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Abstrat

D. Boneh and R. Venkatesan have reently proposed an approah

to proving that a reasonably small portions of most signi�ant bits of

the DiÆe{Hellman key modulo a prime are as seure the the whole key.

Some further improvements and generalizations have been obtained

by I. M. Gonzales Vaso and I. E. Shparlinski. E. R. Verheul has

obtained ertain analogies of these results in the ase of DiÆe{Hellman

keys in extensions of �nite �elds, when an orale is given to ompute

a ertain polynomial funtion of the key, for example, the trae in

the bakground �eld. Here we obtain a new result in this diretion

onerning the ase of so-alled \unreliable" orales. The result has

appliations to the seurity of the reently proposed by A. K. Lenstra

and E. R. Verheul XTR ryptosystem.

1 Introdution

Let IF

q

denote a �nite �eld of q elements.

D. Boneh and R. Venkatesan [1℄ have proposed an approah to proving

that about n

1=2

of most signi�ant bits of the DiÆe{Hellman key modulo an

n-bit prime are as seure as the whole key. Their results have been generalized

(and slightly orreted) by I. M. Gonzales Vaso and I. Shparlinski [7, 8℄.

A detailed survey of several other results of this type (inluding the RSA

ryptosystem and the disrete logarithm problem) has reently been given

in [5℄, see also [6, 9, 13, 14, 15, 17, 18, 19, 20℄ for several more reent results.
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E. R. Verheul [21℄ among several other results, onsiders a similar prob-

lem for the DiÆe{Hellman key in arbitrary �nite �elds. However instead

of studying the seurity of the most signi�ant bits the paper [21℄ deals

with the seurity of values of sparse polynomials at the values of the DiÆe{

Hellman keys. More preisely, let us �x an element  2 IF

q

and a polynomial

F (X) 2 IF

q

[X℄. It has been shown in [21℄, under ertain natural onditions,

that if we are given an orale whih for eah pair (

x

; 

y

) with some inte-

gers x and y returns the value of F (

xy

), than this orale an be used to

onstrut a polynomial time algorithm to ompute the DiÆe{Hellman key



xy

. We remark that polynomials F an be of very large degree (thus diret

solving the equation F (

xy

) = A is not feasible) but ontain a reasonably

small number of monomials. The result has been motivated by appliations

to the proof of seurity of a ertain new ryptosystem, see [2, 10, 11, 12, 21℄.

Here we obtain a generalization of Theorem 24 of [21℄ to the \unreliable"

ase, when orale returns the result only for a ertain very small fration of

inputs and returns an error message for other inputs.

2 Preparations

The following estimate on the number of zeros of sparse polynomials is a

version of the similar result from [3, 4℄.

Lemma 1 For r � 2 elements a

1

; : : : ; a

r

2 IF

�

q

and integers �

1

; : : : ; �

r

2 ZZ

let us denote by Q the number of solutions of the equation

r

X

i=1

a

i

z

�

i

= 0; z 2 IF

�

q

:

Then

Q � 3(q � 1)

1�1=(r�1)

d

1=(r�1)

;

where

d = min

1�i�r

max

j 6=i

gd(�

j

� �

i

; q � 1):

Proof. It has been shown in Lemma 7 of [3℄ (see also Lemma 4 of [4℄ and

Lemma 3.4 of [16℄) that

Q � 2

$

q � 1

dL

1=(r�1)

e � 1

%
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where L = (q � 1)=d.

If L � 3

r�1

then

Q � q � 1 � 3(q � 1)L

�1=(r�1)

� q > Q:

Otherwise

l

L

1=(r�1)

m

� 1 � 2L

�1=(r�1)

=3 and the result follows. ut

Let us �x an element # 2 IF

q

of multipliative order t.

Lemma 2 For m � 2 elements a

1

; : : : ; a

m

2 IF

�

q

and integers e

1

; : : : ; e

m

we

denote by W the number of solutions of the equation

m

X

i=1

a

i

#

e

i

u

= 0; u 2 [0; t� 1℄:

Then the bound

W � 3t

1�1=(m�1)

D

1=(m�1)

;

holds, where

D = min

1�i�m

max

j 6=i

gd(e

j

� e

i

; t):

Proof. We write # = g

(q�1)=t

where g is a primitive root of IF

q

and note that

eah solution u 2 [0; t� 1℄ of the previous exponential equation gives rise to

(q � 1)=t distint solutions

z

j

= g

u+tj

; j = 0; : : : ; (q � 1)=t� 1;

of the equation

m

X

i=1

a

i

z

�

i

= 0; z 2 IF

�

q

;

where �

j

= e

j

(q � 1)=t. Remarking that

gd(�

j

� �

i

; q � 1) =

q � 1

t

gd(e

j

� e

i

; t);

from Lemma 1 we obtain that

W � 3

t

q � 1

(q � 1)

1�1=(m�1)

�

q � 1

t

D

�

1=(m�1)

= 3t

1�1=(m�1)

D

1=(m�1)

as laimed. ut
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3 Seurity of Polynomial Transformations of

the DiÆe{Hellman Key

Let  2 IF

q

be an element of multipliative order t.

As in [21℄ we onsider an m-sparse polynomial

F (X) =

m

X

i=1



i

X

e

i

2 IF

q

[X℄; (1)

where 

1

; : : : ; 

m

2 IF

�

q

and e

1

; : : : ; e

m

are pairwise distint modulo t.

Let 0 < " � 1.

Assume that we are given an orale O

F;"

suh that for every x 2 [0; t�1℄,

given the values of 

x

and 

y

, it returns F (

xy

) for at least "t values of

y 2 [0; t� 1℄ and returns an error message for other values of y 2 [0; t� 1℄.

The ase " = 1, that is, the ase of a \noise-free" orale has been onsid-

ered in [21℄.

We are ready to prove the main result. For simpliity we assume that t

is a prime number, although analogues of our result hold for omposite t as

well. Nevertheless this ase allows us to simplify some arguments and it is

also one of the most pratially important ases, see [2, 10, 11, 12, 21℄.

Theorem 3 Let t be prime, m � 2 and let an m-sparse polynomial F be

given by (1). Assume that

1 � " � 6t

�1=(m�1)

:

Given an orale O

F;"

, there exists a probabilisti algorithm whih given 

x

and



y

makes the expeted number of at most 2m"

�1

alls of the orale O

F;"

, ex-

eutes polynomial number (m log q)

O(1)

arithmeti operations in IF

q

per eah

all and returns 

xy

for all pairs (x; y) 2 [0; t� 1℄

2

.

Proof. If x = 0 the result is trivial. Let us onsider a pair (x; y) 2 [0; t� 1℄

2

with x 6= 0.

Let U be the set of u 2 [0; t�1℄ for whih the orale, given the values of 

x

and 

y+u

returns the value of F

�



x(y+u)

�

. By the onditions of the theorem

jUj � "t. We also remark that if 

y

is known then for any v 2 [0; t � 1℄ the

value of 

y+v

an easily be omputed as well.

Put # = 

x

.
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Selet a sequene of elements v uniformly and independently at random

in the interval [0; t � 1℄ and for eah of them feed 

x

and 

y+v

in the orale

O

F;"

until we �nd an element u 2 U and thus �nd the values of F

�



x(y+u)

�

.

Let us all this element u

1

. The expeted number of orale alls to �nd

suh an element is "

�1

� 2"

�1

.

Assume that for some integer k, 2 � k � m, we have seleted k � 1

elements u

1

; : : : ; u

k�1

2 U with

det (#

e

i

u

j

)

k�1

i;j=1

6= 0: (2)

We selet elements v uniformly and independently at random in the interval

[0; t� 1℄ until we �nd an element u

k

2 U suh that

det (#

e

i

u

j

)

k

i;j=1

6= 0: (3)

We remark that if the last determinant vanishes then u

k

satis�es an equation

of the form

�

1

#

e

k

u

k

+ : : : +�

k

#

e

1

u

k

= 0

where, by the assumption (2), we have

�

1

= det (#

e

i

u

j

)

k�1

i;j=1

6= 0:

Applying Lemma 2 we obtain that the number of elements u

k

2 U whih

satisfy the ondition (3) is at least

jUj � 3t

1�1=(k�1)

� jUj � 3t

1�1=(m�1)

�

1

2

jUj:

Thus suh an element u

k

2 U an be found in the expeted number of at most

2"

�1

orale alls with 

x

and 

y+v

where elements v are seleted uniformly

and independently at random in the interval [0; t � 1℄. More preisely, we

all the orale O

F;"

with 

x

and 

y+v

for a random v 2 [0; t� 1℄ until both it

returns F (gx(y + v)) and

�

1

#

e

k

v

+ : : :+�

k

#

e

1

v

= 0;

and all the orresponding value u

k

. Beause there are at least 0:5jUj � 2"t

suh values of v, the expeted number of all is at most 2"

�1

.

Therefore after the expeted number of at most 2m"

�1

orale alls we ob-

tain m elements u

1

; : : : ; u

m

2 U with orresponding values of A

j

= F (#

y+u

j

)

for eah j = 1; : : : ;m and suh that

det (#

e

i

u

j

)

m

i;j=1

6= 0:
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The rest of the proof follows essentially the same arguments as the proof of

Theorem 24 of [21℄. Indeed, we see from our onstrution that we have a

nonsingular system of linear equations

m

X

i=1



i

#

e

i

u

j

#

e

i

y

= A

j

; j = 1; : : : ;m;

from whih the vetor (

1

#

e

1

y

; : : : ; 

m

#

e

m

y

) an be found and thus we obtain

the values of 

e

1

xy

; : : : ; 

e

m

xy

. Beause m � 2 and t is prime, at least one

of e

1

; : : : ; e

m

(whih are pairwise distint modulo t) is relatively prime to t.

Say if gd(e

1

; t) = 1 we de�ne an integer f

1

2 [1; t� 1℄ from the ongruene

f

1

e

1

� 1 (mod t) and ompute



xy

= (

e

1

xy

)

f

1

:

Remarking that besides the expeted number of orale alls is 2m"

�1

and that

the rest of the algorithm an be implemented in deterministi polynomial in

m log q time, we obtain the desired result. ut

4 Remarks

Let q = p

r

. Then the trae funtion

Tr(X) =

r�1

X

i=0

X

p

i

provides a natural example of a polynomial of the form (1). This funtion

as well as the funtion

L(X) =

X

0�i 6=j�r�1

X

p

i

+p

j

have been studied in [2℄ (with r = 6). Our results imply a stronger version of

Lemma 3.1 of [2℄ and thus give more seurity assurane to the proposed there

ryptosystem. The same omment also applies to the proposed in [10, 11, 12℄

XTR publi key ryptosystem whih is based on a more omputationally

eÆient modi�ation of the ideas of [2℄.

It is easy to see that making more orale alls one an replae the orale

O

F;"

with a more natural and general orale

e

O

F;"

whih returns F (

xy

) for
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at least "t

2

pairs (x; y) 2 [0; t � 1℄

2

. For x 2 [0; t � 1℄, let M

x

denote the

number y 2 [0; t � 1℄ for whih the orale

e

O

F;"

, given the values of 

x

and



y

, returns F (

xy

). Thus,

t

X

x=0

M

x

� "t

2

:

Let L be the number of x 2 [0; t� 1℄ for whih M

x

� 0:5"t. Then

t

X

x=0

M

x

� 0:5"t(t� L) + Lt = 0:5"t

2

+ (1� 0:5")Lt:

Therefore

L �

"

2(1� 0:5")

t � 0:5"t:

Now we selet a random u 2 [0; t�1℄ and ompute 

x+u

. Using polynomially

many random values of v 2 [0; t � 1℄ with high probability we an test

whether M

x+u

� 0:5"t. If this is not the ase we selet another value of

u. After the expeted number of t=L � 2"

�1

random hoies of u we �nd

a value with M

x+u

� 0:5"t. Now we apply the same arguments as in the

proof of Theorem 3 with 

x+u

and 

y

, reovering 

(x+u)y

. Now we an �nd



xy

= 

(x+u)y

(

y

)

�u

.

In fat we do not even need the orale to return the error message. It is

enough to assume that, when it does not ompute F (

xy

), it returns just a

random element of IF

q

. Then repeating eah orale all polynomially many

times one an distinguish between orret outputs and random outputs with

overwhelming probability.

On the other hand, it would also be very important to obtain similar

results for the ase where the orale returns the orret value of F (

xy

) for a

ertain portion of inputs and returns wrong (but onsistent) results for other

inputs (instead of the error message or a random element of IF

q

, thus wrong

outputs annot be immediately identi�ed).
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