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Abstra
t

D. Boneh and R. Venkatesan have re
ently proposed an approa
h

to proving that a reasonably small portions of most signi�
ant bits of

the DiÆe{Hellman key modulo a prime are as se
ure the the whole key.

Some further improvements and generalizations have been obtained

by I. M. Gonzales Vas
o and I. E. Shparlinski. E. R. Verheul has

obtained 
ertain analogies of these results in the 
ase of DiÆe{Hellman

keys in extensions of �nite �elds, when an ora
le is given to 
ompute

a 
ertain polynomial fun
tion of the key, for example, the tra
e in

the ba
kground �eld. Here we obtain a new result in this dire
tion


on
erning the 
ase of so-
alled \unreliable" ora
les. The result has

appli
ations to the se
urity of the re
ently proposed by A. K. Lenstra

and E. R. Verheul XTR 
ryptosystem.

1 Introdu
tion

Let IF

q

denote a �nite �eld of q elements.

D. Boneh and R. Venkatesan [1℄ have proposed an approa
h to proving

that about n

1=2

of most signi�
ant bits of the DiÆe{Hellman key modulo an

n-bit prime are as se
ure as the whole key. Their results have been generalized

(and slightly 
orre
ted) by I. M. Gonzales Vas
o and I. Shparlinski [7, 8℄.

A detailed survey of several other results of this type (in
luding the RSA


ryptosystem and the dis
rete logarithm problem) has re
ently been given

in [5℄, see also [6, 9, 13, 14, 15, 17, 18, 19, 20℄ for several more re
ent results.
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E. R. Verheul [21℄ among several other results, 
onsiders a similar prob-

lem for the DiÆe{Hellman key in arbitrary �nite �elds. However instead

of studying the se
urity of the most signi�
ant bits the paper [21℄ deals

with the se
urity of values of sparse polynomials at the values of the DiÆe{

Hellman keys. More pre
isely, let us �x an element 
 2 IF

q

and a polynomial

F (X) 2 IF

q

[X℄. It has been shown in [21℄, under 
ertain natural 
onditions,

that if we are given an ora
le whi
h for ea
h pair (


x

; 


y

) with some inte-

gers x and y returns the value of F (


xy

), than this ora
le 
an be used to


onstru
t a polynomial time algorithm to 
ompute the DiÆe{Hellman key




xy

. We remark that polynomials F 
an be of very large degree (thus dire
t

solving the equation F (


xy

) = A is not feasible) but 
ontain a reasonably

small number of monomials. The result has been motivated by appli
ations

to the proof of se
urity of a 
ertain new 
ryptosystem, see [2, 10, 11, 12, 21℄.

Here we obtain a generalization of Theorem 24 of [21℄ to the \unreliable"


ase, when ora
le returns the result only for a 
ertain very small fra
tion of

inputs and returns an error message for other inputs.

2 Preparations

The following estimate on the number of zeros of sparse polynomials is a

version of the similar result from [3, 4℄.

Lemma 1 For r � 2 elements a

1

; : : : ; a

r

2 IF

�

q

and integers �

1

; : : : ; �

r

2 ZZ

let us denote by Q the number of solutions of the equation

r

X

i=1

a

i

z

�

i

= 0; z 2 IF

�

q

:

Then

Q � 3(q � 1)

1�1=(r�1)

d

1=(r�1)

;

where

d = min

1�i�r

max

j 6=i

g
d(�

j

� �

i

; q � 1):

Proof. It has been shown in Lemma 7 of [3℄ (see also Lemma 4 of [4℄ and

Lemma 3.4 of [16℄) that

Q � 2

$

q � 1

dL

1=(r�1)

e � 1

%
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where L = (q � 1)=d.

If L � 3

r�1

then

Q � q � 1 � 3(q � 1)L

�1=(r�1)

� q > Q:

Otherwise

l

L

1=(r�1)

m

� 1 � 2L

�1=(r�1)

=3 and the result follows. ut

Let us �x an element # 2 IF

q

of multipli
ative order t.

Lemma 2 For m � 2 elements a

1

; : : : ; a

m

2 IF

�

q

and integers e

1

; : : : ; e

m

we

denote by W the number of solutions of the equation

m

X

i=1

a

i

#

e

i

u

= 0; u 2 [0; t� 1℄:

Then the bound

W � 3t

1�1=(m�1)

D

1=(m�1)

;

holds, where

D = min

1�i�m

max

j 6=i

g
d(e

j

� e

i

; t):

Proof. We write # = g

(q�1)=t

where g is a primitive root of IF

q

and note that

ea
h solution u 2 [0; t� 1℄ of the previous exponential equation gives rise to

(q � 1)=t distin
t solutions

z

j

= g

u+tj

; j = 0; : : : ; (q � 1)=t� 1;

of the equation

m

X

i=1

a

i

z

�

i

= 0; z 2 IF

�

q

;

where �

j

= e

j

(q � 1)=t. Remarking that

g
d(�

j

� �

i

; q � 1) =

q � 1

t

g
d(e

j

� e

i

; t);

from Lemma 1 we obtain that

W � 3

t

q � 1

(q � 1)

1�1=(m�1)

�

q � 1

t

D

�

1=(m�1)

= 3t

1�1=(m�1)

D

1=(m�1)

as 
laimed. ut
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3 Se
urity of Polynomial Transformations of

the DiÆe{Hellman Key

Let 
 2 IF

q

be an element of multipli
ative order t.

As in [21℄ we 
onsider an m-sparse polynomial

F (X) =

m

X

i=1




i

X

e

i

2 IF

q

[X℄; (1)

where 


1

; : : : ; 


m

2 IF

�

q

and e

1

; : : : ; e

m

are pairwise distin
t modulo t.

Let 0 < " � 1.

Assume that we are given an ora
le O

F;"

su
h that for every x 2 [0; t�1℄,

given the values of 


x

and 


y

, it returns F (


xy

) for at least "t values of

y 2 [0; t� 1℄ and returns an error message for other values of y 2 [0; t� 1℄.

The 
ase " = 1, that is, the 
ase of a \noise-free" ora
le has been 
onsid-

ered in [21℄.

We are ready to prove the main result. For simpli
ity we assume that t

is a prime number, although analogues of our result hold for 
omposite t as

well. Nevertheless this 
ase allows us to simplify some arguments and it is

also one of the most pra
ti
ally important 
ases, see [2, 10, 11, 12, 21℄.

Theorem 3 Let t be prime, m � 2 and let an m-sparse polynomial F be

given by (1). Assume that

1 � " � 6t

�1=(m�1)

:

Given an ora
le O

F;"

, there exists a probabilisti
 algorithm whi
h given 


x

and




y

makes the expe
ted number of at most 2m"

�1


alls of the ora
le O

F;"

, ex-

e
utes polynomial number (m log q)

O(1)

arithmeti
 operations in IF

q

per ea
h


all and returns 


xy

for all pairs (x; y) 2 [0; t� 1℄

2

.

Proof. If x = 0 the result is trivial. Let us 
onsider a pair (x; y) 2 [0; t� 1℄

2

with x 6= 0.

Let U be the set of u 2 [0; t�1℄ for whi
h the ora
le, given the values of 


x

and 


y+u

returns the value of F

�




x(y+u)

�

. By the 
onditions of the theorem

jUj � "t. We also remark that if 


y

is known then for any v 2 [0; t � 1℄ the

value of 


y+v


an easily be 
omputed as well.

Put # = 


x

.
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Sele
t a sequen
e of elements v uniformly and independently at random

in the interval [0; t � 1℄ and for ea
h of them feed 


x

and 


y+v

in the ora
le

O

F;"

until we �nd an element u 2 U and thus �nd the values of F

�




x(y+u)

�

.

Let us 
all this element u

1

. The expe
ted number of ora
le 
alls to �nd

su
h an element is "

�1

� 2"

�1

.

Assume that for some integer k, 2 � k � m, we have sele
ted k � 1

elements u

1

; : : : ; u

k�1

2 U with

det (#

e

i

u

j

)

k�1

i;j=1

6= 0: (2)

We sele
t elements v uniformly and independently at random in the interval

[0; t� 1℄ until we �nd an element u

k

2 U su
h that

det (#

e

i

u

j

)

k

i;j=1

6= 0: (3)

We remark that if the last determinant vanishes then u

k

satis�es an equation

of the form

�

1

#

e

k

u

k

+ : : : +�

k

#

e

1

u

k

= 0

where, by the assumption (2), we have

�

1

= det (#

e

i

u

j

)

k�1

i;j=1

6= 0:

Applying Lemma 2 we obtain that the number of elements u

k

2 U whi
h

satisfy the 
ondition (3) is at least

jUj � 3t

1�1=(k�1)

� jUj � 3t

1�1=(m�1)

�

1

2

jUj:

Thus su
h an element u

k

2 U 
an be found in the expe
ted number of at most

2"

�1

ora
le 
alls with 


x

and 


y+v

where elements v are sele
ted uniformly

and independently at random in the interval [0; t � 1℄. More pre
isely, we


all the ora
le O

F;"

with 


x

and 


y+v

for a random v 2 [0; t� 1℄ until both it

returns F (gx(y + v)) and

�

1

#

e

k

v

+ : : :+�

k

#

e

1

v

= 0;

and 
all the 
orresponding value u

k

. Be
ause there are at least 0:5jUj � 2"t

su
h values of v, the expe
ted number of 
all is at most 2"

�1

.

Therefore after the expe
ted number of at most 2m"

�1

ora
le 
alls we ob-

tain m elements u

1

; : : : ; u

m

2 U with 
orresponding values of A

j

= F (#

y+u

j

)

for ea
h j = 1; : : : ;m and su
h that

det (#

e

i

u

j

)

m

i;j=1

6= 0:
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The rest of the proof follows essentially the same arguments as the proof of

Theorem 24 of [21℄. Indeed, we see from our 
onstru
tion that we have a

nonsingular system of linear equations

m

X

i=1




i

#

e

i

u

j

#

e

i

y

= A

j

; j = 1; : : : ;m;

from whi
h the ve
tor (


1

#

e

1

y

; : : : ; 


m

#

e

m

y

) 
an be found and thus we obtain

the values of 


e

1

xy

; : : : ; 


e

m

xy

. Be
ause m � 2 and t is prime, at least one

of e

1

; : : : ; e

m

(whi
h are pairwise distin
t modulo t) is relatively prime to t.

Say if g
d(e

1

; t) = 1 we de�ne an integer f

1

2 [1; t� 1℄ from the 
ongruen
e

f

1

e

1

� 1 (mod t) and 
ompute




xy

= (


e

1

xy

)

f

1

:

Remarking that besides the expe
ted number of ora
le 
alls is 2m"

�1

and that

the rest of the algorithm 
an be implemented in deterministi
 polynomial in

m log q time, we obtain the desired result. ut

4 Remarks

Let q = p

r

. Then the tra
e fun
tion

Tr(X) =

r�1

X

i=0

X

p

i

provides a natural example of a polynomial of the form (1). This fun
tion

as well as the fun
tion

L(X) =

X

0�i 6=j�r�1

X

p

i

+p

j

have been studied in [2℄ (with r = 6). Our results imply a stronger version of

Lemma 3.1 of [2℄ and thus give more se
urity assuran
e to the proposed there


ryptosystem. The same 
omment also applies to the proposed in [10, 11, 12℄

XTR publi
 key 
ryptosystem whi
h is based on a more 
omputationally

eÆ
ient modi�
ation of the ideas of [2℄.

It is easy to see that making more ora
le 
alls one 
an repla
e the ora
le

O

F;"

with a more natural and general ora
le

e

O

F;"

whi
h returns F (


xy

) for
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at least "t

2

pairs (x; y) 2 [0; t � 1℄

2

. For x 2 [0; t � 1℄, let M

x

denote the

number y 2 [0; t � 1℄ for whi
h the ora
le

e

O

F;"

, given the values of 


x

and




y

, returns F (


xy

). Thus,

t

X

x=0

M

x

� "t

2

:

Let L be the number of x 2 [0; t� 1℄ for whi
h M

x

� 0:5"t. Then

t

X

x=0

M

x

� 0:5"t(t� L) + Lt = 0:5"t

2

+ (1� 0:5")Lt:

Therefore

L �

"

2(1� 0:5")

t � 0:5"t:

Now we sele
t a random u 2 [0; t�1℄ and 
ompute 


x+u

. Using polynomially

many random values of v 2 [0; t � 1℄ with high probability we 
an test

whether M

x+u

� 0:5"t. If this is not the 
ase we sele
t another value of

u. After the expe
ted number of t=L � 2"

�1

random 
hoi
es of u we �nd

a value with M

x+u

� 0:5"t. Now we apply the same arguments as in the

proof of Theorem 3 with 


x+u

and 


y

, re
overing 


(x+u)y

. Now we 
an �nd




xy

= 


(x+u)y

(


y

)

�u

.

In fa
t we do not even need the ora
le to return the error message. It is

enough to assume that, when it does not 
ompute F (


xy

), it returns just a

random element of IF

q

. Then repeating ea
h ora
le 
all polynomially many

times one 
an distinguish between 
orre
t outputs and random outputs with

overwhelming probability.

On the other hand, it would also be very important to obtain similar

results for the 
ase where the ora
le returns the 
orre
t value of F (


xy

) for a


ertain portion of inputs and returns wrong (but 
onsistent) results for other

inputs (instead of the error message or a random element of IF

q

, thus wrong

outputs 
annot be immediately identi�ed).
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