
Random Ora
les in Constantinople:

Pra
ti
al Asyn
hronous Byzantine Agreement using

Cryptography

1

Christian Ca
hin Klaus Kursawe Vi
tor Shoup

IBM Resear
h

Zuri
h Resear
h Laboratory

CH-8803 R�us
hlikon, Switzerland

f

a,kku,shog�zuri
h.ibm.
om

August 14, 2000

Abstra
t

Byzantine agreement requires a set of parties in a distributed system to agree on a value

even if some parties are 
orrupted. A new proto
ol for Byzantine agreement in a 
ompletely

asyn
hronous network is presented that makes use of 
ryptography, spe
i�
ally of threshold

signatures and 
oin-tossing proto
ols. These 
ryptographi
 proto
ols have pra
ti
al and

provably se
ure implementations in the \random ora
le" model. In parti
ular, a 
oin-tossing

proto
ol based on the DiÆe-Hellman problem is presented and analyzed.

The resulting asyn
hronous Byzantine agreement proto
ol is both pra
ti
al and theoret-

i
ally nearly optimal be
ause it tolerates the maximum number of 
orrupted parties, runs

in 
onstant expe
ted time, has message and 
ommuni
ation 
omplexity 
lose to the opti-

mum, and uses a trusted dealer only in a setup phase, after whi
h it 
an pro
ess a virtually

unlimited number of transa
tions.

The proto
ol is formulated as a transa
tion pro
essing servi
e in a 
ryptographi
 se
urity

model, whi
h di�ers from the standard information-theoreti
 formalization and may be of

independent interest.

Keywords: Asyn
hronous Consensus, Byzantine Faults, Threshold Signatures, Crypto-

graphi
 Common Coin, Dual-Threshold S
hemes.

1 Introdu
tion

The (binary) Byzantine agreement problem is one of the fundamental problems in distributed

fault-tolerant 
omputing. In this problem, there are n 
ommuni
ating parties, at most t of

whi
h are 
orrupted. The goal is that all honest (i.e., un
orrupted) parties agree on one of two

values that was proposed by an honest party, despite the mali
ious behavior of the 
orrupted

parties. This problem has been studied under various assumptions regarding the syn
hrony of

the network, the priva
y of the 
ommuni
ation 
hannels, and the 
omputational power of the


orrupted parties.

1

A preliminary version of this work was presented at the 19th ACM Symposium on Prin
iples of Distributed

Computing (PODC), Portland, Oregon, July 2000, and an extended abstra
t appears in the pro
eedings.

1



In this paper, we work ex
lusively in an asyn
hronous environment with 
omputationally

bounded parties; our motivation for this is a se
ure distributed system 
onne
ted by the Internet.

Fis
her, Lyn
h, and Paterson (FLP) [23℄ have shown that no deterministi
 proto
ol 
an

guarantee agreement even against benign failures in the asyn
hronous setting. Rabin [32℄ and

Ben-Or [6℄ were the �rst to present proto
ols that over
ome this limitation by using random-

ization. They assume a 
ommon 
oin, a random sour
e observable by all parti
ipants but

unpredi
table for an adversary; this abstra
tion is used in most subsequent proto
ols for the

asyn
hronous model.

Our main 
ontributions are an agreement proto
ol and a 
ommon 
oin proto
ol that employ

modern 
ryptographi
 te
hniques to a far greater extent than has been done previously in the

literature. The basi
 
ryptographi
 primitives used are a non-intera
tive threshold signature

s
heme and a novel threshold, random-a

ess 
oin-tossing s
heme. We use dual-threshold vari-

ants of both primitives. They 
an be eÆ
iently implemented and proved se
ure under standard

intra
tability assumptions in the random ora
le model; in this model, one treats a 
ryptographi


hash fun
tion as if it were a bla
k box 
ontaining a random fun
tion.

Taken together, we obtain a new proto
ol for Byzantine agreement that is both pra
ti
al

and theoreti
ally nearly optimal with respe
t to the known lower bounds be
ause

� it withstands the maximum number of 
orrupted parties: t < n=3;

� it runs in 
onstant expe
ted time;

� the expe
ted number of messages is O(n

2

);

� ea
h message is roughly the size of one or two RSA signatures (with the RSA threshold

signature s
heme of Shoup [38℄);

� it uses a trusted dealer only in a setup phase, after whi
h it 
an pro
ess a virtually

unlimited number of transa
tions.

This last point deserves further elaboration. The initial setup phase of our s
heme requires

a trusted dealer to distribute 
ertain 
ryptographi
 keys. On
e in pla
e, however, our s
heme

provides a transa
tion pro
essing servi
e that 
an handle a virtually unlimited number of re-

quests as generated by 
lients. Moreover, transa
tions 
an be pro
essed 
on
urrently, i.e., a new

instan
e of the agreement proto
ol 
an start as soon as a new transa
tion request is generated

by a 
lient, even if there are extant instan
es of the proto
ol for other transa
tions. This is a

non-trivial but important feature for any 
ryptographi
 proto
ol be
ause it rules out so-
alled

interleaving atta
ks.

1.1 Te
hniques

Our proto
ol uses non-intera
tive threshold signatures and a random-a

ess 
oin-tossing s
heme

from 
ryptography; these have eÆ
ient implementations in the random ora
le model.

The random ora
le model was �rst used in a rather informal way by Fiat and Shamir [22℄; it

was �rst formalized and used in other 
ontexts by Bellare and Rogaway [4℄ and has sin
e been

used to analyze a number of pra
ti
al 
ryptographi
 proto
ols. Of 
ourse, it would be better

not to rely on random ora
les, as they are essentially a heuristi
 devi
e; nevertheless, random

ora
les are a useful tool|they allow us to design truly pra
ti
al proto
ols that admit a se
urity

analysis, whi
h yields very strong eviden
e for their se
urity. As far as we know, our work is

the �rst of its kind to apply the random ora
le model to the Byzantine agreement problem.

2



The notion of a threshold signature s
heme was introdu
ed by Desmedt, Frankel and oth-

ers [17, 18, 8, 16℄ and has been widely studied sin
e then (T. Rabin [33℄ provides new results and

a survey of re
ent literature). It is a proto
ol for n parties tolerating up to t 
orruptions, where

ea
h party holds a share of the signing key and k 
ooperating parties together 
an generate

a signature. In a non-intera
tive threshold signature s
heme, ea
h party outputs a signature

share upon request and there is an algorithm to 
ombine k valid signature shares to 
onsti-

tute a valid signature. Su
h non-intera
tive 
ombination is used in our agreement proto
ol: a

party 
an justify its vote for a parti
ular value by a single threshold signature generated from

k signature shares. This saves a fa
tor n in terms of bit 
omplexity.

One of the te
hni
al 
ontributions of this paper is the notion of a dual-threshold signature

s
heme, meaning that k is allowed to be higher than t+ 1. This is in 
ontrast to all previous

work on threshold signatures in the literature where k = t + 1. A 
ompanion paper [38℄

presents a pra
ti
al dual-threshold signature s
heme that is se
ure in the random ora
le model

under standard intra
tability assumptions. The signatures 
reated by this s
heme are ordinary

RSA signatures. Moreover, the s
heme is 
ompletely non-intera
tive, an individual share of a

signature is not mu
h greater than an ordinary RSA signature, and even for k = t+1, it is the

�rst rigorously analyzed non-intera
tive threshold signature s
heme with small shares.

Coin-tossing s
hemes are used in one form or another in essentially all solutions to the asyn-


hronous Byzantine agreement problem. Many s
hemes, following Rabin's pioneering work [32℄,

assume that 
oins are predistributed (and possibly signed) by a dealer using se
ret-sharing [35℄.

This approa
h has two problems: �rst, the 
oins will eventually be exhausted; se
ond, parties

must somehow asso
iate 
oins with transa
tions, whi
h itself represents an agreement problem.

Be
ause of these problems, proto
ols that rely on a \Rabin dealer" are not really suitable for

use as a transa
tion pro
essing servi
e as des
ribed here. The same applies to the 
oin-tossing

s
heme of Beaver and So [2℄, whi
h essentially gives parties sequential a

ess to a bounded

number of 
oins. A \Rabin dealer" has been used in other 
ontexts as well, e.g., for threshold

de
ryption [11℄. Our proto
ol also requires a dealer for the initial setup, but yields an arbitrary

polynomial number of 
oins afterwards.

The beautiful work of Canetti and T. Rabin [12℄ presents a 
oin-tossing s
heme that allows


ommon 
oins to be generated entirely \from s
rat
h," building on the work of Feldman and

Mi
ali for the syn
hronous model [21℄. Unfortunately, this s
heme, while polynomial time, is


ompletely impra
ti
al.

Our approa
h to 
oin-tossing is to use a random-a

ess 
oin-tossing s
heme|essentially a

distributed fun
tion mapping the \name" of a 
oin to its value. Su
h 
oin-tossing s
hemes have

been studied before [29, 30℄. We also de�ne the notion of a dual-threshold 
oin-tossing s
heme,

whi
h is 
onvenient and does lead to lower 
ommuni
ation 
omplexity, but is not absolutely

ne
essarily. One 
ould easily implement su
h a 
oin from the non-intera
tive threshold signature

s
heme of Shoup [38℄; however, we present a dual-threshold 
oin-tossing s
heme that is based

on the DiÆe-Hellman problem, the analysis of whi
h may be interesting in its own right. This

s
heme is essentially the same as the one of Naor et al. [30℄, but our analysis is more re�ned:

�rst, for the single-parameter setting, we need a weaker intra
tability assumption, and se
ond,

we provide an analysis of the s
heme in the dual-threshold setting, whi
h is not 
onsidered by

Naor et al.

We stress that su
h dual-parameter threshold s
hemes provide stronger se
urity guarantees

than single-parameter threshold s
hemes, and they are in fa
t more 
hallenging to 
onstru
t

and to analyze. Our notion of a dual-threshold s
heme should not be 
onfused with a weaker

notion that sometimes appears in the literature (e.g., [29℄). For this weaker notion, there is

a parameter l > t su
h that the re
onstru
tion algorithm requires l shares, but the se
urity

3



guarantee for a given signature/
oin is lost if just a single honest party reveals a share. In our

notion, no se
urity is lost unless k � t honest parties reveal their shares.

1.2 Related Work

The problem of asyn
hronous Byzantine agreement has a long history|see the survey of the

early Byzantine era by Chor and Dwork [15℄ and the more re
ent a

ount by Berman and

Garay [7℄. A fundamental result in this area is the impossibility result of Fis
her, Lyn
h,

and Paterson [23℄ that rules out the existen
e of a deterministi
 proto
ol. The proto
ols of

Rabin [32℄ and Ben-Or [6℄ are the �rst probabilisti
 proto
ols to over
ome this limitation.

Bra
ha's proto
ol improves the resilien
e to the maximum t < n=3 [9℄.

We shall 
ompare our proto
ol to others in the literature on several 
riteria. For these

purposes, it is suÆ
ient to 
onsider the proto
ols of Bra
ha [9℄, Toueg [40℄, Berman and Garay

(BG) [7℄, and Canetti and Rabin (CR) [12℄ (see [10℄ for details). The proto
ols of Toueg [40℄

and BG [7℄ 
an be seen as des
endants of Rabin's pioneering work [32℄, whereas Bra
ha [9℄ and

CR [12℄ 
an be viewed as des
endants of Ben-Or's initial randomized algorithm [6℄; CR [12℄

also builds on ideas of Feldman and Mi
ali [21℄ and Bra
ha [9℄.

These proto
ols vary in a number of aspe
ts:

Resilien
e: how many parties may be 
orrupted. The theoreti
al maximum is t < n=3, whi
h

is attained by our proto
ol, as well as the proto
ols of Toueg [40℄, Bra
ha [9℄, and CR [12℄.

The BG proto
ol [7℄ handles t < n=5.

Time Complexity: the (expe
ted) number of basi
 steps before a de
ision is rea
hed. Our

proto
ol, like those of Toueg [40℄, Bra
ha [12℄, and BG [7℄, has 
omplexity O(1). The

proto
ol of Bra
ha [9℄ takes exponential time when t = �(n) and expe
ted 
onstant time

if t = O(

p

n).

Message Complexity: the (expe
ted) number of messages sent during the proto
ol. Our

proto
ol has a message 
omplexity of O(n

2

). All the other proto
ols in the literature

with an O(n

2

) bound, su
h as BG [7℄, do not a
hieve optimal resilien
e; the proto
ol of

Toueg [40℄ has a message 
omplexity of O(n

3

), and the CR proto
ol [12℄ has a message


omplexity that is 
ompletely impra
ti
al (although polynomial in n), whi
h renders it to

be of theoreti
al interest only.

Bit Complexity: the (expe
ted) total bit-length of messages during the proto
ol. Our proto-


ol has a bit 
omplexity of O(n

2

l), where l is the length of an RSA signature; the proto
ol

of BG [7℄ has a bit 
omplexity of O(n

2

l

0

), where l

0

is the length of a message authenti
a-

tion 
ode (typi
ally signi�
antly less than the size of an RSA signature); in pra
ti
e, the

di�eren
e between l and l

0

is probably irrelevant, as in both 
ases, all messages easily �t

into a single IP pa
ket.

Computational Complexity: the (expe
ted) amount of 
omputation that must be done lo-


ally by ea
h party. Most papers on this subje
t do not make very 
areful estimates of


omputational 
omplexity; however, a useful distin
tion 
an be made between proto
ols,

like ours and Toueg's [40℄, that use (typi
ally expensive) publi
-key 
ryptography, and

those that do not [9℄, [7℄, [12℄.

Dealer: the degree to whi
h a single trusted \dealer" is involved. Possible models are

no dealer: No dealer is needed [9℄, [12℄.

4



system setup dealer: A dealer is needed to set up the initial states of parties, but

after this, an e�e
tively unlimited number of transa
tions may be pro
essed. Our

proto
ol is of this type; depending on how se
ure 
hannels are implemented, many

other proto
ols in the literature may impli
itly fall in this 
ategory as well.

Rabin dealer: Ea
h transa
tion requires data that was pre-distributed by the dealer

among the parties [7℄ [40℄. All of this data must be stored by ea
h pro
essor and this

pre-distributed data will be exhausted eventually. Moreover, the parties must agree

on whi
h data to use for a given transa
tion. These drawba
ks render su
h proto
ols

unsuitable for many appli
ations that require a transa
tion pro
essing servi
e.

Computation Model: the 
omputational power of the adversary. It 
an be

bounded: The adversary is 
onstrained to perform only polynomial-time 
omputations

and one must make spe
i�
 assumptions about the intra
tability of 
ertain problems.

This is our model, as well as the (impli
it) model of Toueg [40℄.

unbounded: The adversary is 
omputationally unlimited. In this 
ase, one must expli
-

itly assume that 
hannels are se
ure (authenti
ated, and perhaps private), sin
e they


annot be se
ured by 
ryptography [9℄, [7℄, [12℄.

Corruption Model: how the adversary de
ides to 
orrupt parties. This 
an be

stati
: The adversary's 
hoi
e of who to 
orrupt is independent of the network traÆ
.

This is our model.

adaptive: The adversary 
hooses who to 
orrupt adaptively, based upon the network

traÆ
 so far and the internal states of previously 
orrupted parties. This is the

model of CR [12℄, and is also impli
it in the others [9℄, [40℄, [7℄.

Many authors like to 
lassify agreement proto
ols based on whether they use digital sig-

natures or not. We do not see this distin
tion as a fundamental one, although the use of

signatures de�nitely impa
ts the 
omputation model, and 
an also a�e
t the 
omputational

and bit 
omplexity.

There is also a line of resear
h whi
h attempts to avoid the use of probabilisti
 proto
ols,

despite FLP [23℄. For example, Reiter [34℄, adapts the approa
h of \failure dete
tors" [13, 41℄

used in the asyn
hronous 
rash-failure model to the asyn
hronous Byzantine setting. Reiter

presents a proto
ol for atomi
 broad
ast, from whi
h a Byzantine agreement proto
ol 
an be


onstru
ted (see [19℄). However, as Reiter's proto
ol is deterministi
, the FLP result implies

that it 
an not solve the Byzantine agreement problem. In fa
t, Reiter's proto
ol ensures


orre
tness only as long as the network is suitably well behaved|it is easily defeated by an

adversary that 
ompletely 
ontrols network s
heduling. Indeed, it has been re
ognized that

extending the modular failure dete
tor approa
h to the Byzantine model is diÆ
ult (e.g., [20℄).

Reiter's work [34℄, and related work, seems to be motivated by the fa
t that probabilisti


agreement proto
ols have a reputation for being impra
ti
al. However, it is not at all 
lear if

this reputation is well justi�ed|we know of no empiri
al, 
omparative studies in the literature.

Mu
h of the 
onfusion arises be
ause almost all of the work on probabilisti
 proto
ols has

been done by resear
hers who have been more interested in theoreti
ally attra
tive, rather than

pra
ti
al results. Their ground rules might not even 
onsider our use of random ora
les in the

proto
ol analysis as legal.

From an eÆ
ien
y point of view, the strongest 
riti
ism of our new proto
ol is its use of

somewhat expensive publi
-key 
ryptography. However, even this 
an be avoided using an

5



\optimisti
" approa
h that uses publi
-key 
ryptography only as a \fall ba
k" me
hanism when

some parties 
rash or misbehave, or the network is temporarily slower than expe
ted. Su
h

an approa
h, developed in a 
ompanion paper [26℄, seems an attra
tive alternative to failure

dete
tors.

1.3 Motivation

Mali
ious atta
ks are in
reasingly 
ommon on the Internet. Despite the growing relian
e of

industry and government on ele
troni
 forms of 
ondu
ting business, system failures resulting

from atta
ks or software errors are reported almost daily. Fault-tolerant distributed systems

have long been re
ognized as a possible solution, but only few of the many theoreti
al solutions

are appli
able to the Internet setting. For one thing, syn
hronization is diÆ
ult to guarantee

on the Internet and one must therefore work in an asyn
hronous model. Another diÆ
ulty is

that one fa
es potentially mali
ious adversaries, who seem to get some bene�t from disrupting

or, even more so, from subverting a servi
e. This motivates the 
hoi
e of the Byzantine failure

model as the only one that 
an guarantee servi
e integrity under 
learly de�ned assumptions

that in
lude mali
ious atta
ks.

Our initial motivation for studying this problem was to design a distributed trusted third-

party servi
e to be used in the fair ex
hange and 
ontra
t signing proto
ols presented by Asokan,

Shoup, and Waidner [1℄. In that setting, the trusted third party must make a de
ision to either

\abort" or \resolve" a transa
tion at the request of one of the parties involved in the ex
hange.

If one distributes the servi
e so as to weaken the ne
essary trust assumption, a Byzantine

agreement problem has to be solved. As atta
ks may very well involve the administrators

of the 
omputing systems implementing the distributed servi
e, the servi
e should 
onsist of

independently administered and geographi
ally distributed 
omputing systems.

The trusted third-party servi
e is a prime appli
ation for the method of in
reasing the

se
urity guarantees of a servi
e by fault-tolerant 
omputation; we believe that this will be
ome

an important paradigm for se
ure Internet appli
ations.

1.4 Organization

In x2 we introdu
e our asyn
hronous system model using 
ryptography. x3 
ontains the def-

inition of Byzantine agreement and x4 introdu
es the 
ryptographi
 primitives of threshold

signatures and 
oin-tossing proto
ols. The agreement proto
ol based on these primitives is

presented in x5 and our 
oin-tossing proto
ol is given in x6.

2 Basi
 System Model

In this se
tion, we des
ribe our basi
 system model for an arbitrary multi-party proto
ol where a

number of parties 
ommuni
ate over an inse
ure, asyn
hronous network, and where an adversary

may 
orrupt some of the parties. Our point of view is 
omputational : all parties and the

adversary are 
onstrained to perform only feasible 
omputations. This di�ers substantially

from the traditional se
ure 
hannels model in distributed 
omputing, but is ne
essary and

also appropriate for the 
ryptographi
 setting (
f. [5, 3, 37℄). Although authenti
ation and

digital signatures have been used before in agreement proto
ols, there seem to be no adequate


ryptographi
 formal models [28, p. 115℄.

There are n parties, P

1

; : : : ; P

n

, an adversary that is allowed to 
orrupt up to t of them,

and a trusted \dealer."

6



We adopt the stati
 
orruption model, wherein the adversary must de
ide whom to 
orrupt

at the very outset of the exe
ution of the system. Let f , with 0 � f � t, denote the number of

parties the adversary a
tually 
orrupts. These 
orrupted parties are simply absorbed into the

adversary: we do not regard them as system 
omponents.

Alternatively, one 
ould adopt the adaptive 
orruption model, wherein the adversary 
an

adaptively 
hoose whom to 
orrupt as the atta
k is ongoing, based on information it has a
-


umulated so far. We do not adopt this model, mainly be
ause we would no longer know how

to obtain the pra
ti
al, provably se
ure implementations of the ne
essary 
ryptographi
 prim-

itives. Moreover, the stati
 
orruption model is not too unrealisti
; in pra
ti
e, the 
hoi
e of

whom to 
orrupt is usually based on fa
tors totally independent of the network traÆ
 (e.g.,

whi
h system administrator is not 
areful, or 
an perhaps be bribed or bla
kmailed).

There is an initial setup phase, in whi
h the trusted dealer generates the initial state for

all n parties. The adversary obtains the initial state of the 
orrupted parties, but obtains no

information about the initial state given to the honest parties.

Our network is inse
ure and asyn
hronous, i.e., the adversary has 
omplete 
ontrol of the

network: he may s
hedule the delivery of messages as he wishes, and may modify or insert

messages as he wishes. As su
h, the network is merely absorbed into the adversary in our formal

model. The honest parties are 
ompletely passive: they simply rea
t to requests made by the

adversary and maintain their internal state between requests. More pre
isely, after the initial

setup phase, the adversary performs a number of basi
 steps. One basi
 step works as follows:

the adversary delivers a message to an honest party P

i

; then P

i

updates its internal state, and


omputes a set of response messages; these messages are then given to the adversary. These

response messages perhaps indi
ate to whom these messages should be sent, and the adversary

may 
hoose to deliver these messages faithfully at some time. In general, the adversary 
hooses

to deliver any messages it wants, or no messages at all; we may sometimes impose additional

restri
tions on the adversary's behavior, however.

Of 
ourse, the 
omputations made by the honest parties, the adversary, and the dealer

should all be representable as probabilisti
, polynomial-time 
omputations. To be 
ompletely

formal, we would have to introdu
e a se
urity parameter, and all the 
omputations would be

bounded by a polynomial in this se
urity parameter. In parti
ular, the parameter n and the

number of basi
 steps performed by the adversary are polynomially bounded in the se
urity

parameter.

The dealing algorithm and the algorithm exe
uted lo
ally by ea
h P

i

to 
ompute its new

state and response messages are spe
i�
 to the parti
ular proto
ol. The dealing algorithm is

given the se
urity parameter, as well as n and t as input. Note that the adversary 
hooses n

and t, but a spe
i�
 proto
ol might impose its own restri
tions (e.g., t < n=3). We 
an assume

that the dealer in
ludes these values, as well as the index i, in the initial state of P

i

.

3 De�nition of Byzantine Agreement

We now de�ne the operation and requirements of a Byzantine agreement proto
ol, in the 
ontext

of our basi
 system model des
ribed in the previous se
tion. There are n parties, P

1

; : : : ; P

n

,

and the adversary may 
orrupt some number f of them, where f � t.

As mentioned in the introdu
tion, we want an agreement proto
ol that 
an be used to

implement a transa
tion pro
essing servi
e. To this end, we assume that ea
h de
ision to be

made is asso
iated with a unique transa
tion identi�er TID . The value TID is an arbitrary bit

string whose stru
ture and meaning are determined by a parti
ular appli
ation. In our formal

7



model, it is simply 
hosen by the adversary.

The adversary may deliver a message to P

i

of the form

(TID ; a
tivate; initial value);

where initial value is in f0; 1g. When the adversary has delivered su
h a message, we say that

P

i

is a
tivated on TID with the given initial value. After a
tivating P

i

on TID , the adversary

may then deliver messages to P

i

of the form

(TID ; j; i; : : : );

where 1 � j � n denotes the index of the sender.

Upon re
eiving a message involving TID , P

i

updates its internal state, and generates a set

(possibly empty) of response messages. Ea
h of this messages is either of the form

(TID ; i; j; : : : );

where 1 � j � n denotes the index of the re
ipient, or

(TID ; de
ide;�nal value);

where �nal value 2 f0; 1g. In the latter 
ase, we say that P

i

de
ides �nal value for TID . We

require that P

i

makes a de
ision for a given TID at most on
e. However, the adversary may


ontinue to deliver messages involving TID after P

i

has made a de
ision for TID .

For simpli
ity, we shall assume that messages are authenti
ated, whi
h means that we restri
t

the adversary's behavior as follows: if P

i

and P

j

are honest, and the adversary delivers a message

M of the form (TID ; i; j; : : : ) to P

j

, then the message M must have been generated by P

i

at

some prior point in time. It is reasonable to build authenti
ation into our model be
ause it 
an

be implemented very 
heaply using standard symmetri
-key 
ryptographi
 te
hniques.

The three basi
 properties that an agreement proto
ol must satisfy are agreement, termina-

tion, and validity.

Agreement. Any two honest parties that de
ide a value for a parti
ular TID must de
ide

the same value. More pre
isely, it is 
omputationally infeasible for an adversary to make two

honest parties de
ide on di�erent values.

Termination. The traditional approa
h in the distributed 
omputing literature is to assume

that all messages between honest parties are \eventually" delivered, and then to de�ne the

termination 
ondition to be that all honest parties \eventually" de
ide (with probability 1). In

formalizing these de�nitions, one 
onsiders in�nite runs of a proto
ol; however, in the 
ompu-

tationally bounded setting, this simply does not work.

We present here a workable de�nition in our setting that 
aptures the intuition that to the

extent the adversary delivers messages among honest parties, the honest parties qui
kly de
ide.

Although the intuition is fairly 
lear, one has to be 
areful with the details. For us, termination


onsists of two 
onditions: deadlo
k freeness and fast 
onvergen
e.

Deadlo
k freeness. It is infeasible for the adversary to 
reate a situation where for some TID

there are some honest parties who are not de
ided, yet all honest parties have been

a
tivated on TID , and all messages relating to this TID generated by honest parties have

been delivered.

8



Fast Convergen
e. For s = 1; 2; : : : ; let TID

s

denote the sth transa
tion identi�er introdu
ed

by the adversary, and de�ne X

s

to be the total number of messages generated by all

honest parties that relate to TID

s

. Then there exist �xed polynomials B and C in n and

in the se
urity parameter su
h that for all s � 1 and m � 1,

Pr[X

s

� mB + C℄ � 2

�m

+ �;

where � is a fun
tion that is negligible in the se
urity parameter (i.e., it vanishes faster

than any polynomial in the se
urity parameter). Note that while � may depend on the

adversary, the polynomials B and C depend only on the agreement proto
ol, and are

independent of the adversary.

The deadlo
k freeness property rules out trivial proto
ols that never de
ide and never gen-

erate any messages to be delivered. The fast 
onvergen
e property ensures timely 
onvergen
e,

provided the adversary delivers messages; also, the fa
t that B and C are independent of the ad-

versary rules out trivial proto
ols that never de
ide but always generate \make work" messages

to be delivered.

Our de�nition of termination implies that an adversary 
ould qui
kly make all honest parties

make a de
ision on a given TID (with probability exponentially 
lose to 1) by delivering a (�xed)

polynomially bounded number of messages; however, we do not for
e the adversary to do so|see

[10℄ for a de�nition more along these lines.

Validity. If all honest parties that are a
tivated on a given TID have the same initial value,

then any honstest party that de
ides must de
ide this value.

This is the usual de�nition of validity in the literature. A weaker notion of validity may

sometimes be more appropriate for parti
ular appli
ations. For instan
e, initial values may


ome with validating data (e.g., a digital signature) that establishes the \validity" of a value in

a parti
ular 
ontext. One 
ould then simply require that an honest party may only de
ide on a

value for whi
h it has the a

ompanying validating data|even if all honest parties start with

0, they may still de
ide on 1 if they obtain the 
orresponding validating data for 1 during the

agreement proto
ol.

4 Cryptographi
 Primitives

4.1 Digital Signatures

A digital signature s
heme [25℄ 
onsists of a key generation algorithm, a signing algorithm, and

a veri�
ation algorithm. The key generation algorithm takes as input a se
urity parameter, and

outputs a publi
 key/private key pair (PK;SK). The signing algorithm takes as input SK and

a message M , and produ
es a signature �. The veri�
ation algorithm takes PK, a message M ,

and a putative signature �, and outputs either a

ept or reje
t. A signature is 
onsidered

valid if and only if the veri�
ation algorithm a

epts. All signatures produ
ed by the signing

algorithm must be valid.

The basi
 se
urity property is unforgeability. The atta
k s
enario is as follows. An adversary

is given the publi
 key, and then requests the signatures on a number of messages, where the

messages themselves may depend on previously obtained signatures. If at the end of the atta
k,

the adversary 
an output a message M and a valid signature � on M , su
h that M was not

one of the messages whose signature he requested, then the adversary has su

essfully forged

a signature. Se
urity means that it is 
omputationally infeasible for an adversary to forge a

signature.

9



4.2 Threshold Signatures

In this se
tion, we de�ne the notion of an (n; k; t) dual-threshold signature s
heme. The basi


idea is that there are n parties, up to t of whi
h may be 
orrupted. The parties hold shares

of the se
ret key of a signature s
heme, and may generate shares of signatures on individual

messages|k signature shares are both ne
essary and suÆ
ient to 
onstru
t a signature. The

only requirement on k is that t < k � n � t. As mentioned in the introdu
tion, previous

investigations into threshold signatures have only 
onsidered the 
ase k = t+ 1. Also, we shall

require that the generation and veri�
ation of signature shares is 
ompletely non-intera
tive|

this is essential in the appli
ation of asyn
hronous Byzantine agreement.

A threshold signature s
heme is a multi-party proto
ol, and we shall work in our basi


system model for su
h proto
ols (see x2).

The A
tion. The dealer generates a publi
 key PK along with se
ret key shares SK

1

; : : : ;SK

n

,

a global veri�
ation key VK, and lo
al veri�
ation keys VK

1

; : : : ;VK

n

. The initial state in-

formation for party P

i


onsists of the se
ret key SK

i

along with the publi
 key and all the

veri�
ation keys.

After the dealing phase, the adversary submits signing requests to the honest parties for

messages of his 
hoi
e. Upon su
h a request, party P

i


omputes a signature share for the given

message using SK

i

.

Combining Signature Shares. The threshold signature s
heme also spe
i�es three algo-

rithms: a signature veri�
ation algorithm, a share veri�
ation algorithm, and a share 
ombining

algorithm.

� The signature veri�
ation algorithm takes as input a message and a signature (generated

by the share-
ombining algorithm), along with the publi
 key, and determines if the

signature is valid.

� The share veri�
ation algorithm takes as input a message, a signature share on that

message from a party P

i

, along with PK, VK, and VK

i

, and determines if the signature

share is valid.

� The share 
ombining algorithm takes as input a message and k valid signature shares on

the message, along with the publi
 key and (perhaps) the veri�
ation keys, and (hopefully)

outputs a valid signature on the message.

Se
urity Requirements. The two basi
 se
urity requirements are robustness and non-

forgeability.

Robustness. If it 
omputationally infeasible for an adversary to produ
e k valid signature

shares su
h that the output of the share 
ombining algorithm is not a valid signature.

Non-forgeability. It is 
omputationally infeasible for the adversary to output a valid signa-

ture on a message that was submitted as a signing request to less than k � t honest parties.

Note that if the adversary a
tually 
orrupts f < t parties, the relevant threshold is still k � t

and not k � f .

Implementation. Note that our de�nition of a threshold signature s
heme admits the trivial

implementation of just using a set of k ordinary signatures. For relatively small values of n,

10



this may very well be a perfe
tly adequate implementation. (Su
h a s
heme 
annot be used to

implement the 
oin-tossing s
heme, however.)

The s
heme of Shoup [38℄ is well suited to our purposes and is mu
h more eÆ
ient than the

above trivial implementation when n gets large. Ea
h signature share is essentially the size of an

RSA signature, and shares 
an be quite eÆ
iently 
ombined to obtain a 
ompletely standard

RSA signature. The signature shares 
ome with \proofs of 
orre
tness." These 
orre
tness

proofs are not mu
h bigger than RSA signatures; however, in an eÆ
ient implementation, one

would most likely omit these proofs (and their veri�
ation), and only provide them if they are

expli
itly requested, presumably by a party whose share 
ombination algorithm has failed to

produ
e a 
orre
t signature.

4.3 Threshold Coin-Tossing S
heme

In this se
tion, we de�ne the notion of an (n; k; t) dual-threshold 
oin-tossing s
heme. The basi


idea is that there are n parties, up to t of whi
h may be 
orrupted. The parties hold shares of

an unpredi
table fun
tion F mapping the name C (whi
h is an arbitrary bit string) of a 
oin

to its value F (C) 2 f0; 1g. The parties may generate shares of a 
oin|k 
oin shares are both

ne
essary and suÆ
ient to 
onstru
t the value of the parti
ular 
oin. The only requirement on

k is that t < k � n� t, analogous to threshold signatures. The generation and veri�
ation of


oin shares are 
ompletely non-intera
tive; we work in the basi
 system model of x2.

The A
tion. The dealer generates se
ret key shares SK

1

; : : : ;SK

n

, and veri�
ation keys

VK;VK

1

; : : : ;VK

n

. The initial state information for party P

i


onsists of the se
ret key SK

i

along with all the veri�
ation keys. The se
ret keys impli
itly de�ne a fun
tion F mapping

names to f0; 1g.

After the dealing phase, the adversary submits reveal requests to the honest parties for 
oins

of his 
hoi
e. Upon su
h a request, party P

i

outputs a 
oin share for the given 
oin, whi
h it


omputes using SK

i

.

Combining Coin Shares. The 
oin-tossing s
heme also spe
i�es two algorithms: a share

veri�
ation algorithm, and a share 
ombining algorithm.

� The share veri�
ation algorithm takes as input the name of a 
oin, a share on this 
oin

from a party P

i

, along with VK and VK

i

, and determines if the 
oin share is valid.

� The share 
ombining algorithm takes as input a the name C of a 
oin and k valid shares

of C, along with (perhaps) the veri�
ation keys, and (hopefully) outputs F (C).

Se
urity Requirements. The two basi
 se
urity requirements are robustness and unpre-

di
tability.

Robustness. It is 
omputationally infeasible for an adversary to produ
e a name C and k

valid shares of C su
h that the output of the share 
ombining algorithm is not F (C).

Unpredi
tability. An adversary's advantage in the following game is negligible. The adver-

sary intera
ts with the honest parties as above, and at the end of this intera
tion, he outputs

a name C that was submitted as a reveal request to fewer than k � t honest parties, and a bit

b 2 f0; 1g. The adversary's advantage in this game is de�ned to be the distan
e from 1=2 of

the probability that F (C) = b. Note that if the adversary a
tually 
orrupts f < t parties, the

relevant threshold is still k � t and not k � f .

11



Unpredi
tability for Sequen
es of Coins. The unpredi
tability property above implies

the following more general unpredi
tability property that we a
tually need in order to analyze

agreement proto
ols.

Consider an adversary A that intera
ts with the honest parties as above, but as it intera
ts,

it makes a sequen
e of predi
tions, predi
ting b

i

2 f0; 1g as the value of 
oin C

i

for i = 1; : : : ; q

for some q. A's predi
tions are interleaved with reveal requests in an arbitrary way, subje
t

only to the restri
tion that at the point in time that A predi
ts the value of 
oin C

i

, it has

made fewer than k � t reveal requests for C

i

. After it predi
ts C

i

, it may make as many reveal

requests for C

i

as it wishes. For 1 � i � q, let e

i

= F (C

i

) � b

i

. This de�nes the error ve
tor

(e

1

; : : : ; e

q

).

The unpredi
tability property above implies that the error ve
tor is 
omputationally in-

distinguishable from a random bit-ve
tor of length q. This means that there is no e�e
tive

statisti
al test that distinguishes the error ve
tor from a random ve
tor|the important point

is that we are 
onsidering statisti
al tests that re
eive only the test ve
tor as input, and no

additional information about A's intera
tion in the above game.

A proof of this 
an be adapted easily from the work of Beaver and So [2℄, although their

setting is slightly di�erent. The idea of the proof runs as follows. By the universality of the next-

bit test [42℄, if the error ve
tor were distinguishable from a random ve
tor, then there would

be an algorithm D that on input j, 
hosen randomly from f1; : : : ; qg, along with e

1

; : : : ; e

j�1

,

outputs a value that 
orre
tly predi
ts e

j

with probability signi�
antly better than 1=2. Given

this D and A, we 
onstru
t a new adversary A

0

that predi
ts a single 
oin, 
ontradi
ting the

unpredi
tability assumption. A

0

runs as follows. First, it 
hooses j 2 f1; : : : ; qg at random.

Next, it runs A as a subroutine. Just after A predi
ts 
oin C

i

for 1 � i < j, A

0

immediately

makes a suÆ
ient number of reveal requests to obtain F (C

i

), and hen
e e

i

. A

0

stops A just

after A makes its predi
tion b

j

for the value of F (C

j

), and then A

0


omputes

^

b

j

= D(j; e

1

; : : : ; e

j�1

)� b

j

as its predi
tion for F (C

j

) and halts. It is easy to see that

^

b

j

is 
orre
t with probability

signi�
antly better than 1=2.

Given the pseudo-random quality of the error ve
tor, one 
an now easily derive a number of

simple statisti
al properties. The only we will need is this: for any 1 � m � q, the probability

that A 
orre
tly predi
ts the �rstm 
oins is bounded by 2

�m

+�, where � is a negligible fun
tion

in the se
urity parameter.

Implementation. Note that an implementation of a 
oin-tossing s
heme 
an be obtained

from any non-intera
tive threshold signature s
heme with the property that there is only one

valid signature per message, su
h as the RSA-based s
heme mentioned earlier [38℄. Then a


ryptographi
 hash of the signature 
an be used as the value of the 
oin. It is straightforward

to see that in the random ora
le model, this yields a se
ure 
oin-tossing s
heme. It also allows

an implementation to \optimisti
ally" skip the veri�
ation tests unless ne
essary.

In x6 we present also a dire
t implementation of a 
oin-tossing s
heme based on the DiÆe-

Hellman problem.

12



5 Asyn
hronous Byzantine Agreement

5.1 Proto
ol ABBA

We now present our proto
ol ABBA, whi
h stands for Asyn
hronous Binary Byzantine Agree-

ment. As usual there are n parties P

1

; : : : ; P

n

, up to t of whi
h may be 
orrupted by the

adversary. We denote by f the a
tual number of parties 
orrupted.

The proto
ol uses an (n; n� t; t) threshold signature s
heme S and an (n; t+1; t) threshold

signature s
heme S

0

(see x4.2), as well as an (n; n � t; t) threshold 
oin-tossing s
heme (see

x4.3). Let F (C) denote the value of 
oin with name C.

Overview. For a given transa
tion identi�er TID , ea
h party P

i

has an initial value V

i

2

f0; 1g, and the proto
ol pro
eeds in rounds r = 1; 2; : : : The �rst round starts with a spe
ial

pre-pro
essing step:

0. Ea
h party sends its initial value to all other parties signed with an S

0

-signature share.

On re
eiving 2t+1 su
h votes, ea
h party 
ombines the signature shares of the value with

the simple majority (i.e., at least t + 1 votes) to a threshold signature of S

0

. This value

will be the value used in the �rst pre-vote. (This step is not ne
essary if the input values

are a

ompanied by validating data.)

After that ea
h round 
ontains four basi
 steps:

1. Ea
h party 
asts a pre-vote for a value b 2 f0; 1g. These pre-votes must be justi�ed by

an appropriate S-threshold signature, and must be a

ompanied by a valid S-signature

share on an appropriate message.

2. After 
olle
ting n�t valid pre-votes, ea
h party 
asts a main-vote v 2 f0; 1; abstaing. As

with pre-votes, these main-votes must be justi�ed by an appropriate S-threshold signa-

ture, and must be a

ompanied by a valid S-signature share on an appropriate message.

3. After 
olle
ting n� t valid main-votes, ea
h party examines these votes. If all votes are

for a value b 2 f0; 1g, then the party de
ides b for TID , but 
ontinues to parti
ipate in

the proto
ol for one more round. Otherwise, the party pro
eeds.

4. The value of 
oin (TID ; r) is revealed, whi
h may be used in the next round.

We now pro
eed with the details of the proto
ol given in Figure 1. We �rst introdu
e some


onventions.

Re
all that a message from P

i

to P

j

has the form (TID ; i; j; payload), so that in spe
ifying

a message, we will only spe
ify the payload if ne
essary; the values of TID , i, and j are implied

from the 
ontext.

The pre-vote and main-vote messages have to 
ontain a proper justi�
ation, whi
h 
onsists

of threshold signatures on 
olle
ted votes as follows.

Pre-Vote Justi�
ation. In round r = 1, party P

i

's pre-vote is the majority of the pre-

pro
essing votes from step 0. There must be at least t+ 1 votes for the same value b 2 f0; 1g

(although this b might not be unique if n > 3t + 1). For the justi�
ation, a party sele
ts

t+1 su
h votes, and 
ombines the a

ompanying S

0

-signature shares to obtain an S

0

-threshold

signature on the message

(TID ; pre-pro
ess; b):

13



In rounds r > 1, a pre-vote for b may be justi�ed in two ways:

� either with an S-threshold signature on the message

(TID ; pre-vote; r � 1; b);

we 
all this a hard pre-vote for b;

� or with an S-threshold signature on the message

(TID ; main-vote; r � 1; abstain)

for the pre-vote b = F (TID ; r � 1); we 
all this a soft pre-vote for b.

Intuitively, a hard pre-vote expresses P

i

's preferen
e for b based on eviden
e for preferen
e b in

round r � 1, whereas a soft pre-vote is just a vote for the value of the 
oin, based eviden
e of


on
i
ting votes in round r � 1. The threshold signatures are obtained from the 
omputations

in previous rounds (see below). We assume that the justi�
ation indi
ates whether the pre-vote

is hard or soft.

Main-Vote Justi�
ation. A main-vote v in round r is one of the values f0; 1; abstaing and,

like pre-votes, a

ompanied by a justi�
ation as follows:

� If among the n� t justi�ed round-r pre-votes 
olle
ted by P

i

there is a pre-vote for 0 and

a pre-vote for 1, then P

i

's main-vote v for round r is abstain. The justi�
ation for this

main-vote 
onsists of the justi�
ations for the two 
on
i
ting pre-votes.

� Otherwise, P

i

has 
olle
ted n � t justi�ed pre-votes for some b 2 f0; 1g in round r, and

sin
e ea
h of these 
omes with a valid S-signature share on the message

(TID ; pre-vote; r; b);

party P

i


an 
ombine these shares to obtain a valid S-threshold signature on this message.

Party P

i

's main-vote v in this 
ase is b, and its justi�
ation is this threshold signature.

The proto
ol is shown in Figure 1.

5.2 Analysis

Theorem 1 Assuming a se
ure threshold signature s
heme, a se
ure threshold 
oin-tossing

s
heme, and a se
ure message authenti
ation 
ode, proto
ol ABBA solves asyn
hronous Byzan-

tine agreement for n > 3t.

The rest of this se
tion outlines a proof of this theorem. We have to show validity, agreement,

and termination.

It is straightforward to 
he
k that proto
ol ABBA satis�es the validity 
ondition.

We prove agreement and termination assuming the adversary 
orrupts exa
tly f = t parties;

we then dis
uss the modi�
ations ne
esarry for the 
ase that f < t.

Fix a given TID and 
onsider the pre-votes 
ast by honest parties in round r � 1. Be
ause

n > 3t, there will be at most one value b 2 f0; 1g that garners at least n � 2t su
h pre-votes,

and we de�ne �

r

to be this value (if it exists), and otherwise we say that �

r

is unde�ned. We

say that �

r

is de�ned at the point in the game at whi
h time suÆ
ient pre-votes are 
ast.

14



Proto
ol ABBA for party P

i

with initial value V

i

0. Pre-Pro
essing. Generate an S

0

-signature share on the message

(TID ; pre-pro
ess; V

i

):

and send a message of the form

(pre-pro
ess; V

i

; signature share)

to all parties.

Colle
t 2t+ 1 proper pre-pro
essing messages.

Repeat the following steps 1{4 for rounds r = 1; 2; : : : .

1. Pre-Vote. If r = 1, let b be the simple majority of the re
eived pre-pro
essing votes.

Otherwise, if r > 1, sele
t n� t properly justi�ed main-votes from round r � 1 and let

b =

8

>

<

>

:

0 if there is a main-vote for 0;

1 if there is a main-vote for 1;

F (TID ; r � 1) if all main-votes are abstain:

Produ
e an S-signature share on the message

(TID ; pre-vote; r; b):

Produ
e the 
orresponding justi�
ation (see text) and send to all parties a message of

the form

(pre-vote; r; b; justi�
ation; signature share):

2. Main-Vote. Colle
t n� t properly justi�ed round-r pre-vote messages. Consider these

pre-votes and let

v =

8

>

<

>

:

0 if there are n� t pre-votes for 0;

1 if there are n� t pre-votes for 1;

abstain if there are pre-votes for 0 and 1:

Produ
e an S-signature share on the message

(TID ; main-vote; r; v):

Produ
e the 
orresponding justi�
ation (see text) and send to all parties a message of

the form

(main-vote; r; v; justi�
ation; signature share):

3. Che
k for de
ision. Colle
t n� t properly justi�ed main-votes of round r. If these

are all main-votes for b 2 f0; 1g, then de
ide the value b for TID , and 
ontinue for one

more round (up to step 2). Otherwise, simply pro
eed.

4. Common 
oin. Generate a 
oin share of the 
oin (TID ; r), and send to all parties a

message of the form

(
oin; r; 
oin share):

Colle
t n � t shares of the 
oin (TID ; r), and 
ombine these shares to get the value

F (TID ; r) 2 f0; 1g.

Figure 1: Asyn
hronous Binary Byzantine Agreement

15



Lemma 2 For r � 1, the following holds (with all but negligible probability):

(a) if an honest party 
asts or a

epts a main-vote of b 2 f0; 1g in round r, then �

r

is de�ned

and �

r

= b;

(b) if an honest party 
asts or a

epts a hard pre-vote for b 2 f0; 1g in round r + 1, then �

r

is de�ned and �

r

= b;

(
) if an honest party 
asts or a

epts a main-vote of abstain in round r + 1, then �

r

is

de�ned and �

r

= 1� F (TID ; r);

(d) if r is the �rst round in whi
h any honest party de
ides, then all honest parties that

eventually de
ide, de
ide the same value in either round r or r + 1.

Proof. To prove (a), suppose an honest party a

epts a main-vote of b 2 f0; 1g in round r. To

be justi�ed, this main-vote must be a

ompanied by a valid threshold signature on the message

(pre-vote;TID ; r; b):

By the non-forgeability property of the signature s
heme, this implies that at least (n� t)� t =

n � 2t honest parties 
ast pre-votes for b. Thus, �

r

has been de�ned and is equal to b. That

proves (a).

Part (b) now simply follows from the fa
t that a hard pre-vote for b 2 f0; 1g in round r+1

is justi�ed by the same threshold signature as the main-vote from round r in part (a).

Now for part (
). A main vote of abstain in round r + 1 must be a

ompanied by a

justi�
ation for a pre-vote of 0 in round r+1 and a justi�
ation for pre-vote of 1 in round r+1.

These pre-votes 
annot both be soft pre-votes, and so one of these two pre-votes must be hard.

It follows from (b) that this hard pre-vote must be for �

r

, and hen
e the other pre-vote must

be a soft pre-vote for 1� �

r

, and hen
e F (TID ; r) = 1� �

r

. Part (
) now follows.

Now for part (d). Suppose some party P

i

de
ides b 2 f0; 1g in some round r, and no party

has de
ided in a previous round. Then in this round, P

i

a

epted n � t main-votes for b. By

part (a), we must have b = �

r

. So any other honest party who de
ides in round r must also

de
ide �

r

.

Of the n� t main-votes for b that P

i

a

epted, at least n� 2t 
ame from honest parties who

main-voted b, and sin
e n > 3t, fewer than (n� t)� t = n� 2t signature shares on the message

(main-vote; r; abstain)

have been or ever will be generated by honest parties. This in turn implies that a soft pre-vote

in round r + 1 
annot be justi�ed. Thus, the only justi�able pre-votes in round r + 1 are hard

pre-votes, and by part (b), these must be hard pre-votes of b. Finally, this implies that the

only justi�able main-votes in round r + 1 are main-votes for b, and so all main-votes a

epted

by honest parties in round r + 1 will be main-votes for b. 2

Agreement follows from part (d). All that remains is termination. For this, we need to show

deadlo
k freeness and fast 
onvergen
e.

Deadlo
k freeness is fairly straightforward. It is 
lear that honest parties will pro
eed from

one round to the next, provided the adversary delivers enough messages between the honest

parties. The deadlo
k freeness property follows from this observation, along with part (d) of

Lemma 2, and the fa
t that parties who de
ide play along for one more round.

16



All that remains is fast 
onvergen
e. Lemma 2 says that in a given round r + 1, for r � 1,

the set of n� t main-votes a

epted by an honest party in step 3 
ontains votes for either 0 or

1, but not both. Also, su
h an honest party will de
ide in this round unless it a

epts at least

one main-vote of abstain. But if it does a

ept an abstain, then �

r

= 1 � F (TID ; r). The

key to showing fast termination will be to show that the value of �

r

is determined before the


oin (TID ; r) is revealed.

By \�

r

is determined at a parti
ular point in time," we mean the following: There is an

eÆ
ient pro
edureW that takes as input a trans
ript des
ribing the adversary's intera
tion with

the system up to the given point in time, along with TID and r � 1, and outputs w 2 f0; 1; ?g.

Furthermore, if the output is w 6= ?, then if �

r

ever be
omes de�ned, it must be equal to w (or

at least, it should be 
omputationally infeasible for an adversary to 
ause this not to happen).

By \the 
oin (TID ; r) is revealed at a parti
ular point in time," we mean the point in time

when an honest party generates the (n� 2t)-th share of the 
oin (TID ; r).

Lemma 3 There is a fun
tion W that determines �

r

, as des
ribed above, su
h that for all

r � 1, either �

r

is determined before 
oin (TID ; r) is revealed, or �

r+1

is determined before

(TID ; r + 1) is revealed.

Proof. Suppose an honest party P

i

is just about to generate the (n�2t)-th share of 
oin (TID ; r)

in step 1 of round r + 1. As su
h, there is a set S of at least n � 2t honest parties who have

also rea
hed step 1 of round r + 1; this set in
ludes P

i

, who is just about to release its share;

all other members of S have already released their share. Almost all round r + 1 pre-votes for

the parties in S, as well as their justi�
ations, are 
ompletely determined at this point, even

if these votes have not a
tually been 
ast. The only ex
eption are soft pre-votes, whose a
tual

value is equal to F (TID ; r), whi
h is not yet known.

If any party in S is going to 
ast a hard pre-vote for b 2 f0; 1g, then by Part (b) of Lemma 2,

b is the only possible value for �

r

. Thus, �

r

is already determined|in fa
t, it is already de�ned.

Otherwise, all parties in S are going to 
ast soft pre-votes, 
hoosing the value F (TID ; r)

as the value of their round r + 1 pre-vote. It follows that the only possible value for �

r+1

is

F (TID ; r). Therefore, immediately after P

i

reveals its share of 
oin (TID ; r), �

r+1

is deter-

mined. Moreover, the 
oin (TID ; r+1) has not yet been revealed at this point, sin
e fewer than

n� 2t honest parties have gone beyond step 2 of round r+ 1. Thus, �

r+1

is determined before


oin (TID ; r + 1) is revealed. 2

This lemma, together with the unpredi
tability property of sequen
es of 
oins des
ribed in

x4.3, implies that the probability that any honest party advan
es more than 2r + 1 rounds is

bounded by 2

�r

+ �, where � is negligible. Fast 
onvergen
e follows immediately. Note that to

make this argument rigorous, we need to be able to expli
itly \predi
t" (as in x4.3) the desired

value of the 
oin (1� �

r

) that would delay termination, whi
h is why we de�ned the notion of

\determining" �

r

as we did.

We remark that if the �rst honest parties to de
ide make their de
ision in round r, there

may be others who make their de
ision in round r + 1. The \early de
iders" play along for

round r + 1, whi
h allows the \late de
iders" to de
ide. However, the \late de
iders" do not

\know" they are \late," so they attempt to play along for round r + 2. What happens is that

in round r + 2, the proto
ol will \�zzle out": the \late de
iders" will simply end up waiting in

step 2 for n� t messages that never arrive. This \�zzling out" does indeed satisfy our te
hni
al

de�nition of termination, and is perhaps adequate for some settings; however, a more \de
isive"

termination 
an be a
hieved with a minor modi�
ation of the proto
ol (see x5.3.1).

17



That 
ompletes the proof of agreement and termination for the 
ase f = t. We now sket
h

the di�eren
es for the 
ase f < t. There are some annoying te
hni
al problems that arise in

this 
ase be
ause there is a gap between the number (n� 2t) of shares for a signature (or 
oin)

that need to be revealed before the signature (or 
oin) may be re
onstru
tible, and the number

(n � t � f) of shares that need to be revealed before it 
an be re
onstru
ted. We 
ould have

de�ned se
urity for threshold signatures (
oins) so that this gap did not exist; however, su
h a

de�nition would be stronger than ne
essary.

Consider an adversary that 
hooses to 
orrupt a set C of f < t parties. Let H denote the set

of n�f honest parties. We 
hoose an arbitrary subset Q � H of t�f \quasi-
orrupted" parties.

The idea is that for the purposes of agreement and termination, parties in Q are 
onsidered to

be honest, but for the purposes of the threshold signature and 
oin-tossing s
hemes, parties in

Q are 
onsidered 
orrupted.

What this means 
on
retely is that for parties in Q, their se
ret shares for the threshold

s
hemes are revealed to the adversary, but they otherwise behave as honest players with whi
h

the adversary intera
ts in the usual way. The main impli
ation of this is that a parti
ular

signature or 
oin 
an be re
onstru
ted if and only if at least n� 2t parties in HnQ 
ontribute

shares. We also modify the proof as follows:

� In formulating the de�nition of �

r

, we only 
ount votes 
ast by members of HnQ.

� In formulating the notion of pre
isely when a 
oin is revealed, we only 
ount shares

generated by parties in HnQ.

With these modi�
ations, Lemmas 2 and 3 
an easily be proved, exa
tly as stated, and from

these, agreement and termination follow.

5.3 Variations

Proto
ol ABBA 
an be modi�ed several ways.

5.3.1 A
hieving Stronger Termination

As we brie
y dis
ussed in x5.2, some parties may terminate an instan
e of a proto
ol in a

rather inde
isive way: although they have made a de
ision, they do not know that they 
an

stop; instead, they will simply blo
k, waiting forever for messages that will never arrive. It is

not 
lear to what extent this is a serious problem, but anyway, it is easy to modify proto
ol

ABBA so that parties not only de
ide, but terminate in a more de
isive fashion. Namely, when

a party P

i

de
ides b for TID in round r, it 
an 
ombine the signature shares that it has on hand

to 
onstru
t an S-threshold signature on the message

(main-vote;TID ; r; b):

It then sends this threshold signature to all parties and stops. Thus, P

i


an e�e
tively erase all

data in its internal state relevant to TID , and ignore all future in
oming messages relating to

TID . Any other party that is waiting for some other message, but instead re
eives the above

threshold signature, 
an also de
ide b for TID , send the this signature to all parties, and then

stop.

Note that without this modi�
ation, the threshold signatures on main-votes other than

abstain are a
tually not used by the proto
ol, and 
ould be deleted.

18



5.3.2 Using an (n; t+ 1; t) Coin-Tossing S
heme

Instead of an (n; n� t; t) 
oin-tossing s
heme, one 
ould use an (n; t+1; t) 
oin-tossing s
heme,

provided that before a party releases its share of a 
oin, it sends an appropriate \ready" message

to all parties, and waits for n � t 
orresponding \ready" messages from other parties. These

\ready" messages do not need to be signed|the authenti
ity of the messages is enough. This

modi�
ation in
reases the 
ommuni
ation 
omplexity of the proto
ol; however, an (n; t + 1; t)


oin 
an be implemented based on weaker intra
tability assumptions than and (n; n� t; t) 
oin,

and so the tradeo� may be worthwhile in some settings.

5.3.3 Further Optimizations

Although we have strived to make our proto
ol as eÆ
ient as possible, we have omitted several

optimizations in order to simplify the presentation; they are des
ribed next. Some of them lead

to a more 
exible, \pipelined" exe
ution of the proto
ol steps.

1. A party need not generate a share of the 
oin in round r+1 if it did not a

ept a main-vote

of abstain in round r.

2. A party need not wait for n� t 
oin shares, unless it is going to 
ast a soft pre-vote, or

unless it needs to later verify the justi�
ation of a soft pre-vote (it 
an always wait for

them later if needed).

3. A party need not wait for n� t pre-votes on
e it a

epts two 
on
i
ting pre-votes, sin
e

then it is already in a position to 
ast a main-vote of abstain.

4. A party need not wait for n � t main-votes if it has already a

epted a main-vote for

something other than abstain, sin
e then it is already in a position to move to the next

round; however, the de
ision 
ondition should be 
he
ked before the end of the next round.

5. It is possible to 
ollapse steps 4 and 1; however, some adjustments must be made to

a

ommodate the threshold signature. If a party wants to make a hard pre-vote for b, he

should generate signature shares on two messages that say \I pre-vote b if the 
oin is 0"

and \I pre-vote b if the 
oin is 1." If a party wants to make a soft pre-vote, he should

generate signature shares on two messages that say \I pre-vote 0 if the 
oin is 0" and \I

pre-vote 1 if the 
oin is 1." This allows the parties to make soft pre-votes and reveal the


oin 
on
urrently, while also making it possible to 
ombine both soft and hard pre-votes

for the same value to 
onstru
t the ne
essary main-vote justi�
ations. This variation

redu
es the round and message 
omplexity by a fa
tor of 1=3, at the expense of somewhat

higher 
omputational and bit 
omplexity; it also pre
ludes variations (1) and (2) above.

6 A DiÆe-Hellman Based Threshold Coin-Tossing S
heme

6.1 The S
heme

In this se
tion, we present an (n; k; t) threshold 
oin-tossing s
heme based on the DiÆe-Hellman

problem. We work with a group G of large prime order q.

At a high level, our s
heme works as follows. The value of a 
oin C is obtained by �rst

hashing C to obtain ~g 2 G, then raising ~g to a se
ret exponent x

0

2 Z

q

to obtain ~g

0

2 G, and

�nally hashing ~g

0

to obtain the value F (C) 2 f0; 1g. The se
ret exponent x

0

is distributed

19



among the parties using Shamir's se
ret sharing s
heme [35℄. Ea
h party P

i

holds a share x

i

of x

0

; its share of F (C) is ~g

x

i

, along with a \validity proof." Shares of 
oin C 
an then be


ombined to obtain ~g

0

by interpolation \in the exponent."

In more detail, we need 
ryptographi
 hash fun
tions

H : f0; 1g

�

! G;

H

0

: G

6

! Z

q

;

H

00

: G! f0; 1g:

No spe
i�
 requirements are made for these hash fun
tions, but they will be modeled as random

ora
les in the analysis. (H

00


ould a
tually be implemented in the standard model, e.g., by the

inner produ
t of the bit representation of the input with a random bit string, 
hosen on
e and

for all by the dealer.)

In the dealing phase, the dealer sele
ts k 
oeÆ
ients of a random polynomial f(T ) over Z

q

of degree less than k and a random generator g of G. For 0 � i � n, let x

i

= f(i) and g

i

= g

x

i

.

Party P

i

's se
ret key SK

i

is x

i

, and his veri�
ation key VK

i

is g

i

. The global veri�
ation key

VK 
onsists of a des
ription of G (whi
h in
ludes q) and g.

For a general 
oin C 2 f0; 1g

�

, we let ~g = H(C), and ~g

i

= ~g

x

i

for 0 � i � n. The value of

the 
oin is F (C) = H

00

(~g

0

).

For a given 
oin C, party P

i

's share of the 
oin is ~g

i

, together with a \validity proof," i.e., a

proof that log

~g

~g

i

= log

g

g

i

. This proof is the well-known intera
tive proof of equality of dis
rete

logarithms (see [14℄), 
ollapsed into a non-intera
tive proof using the Fiat-Shamir heuristi
 [22℄.

A valid proof is a pair (
; z) 2 Z

q

� Z

q

, su
h that


 = H

0

(g; g

i

; h; ~g; ~g

i

;

~

h); (1)

where

h = g

z

=g




i

and

~

h = ~g

z

=~g




i

:

Party P

i


omputes su
h a proof by 
hoosing s 2 Z

q

at random, 
omputing h = g

s

,

~

h = ~g

s

, and

obtaining 
 as in (1) and z = s+ x

i


.

Now, for any set S of k distin
t points in Z

q

, and any � 2 Z

q

, there exist elements �

S

�;�

2 Z

q

for � 2 S, su
h that

X

�2S

f(�)�

S

�;�

= f(�):

These �-values are independent of f(T ), and 
an be 
omputed from the formulas for Lagrange

interpolation.

To 
ombine a set of valid shares f~g

�

: � 2 Sg, one simply 
omputes

~g

0

=

Y

�2S

~g

�

S

�;0

�

:

The value of the 
oin is then 
omputed as H

00

(~g

0

).

6.2 Se
urity Analysis

To analyze this s
heme, we need to 
onsider the following two intra
tability assumptions.

For g; g

0

; ĝ 2 G, de�ne DH(g; g

0

; ĝ) to be ĝ

0

= ĝ

x

0

, provided that g

0

= g

x

0

. Also, de�ne

DHP(g; g

0

; ĝ; ĝ

0

) to be 1 if ĝ

0

= DH(g; g

0

; ĝ), and 0 otherwise.

20



The Computational DiÆe-Hellman (CDH) assumption is the assumption that DH is hard

to 
ompute|that is, there is no eÆ
ient, probabilisti
 algorithm that 
omputes DH 
orre
tly

(with negligible error probability) on all inputs.

The De
isional DiÆe-Hellman (DDH) assumption is the assumption that DHP is hard to


ompute|that is, there is no eÆ
ient, probabilisti
 algorithm that 
omputes DHP 
orre
tly

(with negligible error probability) on all inputs.

Theorem 4 In the random ora
le model, the above 
oin-tossing s
heme is se
ure under the

CDH assumption, if k = t+ 1, and under the DDH assumption otherwise.

We need to show robustness and unpredi
tability.

The robustness of the s
heme follows from the soundness of the intera
tive proof of equality

of dis
rete logarithms, and the fa
t that in the random ora
le model, the 
hallenges 
 are the

output of the random ora
le H

0

.

To prove unpredi
tability, we assume we have an adversary that 
an predi
t a 
oin with

non-negligible probability, and show how to use this adversary to eÆ
iently 
ompute DH (if

k = t+ 1) or DHP (if k > t+ 1).

We �rst make a few simplifying assumptions:

� the adversary 
orrupts parties P

k�t

; : : : ; P

k�1

;

� before the adversary requests the share of a 
oin or predi
ts a 
oin, he has already evalu-

ated H at that 
oin's name;

� the adversary evaluates H su

essively at distin
t points C

1

; : : : ; C

l

, where l is a bound

that is �xed for a given adversary and se
urity parameter.

We denote the \target" 
oin, whi
h the adversary attempts to predi
t, by

^

C, and we let ĝ =

H(

^

C), and ĝ

i

= ĝ

x

i

for 0 � i � n.

We may assume that

^

C is equal to C

s

, where s is randomly 
hosen from f1; : : : ; lg. Should

the adversary makes k � t requests to reveal shares of

^

C, we simply stop the game. This

de
reases the adversary's advantage by a fa
tor of l.

Case 1: k = t + 1. Here is how we use this adversary to 
ompute DH. By the results of

Shoup [36℄, it is suÆ
ient to 
onstru
t an algorithm that on random inputs g; g

0

; ĝ 2 G, outputs

a list of group elements that 
ontains ĝ

0

= DH(g; g

0

; ĝ) with non-negligible probability.

We simulate the adversary's intera
tion with the 
oin-tossing s
heme as follows. By our

simplifying assumption, the adversary 
orrupts parties P

1

; : : : ; P

t

. As the notation suggests,

we use the given value g in the global veri�
ation key. We 
hoose x

1

; : : : ; x

t

2 Z

q

at random,

set S = f0; 1; : : : ; tg, 
ompute g

i

= g

x

i

for 1 � i � t, and let for t+ 1 � i � n

g

i

=

k�1

Y

j=0

g

�

S

j;i

j

:

In the random ora
le model, the adversary expli
itly queries the random ora
les H;H

0

;H

00

.

The simulator we are building is responsible for the operation of these ora
les|it sees the

queries made by the adversary, and is free to respond as it wishes so long as its responses are


onsistent and 
orre
tly distributed. As the notation suggests, we use the given ĝ as the value

of H at

^

C (whatever

^

C turns out to be).

21



For 
oins C 6=

^

C, we 
hoose r 2 Z

q

at random and 
ompute ~g = g

r

. The simulator uses the

given ~g as the value of H at C. We then 
ompute the shares ~g

i

= g

r

i

for t + 1 � i � n. The

validity proofs 
an be simulated using standard zero-knowledge te
hniques [24℄.

For the target 
oin

^

C, we never have to 
ompute any shares for honest parties, sin
e k = t+1.

When the adversary terminates, we simply output the list of queries made by the adversary to

the ora
le H

00

.

It is easily veri�ed that the above simulation is nearly perfe
t: the adversary's view has

pre
isely the same distribution as in the a
tual intera
tion (but there is a
tually a negligible

probability that the zero-knowledge simulations fail).

Observe that be
ause the adversary has a non-negligible advantage in predi
ting the value of

the 
oin

^

C, he must evaluate H

00

at the 
orresponding point ĝ

0

with non-negligible probability.

That 
ompletes the proof of Theorem 4 for Case 1.

Case 2: k > t+ 1. The above simulation does not work in this 
ase be
ause we would have to

simulate the shares of the 
oin

^

C from up to k� t� 1 > 0 honest parties. Moreover, we 
annot

view these honest parties as �xed: the adversary may adaptively sele
t whi
h honest parties


ontribute shares of the target 
oin. So instead, in this 
ase, we use the adversary to 
ompute

DHP. A
tually, it is suÆ
ient [39, 31℄ to 
onstru
t a statisti
al test that distinguishes between

the following two distributions

D: the set of tuples

(g; g

0

; : : : ; g

k�t�1

; ĝ; ĝ

0

; : : : ; ĝ

k�t�1

);

where g; g

0

; : : : ; g

k�t�1

2 G are random, and ĝ = g

r

; ĝ

0

= g

r

0

; : : : ; ĝ

k�t�1

= g

r

k�t�1

for

randomly 
hosen r 2 Z

q

; and

R: the set of tuples

(g; g

0

; : : : ; g

k�t�1

; ĝ; ĝ

0

; : : : ; ĝ

k�t�1

);

where g; g

0

; : : : ; g

k�t�1

; ĝ

0

; : : : ; ĝ

k�t�1

2 G are random.

Our statisti
al test works as follows. Let

(g; g

0

; : : : ; g

k�t�1

; ĝ; ĝ

0

; : : : ; ĝ

k�t�1

)

be the input \test" tuple. We simulate the adversary's intera
tion with the 
oin-tossing s
heme

as follows. By our simplifying assumption, the adversary 
orrupts P

k�t

; : : : ; P

k�1

. As the

notation suggests, we simulate the dealer by using the given g in the global veri�
ation key,

and g

1

; : : : ; g

k�t�1

in the lo
al veri�
ation keys for P

1

; : : : ; P

k�t�1

. We 
hoose the se
ret keys

x

k�t

; : : : ; x

k�1

2 Z

q

at random and set S = f0; 1; : : : ; k � 1g; for k � t � i � k � 1, 
ompute

g

i

= g

x

i

, and for k � i � n, let

g

i

=

k�1

Y

j=0

g

�

S

j;i

j

:

Also, we will use the given ĝ as the output of H at

^

C, and the given ĝ

1

; : : : ; ĝ

k�t�1

as the


orresponding shares of

^

C from parties P

1

; : : : ; P

k�t�1

. We will use the given ĝ

0

to 
ompute

the shares of

^

C from the other honest parties as follows: for k� t � i � k� 1, set ĝ

i

= ĝ

x

i

, and

for k � i � n, 
ompute

ĝ

i

=

k�1

Y

j=0

ĝ

�

S

j;i

j

:

22



Whenever the adversary requests a share of

^

C for an honest party P

i

, we give the adversary

ĝ

i

as 
omputed above.

We reveal the shares of a 
oin C 6=

^

C just as in Case 1: we 
hoose r 2 Z

q

at random, and


ompute ~g = g

r

and ~g

i

= g

r

i

for all 1 � i < k � t and k � i � n.

For both target and non-target 
oins, we 
onstru
t simulated proofs of 
orre
tness just as

in Case 1.

At the end of the adversary's intera
tion, when the adversary makes a predi
tion b 2 f0; 1g

for the value of 
oin

^

C, we output X = 1 if b = H

00

(ĝ

0

), and X = 0 otherwise.

We 
laim that this algorithm is an e�e
tive statisti
al test distinguishing D from R.

Observe that if the test tuple 
omes from D, the above simulation is nearly perfe
t, and so

the probability that X = 1 is essentially the adversary's advantage, whi
h di�ers from 1=2 by

a non-negligible amount.

Therefore, it will suÆ
e to show that if the test tuple 
omes from R, the probability that

X = 1 di�ers from 1=2 by a negligible amount. But this follows from the observation that for

any sequen
e of distin
t indi
es i

1

; : : : ; i

k�t�1

belonging to honest parties, the group elements

ĝ

0

; ĝ

i

1

; : : : ; ĝ

i

k�t�1

are independent and uniformly distributed. Thus, after revealing any k � t� 1 of the \shares"

ĝ

i

belonging to honest parties, then 
onditioning on the adversary's view, the value of ĝ

0

is still

random, and hen
e the probability that X = 1 in this 
ase is essentially 1=2.

This 
ompletes the proof of Theorem 4 for Case 2. Note that in the proof of this, we do

not need to model H

00

as a random ora
le|we only need the property that for random ĝ

0

2 G,

H

00

(ĝ

0

) has a nearly uniform distribution. For example, using the Entropy Smoothing Theorem

[27, Chapter 8℄, one 
ould implement H

00

as the inner produ
t of the bit representation of ĝ

0

with a random bit string (
hosen on
e and for all by the dealer). Also note that using the same

proof te
hnique, one 
ould prove the unpredi
tability property using the threshold k�f instead

of k � t, where f is the a
tual number of 
orrupted parties.

Referen
es

[1℄ N. Asokan, V. Shoup, and M. Waidner. Optimisti
 fair ex
hange of digital signatures.

To appear in IEEE Journal on Sele
ted Areas in Communi
ation. Revised version of IBM

Resear
h Report RZ 2976 and extended abstra
ts in Pro
. Euro
rypt '98 and Pro
. IEEE

Symp. on Se
urity and Priva
y (1998), O
t. 1999.

[2℄ D. Beaver and N. So. Global, unpredi
table bit generation without broad
ast. In T. Helle-

seth, editor, Advan
es in Cryptology: EUROCRYPT '93, volume 765 of Le
ture Notes in

Computer S
ien
e. Springer, 1994.

[3℄ M. Bellare, R. Canetti, and H. Kraw
zyk. A modular approa
h to the design and analysis

of authenti
ation and key ex
hange proto
ols. In Pro
. 30th Annual ACM Symposium on

Theory of Computing (STOC), 1998.

[4℄ M. Bellare and P. Rogaway. Random ora
les are pra
ti
al: A paradigm for designing eÆ-


ient proto
ols. In Pro
. 1st ACM Conferen
e on Computer and Communi
ations Se
urity,

1993.

23



[5℄ M. Bellare and P. Rogaway. Provably se
ure session key distribution|the three party 
ase.

In Pro
. 27th Annual ACM Symposium on Theory of Computing (STOC), pages 57{66,

1995.

[6℄ M. Ben-Or. Another advantage of free 
hoi
e: Completely asyn
hronous agreement pro-

to
ols. In Pro
. 2nd ACM Symposium on Prin
iples of Distributed Computing (PODC),

1983.

[7℄ P. Berman and J. A. Garay. Randomized distributed agreement revisited. In Pro
. 23th

International Symposium on Fault-Tolerant Computing (FTCS-23), pages 412{419, 1993.

[8℄ C. Boyd. Publi
-key 
ryptography and re-usable shared se
rets. In H. Baker and F. Piper,

editors, Cryptography and Coding, pages 241{246. Clarendon Press, 1989.

[9℄ G. Bra
ha. An asyn
hronous [(n � 1)=3℄-resilient 
onsensus proto
ol. In Pro
. 3rd ACM

Symposium on Prin
iples of Distributed Computing (PODC), pages 154{162, 1984.

[10℄ R. Canetti. Studies in Se
ure Multiparty Computation and Appli
ations. PhD thesis,

Weizmann Institute of S
ien
e, 1996.

[11℄ R. Canetti and S. Goldwasser. An eÆ
ient threshold publi
-key 
ryptosystem se
ure against

adaptive 
hosen-
iphertext atta
k. In J. Stern, editor, Advan
es in Cryptology: EURO-

CRYPT '99, volume 1592 of Le
ture Notes in Computer S
ien
e, pages 90{106. Springer,

1999.

[12℄ R. Canetti and T. Rabin. Fast asyn
hronous Byzantine agreement with optimal resilien
e.

In Pro
. 25th Annual ACM Symposium on Theory of Computing (STOC), pages 42{51,

1993.

[13℄ T. D. Chandra and S. Toueg. Unreliable failure dete
tors for reliable distributed systems.

Journal of the ACM, 43(2):225{267, 1996.

[14℄ D. Chaum and T. P. Pedersen. Wallet databases with observers. In E. F. Bri
kell, editor,

Advan
es in Cryptology: CRYPTO '92, volume 740 of Le
ture Notes in Computer S
ien
e,

pages 89{105. Springer-Verlag, 1993.

[15℄ B. Chor and C. Dwork. Randomization in Byzantine agreement. In S. Mi
ali, editor,

Randomness and Computation, volume 5 of Advan
es in Computing Resear
h, pages 443{

497. JAI Press, 1989.

[16℄ R. A. Croft and S. P. Harris. Publi
-key 
ryptography and re-usable shared se
rets. In

H. Baker and F. Piper, editors, Cryptography and Coding, pages 189{201. Clarendon Press,

1989.

[17℄ Y. Desmedt. So
iety and group oriented 
ryptography: A new 
on
ept. In C. Pomeran
e,

editor, Advan
es in Cryptology: CRYPTO '87, volume 293 of Le
ture Notes in Computer

S
ien
e, pages 120{127. Springer, 1988.

[18℄ Y. Desmedt and Y. Frankel. Threshold 
ryptosystems. In G. Brassard, editor, Advan
es

in Cryptology: CRYPTO '89, volume 435 of Le
ture Notes in Computer S
ien
e, pages

307{315. Springer, 1990.

24



[19℄ D. Dolev, R. Reis
huk, and H. R. Strong. Early stopping in Byzantine agreement. Journal

of the ACM, 37(4):720{741, O
t. 1990.

[20℄ A. Doudou, B. Garbinato, R. Guerraoui, and A. S
hiper. Muteness failure dete
tors:

Spe
i�
ation and implementation. In J. Hlavi
ka, E. Maehle, and A. Patari
za, editors,

Pro
. 3rd European Dependable Computing Conferen
e (EDCC-3), volume 1667 of Le
ture

Notes in Computer S
ien
e, pages 71{87. Springer, 1999.

[21℄ P. Feldman and S. Mi
ali. An optimal probabilisti
 proto
ol for syn
hronous Byzantine

agreement. SIAM Journal on Computing, 26(4):873{933, Aug. 1997.

[22℄ A. Fiat and A. Shamir. How to prove yourself: Pra
ti
al solutions to identi�
ation and

signature problems. In A. M. Odlyzko, editor, Advan
es in Cryptology: CRYPTO '86,

volume 263 of Le
ture Notes in Computer S
ien
e, pages 186{194. Springer, 1987.

[23℄ M. J. Fis
her, N. A. Lyn
h, and M. S. Paterson. Impossibility of distributed 
onsensus

with one faulty pro
ess. Journal of the ACM, 32(2):374{382, Apr. 1985.

[24℄ S. Goldwasser, S. Mi
ali, and C. Ra
ko�. The knowledge 
omplexity of intera
tive proof

systems. SIAM Journal on Computing, 18(1):186{208, Feb. 1989.

[25℄ S. Goldwasser, S. Mi
ali, and R. L. Rivest. A digital signature s
heme se
ure against

adaptive 
hosen-message atta
ks. SIAM Journal on Computing, 17(2):281{308, Apr. 1988.

[26℄ K. Kursawe. Optimisti
 asyn
hronous Byzantine agreement. Manus
ript, 1999.

[27℄ M. Luby. Pseudorandomness and Cryptographi
 Appli
ations. Prin
eton University Press,

1996.

[28℄ N. A. Lyn
h. Distributed Algorithms. Morgan Kaufmann, San Fran
is
o, 1996.

[29℄ S. Mi
ali and R. Sidney. A simple method for generating and sharing pseudo-random

fun
tions, with appli
ations to 
lipper-like key es
row systems. In D. Coppersmith, editor,

Advan
es in Cryptology: CRYPTO '95, volume 963 of Le
ture Notes in Computer S
ien
e,

pages 185{196. Springer, 1995.

[30℄ M. Naor, B. Pinkas, and O. Reingold. Distributed pseudo-random fun
tions and KDCs. In

J. Stern, editor, Advan
es in Cryptology: EUROCRYPT '99, volume 1592 of Le
ture Notes

in Computer S
ien
e. Springer, 1999.

[31℄ M. Naor and O. Reingold. Number-theoreti
 
onstru
tions of eÆ
ient pseudo-random

fun
tions. In Pro
. 38th IEEE Symposium on Foundations of Computer S
ien
e (FOCS),

1997.

[32℄ M. O. Rabin. Randomized Byzantine generals. In Pro
. 24th IEEE Symposium on Foun-

dations of Computer S
ien
e (FOCS), pages 403{409, 1983.

[33℄ T. Rabin. A simpli�ed approa
h to threshold and proa
tive RSA. In H. Kraw
zyk, editor,

Advan
es in Cryptology: CRYPTO '98, volume 1462 of Le
ture Notes in Computer S
ien
e.

Springer, 1998.

[34℄ M. K. Reiter. A se
ure group membership proto
ol. IEEE Transa
tions on Software

Engineering, 22(1):31{42, Jan. 1996.

25



[35℄ A. Shamir. How to share a se
ret. Communi
ations of the ACM, 22:612{613, 1979.

[36℄ V. Shoup. Lower bounds for dis
rete logarithms and related problems. In W. Fumy, editor,

Advan
es in Cryptology: EUROCRYPT '97, volume 1233 of Le
ture Notes in Computer

S
ien
e. Springer, 1997.

[37℄ V. Shoup. On formal models for se
ure key ex
hange. Resear
h Report RZ 3120, IBM

Resear
h, 1999. revision 4, available from http://www.shoup.net.

[38℄ V. Shoup. Pra
ti
al threshold signatures. In B. Preneel, editor, Advan
es in Cryptology:

EUROCRYPT 2000, Le
ture Notes in Computer S
ien
e. Springer, 2000. (to appear).

[39℄ M. Stadler. Publi
ly veri�able se
ret sharing. In U. Maurer, editor, Advan
es in Cryptology:

EUROCRYPT '96, volume 1233 of Le
ture Notes in Computer S
ien
e, pages 190{199.

Springer, 1996.

[40℄ S. Toueg. Randomized Byzantine agreements. In Pro
. 3rd ACM Symposium on Prin
iples

of Distributed Computing (PODC), pages 163{178, 1984.

[41℄ R. van Renesse, K. P. Birman, and S. Ma�eis. Horus: A 
exible group 
ommuni
ation

system. Communi
ations of the ACM, 39(4):76{83, Apr. 1996.

[42℄ A. C. Yao. Theory and appli
ations of trapdoor fun
tions. In Pro
. 23rd IEEE Symposium

on Foundations of Computer S
ien
e (FOCS), pages 80{91, 1982.

26


