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1 Introdution

The Advaned Cryptographi Engine (ACE) is a library of software routines that im-

plement a publi key enryption sheme as well as a digital signature sheme. Sine

names are sometimes onvenient, we all the enryption sheme \ACE Enrypt" and

the signature sheme \ACE Sign." These shemes are almost as eÆient as ommer-

ially used shemes, yet unlike suh shemes, an be proven seure under reasonable

and well-de�ned intratability assumptions. The shemes implemented are partiular

variants of the Cramer-Shoup enryption sheme [CS98℄ and the Cramer-Shoup signa-

ture sheme [CS99℄. These variants have been �nely tuned to strike a good balane

between eÆieny and seurity. The papers [CS98℄ and [CS99℄, as well as the related

bakground papers [Sho00a℄, [Sho00b℄, and also [Sho98℄ are available on line at the

following URL:

http://www.zurih.ibm.om/Tehnology/Seurity/extern/ae

In this doument, we speify these shemes with enough detail to ensure interoperability

between di�erent implementations. We also present a onrete seurity analysis of both

shemes.

Before doing this, however, we sketh the seurity goals that these shemes are meant

to ahieve, and the assumptions under whih these goals are atually ahieved.

2 Seurity goals

2.1 Provable seurity

One of the goals of modern ryptography is to design ryptographi primitives, suh as

signatures and enryption shemes, and to reason about their seurity. This task an

be divided into three sub-tasks:

� to de�ne an appropriate notion of seurity, inluding a formal model that de-

sribes how an adversary interats with the system, and what onstitutes \break-

ing" the system;

� to design ryptographi shemes;

� to prove the seurity of ryptographi shemes.

The importane of the de�nitional aspet annot be overemphasized. It has taken a

number of years for the \right" de�nitions for many ryptographi primitives to emerge,

and there is still work to be done in de�ning seurity for more omplex systems. Many

ryptographi shemes have been \broken" only beause the designers of the sheme

did not antiipate ertain modes of attak.

In terms of proving seurity, the ultimate goal would be to prove that a sheme annot

be broken|period. While this an be ahieved for ertain ryptographi problems,

the solutions are generally quite impratial, and require a very speial set of physial

assumptions. We refer the reader to Maurer's survey on this area of information-

theoreti ryptography [Mau99℄.
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The next most ambitious goal for proving seurity would be to prove that a sheme

an not be broken without the use of an inordinate amount of omputing resoures.

Unfortunately, given the urrent state of mathematial knowledge, we annot hope

to prove the seurity of any sheme in this absolute sense. Rather, by a \provably

seure" sheme, ryptographers usually mean seurity in a onditional sense, based

upon \reasonable and natural" intratability assumptions, e.g., the assumption that

fatoring large numbers is hard. This is the sense in whih we shall use the term

\provably seure."

Although provable seurity in this onditional sense may not be as strong a notion as

one would like, it is still a very powerful notion. It guarantees that there an be no

\shortuts" in breaking a ryptographi system|an adversary attempting to break the

system must attak the underlying \hard" problems diretly. There are several exam-

ples of ryptographi systems that have been proposed, and even deployed, only later

to be broken via a \shortut"|that is, without solving the underlying \hard" prob-

lem. One of the more spetaular suh examples is Bleihenbaher's hosen iphertext

attak on RSA's enryption sheme, PKCS #1 [Ble98℄. Even though the underlying

enryption sheme is based on the RSA problem (see x2.6), Bleihenbaher's attak

leverly breaks the sheme without solving this problem. This attak rendered inse-

ure the widely deployed SSL key agreement protool, whih is based on this enryption

sheme. Another reent example is an attak on the ISO 9761-1 standard for digital

signatures [CNS99, CHJ99℄. Again, even though the sheme is based on the RSA

problem, the attak leverly breaks the sheme without solving this problem.

Random orale arguments

There are a number of examples in the literature of ryptographi shemes that are

either provably seure but hopelessly impratial, or pratial but laking a proof of

seurity (or even broken). Shemes that are both truly pratial and provably seure

are hard to ome by. Beause of this, a new trend has emerged in the ryptographi

researh ommunity: proofs of seurity in an idealized model of omputation wherein

a ryptographi hash funtion (like MD5 or SHA-1) is treated as if it were a random

orale, i.e., a \blak box" that ontains a random funtion whih an only be evaluated

by making an expliit query. This \random orale" model for seurity analysis was

informally introdued by [FS87℄, and later formalized by [BR93℄. It has been used to

analyze numerous ryptographi systems (see, e.g., [BR94℄ and [PS96℄). However, we

must emphasize that making use of random orales is not just another assumption|a

ryptographi hash funtion is not, and never an be, a random orale. It is entirely

possible that a ryptographi sheme that is seure in the random orale model an be

broken without either breaking the underlying hard problem, or �nding any partiular

weakness in the ryptographi hash funtion. Indeed, this is amply demonstrated in

[CGH98℄. Our point of view is that a seurity analysis in the random orale model

is best viewed as heuristi evidene for the seurity of a sheme. If the only pratial

solutions to a problem rely on a random orale argument for their proof of seurity,

�ne|this is muh better than no seurity analysis at all; but if a pratial solution an

be obtained without relying on a random orale argument, so muh the better.

Shortly after RSA's PKCS #1 was shown to be vulnerable to a hosen iphertext

attak, it was modi�ed so as to utilize Bellare and Rogaway's OAEP enryption sheme

[BR94℄. This sheme is provably seure in the random orale model (assuming the
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RSA problem is hard). The enryption sheme desribed in this doument is provably

seure|without making random orale arguments|and is not too muh less eÆient

than OAEP. Although there may be senarios where the engineering requirements are so

onstraining that even this slight loss of eÆieny annot be tolerated, we believe that

there are other senarios where this tradeo� between eÆieny and provably seurity

is ertainly worth making.

Choosing intratability assumptions

The notion of \provable seurity" is not entirely preise, sine one has a ertain exi-

bility in hoosing the \reasonable and natural" intraatbility assumptions on whih a

proof of seurity an be based.

There are several harateristis that are desirable in an intratability assumption.

Ideally, the \hard" problem should be well studied. Failing that, the problem should

at least be fairly natural and easy to desribe, so that it an be understood and studied

by a reasonable number of people. At the very least, we believe that the problem

should be non-interative, that is, of the form: given an instane of a problem (e.g.,

the produt of two large, random primes), it is hard to solve the problem (e.g., fator

the number). The reason for this is that ryptographi primitives and protools an

be attaked in quite ompliated and subtle ways by an adversary that interats with

the system, and suh interation is quite subtle to analyze. Reduing the seurity of a

omplex, interative system to the hardness of a non-interative problem an be seen

as one of the main ativities of modern theoretial ryptography. Another nie feature

of requiring non-interative assumptions is that it rules out the \proof tehnique" of

proving a ryptosystem is seure by assuming a priori that it is seure.

The reason we spend some time disussing what we believe onstitutes a \reasonable

and natural" intratability assumption is that some researhers apparently have a muh

more liberal interpretation of the term. For example, in [ZS92℄, the authors prove the

seurity of an enryption sheme based on an assumption of the form: an arbitrary

adversary an be replaed by an essentially equivalent adversary that behaves in a

ertain nie way. As one an see, by our standards, this is not a reasonable intratability

assumption|it is really just a proof of seurity against a restrited lass of adversaries.

As another example, in [ABR98℄, the authors make intratability assumptions that

are interative; indeed, these intratability assumptions amount to little more than a

restatement of the de�nition of seurity in terms of the partiular implementation that

they propose. We believe this misses the whole point of \provable seurity," and it

ertainly does not meet our standard of a reasonable intratability assumption.

2.2 Seure publi key enryption

The development of a pratially useful and mathematially meaningful de�nition of

seure publi key enryption took the ryptographi researh ommunity a number of

years. There are a number of weak, ad ho, notions of seurity whih are not very useful.

These inlude (1) the requirement that the private key should be hard to reover, and

(2) the requirement that individual iphertexts should be hard to derypt.

The �rst step towards a workable de�nition was the formulation of the notion of seman-

ti seurity by [GM84℄. This de�nition of seurity aptures the notion that a iphertext
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leaks no information about the orresponding leartext to a (omputationally bounded)

eavesdropper.

We sketh this de�nition in more detail. Briey, seurity in this sense means that it is

infeasible for an adversary to gain a non-negligible advantage in the following game. A

publi key/private key pair for the sheme is generated, and the adversary is given the

publi key. Then the adversary generates two equal length messages m

0

;m

1

, and gives

these to an enryption orale. We assume these two messages have non-zero length.

1

The enryption orale hooses a bit b 2 f0; 1g at random, enrypts m

b

, and gives the

adversary the orresponding target iphertext  

0

. Finally, the adversary outputs his

guess at b. The adversary's advantage is de�ned to be the distane from 1=2 of the

probability that his guess is orret.

As mentioned above, the formal de�nition of semanti seurity aptures the intuitive

notion that no information about an enrypted message is leaked to a passive adversary

that only eavesdrops. In protool design and analysis, a muh more robust de�nition is

often required that aptures the intuitive notion of seurity against an ative attak, in

whih the adversary not only an eavesdrop, but an injet his own messages into the

network. The type of seurity one needs in this setting is non-malleability, also alled

seurity against hosen iphertext attak, a notion that was formalized in the sequene

of papers [NY90, RS91, DDN91℄.

The de�nition of non-malleability is the same as for semanti seurity, but with the

following essential di�erene. The adversary is given aess to a deryption orale

throughout the entire game; the adversary may request the deryption of iphertexts

 of his hoosing, subjet only to the (obviously neessary) restrition that after the

target iphertext  

0

has been generated, the adversary may not request the deryption

of  

0

itself.

Another intuitive way to understand non-malleability (and the motivation for its name)

is that a non-malleable enryption sheme essentially provides a seure envelope, that

is, an envelope whose ontents an neither be seen nor modi�ed by an adversary.

Non-malleability is a fundamental notion that is neessary to ensure the seurity of

numerous protools that use publi-key enryption. Sometimes, seurity engineers

appear to impliitly assume that a given enryption sheme is non-malleable, even if

there is no justi�ation for this. A ase in point is Bleihenbaher's attak on SSL (see

x2.1).

For further disussion on the importane of non-malleability, see [Sho98℄.

The above de�nitions for semanti seurity and non-malleability may seem somewhat

limited at �rst sight|in partiular, one might ask what seurity properties are guar-

anteed in a riher attak senario where there are many users with publi keys and

many messages are enrypted under these publi keys. However, the above de�ni-

tions are quite robust, and it is well known that they are essentially equivalent to just

about any reasonable generalization one might onsider in a multi-user/multi-message

environment. For a detailed aount of this issue, see [BBM00℄.

1

A user might enrypt a zero length message, but this is not interesting from a seurity point of

view.
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Conrete seurity analysis

In this doument, we want to arry out a onrete (or exat) exat seurity analysis.

That is, we want to develop an expliit, quantitative relationship between the hardness

of breaking a ryptosystem and the hardness of the underlying problems on whih it is

based. In order to failitate this, we de�ne

AdvEn(t; �; l)

to be the advantage in the above game de�ning non-malleability, where we onsider an

adversary that runs in time at most t, makes at most � deryption requests, and l is

an upper bound on the length (in bytes, say) of the test messages m

0

;m

1

.

This funtion impliitly depends on the seurity parameters hosen to de�ne the sig-

nature sheme.

Also note that this funtion depends on the model of omputation, sine the notion

of \time" depends on the details of this model. We do not want to get mired in the

details of this. A perfetly aeptable model is to �x a simple stored-program mahine

model with a �xed word size (32 or 64 bits) and a onvenient and realisti instrution

set, and then to measure time by ounting the number of instrutions exeuted. We

also ount in the running time the size of the program, as well as any pre-initialized

data tables.

Note that for simpliity, in the adversary's time we ount the time spent by the key

generation algorithm, enryption algorithm, and deryption algorithm|that is, the

entire running time of the attak game is \harged" to the adversary. Also, we shall

view t as a strit bound on the running time, and not, say, an expeted value.

2.3 Seure digital signatures

The notion of seurity we want is that of seurity against existential forgery against

adaptive hosen message attak, as de�ned in [GMR88℄. This is the strongest, and

most useful notion of seurity, allowing a signature sheme to be used in an arbitrary

appliation without restritions.

Briey, seurity in this sense means that it is infeasible for an adversary to win the

following game. A publi key/private key for the sheme is generated, and the adversary

is given the publi key. The adversary then makes a sequene of signing requests. The

messages for whih the adversary requests signatures an be adaptively hosen, i.e.,

they may depend on previous signatures. The adversary wins the game if he an

forge a signature, i.e., an output a message other than one for whih he requested a

signature, along with a valid signature on that message.

Conrete seurity analysis

In order to failitate onrete seurity analysis, we de�ne

AdvSig(t; �; l)

to be the probability that an adversary wins the above game, where we onsider adver-

saries that run in time at most t, make at most � signing requests, and l is an upper

bound on the total length (in bytes, say) of all the signed messages.
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All of the tehnial aveats on the de�nition of AdvEn apply to the de�nition of AdvSig

as well.

2.4 Intratability assumptions

The signature sheme and enryption sheme in ACE an be proven seure under

reasonable and natural intratability assumptions, without resorting to random orale

arguments. However, we do make use of ryptographi hash funtions as a \hedge": in

the random orale model, the shemes in ACE an be proven seure under even weaker

intratability assumptions.

The four basi assumptions we need are as follows:

(1) The Deisional DiÆe-Hellman (DDH) assumption.

(2) The Strong RSA assumption.

(3) SHA-1 seond preimage ollision resistane.

(4) MARS sum/ounter mode pseudo-randomness.

We need assumptions (1), (3), and (4) to prove the seurity of the enryption sheme,

and we need assumptions (2), (3), and (4) to prove the seurity of the signature sheme.

In the random orale model, assumptions (1) and (2) an be replaed by

(1

0

) The Computational DiÆe-Hellman (CDH) assumption.

(2

0

) The RSA assumption.

Thus, although we need to make somewhat strong intratability assumptions to get

a true proof of seurity, our shemes are in a sense no less seure than more tradi-

tional shemes that are based on assumptions (1

0

) and (2

0

), but whih (at best) an be

analyzed only in the random orale model.

We now desribe these assumptions in some detail.

2.5 The Computational and Deisional DiÆe-Hellman assumption

Let G be a group of large prime order q and let g 2 G be a generator. The Compu-

tational DiÆe-Hellman (CDH) assumption, introdued by [DH76℄, is the assumption

that omputing g

xy

from g

x

and g

y

is hard. It is a widely held belief that the seurity

of ertain key exhange protools (suh as STS [DvOW92℄) is implied by the CDH

assumption. This is simply false|under any reasonable de�nition of seurity|exept

in the random orale model of seurity analysis. What is almost always needed, but

often not expliitly stated, is the Deisional DiÆe-Hellman (DDH) assumption.

For g

1

; g

2

; u

1

; u

2

2 G, de�ne DHP(g

1

; g

2

; u

1

; u

2

) to be 1 if there exists x 2 Z

q

suh that

u

1

= g

x

1

and u

2

= g

x

2

, and 0 otherwise. A \good" algorithm for DHP is an eÆient,

probabilisti algorithm that omputes DHP orretly with negligible error probability

on all inputs. The DDH assumption is the assumption that there is no good algorithm

for DHP .
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This formulation is equivalent to the more usual one where

g

1

= g; g

2

= g

x

; u

1

= g

y

; u

2

= g

xy

:

The DDH assumption is a potentially stronger assumption than the CDH assumption,

but at the present time, the only known method for breaking either assumption is to

solve the Disrete Logarithm problem.

The DDH assumption appears to have �rst surfaed in the ryptographi literature in

a paper by S. Brands [Bra93℄. See [Bon98, CS98, NR97, Sta96℄ for further appliations

of and disussions about the DDH assumption.

The groups G that are used in ACE are prime-order subgroups of the multipliative

group of units modulo a large prime. These subgroups have order roughly 2

256

.

Random self redution and an equivalent formulation of the DDH

There are a few useful random self-redutions that allow us to transform arbitrary

inputs to DHP into random inputs on whih DHP evaluates to the same value.

Let g

1

; g

2

; u

1

; u

2

be given suh that g

1

6= 1 and g

2

6= 1. We an randomize u

1

and u

2

as follows:

~u

1

= u

a

1

g

b

1

; ~u

2

= u

a

2

g

b

2

;

where a; b 2 Z

q

are hosen at random. Suppose that u

1

= g

x

1

and u

2

= g

y

2

. If x = y,

then (~u

1

; ~u

2

) is a random pair of group elements, subjet to log

g

1

(~u

1

) = log

g

2

(~u

2

): If

x 6= y, then (~u

1

; ~u

2

) is a pair of random, independent group elements.

Next, we an randomize g

2

as follows:

~g

2

= g



2

; ~u

1

= u

a

1

g

b

1

; ~u

2

= u

a

2

g

b

2

;

where  2 Z

q

is hosen at random.

Additionally, we an randomize g

1

as follows:

~g

1

= g

d

1

; ~g

2

= g



2

; ~u

1

= u

ad

1

g

bd

1

; ~u

2

= u

a

2

g

b

2

;

where d 2 Z

q

is hosen at random.

With this transformation, we see that we an transform an arbitrary input to DHP to

an equivalent, random input. From this, it follows that the two distributions

R : (g

1

; g

2

; g

x

1

; g

y

2

); random g

1

; g

2

2 Gnf1g; x; y 2 Z

q

;

and

D : (g

1

; g

2

; g

x

1

; g

x

2

); random g

1

; g

2

2 Gnf1g; x 2 Z

q

are omputationally indistinguishable under the DDH assumption. This random self-

reduibility property was �rst observed by Stadler [Sta96℄ (and also independently in

[NR97℄).
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Conrete seurity analysis

In order to failitate onrete seurity analysis, we de�ne

AdvDDH(t)

to be the maximum over all statistial tests T that run in time at most t and output

0; 1 of

�

�

�

Pr[T (R) = 1℄� Pr[T (D) = 1℄

�

�

�

:

2.6 The RSA and strong RSA assumptions

The RSA problem is the following. Given a randomly generated RSA modulus n, an

exponent r, and a random z 2 Z

�

n

, �nd y 2 Z

�

n

suh that y

r

= z. The exponent r

is drawn from a partiular distribution|partiular distributions give rise to partiular

versions of the RSA problem. The RSA assumption is the assumption that this problem

is hard to solve.

The exible RSA problem is the following. Given an RSA modulus n and a random

z 2 Z

�

n

, �nd r > 1 and y 2 Z

�

n

suh that y

r

= z. The hoie of r may be restrited

in some fashion|partiular restritions give rise to partiular versions of the exible

RSA problem. The strong RSA assumption is the assumption that this problem is

hard to solve. Note that this di�ers from the ordinary RSA assumption, in that for

the RSA assumption, the exponent r is hosen independently of z, whereas for the

strong RSA assumption, r may be hosen in a way that depends on z. The strong RSA

assumption is a potentially stronger assumption than the RSA assumption, but at the

present time, the only known method for breaking either assumption is to solve the

integer fatorization problem.

The strong RSA assumption was introdued in [BP97℄, and has subsequently been used

in the analysis of several ryptographi shemes (see, e.g., [FO99, GHR99℄).

Conrete seurity analysis

We de�ne

AdvRSA(t)

to be the maximum over all algorithms that run in time at most t of the probability of

solving the RSA problem. We also de�ne

AdvFlexRSA(t)

to be the orresponding probability for solving the exible RSA problem.

Random Self Redution

One of the nie features about the RSA problem is that it is random self-reduible.

That is, having �xed n and r, then the problem of omputing y = z

1=r

for an arbitrary

z 2 Z

�

n

an be redued to the problem of omputing ~y = ~z

1=r

for random ~z 2 Z

�

n

. This

means that given an eÆient algorithm to solve the latter problem, one an eÆiently

8



solve the former problem. This is a well-known and quite trivial redution: given z,

hoose s 2 Z

�

n

at random, and set ~z = s

r

z. Then we have y = ~y=s.

The existene of suh a random self redution adds redibility to the RSA assumption,

sine if there is an algorithm that solves the RSA problem for a given n and for a

non-negligible fration of hoies of z, then there is another algorithm that solves the

RSA problem for the same n for all hoies of z.

There is also a random self redution for the exible RSA problem, at least in the

partiular version that we need to prove the seurity of the signature sheme. Just as

for the RSA problem, this random self redution adds redibility to the strong RSA

assumption. This redution appears not to be so well known, and is desribed in detail

in the full-length version of [CS99℄.

2.7 SHA-1 seond preimage ollision resistane

The notion of a UOWHF was introdued by Naor and Yung [NY89℄. A UOWHF is

a keyed hash funtion with the following property: if an adversary hooses a message

x, and then a key K is hosen at random and given to the adversary, it is hard for he

adversary to �nd a di�erent message x

0

6= x suh that H

K

(x) = H

K

(x

0

).

As a ryptographi primitive, a UOWHF is an attrative alternative to the more tradi-

tional notion of a ollision-resistant hash funtion (CRHF), whih is haraterized by

the following property: given a random key K, it is hard to �nd two di�erent messages

x; x

0

suh that H

K

(x) = H

K

(x

0

).

A UOWHF is an attrative alternative to a CRHF beause

(1) it seems easier to build an eÆient and seure UOWHF than to build an eÆient

and seure CRHF, and

(2) in many appliations, most importantly for building digital signature shemes, a

UOWHF is suÆient.

As evidene for laim (1), we point out the reent attaks on MD5 [dBB93, Dob96℄.

We also point out the omplexity-theoreti result of Simon [Sim98℄ that shows that

there exists an orale relative to whih UOWHFs exist but CRHFs do not. CRHFs

an be onstruted based on the hardness of spei� number-theoreti problems, like

the disrete logarithm problem [Dam87℄. Simon's result is strong evidene that CRHFs

annot be onstruted based on an arbitrary one-way permutation, whereas Naor and

Yung [NY89℄ show that a UOWHF an be so onstruted.

As we shall see, ACE needs only a UOWHF. We onstrut suh a UOWHF by using

the omposition theorem in [Sho00a℄, together with the SHA-1 low-level ompression

funtion

C : f0; 1g

672

! f0; 1g

160

as the basi primitive. The assumption we make about C is that it is seond preimage

ollision resistant, i.e., if a random input x 2 f0; 1g

672

is hosen, then it is hard to

�nd di�erent input x

0

6= x suh that C(x) = C(x

0

). This assumption seems to be

muh weaker than assumption that no ollisions in C an be found at all (whih as

an intratability assumption does not even make sense). Indeed, the tehniques used

to �nd ollisions in MD5 [dBB93, Dob96℄ do not appear to help in �nding seond

preimages.
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Note that from a omplexity theoreti point of view, seond preimage ollision resis-

tane is no stronger than the UOW property. Indeed, if H

K

(x) is a UOWHF, then the

funtion sending (K;x) to (K;H

K

(x)) is seond preimage ollision resistant.

All of the above tends to indiate that the assumption that C is seond preimage

ollision resistant is muh more reasonable than the assumption that C is ollision

resistant. Also note that from a onrete, quantitative seurity point of view, seond

preimage ollision resistane is also quite attrative. The SHA-1 ompression funtion

C has a 160-bit output. Beause of the birthday paradox, ollisions an be found by

brute-fore searh in 2

80

steps, but a brute-fore searh for a seond preimage would

require 2

160

steps. In not too many years, an attak that takes 2

80

steps may be

near the threshold of feasibility; in this situation, a sheme that relies on the ollision

resistane for C an no longer be onsidered seure, whereas a sheme that relies only

on seond preimage ollision resistane may still be onsidered seure, provided no

attak substantially better than a brute-fore attak is disovered.

Conrete seurity analysis

We de�ne

AdvSHA(t)

to be the maximum over all algorithms that run in time at most t of the probability of

�nding seond preimages for SHA-1, as de�ned above.

2.8 MARS sum/ounter mode pseudo-randomness

We will make use of the MARS blok ipher [BCD

+

98℄ in sum/ounter mode to generate

sequenes of pseudo-random bits.

Let f(k; x) denote the evaluation of the blok ipher MARS using a 256-bit key k and

a 128-bit input blok x, yielding a 128-bit output blok. The assumption we make

about MARS is that when used in sum/ounter mode, the resulting sequene of bits is

pseudo-random.

More preisely, onsider the following two distributions, for a given length parameter

l > 0:

P

l

: (x; f(k; x) � f(k; x+ 1); : : : ; f(k; x+ 2l � 2)� f(k; x+ 2l � 1));

where k is a random 256-bit string and x is a random 128-bit string, and

R

l

: (x; r

0

; : : : ; r

l�1

);

where x; r

0

; : : : ; r

l�1

are random 128-bit strings. Here, we interpret \x + j," for 0 �

j < 2l in the natural way as the 128-bit blok representing x+ j redued modulo 2

128

.

The pseudo-randomness assumption we make is that the two distributions P

l

and R

l

are omputationally indistinguishable.

Conrete seurity analysis

In order to failitate onrete seurity analysis, we de�ne

AdvMARS(t; l)
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to be the maximum over all statistial tests T that run in time at most t and output

0; 1 of

�

�

�

Pr[T (R

l

) = 1℄� Pr[T (P

l

) = 1℄

�

�

�

:

Summed MARS

Note that in this onstrution, instead of using the output of MARS in ounter mode

diretly, we take the exlusive or of onseutive pairs of MARS outputs. This of ourse

degrades the speed by a fator of two, but there are some advantages from a seurity

pont of view.

First, sine the adversary does not see any MARS input/output pairs, but only the

exlusive ors of outputs, ertain types of ryptanalysis should be less feasible.

Seond, and more important, this onstrution goes a long way to hiding the fat that

MARS atually behaves like a random permutation, and not a random funtion. In-

deed, if we just use MARS diretly in ounter mode, then we an distinguish its output

from random with an advantage lose to l

2

=2

128

, simply beause in a sequene of ran-

dom bloks, we would expet a ollision, but none is forthoming from MARS. Reent

results of [BI99℄ imply that the sum/ounter mode onstrution redues the advantage

to something muh loser to l=2

128

. A similar result has also been independently ob-

tained by [Lu00℄. The latter result is based on a muh more elementary proof, and is

somewhat weaker; however, for l < 2

64

, the result in [Lu00℄ is nearly as good as that

in [BI99℄.

3 Terminology and Notation

In order to desribe the enryption and signature shemes preisely, we need to establish

some notational onventions.

3.1 Basi mathematial notation

- Z

The set Z of integers.

- F

2

[T ℄

The set F

2

[T ℄ of univariate polynomials with oeÆients in the �nite �eld F

2

of

ardinality 2.

- A rem n

For A 2 Z and integer n > 0, then A rem n is de�ned to be the integer r 2

f0; : : : ; n� 1g suh that A � r (mod n).

- A rem f

For A; f 2 F

2

[T ℄ with f 6= 0, A rem f is de�ned to be the polynomial r 2 F

2

[T ℄

with deg(r) < deg(f) suh that A � r (mod f).
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3.2 Basi string notation

Fix a set A. A

�

denotes the set of all strings, i.e., �nite sequenes, over the set A. For

n � 0, A

n

denotes the set of all sequenes of length n over A.

For a string x 2 A

�

, L(x) denotes its length. The string of length zero is denoted �

A

.

Let x = (a

0

; : : : ; a

m�1

) 2 A

m

be a string of length m, where a

i

2 A for 0 � i < m. For

0 � i � j � m, we de�ne the substring operation

[x℄

j

i

def

= (a

i

; : : : ; a

j�1

) 2 A

j�i

:

For 0 � i � m� 1, we de�ne the seletion operation

x[i℄

def

= a

i

2 A:

For x; y 2 A

�

, we de�ne z = x k y to be the onatenation of x and y. That is, z 2 A

�

is the unique string suh that L(z) = L(x) + L(y), [z℄

L(x)

0

= x, and [z℄

L(z)

L(x)

= y.

3.3 Bits, bytes, and words

De�ne b

def

= f0; 1g, the set of bits. We will work with sets of the form

b; b

n

1

; (b

n

1

)

n

2

; : : : :

For suh a set A, we de�ne the \zero element" 0

A

2 A reursively, as follows:

0

b

def

= 0 2 b;

0

A

n

def

= (0

A

; : : : ; 0

A

) 2 A

n

for n � 0.

We de�ne B

def

= b

8

, the set of bytes.

We de�ne W

def

= b

32

, the set of words.

For x 2 A

�

with A 2 fb;B;Wg, and for l � 0, we de�ne a padding operator

pad

l

(x)

def

=

(

x if L(x) � l;

x k 0

A

l�L(x)

otherwise:

For x 2 A

�

with A 2 fb;B;Wg, we say that x is normalized if x is not of the form

y k 0

A

n

for some y 2 A

�

and some n > 0.

3.4 Conversion operators

We de�ne a number of onversions among Z;F

2

[T ℄;b

�

;B

�

;W

�

. The general notation

for a onversion operator is

I

dst

sr

: sr ! dst ;

whih is a funtion that onverts an element of the set sr to an element of the set dst .

All of these onversion operators are quite simple and natural, even though their formal

spei�ation is a little tedious. The only thing to really notie is that the onversion

between byte strings and word strings follows what is sometimes alled the \little

endian" ordering onvention.
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- I

Z

b

�

(x)

def

=

P

L(x)�1

i=0

x[i℄2

i

:

- I

b

�

Z

(n)

def

= x, where x 2 b

�

is the unique, normalized bit string suh that I

Z

b

�

(x) = jnj.

- I

F

2

[T ℄

b

�

(x)

def

=

P

L(x)�1

i=0

x[i℄T

i

:

- I

b

�

F

2

[T ℄

(f)

def

= x, where x 2 b

�

is the unique, normalized bit string suh that I

F

2

[T ℄

b

�

(x) =

f .

- I

b

�

B

�

(x)

def

= x[0℄ kx[1℄ k � � � kx[L(x) � 1℄:

- I

B

�

b

�

(x)

def

= y, where y 2 B

�

is the unique byte string with L(y) = dL(x)=8e and

I

b

�

B

�

(y) = pad

8L(y)

(x).

- I

b

�

W

�

(x)

def

= x[0℄ kx[1℄ k � � � kx[L(x) � 1℄:

- I

W

�

b

�

(x)

def

= y, where y 2 W

�

is the unique word string with L(y) = dL(x)=32e and

I

b

�

W

�

(y) = pad

32L(y)

(x).

- I

B

�

W

�

(x)

def

= y, where y 2 B

�

is the unique byte string suh that I

b

�

B

�

(y) = I

b

�

W

�

(x).

- I

W

�

B

�

(x)

def

= y, where y 2 W

�

is the unique word string with L(y) = dL(x)=4e and

I

B

�

W

�

(y) = pad

4L(y)

(x).

- I

Z

B

�

(x)

def

= I

Z

b

�

(I

b

�

B

�

(x))

- I

B

�

Z

(n)

def

= I

B

�

b

�

(I

b

�

Z

(n))

- I

F

2

[T ℄

B

�

(x)

def

= I

F

2

[T ℄

b

�

(I

b

�

B

�

(x))

- I

B

�

F

2

[T ℄

(f)

def

= I

B

�

b

�

(I

b

�

F

2

[T ℄

(f))

- I

Z

W

�

(x)

def

= I

Z

b

�

(I

b

�

W

�

(x))

- I

W

�

Z

(n)

def

= I

W

�

b

�

(I

b

�

Z

(n))

- I

F

2

[T ℄

W

�

(x)

def

= I

F

2

[T ℄

b

�

(I

b

�

W

�

(x))

3.5 Other operators

For x; y 2 b, we de�ne z = x � y 2 b to be the exlusive-or of x and y, i.e., z =

(x+ y) rem 2. We an extend the � operator element-wise to equal-length bit strings.

This de�nes an � operator on B and W, whih we an then extend to equal-length

byte and word strings.

For onveniene, for n 2 Z, we de�ne

L

b

(n)

def

= L(I

b

�

Z

(n));

L

B

(n)

def

= L(I

B

�

Z

(n));

L

W

(n)

def

= L(I

W

�

Z

(n)):
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It will also be onvenient to de�ne a simple \inrement" operator on word strings. Let

x 2W

n

for some n > 0. Then

x+ 1

def

= pad

n

(I

W

�

Z

((I

Z

W

�

(x) + 1) rem 2

32n

)) 2W

n

:

We will make use of the following low-level ryptographi transformations:

- MARS

MARS enryption funtion as spei�ed in [BCD

+

98℄, used with 256-bit keys; that

is

MARS :W

8

�W

4

!W

4

;

where an input (k;m) onsists of the key k and the input blokm to be enrypted,

and the output is the resulting enrypted blok; we do not make use of the

orresponding deryption funtion.

- CSHA1

SHA-1 ore ompression funtion as desribed in [SHA95℄; that is

CSHA1 :W

5

�W

16

!W

5

;

where an input (h;m) onsists of the initial hash state h and a text input m, and

the output is the resulting �nal hash state.

3.6 Algorithmi notation

We use a fairly standard notation for desribing algorithms. We use the notation

A  B to denote the ation of assigning the value of B to the variable A. All of our

algorithms are written as \pure" funtions that take an input and return an output

using a \return" statement, and do not have any \side e�ets." Some funtions may

return one of several symboli values (Aept;Rejet;Prime;Composite).

Random numbers

At some points in the desription of algorithms, we say something like \generate a

random suh and suh." To implement this, one would need aess to a soure of

true random bits. However, most implementations will not have aess to suh a

soure. Instead, it is presumed that a pseudo-random soure is used. In all ases,

the implementor should use a ryptographially strong soure of pseudo-random bits or

numbers, and ensure that the onstruted objets have distributions as lose as possible

to truly random objets.

An implementation tip

When we desribe algorithms, there are several plaes where onversions are performed

between byte and word strings. In a areful implementation, one should onvert all

byte strings to word strings as early as possible, and thereafter work exlusively with

word strings, sine all the low-level operations work diretly on words, not bytes.
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4 Enryption Sheme

This setion de�nes the publi key enryption sheme. It is a variant of the hybrid

version of [CS98℄ desribed in [Sho00b℄.

4.1 Enryption Key Pair

The enryption sheme de�ned in this doument employs two key types, whose repre-

sentation onsists of the following tuples:

ACE Enryption publi key: (P; q; g

1

; g

2

; ; d; h

1

; h

2

; k

1

; k

2

).

ACE Enryption private key: (w; x; y; z

1

; z

2

).

For a given size parameter m, with 1024 � m � 16; 384, the omponents are as follows:

q { a 256-bit prime number.

P { an m-bit prime number with P � 1 (mod q).

g

1

; g

2

; ; d; h

1

; h

2

{ elements of f1; : : : ; P � 1g (whose multipliative order modulo P

divides q).

w; x; y; z

1

; z

2

{ elements of f0; : : : ; q � 1g.

k

1

; k

2

{ elements of B

�

, with L(k

1

) = 20l

0

+ 64 and L(k

2

) = 32dl=16e + 40, where

l = dm=8e and l

0

= L

b

(d(2dl=4e + 4)=16e).

4.2 Key Generation

Algorithm 4.2.1 generates an ACE enryption key pair.

Algorithm 4.2.1 Key generation for the ACE publi-key enryption sheme.

Input: A size parameter 1024 � m � 16; 384.

Output: A publi key/private key pair, as desribed in x4.1.

1. Generate a random prime q, where 2

255

< q < 2

256

.

2. Generate a random prime P , 2

m�1

< P < 2

m

, suh that P � 1 (mod q).

3. Generate a random integer g

1

2 f2; : : : ; P � 1g suh that g

1

q

� 1 (mod P ).

4. Generate random integers w 2 f1; : : : ; q � 1g and x; y; z

1

; z

2

2 f0; : : : ; q � 1g.

5. Compute the following integers in f1; : : : ; P � 1g:

g

2

 g

1

w

rem P;

  g

1

x

rem P;

d  g

1

y

rem P;

h

1

 g

1

z

1

rem P;

h

2

 g

1

z

2

rem P:
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6. Generate random byte strings k

1

2 B

20l

0

+64

, and k

2

2 B

32dl=16e+40

, where

l = L

B

(P ) and l

0

= L

b

(d(2dl=4e + 4)=16e).

7. Return the publi key/private key pair

((P; q; g

1

; g

2

; ; d; h

1

; h

2

; k

1

; k

2

); (w; x; y; z

1

; z

2

)):

4.3 Ciphertext Representation

Consider a publi key (P; q; g

1

; g

2

; ; d; h

1

; h

2

; k

1

; k

2

) for the ACE enryption sheme,

as desribed in x4.1. A iphertext of the ACE enryption sheme has the form

(s; u

1

; u

2

; v; e);

where the omponents are as follows:

u

1

; u

2

; v { integers in f1; : : : ; P � 1g (whose multipliative order modulo P divides q).

s { an element of W

4

.

e { an element of B

�

.

We all the s; u

1

; u

2

; v the preamble, and e the ryptogram. If a leartext is an l-byte

string, then the length of e is l + 16dl=1024e.

We introdue the funtion CEnode that is used to map a iphertext to its byte-string

representation, and the inverse funtion CDeode . For integer l > 0, word string

s 2W

4

, integers 0 � u

1

; u

2

; v < 256

l

, and byte string e 2 B

�

,

CEnode(l; s; u

1

; u

2

; v; e)

def

= I

B

�

W

�

(s) k pad

l

(I

B

�

Z

(u

1

)) k pad

l

(I

B

�

Z

(u

2

)) k pad

l

(I

B

�

Z

(v)) k e

2 B

�

:

For integer l > 0 and byte string  2 B

�

with L( ) � 3l + 16,

CDeode(l;  )

def

= (I

W

�

B

�

([ ℄

16

0

); I

Z

B

�

([ ℄

16+l

16

); I

Z

B

�

([ ℄

16+2l

16+l

); I

Z

B

�

([ ℄

16+3l

16+2l

); [ ℄

L( )

16+3l

)

2 W

4

� Z� Z� Z�B

�

:

4.4 Enryption Operation

Algorithm 4.4.1 uses an ACE enryption publi key to enrypt a message, and outputs

the resulting iphertext.

Algorithm 4.4.1 ACE asymmetri enryption operation.

Input: A publi key (P; q; g

1

; g

2

; ; d; h

1

; h

2

; k

1

; k

2

) as desribed in x4.1, and a byte

string M 2 B

�

.

Output: The byte-string enoded iphertext  of M as desribed in x4.3.

1. Generate r 2 f0; : : : ; q � 1g at random.

2. Generate the iphertext preamble:
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2.1 Generate s 2W

4

at random.

2.2 Compute u

1

 g

1

r

rem P , u

2

 g

2

r

rem P .

2.3 Compute � UOWHash

0

(k

1

; L

B

(P ); s; u

1

; u

2

) 2 Z (using

Algorithm 4.9.2); note that 0 � � < 2

160

.

2.4 Compute v  

r

d

�r

rem P .

3. Compute the key for the symmetri enryption operation:

3.1

~

h

1

 h

1

r

rem P;

~

h

2

 h

2

r

rem P .

3.2 Compute k  ESHash(k

2

; L

B

(P ); s; u

1

;

~

h

1

;

~

h

2

) 2W

8

(using

Algorithm 4.7.1).

4. Compute the ryptogram e SEn(k; s; 1024;M) as desribed in

Algorithm 4.4.2.

5. Enode the iphertext as spei�ed in x4.3:

  CEnode(L

B

(P ); s; u

1

; u

2

; v; e):

6. Return  .

Before presenting the details of the symmetri key enryption algorithm, we give a

high-level desription. An input message M 2 B

�

is broken up into bloks M

1

; : : : ;M

t

,

where eah blok exept possibly the last has m = 1024 bytes. Eah blok is enrypted

using a stream ipher, yielding enrypted bloks E

1

; : : : ; E

t

, where L(E

i

) = L(M

i

) for

1 � i � t. Also, for eah enrypted blok E

i

, a 16-byte message authentiation ode

C

i

is omputed. The resulting ryptogram is then

e = E

1

kC

1

k � � � kE

t

kC

t

:

Thus, L(e) = L(M) + 16dL(M)=me. Note that if L(M) = 0, then L(e) = 0.

Algorithm 4.4.2 Symmetri enryption operation SEn.

Input: A tuple (k; s;m;M) 2W

8

�W

4

� Z�B

�

, with m > 0.

Output: e 2 B

l

; l = L(M) + 16dL(M)=me.

1. If M = �

B

, then return �

B

.

2. Initialize a pseudo-random generator state, using Algorithm 4.6.1:

genState  InitGen(k; s) 2 GenState:

3. Generate the AXUHash key k

AXU

(using Algorithm 4.6.3):

(k

AXU

; genState) GenWords((5L

b

(dm=64e) + 24); genState):

4. e �

B

; i 0.

5. While i < L(M) perform the following:

17



5.1 r  min(L(M)� i;m).

5.2 Generate mask values for the enryption and MAC:

5.2.1 (mask

m

; genState) GenWords(4; genState).

5.2.2 (mask

e

; genState) GenBytes(r; genState) (using Algorithm 4.6.2).

5.3 Enrypt the plaintext: en  [M ℄

i+r

i

�mask

e

.

5.4 Generate the message authentiation ode:

5.4.1 If i+ r = L(M), then lastBlok  1; otherwise lastBlok  0.

5.4.2 ma  AXUHash(k

AXU

; lastBlok ; en) 2W

4

(using

Algorithm 4.8.1).

5.5 Update the iphertext: e  e k en k I

B

�

W

�

(ma �mask

m

).

5.6 i i+ r.

6. Return e.

4.5 Deryption Operation

Algorithm 4.5.1 uses an ACE enryption key pair to derypt messages that have been

enrypted with the orresponding publi key aording to Algorithm 4.4.1.

Algorithm 4.5.1 ACE deryption operation.

Input: A publi key (P; q; g

1

; g

2

; ; d; h

1

; h

2

; k

1

; k

2

) and orresponding private key

(w; x; y; z

1

; z

2

) as desribed in x4.1, as well as a byte string  2 B

�

.

Output: The deryption M 2 B

�

[ fRejetg of  .

1. Deode the iphertext as spei�ed in x4.3:

1.1 If L( ) < 3 � L

B

(P ) + 16, then return Rejet.

1.2 Compute

(s; u

1

; u

2

; v; e) CDeode(L

B

(P );  ) 2W

4

� Z� Z� Z�B

�

;

note that 0 � u

1

; u

2

; v < 256

l

, where l = L

B

(P ).

2. Verify the iphertext preamble:

2.1 If u

1

� P or u

2

� P or v � P then return Rejet.

2.2 If u

1

q

6= 1 rem P , then return Rejet.

2.3 rejet  0.

2.4 If u

2

6= u

1

w

rem P , then rejet  1.

2.5 Compute � UOWHash

0

(k

1

; L

B

(P ); s; u

1

; u

2

) 2 Z (using

Algorithm 4.9.2); note that 0 � � < 2

160

.

2.6 If v 6= u

1

x+�y

rem P , then rejet  1.

2.7 If rejet = 1, then return Rejet.
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3. Compute the key for the symmetri deryption operation:

3.1

~

h

1

 u

1

z

1

rem P;

~

h

2

 u

1

z

2

rem P .

3.2 Compute k  ESHash(k

2

; L

B

(P ); s; u

1

;

~

h

1

;

~

h

2

) 2W

8

(using

Algorithm 4.7.1).

4. Compute M  SDe(k; s; 1024; e) as desribed in Algorithm 4.5.2; note that

SDe may return Rejet.

5. Return M .

Algorithm 4.5.2 Deryption operation SDe.

Input: A tuple (k; s;m; e) 2W

8

�W

4

� Z�B

�

, with m > 0.

Output: The deryption M 2 B

�

[ fRejetg of e.

1. If e = �

B

, then return �

B

.

2. Initialize a pseudo-random generator state, using Algorithm 4.6.1:

genState  InitGen(k; s) 2 GenState:

3. Generate the AXUHash key k

AXU

(using Algorithm 4.6.3):

(k

AXU

; genState

0

) GenWords((5L

b

(dm=64e) + 24); genState):

4. M  �

B

; i 0.

5. While i < L(e) perform the following:

5.1 r  min(L(e)� i;m+ 16)� 16.

5.2 If r � 0, then return Rejet.

5.3 Generate mask values for the enryption and MAC:

5.3.1 (mask

m

; genState) GenWords(4; genState).

5.3.2 (mask

e

; genState) GenBytes(r; genState) (using Algorithm 4.6.2).

5.4 Verify the message authentiation ode:

5.4.1 If i+ r + 16 = L(M), then lastBlok  1; otherwise lastBlok  0.

5.4.2 ma  AXUHash(k

AXU

; lastBlok ; [e℄

i+r

i

) 2W

4

(using

Algorithm 4.8.1).

5.4.3 If [e℄

i+r+16

i+r

6= I

B

�

W

�

(ma �mask

m

), then return Rejet.

5.5 Update the plaintext: M  M k ([e℄

i+r

i

�mask

e

).

5.6 i i+ r + 16.

6. Return M .
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4.6 Pseudo-Random Bit Generator

This setion de�nes a pseudo-random bit generator, based on the blok ipher MARS .

The state of the generator is an element of the set

GenState =W

8

�W

4

�B

16

� f0; : : : ; 16g:

It produes an unlimited sequene of bytes. The generator works by using MARS in

\sum/ounter mode," but with a randomized starting value.

First omes the initialization routine. The �rst input parameter k should be random

and seret|it is used as aMARS key. The seond input parameter s should be random,

but need not be seret|it is used to initialize a ounter.

Algorithm 4.6.1 Pseudo-Random Bit Generator: InitGen.

Input: A tuple (k; s) 2W

8

�W

4

.

Output: A state genState 2 GenState.

1. genState  (k; s; 0

B

16
; 16) 2 GenState.

2. Return genState.

The next algorithm is used to generate pseudo-random byte strings.

Algorithm 4.6.2 Pseudo-Random Bit Generator: GenBytes.

Input: (n; genState) 2 Z�GenState, with n � 0.

Output: (out

b

; genState

0

), where out

b

2 B

n

and genState

0

2 GenState is the new

state of the generator.

1. Set

(k; s; buf ; iread ) genState 2W

8

�W

4

�B

16

� f0; : : : ; 16g:

2. Set out

b

 �

B

.

3. While n > 0 do the following:

3.1 If iread � 16, re-load the bu�er:

3.1.1 buf  I

B

�

W

�

(MARS (k; s)).

3.1.2 s s+ 1:

3.1.3 buf  buf � I

B

�

W

�

(MARS (k; s)).

3.1.4 s s+ 1:

3.1.5 iread  0.

3.2 Aumulate up to 16 output bytes:

3.2.1 r  min(iread + n; 16).

3.2.2 out

b

 out

b

k [buf ℄

r

iread

.
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3.2.3 n n� r + iread ; iread  r.

4. genState

0

 (k; s; buf ; iread ):

5. Return (out

b

; genState

0

).

For onveniene, the following variation outputs word strings.

Algorithm 4.6.3 Pseudo-Random Bit Generator: GenWords.

Input: (n; genState) 2 Z�GenState, with n � 0.

Output: (out

w

; genState

0

), where out

w

2 W

n

and genState

0

2 GenState is the new

state of the generator.

1. Compute (out

b

; genState

0

) GenBytes(4n; genState) using Algorithm 4.6.2.

2. Set out

w

 I

W

�

B

�

(out

b

).

3. Return (out

w

; genState

0

).

4.7 Entropy-Smoothing Hash Funtion

This setion de�nes an entropy-smoothing hash funtion.

Algorithm 4.7.1 Entropy smoothing hash transformation ESHash.

Input: A tuple (k; l; s; u

1

;

~

h

1

;

~

h

2

) 2 B

�

�Z�W

4

�Z�Z�Z, where L(k) = 32m+40

for some integer m with m � dl=16e, and 0 �

~

h

1

;

~

h

2

; u

1

< 256

l

.

Output: A hash value h 2W

8

.

1. Set l

1

 dl=4e; l

2

 dl

1

=4e; l

3

 d(3l

1

+ 4)=16e:

2. k

0

 I

W

�

B

�

(k):

3. Enode (s; u

1

;

~

h

1

;

~

h

2

) as a word string M , padding to a multiple of 16 words:

M  pad

16l

3

�

s k pad

l

1

(I

W

�

Z

(u

1

)) k pad

l

1

(I

W

�

Z

(

~

h

1

)) k pad

l

1

(I

W

�

Z

(

~

h

2

))

�

2W

16l

3

:

4. Compute a simpli�ed SHA-1 hash (twie):

4.1 s [k

0

℄

5

0

.

4.2 For i = 1 to l

3

do: s CSHA1 (s; [M ℄

16i

16(i�1)

):

4.3 s

0

 [k

0

℄

10

5

.

4.4 For i = 1 to l

3

do: s

0

 CSHA1 (s

0

; [M ℄

16i

16(i�1)

):

5. Enode (

~

h

1

;

~

h

2

) as a word string M

0

, padding to a multiple of 8 words:

M

0

 pad

8l

2

�

pad

l

1

(I

W

�

Z

(

~

h

1

)) k pad

l

1

(I

W

�

Z

(

~

h

2

))

�

2W

8l

2

:
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6. Compute

 

l

2

X

i=1

�

I

F

2

[T ℄

W

�

([M

0

℄

8i

8(i�1)

)I

F

2

[T ℄

W

�

([k

0

℄

8i+10

8i+2

)

�

rem f 2 F

2

[T ℄;

where f = T

256

+ T

10

+ T

5

+ T

2

+ 1.

7. Compute h pad

8

(I

W

�

F

2

[T ℄

()) � (s k [s

0

℄

3

0

) 2W

8

.

8. Return h.

4.8 AXU Hash Funtion

This setion de�nes an \almost XOR-universal hash funtion," denoted AXUHash.

Algorithm 4.8.1 Almost XOR-universal hash funtion AXUHash.

Input: A tuple (k; lastBlok ;M) 2W

�

� f0; 1g �B

�

, where L(M) > 0, and L(k) =

5m+ 24 for some integer m � L

b

(dL(M)=64e).

Output: The hash value res 2W

4

of M under the key k.

1. Compute h UOWHash([k℄

L(k)�8

0

; I

W

�

B

�

(pad

l

(M))) 2W

5

, where

l = 64dL(M)=64e, using Algorithm 4.9.1.

2. 

1

 I

F

2

[T ℄

W

�

([h℄

4

0

) 2 F

2

[T ℄.

3. d

1

 I

F

2

[T ℄

W

�

([k℄

L(k)�4

L(k)�8

) 2 F

2

[T ℄.

4. 

2

 I

F

2

[T ℄

W

�

([h℄

5

4

k I

W

�

Z

(2 � L(M) + lastBlok )) 2 F

2

[T ℄.

5. d

2

 I

F

2

[T ℄

W

�

([k℄

L(k)

L(k)�4

) 2 F

2

[T ℄.

6. res  pad

4

(I

W

�

F

2

[T ℄

((

1

d

1

+ 

2

d

2

) rem f)), where f = T

128

+ T

7

+ T

2

+ T + 1.

7. Return res .

4.9 Universal One-Way Hash Funtion

This setion de�nes a universal one-way hash funtion.

First omes a \low level" version, denoted UOWHash, that performs no length enoding

or padding on the message input.

Algorithm 4.9.1 Universal one-way hash funtion UOWHash.

Input: A tuple (k;M) 2W

�

�W

�

, where L(M) = 16n for some integer n > 0, and

L(k) = 5m+ 16 for some integer m � L

b

(n).

Output: The hash value h 2W

5

of M under key k.

1. Initialize h 0

W

5
2W

5

, msk  [k℄

16

0

2W

16

.
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2. For i = 1 to n do the following:

2.1 Compute the key index j suh that i = 2

j

d for odd d 2 Z.

2.2 Compute the next initial SHA-1 hash state s h� [k℄

5j+21

5j+16

2W

5

.

2.3 Compute a SHA-1 input blok m [M ℄

16i

16(i�1)

�msk 2W

16

.

2.4 Perform the ore SHA-1 state transformation: h CSHA1 (s;m).

3. Return h.

Next omes UOWHash

0

whih enodes its input in a speial way before alling

UOWHash.

Algorithm 4.9.2 Universal one-way hash funtion UOWHash

0

.

Input: A tuple (k; l; s; u

1

; u

2

) 2 B

�

�Z�W

4

�Z�Z, where l > 0, 0 � u

1

; u

2

< 256

l

,

L(k) = 20L

b

(d(2dl=4e + 4)=16e) + 64.

Output: The hash value a 2 Z, where 0 � a < 2

160

.

1. Set l

1

 dl=4e; l

2

 d(2dl=4e + 4)=16e.

2. Enode (s; u

1

; u

2

) as a word string, padding to a multiple of 16 words:

u pad

16l

2

�

s k pad

l

1

(I

W

�

Z

(u

1

)) k pad

l

1

(I

W

�

Z

(u

2

))

�

2W

16l

2

:

3. Compute

a

0

 UOWHash(I

W

�

B

�

(k); u) 2W

5

;

using Algorithm 4.9.1.

4. Compute a I

Z

W

�

(a

0

) 2 Z.

5. Return a.

4.10 Seurity analysis

We analyze the seurity properties of the above enryption sheme.

The onrete seurity of our enryption sheme is straightforward, if somewhat tedious,

to analyze, based upon the arguments in [CS98℄ and [Sho00a℄. Consider an adversary

that runs in time at most t, makes at most � deryption requests, and presents test

messages whose length in bytes is at most l. The adversary's advantage, AdvEn(t; �; l)

(as de�ned in x2.2) an be expliitly bounded in terms of

� the advantage the adversary has in solving the DDH (see AdvDDH, de�ned in

x2.5),

� the advantage the adversary has in �nding seond preimages in SHA-1 (see

AdvSHA, de�ned in x2.7), and
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� the advantage the adversary has in distinguishing MARS output from random

(see AdvMARS, de�ned in 2.8).

Also, we let l

0

= L

B

(P ). Reall that q is the order of the subgroup of the multipliative

group of units modulo P in whih we are working.

Theorem 4.10.1 We have:

AdvEn(t; �; l) � AdvDDH(O(t)) +

AdvSHA(O(t))(dl=64e+ d(2dl

0

=4e + 4)=16e) +

AdvMARS(O(t); 65dl=1024e+ 7) � 2 +

2�+ 1

q

+

�+ 2

2

128

: (1)

The running times O(t) reet the running times of simulators that do little more than

run the adversary, plus just a little additional bookkeeping whih an e�etively be

ignored.

We shall prove this theorem, referring the reader at times to arguments in [CS98℄

and [Sho00a℄. We an assume l > 0, sine otherwise the adversary's advantage is by

de�nition zero.

We shall repeatedly make use of the following simple lemma, whih we reord here for

onveniene.

Lemma 4.10.1 Let E, E

0

, F , and F

0

be events de�ned on a probability spae suh

that Pr[Ej:F ℄ = Pr[E

0

j:F

0

℄ and � = Pr[F ℄ = Pr[F

0

℄. Then we have

�

�

�

Pr[E℄� Pr[E

0

℄

�

�

�

� �:

This follows from a simple alulation. We have

Pr[E℄ = Pr[Ej:F ℄(1 � �) + Pr[EjF ℄�

and

Pr[E

0

℄ = Pr[E

0

j:F

0

℄(1� �) + Pr[E

0

jF

0

℄�:

Subtrating these two equations and taking absolute values, we have

�

�

�

Pr[E℄� Pr[E

0

℄

�

�

�

= �

�

�

�

Pr[EjF ℄ � Pr[E

0

jF

0

℄

�

�

�

� �:

That ompletes the proof of the lemma.

Some notational onventions. Reall that a iphertext  is of the form  =

(s; u

1

; u

2

; v; e), as desribed in x4.3. Reall also that � = (s; u

1

; u

2

; v) is alled the

preamble of  , and e is alled the ryptogram of  . In the proof below, whenever we

refer to a generi iphertext  , the values s; u

1

; u

2

; v; e, as well as �, are impliitly

de�ned as above. Also impliitly de�ned is the hash value � of (s; u

1

; u

2

), as omputed

in step 2 of Algorithm 4.5.1, as well as the values

~

h

1

,

~

h

2

, and k, as omputed in step

3 of Algorithm 4.5.1. We shall always refer to the target iphertext, i.e., the iphertext

output by the enryption orale in the attak, as  

0

, and the values

s

0

; u

0

1

; u

0

2

; v

0

; e

0

; �

0

; �

0

;

~

h

0

1

;

~

h

0

2

; k

0

are analogously de�ned for the target iphertext.
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The following de�nition is also onvenient.

De�nition 4.10.1 A iphertext  = (s; u

1

; u

2

; v; e) is alled valid if log

g

1

u

1

=

log

g

2

u

2

, where the disrete logarithms are with respet to the multipliative group of

units modulo P ; otherwise,  is invalid.

We now turn to the proof of the theorem.

Consider the attak game de�ned in x2.2 with respet to a spei� adversary that runs

in time at most t, makes at most � deryption requests, and submits test messages of

length at most l.

Call the original attak game G

0

. Let S

0

be the event that the adversary guesses the

value of the hidden bit b in game G

0

. We have

AdvEn(t; �; l) =

�

�

�

Pr[S

0

℄� 1=2

�

�

�

: (2)

We shall make several transformations of the game, obtaining games G

1

, G

2

, et. In

order to relate probabilities of ertain events in di�erent games, oneptually, these

games all are run on the same underlying probability distribution|only the omputa-

tion rules hange. In eah game G

i

, for i = 1; 2, et., we let S

i

denote the event that

the adversary guesses the value of the hidden bit b in game G

i

.

Game G

1

. In the �rst transformation, game G

1

, we replae the the private key by

x

1

; x

2

; y

1

; y

2

; z

11

; z

12

; z

21

; z

22

;

where eah of these is hosen at random modulo q. Also, we ompute the publi key

as follows. We hoose g

1

; g

2

to be random numbers whose order modulo P is equal to

q. Then we ompute

 g

x

1

1

g

x

2

2

rem P; d g

y

1

1

g

y

2

2

rem P; h

1

 g

z

11

1

g

z

12

2

rem P; h

2

 g

z

21

1

g

z

22

2

rem P:

Further, in the deryption algorithm, we verify the iphertext preamble (step 2 in

Algorithm 4.5.1) with the following test:

u

q

1

� 1 (mod P ); u

q

2

� 1 (mod P ); and u

x

1

+y

1

�

1

u

x

2

+y

2

�

2

� v (mod P ):

Finally, in the derivation of the deryption key (step 3.2 in Algorithm 4.4.1 and step

3.2 in Algorithm 4.5.1), we ompute

~

h

1

 u

z

11

1

u

z

12

2

rem P;

~

h

2

 u

z

21

1

u

z

22

2

rem P:

That ompletes the desription of game G

1

. We view G

1

and G

0

as operating on a

ommon probability spae de�ned in terms of the variables

w; x; y; z

1

; z

2

;

and

x

1

; x

2

; y

1

; y

2

; z

11

; z

12

; z

21

; z

22

;

where the �rst set of variables are only impliitly de�ned in G

1

and the seond set of

variables are only impliitly de�ned in G

0

. Let U

1

to be event that some invalid ipher-

text is not rejeted in game G

1

. Following the arguments in [CS98℄, the probability

25



that any single invalid iphertext is not rejeted is at most 1=q, from whih it follows

that

Pr[U

1

℄ �

�

q

: (3)

Also, one an easily hek that so long as event U

1

does not our, the adversary's

attak in game G

1

proeeds just as in game G

0

. That is,

Pr[S

1

j:U

1

℄ = Pr[S

0

j:U

1

℄: (4)

Now apply Lemma 4.10.1 with (E;E

0

; F; F

0

) = (S

0

; S

1

; U

1

; U

1

), and we obtain

�

�

�

Pr[S

1

℄� Pr[S

0

℄

�

�

�

�

�

q

: (5)

Game G

2

. In the seond transformation, game G

2

, we modify the behavior of the

enryption orale in the same way as is done in the seurity argument in [CS98℄. That

is, in omputing  

0

, instead of following the enryption algorithm, we simply hoose

u

0

1

and u

0

2

as random numbers whose order modulo P divides q. Also, the enryption

orale omputes v

0

using the algorithm used by the deryption algorithm:

v

0

 (u

0

1

)

x

1

+y

1

�

0

(u

0

2

)

x

2

+y

2

�

0

rem P:

As in [CS98℄, one easily veri�es that

�

�

�

Pr[S

2

℄� Pr[S

1

℄

�

�

�

� AdvDDH(O(t)): (6)

Game G

3

. In the third transformation, game G

3

, we modify game G

2

as follows.

Let V

2

be the event that that the adversary in game G

2

ever submits a iphertext  

for deryption with (s; u

1

; u

2

) 6= (s

0

; u

0

1

; u

0

2

), but with � = �

0

. In game G

3

, we move

the omputation of �

0

(along with the derived values �

0

,

~

h

0

1

,

~

h

0

2

, and k

0

) to the very

beginning of the attak, and if event V

2

ours, we simply stop the attak. From the

analysis in [Sho00a℄, we have

Pr[V

2

℄ � AdvSHA(O(t)) � d(2dl

0

=4e + 4)=16e: (7)

Note that the quantity d(2dl

0

=4e + 4)=16e is the number of 512-bit input bloks to the

hash funtion. Beause of the way G

3

was derived from G

2

, one easily veri�es that

Pr[S

2

j:V

2

℄ = Pr[S

3

j:V

2

℄: (8)

Applying Lemma 4.10.1 with (E;E

0

; F; F

0

) = (S

2

; S

3

; V

2

; V

2

), we obtain

�

�

�

Pr[S

3

℄� Pr[S

2

℄

�

�

�

� AdvSHA(O(t)) � d(2dl

0

=4e + 4)=16e: (9)

Game G

4

. In the next transformation, game G

4

, we modify the enryption orale

yet again. Instead of omputing

~

h

0

1

and

~

h

0

2

as in the enryption algorithm, we simply

hoose them as random numbers whose order modulo P divides q. Let W

3

be the event

that either

� log

g

1

u

0

1

= log

g

2

u

0

2

in game G

3

, or

� some invalid iphertext  with � 6= �

0

is not rejeted in game G

3

.
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Note that the target iphertext  

0

is itself invalid when log

g

1

u

0

1

6= log

g

2

u

0

2

. From the

analysis in [CS98℄, the probability that any single invalid iphertext is not rejeted,

given that log

g

1

u

0

1

6= log

g

2

u

0

2

, is at most 1=q, from whih it follows that

Pr[W

3

℄ �

�+ 1

q

: (10)

We an de�ne an analogous event W

4

for game G

4

. Note that events W

3

and W

4

are

not the same; nevertheless, by the analysis in [CS98℄, one sees that

Pr[W

3

℄ = Pr[W

4

℄ and Pr[S

4

j:W

4

℄ = Pr[S

3

j:W

3

℄: (11)

Applying Lemma 4.10.1 with (E;E

0

; F; F

0

) = (S

3

; S

4

;W

3

;W

4

), we obtain

�

�

�

Pr[S

4

℄� Pr[S

3

℄

�

�

�

�

�+ 1

q

: (12)

Game G

5

. In the next transformation, game G

5

, we replae the derived symmetri

key k

0

omputed by the enryption orale by a random key. Also, when the deryption

orale is presented with a iphertext  with � = �

0

, it uses the same random key k

0

.

By the Entropy Smoothing Theorem (a.k.a., the Leftover Hash Lemma; see Chapter 8

of [Lub96℄ or [IZ89℄), and the fat that (

~

h

0

1

;

~

h

0

2

) is hosen at random from a set of size

at least 2

a

, where a = 2� 255 = 256 + 2� 127, we have

�

�

�

Pr[S

5

℄� Pr[S

4

℄

�

�

�

�

2

2

128

: (13)

Game G

6

. In the next transformation, game G

6

, we modify the deryption orale as

follows. Suppose the deryption orale is presented with a iphertext  with � = �

0

and L(e) 6= 0. Then we simply let the deryption orale rejet  . Let X

5

be the event

that suh a iphertext  is not rejeted in game G

5

. We laim that

Pr[X

5

℄ � AdvMARS(O(t); 65dl=1024e+ 7) +

AdvSHA(O(t)) � dl=64e+

�

2

128

: (14)

From this, it will follow by an appliation of Lemma 4.10.1 with (E;E

0

; F; F

0

) =

(S

5

; S

6

;X

5

;X

5

) that

�

�

�

Pr[S

6

℄� Pr[S

5

℄

�

�

�

� Pr[X

5

℄: (15)

To prove (14), �rst reall that a ryptogram is split into 1024-byte bloks, and eah

blok is individually authentiated using a message authentiation ode (MAC). Also

note that not only is the ontent of eah blok authentiated, but also its status as the

last blok, and its length (whih is only relevant in ase the blok is the last blok of the

message). Suppose the target ryptogram onsists of b bloks, i.e., b = dl=1024e. Let

Y be the event that for some  submitted for deryption, with L(e) 6= 0 and � = �

0

,

either

�  

0

has not yet been generated and the �rst blok of e has a valid MAC, or

�  

0

has been generated, and the �rst blok of e that di�ers from that of e

0

has a

valid MAC.
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We observe that

Pr[X

5

℄ � Pr[Y ℄: (16)

To bound Y , we make a transformational argument, de�ning a sequene of transformed

games G

(1)

5

, G

(2)

5

, G

(3)

5

, and de�ning the events Y

(i)

, for i = 1; 2; 3, to be the events

orresponding to Y , but in game G

(i)

5

. First, we replae G

5

by the game G

(1)

5

in whih

we halt the game as soon as event Y ours. Clearly,

Pr[Y

(1)

℄ = Pr[Y ℄: (17)

Note that in game G

(1)

5

, when the deryption orale is presented with a iphertext

 with � = �

0

, it never proesses more than b bloks of the ryptogram e. Seond,

we replae game G

(1)

5

with game G

(2)

5

, in whih the output of the pseudo-random bit

generator in the enryption orale is �rst extended (by less than 1024 bytes) so as to

over b full bloks of text, and is then replaed by a random string of the same length.

The same random bit string is used by the deryption orale whenever a iphertext  

with � = �

0

is presented for deryption. We have

�

�

�

Pr[Y

(2)

℄� Pr[Y

(1)

℄

�

�

�

� AdvMARS(O(t); 65dl=1024e+ 7): (18)

Next, G

(2)

5

is replaed by the game G

(3)

5

in whih the adversary is modi�ed so as to

simply halt if  

0

has already been generated, and the evaluation of AXUHash during

deryption of a iphertext  with � = �

0

and L(e) = L(e

0

) produes a ollision in

SHA-1. Again using the analysis in [Sho00a℄, an appliation of Lemma 4.10.1 yields

�

�

�

Pr[Y

(3)

℄� Pr[Y

(2)

℄

�

�

�

� AdvSHA(O(t)) � dl=64e: (19)

Finally, using standard arguments for message authentiation odes based on universal

hashing (see, e.g., [Kra94℄), one sees that

Pr[Y

(3)

℄ �

�

2

128

: (20)

Inequality (14) now follows diretly from in inequalities (16), (17), (18), (19), and (20).

Game G

7

. In the �nal transformation, game G

7

, we simply modify game G

6

so that

the output of the pseudo-random bit generator in the enryption orale is replaed by

a random string of orresponding length. Then we have

�

�

�

Pr[S

7

℄� Pr[S

6

℄

�

�

�

� AdvMARS(O(t); 65dl=1024e+ 7): (21)

It is easy to see that

Pr[S

7

℄ =

1

2

: (22)

The theorem now follows from inequalities (2), (5), (6), (9), (12), (13), (14), (15), (21),

and (22).

That ompletes the proof of Theorem 4.10.1
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Remarks. One should note that this redution is quite tight.

In the above alulation, we have assumed the the random numbers used by the key

generation and enryption algorithms are perfet. If instead, a soure of pseudo-random

bits is used, then to the above advantage for breaking the enryption sheme, one must

add the adversary's advantage in distinguishing these pseudo-random bits from truly

random bits.

One strange thing about this theorem is the oeÆient of 2 that appears in the

AdvMARS term. It is not lear if this \2" annot be replaed by a \1"; however,

at the moment, we do not see how to do this.

4.11 Further disussion and implementation notes

Random orales

As we have already mentioned in x2.4, in the random orale model, one an replae the

DDH assumption by the potentially weaker CDH assumption. The seurity analysis in

this ase an be found in [Sho00b℄. We do not arry out a onrete seurity analysis in

this ase, but we note that the redution in this ase is not very eÆient. But sine the

random orale model is anyway a heuristi, we do not view this as a major problem.

Hiding the length of a message

Note that the enryption algorithm does not make any attempt to hide the length of a

message, and indeed, the length of the leartext is easily alulated from the length of

the orresponding iphertext. Thus an enryption of "yes" an easily be distinguished

from an enryption of "no". This problem is easily avoided by appropriately padding

the leartext (e.g., enrypting "no " instead of "no"). We emphasize that it is up to

the appliation using the enryption sheme to format and pad leartexts as neessary

so as to hide information that ould be derived from the length of a message.

Optimizations

All �ve of the exponentiations performed in the deryption algorithm are to the base

u

1

, and hene standard algorithmi tehniques an be used to ompute this faster

than �ve exponentiations. Also note that in step 2.4 of Algorithm 4.4.1, the quantity



r

d

ar

rem P an be omputed faster than two exponentiations, also using standard

algorithmi tehniques. We refer the reader to x14.6 of [MvOV97℄ for these algorithmi

details.

Timing information

Note that in step 2.2 in algorithm Algorithm 4.5.1, we set rejet to 1, and delay re-

turning from the funtion until later. We do this to prevent timing information from

being leaked to an adversary playing in game G

0

that is not available in game G

1

(see

the proof of Theorem 4.10.1). We reommend that all implementations follow a similar

pratie. The point of making this transformation is to get a simpler and more eÆ-

ient deryption algorithm. Although this implementation prevents an adversary from
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potentially taking advantage of some \rude" timing information, we make absolutely

no laims about its seurity against timing attaks [Ko96℄ or power analysis [KJJ99℄

in general.

Early detetion of a orrupted iphertext

Note that when enrypting the atual payload, we use a symmetri ipher with an

authentiation ode. The ryptogram is broken up into 1024-byte bloks, and eah of

these is individually authentiated. This is done so that a reeiver an stop proessing

a orrupted stream of enrypted data almost as soon as the orruption as oured. This

seems desirable from a seurity point of view to the alternative approah of authenti-

ating the message as a whole, for the following reason. While derypting a very long

message, the reeiver may have to store the leartext on disk, perhaps only to rejet

it. However, while the leartext is on disk, it may be more vulnerable than it would be

in main memory. Thus, it seems desirable to detet and rejet a orrupted message as

soon as is pratiable.

Note that no useful timing information is leaked to the adversary when the proessing

of a orrupted stream is terminated. Intuitively, the adversary already \knows" where

the stream is orrupted.

\Salted" MARS

Note that the pseudo-random bit string is derived using MARS in sum/ounter mode,

starting with the ounter initialized to a random value s. The value s is hosen at ran-

dom with every enryption. This \salting" tehnique should have the e�et in pratie

of foring any ryptanalysis on MARS to fous its e�orts on individual iphertexts.

Note that to make the proof of seurity in the random orale model in [Sho00b℄ work,

it is essential that s be an input to the ryptographi hash in the entropy smoothing

hash funtion.

The multi-user/multi-message environment

As already mentioned, at least in an asymptoti sense, the de�nition of seurity we have

used implies seurity in a multi-user/multi-message environment. Using a standard

\hybrid" argument, one sees that seurity essentially degrades by a fator of

# number of users � max # of messages per user: (23)

We believe that our hoies of parameters allow suÆient \head room" so that one still

obtains a meaninful level of seurity even onsidering fairly large systems of users.

Our algorithm design ould be somewhat improved in this regard, however. By follow-

ing the suggestion in [BBM00℄ that all users work with a ommon group, and also by

having all users work with the same UOWH key, one gets a quantitatively better seu-

rity proof in the multi-user setting, where the seurity degrades by a fator proportional

to the total number of messages enrypted, whih may be signi�antly less than (23).

However, this omes at a ost: all users must use the same de�ning paramaters, whih

may be both inonvenient, and also introdues a new \trust" problem. Moreover, it

allows an attaker to fous all of his omputational resoures on a single group, whih

an potentially lead to a atastrophi seurity lapse.
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Enrypting the empty message

We omment about enrypting the empty message. From a seurity point of view, it

hardly makes sense to enrypt the empty message. Nevertheless, we allow this, if only

for the sake of a exible interfae. The enryption (s; u

1

; u

2

; v; e) of the empty message

onsists of an ordinary preamble (s; u

1

; u

2

; v), but an empty ryptogram e = �

B

. Note

that a user may reate an enryption of (s; u

1

; u

2

; v; e) of a non-empty message, so

e 6= �

B

, and if an adversary then submits (s; u

1

; u

2

; v; �

B

) for deryption, the deryption

algorithm will aept this iphertext, and generate the empty message as its deryption.

This behavior may seem a bit unusual, but still satis�es the de�nition of seurity.

Implementing the key generation algorithm

In the key generation algorithm, we have to generate a random prime q, and a random

prime P suh that P � 1 (mod q). To generate q, one an generate random numbers

and apply an iterated Miller-Rabin test. To get a small error probability, one must

iterate the Miller-Rabin test suÆiently many times. For this purpose, one an use the

results in [DLP93℄.

One q has been generated, we an iteratively hoose P at random of the desired length,

subjet to P � 1 (mod q), and apply an iterated Miller-Rabin test to P . Note that

the results in [DLP93℄ are not diretly appliable, sine P is not a random number of

presribed length. Instead, to obtain a k-bit prime P ongruent to 1 mod q, with an

error bound of �, one should iterate the Miller-Rabin test t times, where 4

�t

k=2 � �.

Although P is not random, sine P is quite large, and P > q

3

, one an show under the

Generalized Riemann Hypothesis that the probability that a random P ongruent to 1

mod q is prime is extremely lose to the probability that a random number of the same

length is prime (see Theorem 8.1.18 in [BS96℄), and this is bounded from below by

2=k for all k under onsideration (see the estimate, e.g., in the proof of Proposition 2

in [DLP93℄). From these onsiderations, and the basi properties of the Miller-Rabin

test, it follows that the overall error probability will be at most �.

This approah is a bit rude, and unfortunately, leads to a somewhat slow key gen-

eration algorithm. It would be nie if the results of [DLP93℄ ould be generalized to

primes in arithmeti progressions, but we are unaware of any suh results.

A reasonable hoie of � is � = 2

�80

.

API onsiderations

We have designed the enryption and deryption algorithms so that they an work

with streams of data. The message to be enrypted an be presented to the enryption

algorithm as a stream, and the iphertext an be generated as a stream. This iphertext

stream an be fed diretly in to the deryption algorithm, whih produes the leartext

as a stream.

Atually, if one employs suh a streaming implementation, one must onsider the possi-

bility that the adversary might adaptively hoose the latter bits of m

0

;m

1

after having

seen a pre�x of the target iphertext, also possibly interating with the deryption

orale in the meantime. Our proof of seurity does not deal with this senario: it

assumes the adversary submits m

0

;m

1

in their entirety before any pre�x of the target
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iphertext is obtained. However, the proof of seurity an be adapted to this somewhat

riher attak senario|we leave the details to the interested reader.

5 Signature Sheme

In this setion, we desribe the signature sheme, whih is a variant of that in [CS99℄.

5.1 Signature Key Pair

The signature sheme de�ned in this doument employs two key types, whose repre-

sentation onsists of the following tuples:

ACE Signature publi key: (N;h; x; e

0

; k

0

; s).

ACE Signature private key: (p; q; a).

For a given size parameter m, with 1024 � m � 16; 384, the omponents are as follows:

p { bm=2-bit prime number with (p� 1)=2 is also prime.

q { dm=2e-bit prime number with (q � 1)=2 is also prime.

N { N = pq, and has either m or m� 1 bits.

h; x { elements of f1; : : : ; N � 1g (quadrati residues modulo N).

e

0

{ a 161-bit prime number.

a { an element of f0; : : : ; (p� 1)(q � 1)=4 � 1g.

k

0

{ element of B

184

.

s { element of B

32

.

5.2 Key Generation

Algorithm 5.2.1 generates an ACE signature key pair.

Algorithm 5.2.1 Key generation for the ACE publi-key signature sheme.

Input: A size parameter 1024 � m � 16; 384.

Output: A publi key/private key pair, as desribed in x5.1.

1. Generate random prime numbers p; q suh that (p� 1)=2 and (q � 1)=2 are

prime, and

2

m

1

�1

< p < 2

m

1

; 2

m

2

�1

< q < 2

m

2

; and p 6= q;

where

m

1

= bm=2 and m

2

= dm=2e:

2. Set N  p � q.
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3. Generate a random prime number e

0

, where 2

160

< e

0

< 2

161

.

4. Generate h

0

2 f1; : : : ; N � 1g at random, subjet to gd(h

0

; N) = 1 and

gd(h

0

� 1; N) = 1, and ompute h (h

0

)

�2

rem N .

5. Generate a 2 f0; : : : ; (p� 1)(q � 1)=4 � 1g at random, and ompute

x h

a

rem N .

6. Generate random byte strings k

0

2 B

184

, and s 2 B

32

.

7. Return the publi key/private key pair

((N;h; x; e

0

; k

0

; s); (p; q; a)):

5.3 Signature Representation

Consider an ACE signature publi key (N;h; x; e

0

; k

0

; s), as desribed in x5.1. A signa-

ture of the ACE signature sheme has the form (d;w; y; y

0

;

~

k), where the omponents

are as follows:

d { an element of B

64

.

w { an integer suh that 2

160

< w < 2

161

.

y; y

0

{ elements of f1; : : : ; N � 1g.

~

k { an element of B

�

; note that L(

~

k) = 64+ 20L

b

(d(L(M) + 8)=64e), where M is the

message being signed.

We introdue the funtion SEnode that is used to map a signature to its byte-string

representation, and the inverse funtion SDeode . For integer l > 0, byte string d 2 B

64

,

integers 0 � w < 256

21

, and 0 � y; y

0

< 256

l

, and byte string

~

k 2 B

�

,

SEnode(l; d; w; y; y

0

;

~

k)

def

= d k pad

21

(I

B

�

Z

(w)) k pad

l

(I

B

�

Z

(y)) k pad

l

(I

B

�

Z

(y

0

)) k

~

k 2 B

�

:

For integer l > 0 and byte string � 2 B

�

with L(�) � 53 + 2l,

SDeode(l; �)

def

= ([�℄

64

0

; I

Z

B

�

([�℄

85

64

); I

Z

B

�

([�℄

85+l

85

); I

Z

B

�

([�℄

85+2l

85+l

); [�℄

L(�)

85+2l

)

2 B

64

� Z� Z� Z�B

�

:

5.4 Signature Generation Operation

Algorithm 5.4.1 uses an ACE signature key pair to digitally sign messages.

Algorithm 5.4.1 ACE signature generation.

Input: A publi key (N;h; x; e

0

; k

0

; s) and orresponding private key (p; q; a) as de-

sribed in x5.1, and a byte string M 2 B

�

, 0 � L(M) < 2

64

.

Output: A byte-string enoded signature � 2 B

�

of M , as desribed in x5.3.

1. Perform the following steps to hash the input data:
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1.1 Generate a hash key

~

k 2 B

20m+64

at random, suh that

m = L

b

(d(L(M) + 8)=64e):

1.2 Compute m

h

 I

Z

W

�

(UOWHash

00

(

~

k;M)) (using Algorithm 5.6.1).

2. Selet ~y 2 f1; : : : ; N � 1g at random, and ompute y

0

 ~y

2

rem N .

3. Compute x

0

 (y

0

)

e

0

h

m

h

rem N .

4. Generate a random prime e, 2

160

< e < 2

161

, and its erti�ate of orretness

(w; d) using Algorithm 5.5.1: (e; w; d)  GenCertPrime(s). Repeat this step

until e 6= e

0

.

5. Set r  UOWHash

000

(k

0

; L

B

(N); x

0

;

~

k) 2 Z (using Algorithm 5.6.2); note that

0 � r < 2

160

.

6. Compute y  h

b

rem N , where

b e

�1

(a� r) rem (p

0

q

0

);

and where p

0

= (p� 1)=2 and q

0

= (q � 1)=2.

7. Enode the signature as desribed in x5.3:

�  SEnode(L

B

(N); d; w; y; y

0

;

~

k):

8. Return �.

5.5 Certi�ed prime generation

The prime generation operation that is applied in Algorithm 5.4.1 produes a erti�ed

prime e of the form 2PR + 1, 2

160

< e < 2

161

, with a prime P, 2

52

< P < 2

53

, and

an integer R. Additionally, a erti�ate of orretness is generated whih not only

guarantees that e is prime, but also that e was generated in a highly onstrained

fashion.

Algorithm 5.5.1 Certi�ed prime generation GenCertPrime.

Input: A byte string s 2 B

32

.

Output: The tuple (e; w; d) 2 Z�Z�B

64

|2

160

< e < 2

161

and e is prime; 0 < w < e

and w ats as a \witness" to the primality of e; and d ats as a \proof" that

e was generated in a spei� way.

1. Initialize s

1

 I

W

�

B

�

([s℄

16

0

) 2W

4

; s

2

 I

W

�

B

�

([s℄

32

16

) 2W

4

.

2. Generate a prime P , 2

52

< P < 2

53

:

2.1 Generate d

P

2 B

32

at random, and ompute

v

P

 I

Z

W

�

(MARS (I

W

�

B

�

(d

P

); s

1

)�MARS(I

W

�

B

�

(d

P

); s

1

+ 1)):

2.2 Compute a andidate integer P; 2

52

< P < 2

53

: P  (v

P

rem 2

52

) + 2

52

.
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2.3 Test if P is prime by �rst performing some trial division, and then

performing Miller-Rabin tests to the bases 2; 3; 5; 7; 11; 13; 23; if P is not

prime, then go to step 2.1.

3. Generate random R 2 Z suh that 2

160

< 2PR + 1 < 2

161

:

3.1 Selet d

R

2 B

32

at random, and ompute

v

R

 I

Z

W

�

(MARS (I

W

�

B

�

(d

R

); s

2

)�MARS(I

W

�

B

�

(d

R

); s

2

+ 1)):

3.2 Set lb b(2

160

� 1)=2P , ub b(2

161

� 1)=2P , and bnd ub� lb.

3.3 If v

R

� (v

R

rem bnd) + bnd > 2

128

then go to step 3.1.

3.4 Set R lb+ (v

R

rem bnd) + 1.

4. Set e 2PR+ 1.

5. Test if e is divisible by small primes; if so, go to step 3.

6. Set w  2.

7. status  EvalPWitness(P;R;w) (see Algorithm 5.5.2).

8. If status = Rejet, then generate random w 2 f1; : : : ; e� 1g and go to step 7;

otherwise, if status = Composite, then go to step 3.

9. Set d d

P

k d

R

2 B

64

.

10. Return (e; w; d).

Algorithm 5.5.2 Prime witness evaluation EvalPWitness.

Input: A tuple (P;R;w), where P is a prime suh that 2

52

< P < 2

53

, R is a

positive integer suh that that 2

160

< 2PR+ 1 < 2

161

, and w is an integer

with 0 < w < 2PR+ 1.

Output: status 2 fPrime;Composite;Rejetg|if status = Prime, then 2PR+1 is prime;

if status = Composite, then 2PR + 1 is omposite; if status = Rejet, then

2PR + 1 may be either prime or omposite.

1. Evaluate the andidate witness w:

1.1 Set e 2PR+ 1.

1.2 If w is a Miller-Rabin witness to the ompositeness of e, then return

Composite.

1.3 If gd(w

2R

� 1; e) 6= 1, then return Rejet.

2. Chek if P and R satisfy the following onditions:

2.1 If R 6� m (mod 2Pm+ 1) for all integers m suh that 1 �m < e=(4P

3

),

then return Composite; note that e=(4P

3

) < 8.

2.2 Let x; y be integers suh that R = 2Px+ y and 0 � y < 2P ; if y

2

� 4x = z

2

for some z 2 Z, then return Composite.

3. Return Prime.
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5.6 UOWHash variants with length enoding and padding

First omes funtion UOWHash

00

, whih pads and enodes the length of the input

before alling UOWHash.

Algorithm 5.6.1 Universal one-way hash funtion UOWHash

00

.

Input: A tuple (k;M) 2 B

�

� B

�

, where L(k) = 20m + 64 for some integer m �

L

b

(d(L(M) + 8)=64e), and 0 � L(M) < 2

64

.

Output: The hash value h 2W

5

of a padded, length enoded version of M under key

k.

1. Pad M to obtain a byte string M

0

whose length is a multiple of 64, and where

the last 8 bytes of M

0

enode L(M):

M

0

 pad

l�8

(M) k pad

8

(I

B

�

Z

(L(M))) 2 B

l

;

where l = 64d(L(M) + 8)=64e.

2. Compute

h UOWHash(I

W

�

B

�

(k); I

W

�

B

�

(M

0

)) 2W

5

:

3. Return h.

Next omes funtion UOWHash

000

, whih is a speial-purpose hash funtion used in the

signature sheme.

Algorithm 5.6.2 Universal one-way hash funtion UOWHash

000

.

Input: A tuple (k

0

; l; x

0

;

~

k) 2 B

�

� Z � Z � B

�

, where l � 0, 0 � x

0

< 256

l

, and

L(k

0

) = 20m + 64 for some m � 0 suh that m � L

b

(d(l

0

+ 8)=64=)e and

l

0

< 2

64

, where l

0

= 4dl=4e + L(

~

k).

Output: The hash value r 2 Z (with 0 � r < 2

160

) of a padded, length enoded version

of (x

0

;

~

k) under key k

0

.

1. Set k

h

 pad

l

1

(I

B

�

Z

(x

0

)) k

~

k, where l

1

= 4dl=4e.

2. Set r  I

Z

W

�

(UOWHash

00

(k

0

; k

h

)) (using Algorithm 5.6.1).

3. Return r.

5.7 Signature Veri�ation Operation

Algorithm 5.7.1 uses an ACE publi key to verify a signature with respet to a given

message.

Algorithm 5.7.1 ACE signature veri�ation.

Input: A publi key (N;h; x; e

0

; k

0

; s) as desribed in x5.1, a signature � 2 B

�

, and a

message M 2 B

�

.
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Output: status 2 fAept;Rejetg|if � is a valid signature on M under the given

publi key, then status = Aept; otherwise, status = Rejet.

1. Deode the signature as desribed in x5.3:

1.1 If L(M) � 2

64

then stop proessing and signal Rejet.

1.2 If L(�) < 85 + 2L

B

(N) then stop proessing and signal Rejet.

1.3 Compute

(d;w; y; y

0

;

~

k) SDeode(L

B

(N); �) 2 B

64

� Z� Z� Z�B

�

;

note that 0 � w < 256

21

and 0 � y; y

0

< 256

l

, where l = L

B

(N).

2. Set e VerCertPrime(s; d; w) (using Algorithm 5.7.2).

3. If e = Rejet, return Rejet.

4. If e = e

0

, then return Rejet.

5. If y = 0 or y � N or

y

0

= 0 or y

0

� N then return Rejet.

6. Perform the following steps to hash the input data:

6.1 If L(

~

k) 6= 20m+ 64, where m = L

b

(d(L(M) + 8)=64e), then return Rejet.

6.2 Compute m

h

 I

Z

W

�

(UOWHash

00

(

~

k;M)) (using Algorithm 5.6.1).

7. Compute x

0

 (y

0

)

e

0

h

m

h

rem N .

8. Set r  UOWHash

000

(k

0

; L

B

(N); x

0

;

~

k) 2 Z (using Algorithm 5.6.2); note that

0 � r < 2

160

.

9. If x 6� y

e

h

r

(mod N) then return Rejet.

10. Return Aept.

The erti�ate veri�ation operation that is applied in Algorithm 5.7.1 heks whether

a presented integer witnesses the primality of a andidate prime of a ertain form, given

by its desriptor.

Algorithm 5.7.2 Prime erti�ate veri�ation VerCertPrime.

Input: The tuple (s; d; w) ontaining byte strings s 2 B

32

; d 2 B

64

, and an integer

w � 0.

Output: A prime e derived from s and d, with 2

160

< e < 2

161

, or the symbol Rejet.

1. Initialize s

1

 I

W

�

B

�

([s℄

16

0

) 2W

4

, s

2

 I

W

�

B

�

([s℄

32

16

) 2W

4

,

d

P

 I

W

�

B

�

([d℄

32

0

) 2W

8

, d

R

 I

W

�

B

�

([d℄

64

32

) 2W

8

.

2. Compute and validate prime P :

2.1 Compute v

P

 I

Z

W

�

(MARS(d

P

; s

1

)�MARS(d

P

; s

1

+ 1)).
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2.2 Set P  (v

P

rem 2

52

) + 2

52

.

2.3 Test if P is prime by performing Miller-Rabin tests to the bases

2; 3; 5; 7; 11; 13; 23; if P is not prime, then return Rejet.

3. Compute and validate the oeÆient R:

3.1 Compute v

R

 I

Z

W

�

(MARS(d

R

; s

2

)�MARS(d

R

; s

2

+ 1)).

3.2 Set lb b(2

160

� 1)=2P , ub b(2

161

� 1)=2P , and bnd ub� lb.

3.3 If v

R

� (v

R

rem bnd) + bnd > 2

128

, then return Rejet.

3.4 Set R lb+ (v

R

rem bnd) + 1.

4. Set e 2PR+ 1.

5. If w = 0 or w � e return Rejet.

6. If EvalPWitness(P;R;w) 6= Prime (see Algorithm 5.5.2), then return Rejet.

7. Return e.

5.8 Seurity analysis

We briey summarize the seurity properties of the above signature sheme. The bulk

of the analysis already appears in [CS99℄. We simply �ll in the details here.

Consider an adversary that runs in time at most t, makes at most � signature requests,

with the total byte length of these messages being at most l. The adversary's advantage,

AdvEn(t; �; l) (as de�ned in x2.3) an be omputed in terms of

� the advantage the adversary has in breaking the RSA and strong RSA assump-

tions (see AdvRSA and AdvFlexRSA, de�ned in x2.6), the advantage the adversary

has in �nding seond preimages in SHA-1 (see AdvSHA, de�ned in x2.7), and

� the advantage the adversary has in distinguishing MARS output from random

(see AdvMARS, de�ned in 2.8).

Also, we let l

0

= L

B

(N), let T

0

e

be the time required for a 161-bit exponentiation,

modulo a 161-bit number, and let T

e

be the time required for a 161-bit exponentiation

modulo N .

Theorem 5.8.1 Assuming the Generalized Riemann Hypothesis, we have:

AdvSig(t; �; l) � AdvRSA(O(t+ T

e

� log �)) � (�+ 1) +

AdvFlexRSA(O(t+ T

e

� log �) � 1:01 +

AdvSHA(O(t)) �

�

�

�

90 +

l

0

64

�

+

l

64

�

+

AdvMARS(O(T

0

e

�); 1) � (2

16

+ 150�) +

�

2

=2

145

+

2

�80

:
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Call the original attak game G

0

. Let S

0

be the event that the adversary forges a

signature in this game. We have

AdvSig(t; �; l) = Pr[S

0

℄: (24)

We shall make two transformation of this game, obtaining games G

1

, G

2

. In order to

relate probabilities of events in di�erent games, oneptually, these games are all run

on the same underlying probability distribution. In eah game G

i

, for i = 1; 2, we let

S

i

denote the event that the adversary forges a signature in game G

i

.

Game G

1

. Let U

0

be the event that the adversary in game G

0

, the adversary presents

a forged signature �

0

suh that either

U

1

0

: the hash omputed in step 8 of Algorithm 5.7.1, when applied to �

0

, yields a

non-trivial ollision with one of the hashes omputed in step 8 of Algorithm 5.7.1,

when applied to some signature � reated by the signing algorithm, or

U

2

0

: the key

~

k in �

0

mathes that of one of the signatures � reated by the signing

algorithm, and the hash omputed in step 6 of Algorithm 5.7.1, when applied to

�

0

, yields a ollision with the hash omputed in step 1 of Algorithm 5.7.1, when

applied to �.

Game G

1

is just like game G

0

, exept that should event U

0

our, we stop the game

without allowing the forgery to be presented.

One an show that

Pr[U

1

0

℄ � AdvSHA(O(t)) � �(88 + l

0

=64): (25)

This is obtained by using the analysis in [Sho00a℄, plus a \plug and pray" argument. We

guess on whih of � signatures this ollision will our, and the position of the \target"

blok, i.e., on whih 512-bit hash input blok the ollision will our. Moreover, beause

the hash inputs under onsideration an vary in length, we have to guess whether the

target blok is the last blok of the hash input, and if it is the last blok, we have

to guess exatly how many 160-bit masks (omprising

~

k) there atually are (there are

at most three hoies, given that the target blok is the last input blok). Making

these guesses, and given an instane of the seond preimage problem, we generate an

appropriate pre�x of the hash input, from whih we an generate the orresponding

key k

0

using the key reonstrution algorithm in [Sho00a℄. An important feature of

of the key reonstrution algorithm in [Sho00a℄ that we exploit here is that it relies

only on the pre�x of the hash input up to, and inluding, the target input blok. The

adversary's view is independent of these guesses, and if these guesses are orret, then

we solve the given seond preimage problem.

Note that the above argument is a bit ompliated, but it gives a numerially muh

better result than the simpler, and more generi \plug and pray" argument where we

guess the signature, the length of the input to the hash funtion, and the position of

the target blok.

One an also show that

Pr[U

2

0

℄ � AdvSHA(O(t)) � (l + 2�): (26)
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This is also obtained by using the analysis in [Sho00a℄, plus a \plug and pray" argument.

The quantity l+2� is a bound on the total number of relevant hash input bloks, and

we have to guess whih of these is the \target" blok.

It is lear that

Pr[S

1

jU

0

℄ = Pr[S

0

jU

0

℄; (27)

and hene we an apply Lemma 4.10.1 with (E;E

0

; F; F

0

) = (S

0

; S

1

; U

0

; U

0

), obtaining

Pr[S

0

℄ � Pr[S

1

℄ + AdvSHA(O(t)) �

�

�

�

90 +

l

0

64

�

+

l

64

�

: (28)

Game G

2

. This game is just like game G

1

, exept for the way in whih the primes

e generated by the signing algorithm are generated. De�ne b

P

= 2

14

+ 38�, b

R

=

2

15

+ 112�, and b

w

= 2

17

+ 448�. In game G

2

, we generate � primes in advane, to

be used later by the signing algorithm. We use Algorithm 5.5.1 to generate primes as

in game G

1

. However, in this game, we stop if the event V that one of the following

ours:

� step 2.1 in Algorithm 5.5.1 is exeuted more than b

P

times,

� step 3.1 in Algorithm 5.5.1 is exeuted more than b

R

times,

� step 7 is Algorithm 5.5.1 is exeuted more than b

w

times, or

� two of the generated primes are equal.

Let V

0

be the orresponding event, but where the strings v

P

and v

R

generated in

Algorithm 5.5.1 are truly random. Then we have

Pr[V ℄ � Pr[V

0

℄ + AdvMARS(O(T

0

e

�); 1) � (b

P

+ b

R

)

� �

2

=2

145

+ 2

�80

+ AdvMARS(O(T

0

e

�); 1) � (b

P

+ b

R

): (29)

The term 2

�80

omes from a alulation using Cherno�'s bound together with prime

density estimates used in [CS99℄. The term �

2

=2

145

also omes from the prime density

estimates used in [CS99℄. Both of these density estimates rely on the Generalized

Riemann Hypothesis.

Again applying Lemma 4.10.1, we see that

Pr[S

1

℄ � Pr[S

2

℄ + �

2

=2

145

+ 2

�80

+ AdvMARS(O(T

0

e

�); 1) � (b

P

+ b

R

): (30)

Note that the running time of game G

2

is O(t+ T

0

e

�).

Now, appealing to the proof of seurity in [CS99℄, and using a areful implementation

of the simulators in that paper, one an show that

Pr[S

2

℄ � AdvRSA(O(t+T

e

� log �)) � (�+1)+AdvFlexRSA(O(t+T

e

� log �) � 1:01: (31)

The term T

e

� log � in the above running times deserves some omment. In the simu-

lators desribed in [CS99℄, at a ouple of points, we have to perform a omputation of

the following type. Let e

1

; : : : ; e

�

be the primes generated by the signing algorithm,

and let E =

Q

�

i=1

e

i

. Given w 2 f0; : : : ; N � 1g, we have to ompute w

E=e

i

rem N

for 1 � i � �. Naively, one ould do this in time O(T

e

�

2

). However, using a sim-

ple divide-and-onquer algorithm (see, e.g., x6 of [Sho94℄), one an do this in time

O(T

e

� log �).

The theorem now follows from (24), (28), (30), and (31).
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5.9 Further disussion and implementation notes

Optimizations

In Algorithm 5.4.1, the exponentiations performed in steps 3 and 6 are well-suited for

optimization. First, sine the signer knows the fatorization of N , one may use the

Chinese Remainder Theorem to speed up the omputation. Also, in step 3, we need to

ompute the produt of two powers, whih an be performed using standard algorithmi

tehniques signi�antly faster than two independent exponentiations. And in step 6,

we need to raise h to a power. Sine h depends on the publi key, we an ondition

on h, so that raising h to a power an be done signi�antly faster than an ordinary

exponentiation. In Algorithm 5.7.1, in steps 7 and 9, we also need to ompute produts

of powers, whih are subjet to standard optimizations as above. We refer the reader

to x14.6 of [MvOV97℄ for details of all of these optimizations.

The multi-user setting

At least in an asymptoti sense, the de�nition of seurity we have used implies seu-

rity in a multi-user environment. Using a standard \hybrid" argument, one sees that

seurity essentially degrades by a fator portional to the number of users.

We believe that our hoies of parameters allow suÆient \head room" so that one

still obtains a meaninful level of seurity even onsidering fairly large systems of users.

However, an even higher level of seurity ould be obtained with some modi�ation

to the basi algorithms. This would lead to somewhat more ompliated algorithms,

and would require all users to share the same UOWH key, whih introdues a \trust"

problem. For these reasons, we have not hosen to pursue this at the moment.

Implementation of the key generation algorithm

In the key generation step, we have to generate \strong primes" of the form p = 2p

0

+1,

where p

0

is also prime. The number p

0

is also known as a Sophie Germain prime. This

an be a fairly time-onsuming omputation, and some are must be taken to use an

eÆient algorithm for this task.

The most naive way to do this is to generate a prime p

0

, and then test if 2p

0

+ 1 is

also prime. However, we do not reommend this approah. Rather, we reommend the

approah desrined in the full-length version of [CS99℄, whih an easily yield a fator

of 10 speed-up over the naive method.

API onsiderations

We have designed the signing and veri�ation algorithms so that they an work with

streams of data. Both the signing and veri�ation algorithm an proess the message

as a stream. However, the veri�ation algorithm needs the to have the signature before

proessing the message stream. This is a bit non-standard, and in some situations

may be a bit awkward. For most signature shemes used in pratie, the veri�ation

algorithm an proess the message as a stream, requiring the signature only after

the message stream has been proessed. The reason our veri�ation algorithm needs

the signature �rst is that it needs the key

~

k to the universal one-way hash funtion
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used to hash the message. This seems unavoidable if we want to use universal one-

way hash funtions instead of ollision resistant hash funtions, whih|as we have

already argued|is quite desirable from a seurity point of view. One partial solution

to the problem would be to have the signer generate a key

~

k of suÆient length before

proessing its message input stream, plaing

~

k in its output stream before plaing any

of the message bytes in its output stream. This would allow the signer's output stream

to be bound diretly to the veri�er's input stream, without requiring any signi�ant

bu�ering on the part of either the signer or veri�er. However, the resulting interfae

would still be somewhat non-standard.

Random orales

Although we use the strong RSA assumption, the form of the strong RSA assumption

we atually use severely onstrains the adversary's behavior: it is not free to hoose an

exponent e as it pleases, but rather, it must hoose e = 2PR + 1, where both P and

R are omputed as the output of a one-way ryptographi transformation. As already

mentioned in 2.4, in the random orale model, our signature sheme an be proved

seure under the RSA assumption, instead of the strong RSA assumption. Atually,

to be a bit more preise, we need to use the ideal ipher model (see [KR96℄), whih is

a losely related, but slightly di�erent model of analysis. This is disussed in [CS99℄.

6 ASN.1 Key Syntax

For appliations that use ASN.1 desriptions, like for example X.509 or PKCS#8 key

formats, it is neessary to de�ne the algorithm identi�er for the shemes de�ned in this

doument, along with their key types. However, the orresponding objet identi�ers

are not de�ned yet, let alone registered. There are no parameters used, hene, the

assoiated parameters �eld of the algorithm identi�er is of type NULL.

Version ::= INTEGER

The version number is for ompatibility with future revisions of this doument. It shall

be 1 for this version of the doument.

6.1 Enryption Key Pair

This setion de�nes the ASN.1 types ACEEnPubKey and ACEEnPrivKey. The orre-

sponding �elds as desribed in x4.1 are given in omments.

An ACE enryption publi key should be represented as follows:

ACEEnPubKey ::= SEQUENCE f

version Version,

prime1 INTEGER, -- P

prime2 INTEGER, -- q

num1 INTEGER, -- g

1

num2 INTEGER, -- g

2

num3 INTEGER, -- 

num4 INTEGER, -- d

seed1 INTEGER, -- h

1
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seed2 INTEGER, -- h

2

hkey1 OCTET STRING, -- k

1

hkey2 OCTET STRING -- k

2

g

An ACE enryption private key should be represented as the following ASN.1 type:

ACEEnPrivKey ::= SEQUENCE f

version Version,

prime1 INTEGER, -- P

prime2 INTEGER, -- q

num1 INTEGER, -- w

num2 INTEGER, -- x

num3 INTEGER, -- y

num4 INTEGER, -- z

1

num5 INTEGER, -- z

2

hkey1 OCTET STRING, -- k

1

hkey2 OCTET STRING -- k

2

g

Note that unlike in x4.1, this struture de�nes a \self ontained" key|the deryption

algorithm needs only the data in this struture, and does need need any of the data in

the struture desribing the publi key.

6.2 Signature Key Pair

This setion de�nes the ASN.1 types ACESigPubKey and ACESigPrivKey. The orre-

sponding �elds as desribed in x5.1 are given in omments.

An ACE signature publi key should be represented as follows:

ACESigPubKey ::= SEQUENCE f

version Version,

modulus INTEGER, -- N

num1 INTEGER, -- h

num2 INTEGER, -- x

primeExp INTEGER, -- e

0

hkey OCTET STRING, -- k

0

primeParam OCTET STRING -- s

g

An ACE signature private key should be represented as the following ASN.1 type:

ACESigPrivKey ::= SEQUENCE f

version Version,

modulus INTEGER, -- N

prime1 INTEGER, -- p

prime2 INTEGER, -- q

auxExp INTEGER, -- a

num1 INTEGER, -- h

primeExp INTEGER, -- e

0

hkey OCTET STRING, -- k

0

primeParam OCTET STRING -- s

g
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Power PC Pentium

operand size (bytes) operand size (bytes)

512 1024 512 1024

multipliation 3:5� 10

�5

s 1:0� 10

�4

s 4:5 � 10

�5

s 1:4� 10

�4

s

squaring 3:3� 10

�5

s 1:0� 10

�4

s 4:4 � 10

�5

s 1:4� 10

�4

s

exponentiation 1:9� 10

�2

s 1:2� 10

�1

s 2:6 � 10

�2

s 1:7� 10

�1

s

Table 1: Times for basi operations

Power PC Pentium

Fixed osts Mbits/se Fixed osts Mbits/se

(ms) (ms)

enrypt 160 18 230 16

derypt 68 18 97 14

sign 48 64 62 52

sign set-up 29 41

verify 52 65 73 53

Table 2: Enryption and signature sheme performane

Note that unlike in x5.1, this struture de�nes a \self ontained" key|the signing

algorithm needs only the data in this struture, and does need need any of the data in

the struture desribing the publi key.

7 Performane

We report here on the performane of an implementation of our enryption and signa-

ture sheme.

We implemented both shemes in ANSI C, using the GNU GMP library to implement

the multi-preision arithmeti, although we implemented our own \sliding window"

exponentiation routine, as this was not provided in GMP.

We performed timing experiments on two platforms. The �rst platform is a PowerPC

604 model 43P proessor running AIX. The seond platform is a 266MHz Pentium

running Windows NT.

As a baseline, we �rst report the times for 512-bit and 1024-bit multipliation, squaring,

and exponentiation in Table 1.

Table 2 reports the performane of the enryption and signature shemes. For both

shemes, a 1024-bit modulus was used. In reporting the time to sign a message, we

break the �xed-ost time into two omponents. One omponent is the \sign set-up"

time, whih is the time to perform a pre-omputation that depends only on the seret

key; if many signatures are to be generated using a given key, the \sign set-up" opera-

tion need be exeuted only one. The other omponent is the \sign" time, whih is the

time to generate a signature using the data omputed in the \sign set-up" operation.

We also mention that roughly one third of the \sign" time is spent generating the

required 161-bit prime. For larger moduli, this time take a smaller proportion of the

whole.

Finally, we mention the time required to generate publi keys (again, with 1024-bit
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moduli). The key generation algorithm for our signature sheme is a bit unusual,

sine it requires the generation of primes of the form 2p

0

+ 1, where p

0

is also prime.

This an be quite ostly, and as already mentioned, some are must be taken in the

implementation of this step.

In our implementation, on the PowerPC platform, the average time for the signature

key generation algorithm is 35s, and the average time for the enryption key generation

algorithm is 11s. On the Pentium platform, the orresponding times were 36s and 14s,

respetively.
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