u

2

; v; e) of a non-empty message, so

e 6= �

B

, and if an adversary then submits (s; u

1

; u

2

; v; �

B

) for de
ryption, the de
ryption

algorithm will a

ept this
iphertext, and generate the empty message as its de
ryption.

This behavior may seem a bit unusual, but still satis�es the de�nition of se
urity.

Implementing the key generation algorithm

In the key generation algorithm, we have to generate a random prime q, and a random

prime P su
h that P � 1 (mod q). To generate q, one
an generate random numbers

and apply an iterated Miller-Rabin test. To get a small error probability, one must

iterate the Miller-Rabin test suÆ
iently many times. For this purpose, one
an use the

results in [DLP93℄.

On
e q has been generated, we
an iteratively
hoose P at random of the desired length,

subje
t to P � 1 (mod q), and apply an iterated Miller-Rabin test to P . Note that

the results in [DLP93℄ are not dire
tly appli
able, sin
e P is not a random number of

pres
ribed length. Instead, to obtain a k-bit prime P
ongruent to 1 mod q, with an

error bound of �, one should iterate the Miller-Rabin test t times, where 4

�t

k=2 � �.

Although P is not random, sin
e P is quite large, and P > q

3

, one
an show under the

Generalized Riemann Hypothesis that the probability that a random P
ongruent to 1

mod q is prime is extremely
lose to the probability that a random number of the same

length is prime (see Theorem 8.1.18 in [BS96℄), and this is bounded from below by

2=k for all k under
onsideration (see the estimate, e.g., in the proof of Proposition 2

in [DLP93℄). From these
onsiderations, and the basi
 properties of the Miller-Rabin

test, it follows that the overall error probability will be at most �.

This approa
h is a bit
rude, and unfortunately, leads to a somewhat slow key gen-

eration algorithm. It would be ni
e if the results of [DLP93℄
ould be generalized to

primes in arithmeti
 progressions, but we are unaware of any su
h results.

A reasonable
hoi
e of � is � = 2

�80

.

API
onsiderations

We have designed the en
ryption and de
ryption algorithms so that they
an work

with streams of data. The message to be en
rypted
an be presented to the en
ryption

algorithm as a stream, and the
iphertext
an be generated as a stream. This
iphertext

stream
an be fed dire
tly in to the de
ryption algorithm, whi
h produ
es the
leartext

as a stream.

A
tually, if one employs su
h a streaming implementation, one must
onsider the possi-

bility that the adversary might adaptively
hoose the latter bits of m

0

;m

1

after having

seen a pre�x of the target
iphertext, also possibly intera
ting with the de
ryption

ora
le in the meantime. Our proof of se
urity does not deal with this s
enario: it

assumes the adversary submits m

0

;m

1

in their entirety before any pre�x of the target

31

iphertext is obtained. However, the proof of se
urity
an be adapted to this somewhat

ri
her atta
k s
enario|we leave the details to the interested reader.

5 Signature S
heme

In this se
tion, we des
ribe the signature s
heme, whi
h is a variant of that in [CS99℄.

5.1 Signature Key Pair

The signature s
heme de�ned in this do
ument employs two key types, whose repre-

sentation
onsists of the following tuples:

ACE Signature publi
 key: (N;h; x; e

0

; k

0

; s).

ACE Signature private key: (p; q; a).

For a given size parameter m, with 1024 � m � 16; 384, the
omponents are as follows:

p { bm=2
-bit prime number with (p� 1)=2 is also prime.

q { dm=2e-bit prime number with (q � 1)=2 is also prime.

N { N = pq, and has either m or m� 1 bits.

h; x { elements of f1; : : : ; N � 1g (quadrati
 residues modulo N).

e

0

{ a 161-bit prime number.

a { an element of f0; : : : ; (p� 1)(q � 1)=4 � 1g.

k

0

{ element of B

184

.

s { element of B

32

.

5.2 Key Generation

Algorithm 5.2.1 generates an ACE signature key pair.

Algorithm 5.2.1 Key generation for the ACE publi
-key signature s
heme.

Input: A size parameter 1024 � m � 16; 384.

Output: A publi
 key/private key pair, as des
ribed in x5.1.

1. Generate random prime numbers p; q su
h that (p� 1)=2 and (q � 1)=2 are

prime, and

2

m

1

�1

< p < 2

m

1

; 2

m

2

�1

< q < 2

m

2

; and p 6= q;

where

m

1

= bm=2
 and m

2

= dm=2e:

2. Set N p � q.

32

3. Generate a random prime number e

0

, where 2

160

< e

0

< 2

161

.

4. Generate h

0

2 f1; : : : ; N � 1g at random, subje
t to g
d(h

0

; N) = 1 and

g
d(h

0

� 1; N) = 1, and
ompute h (h

0

)

�2

rem N .

5. Generate a 2 f0; : : : ; (p� 1)(q � 1)=4 � 1g at random, and
ompute

x h

a

rem N .

6. Generate random byte strings k

0

2 B

184

, and s 2 B

32

.

7. Return the publi
 key/private key pair

((N;h; x; e

0

; k

0

; s); (p; q; a)):

5.3 Signature Representation

Consider an ACE signature publi
 key (N;h; x; e

0

; k

0

; s), as des
ribed in x5.1. A signa-

ture of the ACE signature s
heme has the form (d;w; y; y

0

;

~

k), where the
omponents

are as follows:

d { an element of B

64

.

w { an integer su
h that 2

160

< w < 2

161

.

y; y

0

{ elements of f1; : : : ; N � 1g.

~

k { an element of B

�

; note that L(

~

k) = 64+ 20L

b

(d(L(M) + 8)=64e), where M is the

message being signed.

We introdu
e the fun
tion SEn
ode that is used to map a signature to its byte-string

representation, and the inverse fun
tion SDe
ode . For integer l > 0, byte string d 2 B

64

,

integers 0 � w < 256

21

, and 0 � y; y

0

< 256

l

, and byte string

~

k 2 B

�

,

SEn
ode(l; d; w; y; y

0

;

~

k)

def

= d k pad

21

(I

B

�

Z

(w)) k pad

l

(I

B

�

Z

(y)) k pad

l

(I

B

�

Z

(y

0

)) k

~

k 2 B

�

:

For integer l > 0 and byte string � 2 B

�

with L(�) � 53 + 2l,

SDe
ode(l; �)

def

= ([�℄

64

0

; I

Z

B

�

([�℄

85

64

); I

Z

B

�

([�℄

85+l

85

); I

Z

B

�

([�℄

85+2l

85+l

); [�℄

L(�)

85+2l

)

2 B

64

� Z� Z� Z�B

�

:

5.4 Signature Generation Operation

Algorithm 5.4.1 uses an ACE signature key pair to digitally sign messages.

Algorithm 5.4.1 ACE signature generation.

Input: A publi
 key (N;h; x; e

0

; k

0

; s) and
orresponding private key (p; q; a) as de-

s
ribed in x5.1, and a byte string M 2 B

�

, 0 � L(M) < 2

64

.

Output: A byte-string en
oded signature � 2 B

�

of M , as des
ribed in x5.3.

1. Perform the following steps to hash the input data:

33

1.1 Generate a hash key

~

k 2 B

20m+64

at random, su
h that

m = L

b

(d(L(M) + 8)=64e):

1.2 Compute m

h

 I

Z

W

�

(UOWHash

00

(

~

k;M)) (using Algorithm 5.6.1).

2. Sele
t ~y 2 f1; : : : ; N � 1g at random, and
ompute y

0

 ~y

2

rem N .

3. Compute x

0

 (y

0

)

e

0

h

m

h

rem N .

4. Generate a random prime e, 2

160

< e < 2

161

, and its
erti�
ate of
orre
tness

(w; d) using Algorithm 5.5.1: (e; w; d) GenCertPrime(s). Repeat this step

until e 6= e

0

.

5. Set r UOWHash

000

(k

0

; L

B

(N); x

0

;

~

k) 2 Z (using Algorithm 5.6.2); note that

0 � r < 2

160

.

6. Compute y h

b

rem N , where

b e

�1

(a� r) rem (p

0

q

0

);

and where p

0

= (p� 1)=2 and q

0

= (q � 1)=2.

7. En
ode the signature as des
ribed in x5.3:

� SEn
ode(L

B

(N); d; w; y; y

0

;

~

k):

8. Return �.

5.5 Certi�ed prime generation

The prime generation operation that is applied in Algorithm 5.4.1 produ
es a
erti�ed

prime e of the form 2PR + 1, 2

160

< e < 2

161

, with a prime P, 2

52

< P < 2

53

, and

an integer R. Additionally, a
erti�
ate of
orre
tness is generated whi
h not only

guarantees that e is prime, but also that e was generated in a highly
onstrained

fashion.

Algorithm 5.5.1 Certi�ed prime generation GenCertPrime.

Input: A byte string s 2 B

32

.

Output: The tuple (e; w; d) 2 Z�Z�B

64

|2

160

< e < 2

161

and e is prime; 0 < w < e

and w a
ts as a \witness" to the primality of e; and d a
ts as a \proof" that

e was generated in a spe
i�
 way.

1. Initialize s

1

 I

W

�

B

�

([s℄

16

0

) 2W

4

; s

2

 I

W

�

B

�

([s℄

32

16

) 2W

4

.

2. Generate a prime P , 2

52

< P < 2

53

:

2.1 Generate d

P

2 B

32

at random, and
ompute

v

P

 I

Z

W

�

(MARS (I

W

�

B

�

(d

P

); s

1

)�MARS(I

W

�

B

�

(d

P

); s

1

+ 1)):

2.2 Compute a
andidate integer P; 2

52

< P < 2

53

: P (v

P

rem 2

52

) + 2

52

.

34

2.3 Test if P is prime by �rst performing some trial division, and then

performing Miller-Rabin tests to the bases 2; 3; 5; 7; 11; 13; 23; if P is not

prime, then go to step 2.1.

3. Generate random R 2 Z su
h that 2

160

< 2PR + 1 < 2

161

:

3.1 Sele
t d

R

2 B

32

at random, and
ompute

v

R

 I

Z

W

�

(MARS (I

W

�

B

�

(d

R

); s

2

)�MARS(I

W

�

B

�

(d

R

); s

2

+ 1)):

3.2 Set lb b(2

160

� 1)=2P
, ub b(2

161

� 1)=2P
, and bnd ub� lb.

3.3 If v

R

� (v

R

rem bnd) + bnd > 2

128

then go to step 3.1.

3.4 Set R lb+ (v

R

rem bnd) + 1.

4. Set e 2PR+ 1.

5. Test if e is divisible by small primes; if so, go to step 3.

6. Set w 2.

7. status EvalPWitness(P;R;w) (see Algorithm 5.5.2).

8. If status = Reje
t, then generate random w 2 f1; : : : ; e� 1g and go to step 7;

otherwise, if status = Composite, then go to step 3.

9. Set d d

P

k d

R

2 B

64

.

10. Return (e; w; d).

Algorithm 5.5.2 Prime witness evaluation EvalPWitness.

Input: A tuple (P;R;w), where P is a prime su
h that 2

52

< P < 2

53

, R is a

positive integer su
h that that 2

160

< 2PR+ 1 < 2

161

, and w is an integer

with 0 < w < 2PR+ 1.

Output: status 2 fPrime;Composite;Reje
tg|if status = Prime, then 2PR+1 is prime;

if status = Composite, then 2PR + 1 is
omposite; if status = Reje
t, then

2PR + 1 may be either prime or
omposite.

1. Evaluate the
andidate witness w:

1.1 Set e 2PR+ 1.

1.2 If w is a Miller-Rabin witness to the
ompositeness of e, then return

Composite.

1.3 If g
d(w

2R

� 1; e) 6= 1, then return Reje
t.

2. Che
k if P and R satisfy the following
onditions:

2.1 If R 6� m (mod 2Pm+ 1) for all integers m su
h that 1 �m < e=(4P

3

),

then return Composite; note that e=(4P

3

) < 8.

2.2 Let x; y be integers su
h that R = 2Px+ y and 0 � y < 2P ; if y

2

� 4x = z

2

for some z 2 Z, then return Composite.

3. Return Prime.

35

5.6 UOWHash variants with length en
oding and padding

First
omes fun
tion UOWHash

00

, whi
h pads and en
odes the length of the input

before
alling UOWHash.

Algorithm 5.6.1 Universal one-way hash fun
tion UOWHash

00

.

Input: A tuple (k;M) 2 B

�

� B

�

, where L(k) = 20m + 64 for some integer m �

L

b

(d(L(M) + 8)=64e), and 0 � L(M) < 2

64

.

Output: The hash value h 2W

5

of a padded, length en
oded version of M under key

k.

1. Pad M to obtain a byte string M

0

whose length is a multiple of 64, and where

the last 8 bytes of M

0

en
ode L(M):

M

0

 pad

l�8

(M) k pad

8

(I

B

�

Z

(L(M))) 2 B

l

;

where l = 64d(L(M) + 8)=64e.

2. Compute

h UOWHash(I

W

�

B

�

(k); I

W

�

B

�

(M

0

)) 2W

5

:

3. Return h.

Next
omes fun
tion UOWHash

000

, whi
h is a spe
ial-purpose hash fun
tion used in the

signature s
heme.

Algorithm 5.6.2 Universal one-way hash fun
tion UOWHash

000

.

Input: A tuple (k

0

; l; x

0

;

~

k) 2 B

�

� Z � Z � B

�

, where l � 0, 0 � x

0

< 256

l

, and

L(k

0

) = 20m + 64 for some m � 0 su
h that m � L

b

(d(l

0

+ 8)=64=)e and

l

0

< 2

64

, where l

0

= 4dl=4e + L(

~

k).

Output: The hash value r 2 Z (with 0 � r < 2

160

) of a padded, length en
oded version

of (x

0

;

~

k) under key k

0

.

1. Set k

h

 pad

l

1

(I

B

�

Z

(x

0

)) k

~

k, where l

1

= 4dl=4e.

2. Set r I

Z

W

�

(UOWHash

00

(k

0

; k

h

)) (using Algorithm 5.6.1).

3. Return r.

5.7 Signature Veri�
ation Operation

Algorithm 5.7.1 uses an ACE publi
 key to verify a signature with respe
t to a given

message.

Algorithm 5.7.1 ACE signature veri�
ation.

Input: A publi
 key (N;h; x; e

0

; k

0

; s) as des
ribed in x5.1, a signature � 2 B

�

, and a

message M 2 B

�

.

36

Output: status 2 fA

ept;Reje
tg|if � is a valid signature on M under the given

publi
 key, then status = A

ept; otherwise, status = Reje
t.

1. De
ode the signature as des
ribed in x5.3:

1.1 If L(M) � 2

64

then stop pro
essing and signal Reje
t.

1.2 If L(�) < 85 + 2L

B

(N) then stop pro
essing and signal Reje
t.

1.3 Compute

(d;w; y; y

0

;

~

k) SDe
ode(L

B

(N); �) 2 B

64

� Z� Z� Z�B

�

;

note that 0 � w < 256

21

and 0 � y; y

0

< 256

l

, where l = L

B

(N).

2. Set e VerCertPrime(s; d; w) (using Algorithm 5.7.2).

3. If e = Reje
t, return Reje
t.

4. If e = e

0

, then return Reje
t.

5. If y = 0 or y � N or

y

0

= 0 or y

0

� N then return Reje
t.

6. Perform the following steps to hash the input data:

6.1 If L(

~

k) 6= 20m+ 64, where m = L

b

(d(L(M) + 8)=64e), then return Reje
t.

6.2 Compute m

h

 I

Z

W

�

(UOWHash

00

(

~

k;M)) (using Algorithm 5.6.1).

7. Compute x

0

 (y

0

)

e

0

h

m

h

rem N .

8. Set r UOWHash

000

(k

0

; L

B

(N); x

0

;

~

k) 2 Z (using Algorithm 5.6.2); note that

0 � r < 2

160

.

9. If x 6� y

e

h

r

(mod N) then return Reje
t.

10. Return A

ept.

The
erti�
ate veri�
ation operation that is applied in Algorithm 5.7.1
he
ks whether

a presented integer witnesses the primality of a
andidate prime of a
ertain form, given

by its des
riptor.

Algorithm 5.7.2 Prime
erti�
ate veri�
ation VerCertPrime.

Input: The tuple (s; d; w)
ontaining byte strings s 2 B

32

; d 2 B

64

, and an integer

w � 0.

Output: A prime e derived from s and d, with 2

160

< e < 2

161

, or the symbol Reje
t.

1. Initialize s

1

 I

W

�

B

�

([s℄

16

0

) 2W

4

, s

2

 I

W

�

B

�

([s℄

32

16

) 2W

4

,

d

P

 I

W

�

B

�

([d℄

32

0

) 2W

8

, d

R

 I

W

�

B

�

([d℄

64

32

) 2W

8

.

2. Compute and validate prime P :

2.1 Compute v

P

 I

Z

W

�

(MARS(d

P

; s

1

)�MARS(d

P

; s

1

+ 1)).

37

2.2 Set P (v

P

rem 2

52

) + 2

52

.

2.3 Test if P is prime by performing Miller-Rabin tests to the bases

2; 3; 5; 7; 11; 13; 23; if P is not prime, then return Reje
t.

3. Compute and validate the
oeÆ
ient R:

3.1 Compute v

R

 I

Z

W

�

(MARS(d

R

; s

2

)�MARS(d

R

; s

2

+ 1)).

3.2 Set lb b(2

160

� 1)=2P
, ub b(2

161

� 1)=2P
, and bnd ub� lb.

3.3 If v

R

� (v

R

rem bnd) + bnd > 2

128

, then return Reje
t.

3.4 Set R lb+ (v

R

rem bnd) + 1.

4. Set e 2PR+ 1.

5. If w = 0 or w � e return Reje
t.

6. If EvalPWitness(P;R;w) 6= Prime (see Algorithm 5.5.2), then return Reje
t.

7. Return e.

5.8 Se
urity analysis

We brie
y summarize the se
urity properties of the above signature s
heme. The bulk

of the analysis already appears in [CS99℄. We simply �ll in the details here.

Consider an adversary that runs in time at most t, makes at most � signature requests,

with the total byte length of these messages being at most l. The adversary's advantage,

AdvEn
(t; �; l) (as de�ned in x2.3)
an be
omputed in terms of

� the advantage the adversary has in breaking the RSA and strong RSA assump-

tions (see AdvRSA and AdvFlexRSA, de�ned in x2.6), the advantage the adversary

has in �nding se
ond preimages in SHA-1 (see AdvSHA, de�ned in x2.7), and

� the advantage the adversary has in distinguishing MARS output from random

(see AdvMARS, de�ned in 2.8).

Also, we let l

0

= L

B

(N), let T

0

e

be the time required for a 161-bit exponentiation,

modulo a 161-bit number, and let T

e

be the time required for a 161-bit exponentiation

modulo N .

Theorem 5.8.1 Assuming the Generalized Riemann Hypothesis, we have:

AdvSig(t; �; l) � AdvRSA(O(t+ T

e

� log �)) � (�+ 1) +

AdvFlexRSA(O(t+ T

e

� log �) � 1:01 +

AdvSHA(O(t)) �

�

�

�

90 +

l

0

64

�

+

l

64

�

+

AdvMARS(O(T

0

e

�); 1) � (2

16

+ 150�) +

�

2

=2

145

+

2

�80

:

38

Call the original atta
k game G

0

. Let S

0

be the event that the adversary forges a

signature in this game. We have

AdvSig(t; �; l) = Pr[S

0

℄: (24)

We shall make two transformation of this game, obtaining games G

1

, G

2

. In order to

relate probabilities of events in di�erent games,
on
eptually, these games are all run

on the same underlying probability distribution. In ea
h game G

i

, for i = 1; 2, we let

S

i

denote the event that the adversary forges a signature in game G

i

.

Game G

1

. Let U

0

be the event that the adversary in game G

0

, the adversary presents

a forged signature �

0

su
h that either

U

1

0

: the hash
omputed in step 8 of Algorithm 5.7.1, when applied to �

0

, yields a

non-trivial
ollision with one of the hashes
omputed in step 8 of Algorithm 5.7.1,

when applied to some signature �
reated by the signing algorithm, or

U

2

0

: the key

~

k in �

0

mat
hes that of one of the signatures �
reated by the signing

algorithm, and the hash
omputed in step 6 of Algorithm 5.7.1, when applied to

�

0

, yields a
ollision with the hash
omputed in step 1 of Algorithm 5.7.1, when

applied to �.

Game G

1

is just like game G

0

, ex
ept that should event U

0

o

ur, we stop the game

without allowing the forgery to be presented.

One
an show that

Pr[U

1

0

℄ � AdvSHA(O(t)) � �(88 + l

0

=64): (25)

This is obtained by using the analysis in [Sho00a℄, plus a \plug and pray" argument. We

guess on whi
h of � signatures this
ollision will o

ur, and the position of the \target"

blo
k, i.e., on whi
h 512-bit hash input blo
k the
ollision will o

ur. Moreover, be
ause

the hash inputs under
onsideration
an vary in length, we have to guess whether the

target blo
k is the last blo
k of the hash input, and if it is the last blo
k, we have

to guess exa
tly how many 160-bit masks (
omprising

~

k) there a
tually are (there are

at most three
hoi
es, given that the target blo
k is the last input blo
k). Making

these guesses, and given an instan
e of the se
ond preimage problem, we generate an

appropriate pre�x of the hash input, from whi
h we
an generate the
orresponding

key k

0

using the key re
onstru
tion algorithm in [Sho00a℄. An important feature of

of the key re
onstru
tion algorithm in [Sho00a℄ that we exploit here is that it relies

only on the pre�x of the hash input up to, and in
luding, the target input blo
k. The

adversary's view is independent of these guesses, and if these guesses are
orre
t, then

we solve the given se
ond preimage problem.

Note that the above argument is a bit
ompli
ated, but it gives a numeri
ally mu
h

better result than the simpler, and more generi
 \plug and pray" argument where we

guess the signature, the length of the input to the hash fun
tion, and the position of

the target blo
k.

One
an also show that

Pr[U

2

0

℄ � AdvSHA(O(t)) � (l + 2�): (26)

39

This is also obtained by using the analysis in [Sho00a℄, plus a \plug and pray" argument.

The quantity l+2� is a bound on the total number of relevant hash input blo
ks, and

we have to guess whi
h of these is the \target" blo
k.

It is
lear that

Pr[S

1

jU

0

℄ = Pr[S

0

jU

0

℄; (27)

and hen
e we
an apply Lemma 4.10.1 with (E;E

0

; F; F

0

) = (S

0

; S

1

; U

0

; U

0

), obtaining

Pr[S

0

℄ � Pr[S

1

℄ + AdvSHA(O(t)) �

�

�

�

90 +

l

0

64

�

+

l

64

�

: (28)

Game G

2

. This game is just like game G

1

, ex
ept for the way in whi
h the primes

e generated by the signing algorithm are generated. De�ne b

P

= 2

14

+ 38�, b

R

=

2

15

+ 112�, and b

w

= 2

17

+ 448�. In game G

2

, we generate � primes in advan
e, to

be used later by the signing algorithm. We use Algorithm 5.5.1 to generate primes as

in game G

1

. However, in this game, we stop if the event V that one of the following

o

urs:

� step 2.1 in Algorithm 5.5.1 is exe
uted more than b

P

times,

� step 3.1 in Algorithm 5.5.1 is exe
uted more than b

R

times,

� step 7 is Algorithm 5.5.1 is exe
uted more than b

w

times, or

� two of the generated primes are equal.

Let V

0

be the
orresponding event, but where the strings v

P

and v

R

generated in

Algorithm 5.5.1 are truly random. Then we have

Pr[V ℄ � Pr[V

0

℄ + AdvMARS(O(T

0

e

�); 1) � (b

P

+ b

R

)

� �

2

=2

145

+ 2

�80

+ AdvMARS(O(T

0

e

�); 1) � (b

P

+ b

R

): (29)

The term 2

�80

omes from a
al
ulation using Cherno�'s bound together with prime

density estimates used in [CS99℄. The term �

2

=2

145

also
omes from the prime density

estimates used in [CS99℄. Both of these density estimates rely on the Generalized

Riemann Hypothesis.

Again applying Lemma 4.10.1, we see that

Pr[S

1

℄ � Pr[S

2

℄ + �

2

=2

145

+ 2

�80

+ AdvMARS(O(T

0

e

�); 1) � (b

P

+ b

R

): (30)

Note that the running time of game G

2

is O(t+ T

0

e

�).

Now, appealing to the proof of se
urity in [CS99℄, and using a
areful implementation

of the simulators in that paper, one
an show that

Pr[S

2

℄ � AdvRSA(O(t+T

e

� log �)) � (�+1)+AdvFlexRSA(O(t+T

e

� log �) � 1:01: (31)

The term T

e

� log � in the above running times deserves some
omment. In the simu-

lators des
ribed in [CS99℄, at a
ouple of points, we have to perform a
omputation of

the following type. Let e

1

; : : : ; e

�

be the primes generated by the signing algorithm,

and let E =

Q

�

i=1

e

i

. Given w 2 f0; : : : ; N � 1g, we have to
ompute w

E=e

i

rem N

for 1 � i � �. Naively, one
ould do this in time O(T

e

�

2

). However, using a sim-

ple divide-and-
onquer algorithm (see, e.g., x6 of [Sho94℄), one
an do this in time

O(T

e

� log �).

The theorem now follows from (24), (28), (30), and (31).

40

5.9 Further dis
ussion and implementation notes

Optimizations

In Algorithm 5.4.1, the exponentiations performed in steps 3 and 6 are well-suited for

optimization. First, sin
e the signer knows the fa
torization of N , one may use the

Chinese Remainder Theorem to speed up the
omputation. Also, in step 3, we need to

ompute the produ
t of two powers, whi
h
an be performed using standard algorithmi

te
hniques signi�
antly faster than two independent exponentiations. And in step 6,

we need to raise h to a power. Sin
e h depends on the publi
 key, we
an
ondition

on h, so that raising h to a power
an be done signi�
antly faster than an ordinary

exponentiation. In Algorithm 5.7.1, in steps 7 and 9, we also need to
ompute produ
ts

of powers, whi
h are subje
t to standard optimizations as above. We refer the reader

to x14.6 of [MvOV97℄ for details of all of these optimizations.

The multi-user setting

At least in an asymptoti
 sense, the de�nition of se
urity we have used implies se
u-

rity in a multi-user environment. Using a standard \hybrid" argument, one sees that

se
urity essentially degrades by a fa
tor portional to the number of users.

We believe that our
hoi
es of parameters allow suÆ
ient \head room" so that one

still obtains a meaninful level of se
urity even
onsidering fairly large systems of users.

However, an even higher level of se
urity
ould be obtained with some modi�
ation

to the basi
 algorithms. This would lead to somewhat more
ompli
ated algorithms,

and would require all users to share the same UOWH key, whi
h introdu
es a \trust"

problem. For these reasons, we have not
hosen to pursue this at the moment.

Implementation of the key generation algorithm

In the key generation step, we have to generate \strong primes" of the form p = 2p

0

+1,

where p

0

is also prime. The number p

0

is also known as a Sophie Germain prime. This

an be a fairly time-
onsuming
omputation, and some
are must be taken to use an

eÆ
ient algorithm for this task.

The most naive way to do this is to generate a prime p

0

, and then test if 2p

0

+ 1 is

also prime. However, we do not re
ommend this approa
h. Rather, we re
ommend the

approa
h des
rined in the full-length version of [CS99℄, whi
h
an easily yield a fa
tor

of 10 speed-up over the naive method.

API
onsiderations

We have designed the signing and veri�
ation algorithms so that they
an work with

streams of data. Both the signing and veri�
ation algorithm
an pro
ess the message

as a stream. However, the veri�
ation algorithm needs the to have the signature before

pro
essing the message stream. This is a bit non-standard, and in some situations

may be a bit awkward. For most signature s
hemes used in pra
ti
e, the veri�
ation

algorithm
an pro
ess the message as a stream, requiring the signature only after

the message stream has been pro
essed. The reason our veri�
ation algorithm needs

the signature �rst is that it needs the key

~

k to the universal one-way hash fun
tion

41

used to hash the message. This seems unavoidable if we want to use universal one-

way hash fun
tions instead of
ollision resistant hash fun
tions, whi
h|as we have

already argued|is quite desirable from a se
urity point of view. One partial solution

to the problem would be to have the signer generate a key

~

k of suÆ
ient length before

pro
essing its message input stream, pla
ing

~

k in its output stream before pla
ing any

of the message bytes in its output stream. This would allow the signer's output stream

to be bound dire
tly to the veri�er's input stream, without requiring any signi�
ant

bu�ering on the part of either the signer or veri�er. However, the resulting interfa
e

would still be somewhat non-standard.

Random ora
les

Although we use the strong RSA assumption, the form of the strong RSA assumption

we a
tually use severely
onstrains the adversary's behavior: it is not free to
hoose an

exponent e as it pleases, but rather, it must
hoose e = 2PR + 1, where both P and

R are
omputed as the output of a one-way
ryptographi
 transformation. As already

mentioned in 2.4, in the random ora
le model, our signature s
heme
an be proved

se
ure under the RSA assumption, instead of the strong RSA assumption. A
tually,

to be a bit more pre
ise, we need to use the ideal
ipher model (see [KR96℄), whi
h is

a
losely related, but slightly di�erent model of analysis. This is dis
ussed in [CS99℄.

6 ASN.1 Key Syntax

For appli
ations that use ASN.1 des
riptions, like for example X.509 or PKCS#8 key

formats, it is ne
essary to de�ne the algorithm identi�er for the s
hemes de�ned in this

do
ument, along with their key types. However, the
orresponding obje
t identi�ers

are not de�ned yet, let alone registered. There are no parameters used, hen
e, the

asso
iated parameters �eld of the algorithm identi�er is of type NULL.

Version ::= INTEGER

The version number is for
ompatibility with future revisions of this do
ument. It shall

be 1 for this version of the do
ument.

6.1 En
ryption Key Pair

This se
tion de�nes the ASN.1 types ACEEn
PubKey and ACEEn
PrivKey. The
orre-

sponding �elds as des
ribed in x4.1 are given in
omments.

An ACE en
ryption publi
 key should be represented as follows:

ACEEn
PubKey ::= SEQUENCE f

version Version,

prime1 INTEGER, -- P

prime2 INTEGER, -- q

num1 INTEGER, -- g

1

num2 INTEGER, -- g

2

num3 INTEGER, --

num4 INTEGER, -- d

seed1 INTEGER, -- h

1

42

seed2 INTEGER, -- h

2

hkey1 OCTET STRING, -- k

1

hkey2 OCTET STRING -- k

2

g

An ACE en
ryption private key should be represented as the following ASN.1 type:

ACEEn
PrivKey ::= SEQUENCE f

version Version,

prime1 INTEGER, -- P

prime2 INTEGER, -- q

num1 INTEGER, -- w

num2 INTEGER, -- x

num3 INTEGER, -- y

num4 INTEGER, -- z

1

num5 INTEGER, -- z

2

hkey1 OCTET STRING, -- k

1

hkey2 OCTET STRING -- k

2

g

Note that unlike in x4.1, this stru
ture de�nes a \self
ontained" key|the de
ryption

algorithm needs only the data in this stru
ture, and does need need any of the data in

the stru
ture des
ribing the publi
 key.

6.2 Signature Key Pair

This se
tion de�nes the ASN.1 types ACESigPubKey and ACESigPrivKey. The
orre-

sponding �elds as des
ribed in x5.1 are given in
omments.

An ACE signature publi
 key should be represented as follows:

ACESigPubKey ::= SEQUENCE f

version Version,

modulus INTEGER, -- N

num1 INTEGER, -- h

num2 INTEGER, -- x

primeExp INTEGER, -- e

0

hkey OCTET STRING, -- k

0

primeParam OCTET STRING -- s

g

An ACE signature private key should be represented as the following ASN.1 type:

ACESigPrivKey ::= SEQUENCE f

version Version,

modulus INTEGER, -- N

prime1 INTEGER, -- p

prime2 INTEGER, -- q

auxExp INTEGER, -- a

num1 INTEGER, -- h

primeExp INTEGER, -- e

0

hkey OCTET STRING, -- k

0

primeParam OCTET STRING -- s

g

43

Power PC Pentium

operand size (bytes) operand size (bytes)

512 1024 512 1024

multipli
ation 3:5� 10

�5

s 1:0� 10

�4

s 4:5 � 10

�5

s 1:4� 10

�4

s

squaring 3:3� 10

�5

s 1:0� 10

�4

s 4:4 � 10

�5

s 1:4� 10

�4

s

exponentiation 1:9� 10

�2

s 1:2� 10

�1

s 2:6 � 10

�2

s 1:7� 10

�1

s

Table 1: Times for basi
 operations

Power PC Pentium

Fixed
osts Mbits/se
 Fixed
osts Mbits/se

(ms) (ms)

en
rypt 160 18 230 16

de
rypt 68 18 97 14

sign 48 64 62 52

sign set-up 29 41

verify 52 65 73 53

Table 2: En
ryption and signature s
heme performan
e

Note that unlike in x5.1, this stru
ture de�nes a \self
ontained" key|the signing

algorithm needs only the data in this stru
ture, and does need need any of the data in

the stru
ture des
ribing the publi
 key.

7 Performan
e

We report here on the performan
e of an implementation of our en
ryption and signa-

ture s
heme.

We implemented both s
hemes in ANSI C, using the GNU GMP library to implement

the multi-pre
ision arithmeti
, although we implemented our own \sliding window"

exponentiation routine, as this was not provided in GMP.

We performed timing experiments on two platforms. The �rst platform is a PowerPC

604 model 43P pro
essor running AIX. The se
ond platform is a 266MHz Pentium

running Windows NT.

As a baseline, we �rst report the times for 512-bit and 1024-bit multipli
ation, squaring,

and exponentiation in Table 1.

Table 2 reports the performan
e of the en
ryption and signature s
hemes. For both

s
hemes, a 1024-bit modulus was used. In reporting the time to sign a message, we

break the �xed-
ost time into two
omponents. One
omponent is the \sign set-up"

time, whi
h is the time to perform a pre-
omputation that depends only on the se
ret

key; if many signatures are to be generated using a given key, the \sign set-up" opera-

tion need be exe
uted only on
e. The other
omponent is the \sign" time, whi
h is the

time to generate a signature using the data
omputed in the \sign set-up" operation.

We also mention that roughly one third of the \sign" time is spent generating the

required 161-bit prime. For larger moduli, this time take a smaller proportion of the

whole.

Finally, we mention the time required to generate publi
 keys (again, with 1024-bit

44

moduli). The key generation algorithm for our signature s
heme is a bit unusual,

sin
e it requires the generation of primes of the form 2p

0

+ 1, where p

0

is also prime.

This
an be quite
ostly, and as already mentioned, some
are must be taken in the

implementation of this step.

In our implementation, on the PowerPC platform, the average time for the signature

key generation algorithm is 35s, and the average time for the en
ryption key generation

algorithm is 11s. On the Pentium platform, the
orresponding times were 36s and 14s,

respe
tively.

Referen
es

[ABR98℄ M. Abdalla, M. Bellare, and P. Rogaway. DHAES: an en
ryption s
heme

based on the DiÆe-Hellma problem. Submission to IEEE P1363, 1998.

[BBM00℄ M. Bellare, A. Boldyreva, and S. Mi
ali. Publi
-key en
ryption in a multi-

user setting: se
urity proofs and improvements. In Advan
es in Cryptology{

Euro
rypt 2000, 2000.

[BCD

+

98℄ C. Burwi
k, D. Coppersmith, E. D'Avignon, R. Gennaro, S. Halevi,

C. Jutla, S. Matyas Jr., L. O'Connor, M. Peyravian, D. Sa�ord, and N. Zu-

ni
. MARS{a
andidate
ipher for AES, June 1998.

[BI99℄ M. Bellare and R. Impagliazzo. A tool for obtaining tighter se
urity analyses

of pseudorandom fun
tion based
onstru
tions, with appli
ations to PRP

! PRF
onversion. Manus
ript, 1999.

[Ble98℄ D. Blei
henba
her. Chosen
iphertext atta
ks against proto
ols based on

the RSA en
ryption standard PKCS #1. In Advan
es in Cryptology{Crypto

'98, pages 1{12, 1998.

[Bon98℄ D. Boneh. The De
ision DiÆe-Hellman Problem. In Ants-III, pages 48{63,

1998. Springer LNCS 1423.

[BP97℄ N. Bari�
 and B. P�tzmann. Collision-free a

umulators and fail-stop sig-

nature s
hemes without trees. In Advan
es in Cryptology{Euro
rypt '97,

pages 480{494, 1997.

[BR93℄ M. Bellare and P. Rogaway. Random ora
les are pra
ti
al: a paradigm for

designing eÆ
ient proto
ols. In First ACM Conferen
e on Computer and

Communi
ations Se
urity, pages 62{73, 1993.

[BR94℄ M. Bellare and P. Rogaway. Optimal asymmetri
 en
ryption. In Advan
es

in Cryptology|Crypto '94, pages 92{111, 1994.

[Bra93℄ S. Brands. An eÆ
ient o�-line ele
troni

ash system based on the repre-

sentation problem, 1993. CWI Te
hni
al Report, CS-R9323.

[BS96℄ E. Ba
h and J. Shallit. Algorithmi
 Number Theory, volume 1. MIT Press,

1996.

[CGH98℄ R. Canetti, O. Goldrei
h, and S. Halevi. The random ora
le model, revisted.

In 30th Annual ACM Symposium on Theory of Computing, 1998.

45

[CHJ99℄ D. Coppersmith, S. Halevi, and C. Jutla. ISO 9796-1 and the new forgery

strategy. Unpublished manus
ript, 1999.

[CNS99℄ J. Coron, D. Na

a
he, and J. Stern. On the se
urity of RSA padding. In

Advan
es in Cryptology{Crypto '99, pages 1{18, 1999.

[CS98℄ R. Cramer and V. Shoup. A pra
ti
al publi
 key
ryptosystem provably se-

ure against adaptive
hosen
iphertext atta
k. In Advan
es in Cryptology{

Crypto '98, pages 13{25, 1998.

[CS99℄ R. Cramer and V. Shoup. Signature s
hemes based on the strong RSA as-

sumption. In 6th ACM Conf. on Computer and Communi
ations Se
urity,

1999.

[Dam87℄ I. Damg�ard. Collision free hash fun
tions and publi
 key signature s
hemes.

In Advan
es in Cryptology{Euro
rypt '87, 1987.

[dBB93℄ D. den Boer and A. Bosselaers. Collisions for the
ompression fun
tion of

MD5. In Advan
es in Cryptology{Euro
rypt '93, pages 293{304, 1993.

[DDN91℄ D. Dolev, C. Dwork, and M. Naor. Non-malleable
ryptography. In 23rd

Annual ACM Symposium on Theory of Computing, pages 542{552, 1991.

[DH76℄ W. DiÆe and M. E. Hellman. New dire
tions in
ryptography. IEEE Trans.

Info. Theory, 22:644{654, 1976.

[DLP93℄ I. Damg�ard, P. Landro
k, and C. Pomeran
e. Average
ase error estimates

for the strong probable prime test. Math. Comp., 61:177{194, 1993.

[Dob96℄ H. Dobbertin. The status of MD5 after a re
ent atta
k. RSA Laboratories'

CryptoBytes, 2(2), 1996. The main result of this paper was announ
ed at

the Euro
rypt '96 rump session.

[DvOW92℄ W. DiÆe, P. van Oors
hot, and M. Wiener. Authenti
ation and authenti-

ated key ex
hange. Designs, Code, and Cryptography, 2:107{125, 1992.

[FO99℄ E. Fujisaki and T. Okamoto. Statisti
al zero knowledge proto
ols to prove

modular polynomial relations. In Advan
es in Cryptology{Crypto '97, 1999.

[FS87℄ A. Fiat and A. Shamir. How to prove yourself: pra
ti
al solutions to iden-

ti�
ation and signature problems. In Advan
es in Cryptology{Crypto '86,

Springer LNCS 263, pages 186{194, 1987.

[GHR99℄ R. Gennaro, S. Halevi, and T. Rabin. Se
ure hash-and-sign signatures

without the random ora
le. In Advan
es in Cryptology{Euro
rypt '99, pages

123{139, 1999.

[GM84℄ S. Goldwasser and S. Mi
ali. Probabilisti
 en
ryption. Journal of Computer

and System S
ien
es, 28:270{299, 1984.

[GMR88℄ S. Goldwasser, S. Mi
ali, and R. Rivest. A digital signature s
heme se
ure

against adaptive
hosen-message atta
ks. SIAM J. Comput., 17:281{308,

1988.

46

[IZ89℄ R. Impagliazzo and D. Zu
kermann. How to re
y
le random bits. In 30th

Annual Symposium on Foundations of Computer S
ien
e, pages 248{253,

1989.

[KJJ99℄ P. Ko
her, J. Ja�e, and B. Jun. Di�erential power analysis. In Advan
es

in Cryptology{Crypto '99, pages 388{397, 1999.

[Ko
96℄ P. Ko
her. Timing atta
ks on implementations of DiÆe-Hellman, RSA,

DSS, and other systems. In Advan
es in Cryptology{Crypto '96, pages

104{113, 1996.

[KR96℄ J. Kilian and P. Rogaway. How to prote
t DES against exhaustive key

sear
h. In Advan
es in Cryptology{Crypto '96, pages 252{267, 1996.

[Kra94℄ H. Kraw
zyk. LFSR-based hashing and authenti
ation. In Advan
es in

Cryptology|Crypto '94, pages 129{139, 1994.

[Lub96℄ M. Luby. Pseudorandomness and Cryptographi
 Appli
ations. Prin
eton

University Press, 1996.

[Lu
00℄ S. Lu
ks. The sum of PRPs is a se
ure PRF. In Advan
es in Cryptology{

Euro
rypt 2000, 2000.

[Mau99℄ U. Maurer. Information-theoreti

ryptography. In Advan
es in

Cryptology{Crypto '99, pages 47{64, 1999.

[MvOV97℄ A. Menesez, P. van Oors
hot, and S. Vanstone. Handbook of Applied Cryp-

tography. CRC Press, 1997.

[NR97℄ M. Naor and O. Reingold. Number-theoreti

onstru
tions of eÆ
ient

pseudo-random fun
tions. In 38th Annual Symposium on Foundations of

Computer S
ien
e, 1997.

[NY89℄ M. Naor and M. Yung. Universal one-way hash fun
tions and their
ryp-

tographi
 appli
ations. In 21st Annual ACM Symposium on Theory of

Computing, 1989.

[NY90℄ M. Naor and M. Yung. Publi
-key
ryptosystems provably se
ure against

hosen
iphertext atta
ks. In 22nd Annual ACM Symposium on Theory of

Computing, pages 427{437, 1990.

[PS96℄ D. Point
heval and J. Stern. Se
urity proofs for signature s
hemes. In

Advan
es in Cryptology{Euro
rypt '96, pages 387{398, 1996.

[RS91℄ C. Ra
ko� and D. Simon. Nonintera
tive zero-knowledge proof of knowl-

edge and
hosen
iphertext atta
k. In Advan
es in Cryptology{Crypto '91,

pages 433{444, 1991.

[SHA95℄ Se
ure hash standard, National Institute of Standards and Te
hnology

(NIST), FIPS Publi
ation 180-1, April 1995.

[Sho94℄ V. Shoup. Fast
onstru
tion of irredu
ible polynomials over �nite �elds. J.

Symboli
 Comp., 17(5):371{391, 1994.

47

[Sho98℄ V. Shoup. Why
hosen
iphertext se
urity matters. IBM Resear
h Report

RZ 3076, November 1998.

[Sho00a℄ V. Shoup. A
omposition theorem for universal one-way hash fun
tions. In

Advan
es in Cryptology{Euro
rypt 2000, 2000.

[Sho00b℄ V. Shoup. Using hash fun
tions as a hedge against
hosen
iphertext atta
k.

In Advan
es in Cryptology{Euro
rypt 2000, 2000.

[Sim98℄ D. Simon. Finding
ollisions on a one-way street:
an se
ure hash fun
tions

be based on general assumptions? In Advan
es in Cryptology{Euro
rypt

'98, pages 334{345, 1998.

[Sta96℄ M. Stadler. Publi
ly veri�able se
ret sharing. In Advan
es in Cryptology{

Euro
rypt '96, pages 190{199, 1996.

[ZS92℄ Y. Zheng and J. Seberry. Pra
ti
al approa
hes to attaining se
urity against

adaptively
hosen
iphertext atta
ks. In Advan
es in Cryptology{Crypto

'92, pages 292{304, 1992.

48

