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Abstrat

Byzantine agreement requires a set of parties in a distributed system to agree on a value

even if some parties are orrupted. A new protool for Byzantine agreement in a ompletely

asynhronous network is presented that makes use of ryptography, spei�ally of threshold

signatures and oin-tossing protools. These ryptographi protools have pratial and

provably seure implementations in the \random orale" model. In partiular, a oin-tossing

protool based on the DiÆe-Hellman problem is presented and analyzed.

The resulting asynhronous Byzantine agreement protool is both pratial and theoret-

ially nearly optimal beause it tolerates the maximum number of orrupted parties, runs

in onstant expeted time, has message and ommuniation omplexity lose to the opti-

mum, and uses a trusted dealer only in a setup phase, after whih it an proess a virtually

unlimited number of transations.

The protool is formulated as a transation proessing servie in a ryptographi seurity

model, whih di�ers from the standard information-theoreti formalization and may be of

independent interest.

Keywords: Asynhronous Consensus, Byzantine Faults, Threshold Signatures, Crypto-

graphi Common Coin, Dual-Threshold Shemes.

1 Introdution

The (binary) Byzantine agreement problem is one of the fundamental problems in distributed

fault-tolerant omputing. In this problem, there are n ommuniating parties, at most t of

whih are orrupted. The goal is that all honest (i.e., unorrupted) parties agree on one of two

values that was proposed by an honest party, despite the maliious behavior of the orrupted

parties. This problem has been studied under various assumptions regarding the synhrony of

the network, the privay of the ommuniation hannels, and the omputational power of the

orrupted parties.
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In this paper, we work exlusively in an asynhronous environment with omputationally

bounded parties; our motivation for this is a seure distributed system onneted by the Internet.

Fisher, Lynh, and Paterson (FLP) [23℄ have shown that no deterministi protool an

guarantee agreement even against benign failures in the asynhronous setting. Rabin [32℄ and

Ben-Or [6℄ were the �rst to present protools that overome this limitation by using random-

ization. They assume a ommon oin, a random soure observable by all partiipants but

unpreditable for an adversary; this abstration is used in most subsequent protools for the

asynhronous model.

Our main ontributions are an agreement protool and a ommon oin protool that employ

modern ryptographi tehniques to a far greater extent than has been done previously in the

literature. The basi ryptographi primitives used are a non-interative threshold signature

sheme and a novel threshold, random-aess oin-tossing sheme. We use dual-threshold vari-

ants of both primitives. They an be eÆiently implemented and proved seure under standard

intratability assumptions in the random orale model; in this model, one treats a ryptographi

hash funtion as if it were a blak box ontaining a random funtion.

Taken together, we obtain a new protool for Byzantine agreement that is both pratial

and theoretially nearly optimal with respet to the known lower bounds beause

� it withstands the maximum number of orrupted parties: t < n=3;

� it runs in onstant expeted time;

� the expeted number of messages is O(n

2

);

� eah message is roughly the size of one or two RSA signatures (with the RSA threshold

signature sheme of Shoup [38℄);

� it uses a trusted dealer only in a setup phase, after whih it an proess a virtually

unlimited number of transations.

This last point deserves further elaboration. The initial setup phase of our sheme requires

a trusted dealer to distribute ertain ryptographi keys. One in plae, however, our sheme

provides a transation proessing servie that an handle a virtually unlimited number of re-

quests as generated by lients. Moreover, transations an be proessed onurrently, i.e., a new

instane of the agreement protool an start as soon as a new transation request is generated

by a lient, even if there are extant instanes of the protool for other transations. This is a

non-trivial but important feature for any ryptographi protool beause it rules out so-alled

interleaving attaks.

1.1 Tehniques

Our protool uses non-interative threshold signatures and a random-aess oin-tossing sheme

from ryptography; these have eÆient implementations in the random orale model.

The random orale model was �rst used in a rather informal way by Fiat and Shamir [22℄; it

was �rst formalized and used in other ontexts by Bellare and Rogaway [4℄ and has sine been

used to analyze a number of pratial ryptographi protools. Of ourse, it would be better

not to rely on random orales, as they are essentially a heuristi devie; nevertheless, random

orales are a useful tool|they allow us to design truly pratial protools that admit a seurity

analysis, whih yields very strong evidene for their seurity. As far as we know, our work is

the �rst of its kind to apply the random orale model to the Byzantine agreement problem.
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The notion of a threshold signature sheme was introdued by Desmedt, Frankel and oth-

ers [17, 18, 8, 16℄ and has been widely studied sine then (T. Rabin [33℄ provides new results and

a survey of reent literature). It is a protool for n parties tolerating up to t orruptions, where

eah party holds a share of the signing key and k ooperating parties together an generate

a signature. In a non-interative threshold signature sheme, eah party outputs a signature

share upon request and there is an algorithm to ombine k valid signature shares to onsti-

tute a valid signature. Suh non-interative ombination is used in our agreement protool: a

party an justify its vote for a partiular value by a single threshold signature generated from

k signature shares. This saves a fator n in terms of bit omplexity.

One of the tehnial ontributions of this paper is the notion of a dual-threshold signature

sheme, meaning that k is allowed to be higher than t+ 1. This is in ontrast to all previous

work on threshold signatures in the literature where k = t + 1. A ompanion paper [38℄

presents a pratial dual-threshold signature sheme that is seure in the random orale model

under standard intratability assumptions. The signatures reated by this sheme are ordinary

RSA signatures. Moreover, the sheme is ompletely non-interative, an individual share of a

signature is not muh greater than an ordinary RSA signature, and even for k = t+1, it is the

�rst rigorously analyzed non-interative threshold signature sheme with small shares.

Coin-tossing shemes are used in one form or another in essentially all solutions to the asyn-

hronous Byzantine agreement problem. Many shemes, following Rabin's pioneering work [32℄,

assume that oins are predistributed (and possibly signed) by a dealer using seret-sharing [35℄.

This approah has two problems: �rst, the oins will eventually be exhausted; seond, parties

must somehow assoiate oins with transations, whih itself represents an agreement problem.

Beause of these problems, protools that rely on a \Rabin dealer" are not really suitable for

use as a transation proessing servie as desribed here. The same applies to the oin-tossing

sheme of Beaver and So [2℄, whih essentially gives parties sequential aess to a bounded

number of oins. A \Rabin dealer" has been used in other ontexts as well, e.g., for threshold

deryption [11℄. Our protool also requires a dealer for the initial setup, but yields an arbitrary

polynomial number of oins afterwards.

The beautiful work of Canetti and T. Rabin [12℄ presents a oin-tossing sheme that allows

ommon oins to be generated entirely \from srath," building on the work of Feldman and

Miali for the synhronous model [21℄. Unfortunately, this sheme, while polynomial time, is

ompletely impratial.

Our approah to oin-tossing is to use a random-aess oin-tossing sheme|essentially a

distributed funtion mapping the \name" of a oin to its value. Suh oin-tossing shemes have

been studied before [29, 30℄. We also de�ne the notion of a dual-threshold oin-tossing sheme,

whih is onvenient and does lead to lower ommuniation omplexity, but is not absolutely

neessarily. One ould easily implement suh a oin from the non-interative threshold signature

sheme of Shoup [38℄; however, we present a dual-threshold oin-tossing sheme that is based

on the DiÆe-Hellman problem, the analysis of whih may be interesting in its own right. This

sheme is essentially the same as the one of Naor et al. [30℄, but our analysis is more re�ned:

�rst, for the single-parameter setting, we need a weaker intratability assumption, and seond,

we provide an analysis of the sheme in the dual-threshold setting, whih is not onsidered by

Naor et al.

We stress that suh dual-parameter threshold shemes provide stronger seurity guarantees

than single-parameter threshold shemes, and they are in fat more hallenging to onstrut

and to analyze. Our notion of a dual-threshold sheme should not be onfused with a weaker

notion that sometimes appears in the literature (e.g., [29℄). For this weaker notion, there is

a parameter l > t suh that the reonstrution algorithm requires l shares, but the seurity
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guarantee for a given signature/oin is lost if just a single honest party reveals a share. In our

notion, no seurity is lost unless k � t honest parties reveal their shares.

1.2 Related Work

The problem of asynhronous Byzantine agreement has a long history|see the survey of the

early Byzantine era by Chor and Dwork [15℄ and the more reent aount by Berman and

Garay [7℄. A fundamental result in this area is the impossibility result of Fisher, Lynh,

and Paterson [23℄ that rules out the existene of a deterministi protool. The protools of

Rabin [32℄ and Ben-Or [6℄ are the �rst probabilisti protools to overome this limitation.

Braha's protool improves the resiliene to the maximum t < n=3 [9℄.

We shall ompare our protool to others in the literature on several riteria. For these

purposes, it is suÆient to onsider the protools of Braha [9℄, Toueg [40℄, Berman and Garay

(BG) [7℄, and Canetti and Rabin (CR) [12℄ (see [10℄ for details). The protools of Toueg [40℄

and BG [7℄ an be seen as desendants of Rabin's pioneering work [32℄, whereas Braha [9℄ and

CR [12℄ an be viewed as desendants of Ben-Or's initial randomized algorithm [6℄; CR [12℄

also builds on ideas of Feldman and Miali [21℄ and Braha [9℄.

These protools vary in a number of aspets:

Resiliene: how many parties may be orrupted. The theoretial maximum is t < n=3, whih

is attained by our protool, as well as the protools of Toueg [40℄, Braha [9℄, and CR [12℄.

The BG protool [7℄ handles t < n=5.

Time Complexity: the (expeted) number of basi steps before a deision is reahed. Our

protool, like those of Toueg [40℄, Braha [12℄, and BG [7℄, has omplexity O(1). The

protool of Braha [9℄ takes exponential time when t = �(n) and expeted onstant time

if t = O(

p

n).

Message Complexity: the (expeted) number of messages sent during the protool. Our

protool has a message omplexity of O(n

2

). All the other protools in the literature

with an O(n

2

) bound, suh as BG [7℄, do not ahieve optimal resiliene; the protool of

Toueg [40℄ has a message omplexity of O(n

3

), and the CR protool [12℄ has a message

omplexity that is ompletely impratial (although polynomial in n), whih renders it to

be of theoretial interest only.

Bit Complexity: the (expeted) total bit-length of messages during the protool. Our proto-

ol has a bit omplexity of O(n

2

l), where l is the length of an RSA signature; the protool

of BG [7℄ has a bit omplexity of O(n

2

l

0

), where l

0

is the length of a message authentia-

tion ode (typially signi�antly less than the size of an RSA signature); in pratie, the

di�erene between l and l

0

is probably irrelevant, as in both ases, all messages easily �t

into a single IP paket.

Computational Complexity: the (expeted) amount of omputation that must be done lo-

ally by eah party. Most papers on this subjet do not make very areful estimates of

omputational omplexity; however, a useful distintion an be made between protools,

like ours and Toueg's [40℄, that use (typially expensive) publi-key ryptography, and

those that do not [9℄, [7℄, [12℄.

Dealer: the degree to whih a single trusted \dealer" is involved. Possible models are

no dealer: No dealer is needed [9℄, [12℄.
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system setup dealer: A dealer is needed to set up the initial states of parties, but

after this, an e�etively unlimited number of transations may be proessed. Our

protool is of this type; depending on how seure hannels are implemented, many

other protools in the literature may impliitly fall in this ategory as well.

Rabin dealer: Eah transation requires data that was pre-distributed by the dealer

among the parties [7℄ [40℄. All of this data must be stored by eah proessor and this

pre-distributed data will be exhausted eventually. Moreover, the parties must agree

on whih data to use for a given transation. These drawbaks render suh protools

unsuitable for many appliations that require a transation proessing servie.

Computation Model: the omputational power of the adversary. It an be

bounded: The adversary is onstrained to perform only polynomial-time omputations

and one must make spei� assumptions about the intratability of ertain problems.

This is our model, as well as the (impliit) model of Toueg [40℄.

unbounded: The adversary is omputationally unlimited. In this ase, one must expli-

itly assume that hannels are seure (authentiated, and perhaps private), sine they

annot be seured by ryptography [9℄, [7℄, [12℄.

Corruption Model: how the adversary deides to orrupt parties. This an be

stati: The adversary's hoie of who to orrupt is independent of the network traÆ.

This is our model.

adaptive: The adversary hooses who to orrupt adaptively, based upon the network

traÆ so far and the internal states of previously orrupted parties. This is the

model of CR [12℄, and is also impliit in the others [9℄, [40℄, [7℄.

Many authors like to lassify agreement protools based on whether they use digital sig-

natures or not. We do not see this distintion as a fundamental one, although the use of

signatures de�nitely impats the omputation model, and an also a�et the omputational

and bit omplexity.

There is also a line of researh whih attempts to avoid the use of probabilisti protools,

despite FLP [23℄. For example, Reiter [34℄, adapts the approah of \failure detetors" [13, 41℄

used in the asynhronous rash-failure model to the asynhronous Byzantine setting. Reiter

presents a protool for atomi broadast, from whih a Byzantine agreement protool an be

onstruted (see [19℄). However, as Reiter's protool is deterministi, the FLP result implies

that it an not solve the Byzantine agreement problem. In fat, Reiter's protool ensures

orretness only as long as the network is suitably well behaved|it is easily defeated by an

adversary that ompletely ontrols network sheduling. Indeed, it has been reognized that

extending the modular failure detetor approah to the Byzantine model is diÆult (e.g., [20℄).

Reiter's work [34℄, and related work, seems to be motivated by the fat that probabilisti

agreement protools have a reputation for being impratial. However, it is not at all lear if

this reputation is well justi�ed|we know of no empirial, omparative studies in the literature.

Muh of the onfusion arises beause almost all of the work on probabilisti protools has

been done by researhers who have been more interested in theoretially attrative, rather than

pratial results. Their ground rules might not even onsider our use of random orales in the

protool analysis as legal.

From an eÆieny point of view, the strongest ritiism of our new protool is its use of

somewhat expensive publi-key ryptography. However, even this an be avoided using an
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\optimisti" approah that uses publi-key ryptography only as a \fall bak" mehanism when

some parties rash or misbehave, or the network is temporarily slower than expeted. Suh

an approah, developed in a ompanion paper [26℄, seems an attrative alternative to failure

detetors.

1.3 Motivation

Maliious attaks are inreasingly ommon on the Internet. Despite the growing reliane of

industry and government on eletroni forms of onduting business, system failures resulting

from attaks or software errors are reported almost daily. Fault-tolerant distributed systems

have long been reognized as a possible solution, but only few of the many theoretial solutions

are appliable to the Internet setting. For one thing, synhronization is diÆult to guarantee

on the Internet and one must therefore work in an asynhronous model. Another diÆulty is

that one faes potentially maliious adversaries, who seem to get some bene�t from disrupting

or, even more so, from subverting a servie. This motivates the hoie of the Byzantine failure

model as the only one that an guarantee servie integrity under learly de�ned assumptions

that inlude maliious attaks.

Our initial motivation for studying this problem was to design a distributed trusted third-

party servie to be used in the fair exhange and ontrat signing protools presented by Asokan,

Shoup, and Waidner [1℄. In that setting, the trusted third party must make a deision to either

\abort" or \resolve" a transation at the request of one of the parties involved in the exhange.

If one distributes the servie so as to weaken the neessary trust assumption, a Byzantine

agreement problem has to be solved. As attaks may very well involve the administrators

of the omputing systems implementing the distributed servie, the servie should onsist of

independently administered and geographially distributed omputing systems.

The trusted third-party servie is a prime appliation for the method of inreasing the

seurity guarantees of a servie by fault-tolerant omputation; we believe that this will beome

an important paradigm for seure Internet appliations.

1.4 Organization

In x2 we introdue our asynhronous system model using ryptography. x3 ontains the def-

inition of Byzantine agreement and x4 introdues the ryptographi primitives of threshold

signatures and oin-tossing protools. The agreement protool based on these primitives is

presented in x5 and our oin-tossing protool is given in x6.

2 Basi System Model

In this setion, we desribe our basi system model for an arbitrary multi-party protool where a

number of parties ommuniate over an inseure, asynhronous network, and where an adversary

may orrupt some of the parties. Our point of view is omputational : all parties and the

adversary are onstrained to perform only feasible omputations. This di�ers substantially

from the traditional seure hannels model in distributed omputing, but is neessary and

also appropriate for the ryptographi setting (f. [5, 3, 37℄). Although authentiation and

digital signatures have been used before in agreement protools, there seem to be no adequate

ryptographi formal models [28, p. 115℄.

There are n parties, P

1

; : : : ; P

n

, an adversary that is allowed to orrupt up to t of them,

and a trusted \dealer."

6



We adopt the stati orruption model, wherein the adversary must deide whom to orrupt

at the very outset of the exeution of the system. Let f , with 0 � f � t, denote the number of

parties the adversary atually orrupts. These orrupted parties are simply absorbed into the

adversary: we do not regard them as system omponents.

Alternatively, one ould adopt the adaptive orruption model, wherein the adversary an

adaptively hoose whom to orrupt as the attak is ongoing, based on information it has a-

umulated so far. We do not adopt this model, mainly beause we would no longer know how

to obtain the pratial, provably seure implementations of the neessary ryptographi prim-

itives. Moreover, the stati orruption model is not too unrealisti; in pratie, the hoie of

whom to orrupt is usually based on fators totally independent of the network traÆ (e.g.,

whih system administrator is not areful, or an perhaps be bribed or blakmailed).

There is an initial setup phase, in whih the trusted dealer generates the initial state for

all n parties. The adversary obtains the initial state of the orrupted parties, but obtains no

information about the initial state given to the honest parties.

Our network is inseure and asynhronous, i.e., the adversary has omplete ontrol of the

network: he may shedule the delivery of messages as he wishes, and may modify or insert

messages as he wishes. As suh, the network is merely absorbed into the adversary in our formal

model. The honest parties are ompletely passive: they simply reat to requests made by the

adversary and maintain their internal state between requests. More preisely, after the initial

setup phase, the adversary performs a number of basi steps. One basi step works as follows:

the adversary delivers a message to an honest party P

i

; then P

i

updates its internal state, and

omputes a set of response messages; these messages are then given to the adversary. These

response messages perhaps indiate to whom these messages should be sent, and the adversary

may hoose to deliver these messages faithfully at some time. In general, the adversary hooses

to deliver any messages it wants, or no messages at all; we may sometimes impose additional

restritions on the adversary's behavior, however.

Of ourse, the omputations made by the honest parties, the adversary, and the dealer

should all be representable as probabilisti, polynomial-time omputations. To be ompletely

formal, we would have to introdue a seurity parameter, and all the omputations would be

bounded by a polynomial in this seurity parameter. In partiular, the parameter n and the

number of basi steps performed by the adversary are polynomially bounded in the seurity

parameter.

The dealing algorithm and the algorithm exeuted loally by eah P

i

to ompute its new

state and response messages are spei� to the partiular protool. The dealing algorithm is

given the seurity parameter, as well as n and t as input. Note that the adversary hooses n

and t, but a spei� protool might impose its own restritions (e.g., t < n=3). We an assume

that the dealer inludes these values, as well as the index i, in the initial state of P

i

.

3 De�nition of Byzantine Agreement

We now de�ne the operation and requirements of a Byzantine agreement protool, in the ontext

of our basi system model desribed in the previous setion. There are n parties, P

1

; : : : ; P

n

,

and the adversary may orrupt some number f of them, where f � t.

As mentioned in the introdution, we want an agreement protool that an be used to

implement a transation proessing servie. To this end, we assume that eah deision to be

made is assoiated with a unique transation identi�er TID . The value TID is an arbitrary bit

string whose struture and meaning are determined by a partiular appliation. In our formal
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model, it is simply hosen by the adversary.

The adversary may deliver a message to P

i

of the form

(TID ; ativate; initial value);

where initial value is in f0; 1g. When the adversary has delivered suh a message, we say that

P

i

is ativated on TID with the given initial value. After ativating P

i

on TID , the adversary

may then deliver messages to P

i

of the form

(TID ; j; i; : : : );

where 1 � j � n denotes the index of the sender.

Upon reeiving a message involving TID , P

i

updates its internal state, and generates a set

(possibly empty) of response messages. Eah of this messages is either of the form

(TID ; i; j; : : : );

where 1 � j � n denotes the index of the reipient, or

(TID ; deide;�nal value);

where �nal value 2 f0; 1g. In the latter ase, we say that P

i

deides �nal value for TID . We

require that P

i

makes a deision for a given TID at most one. However, the adversary may

ontinue to deliver messages involving TID after P

i

has made a deision for TID .

For simpliity, we shall assume that messages are authentiated, whih means that we restrit

the adversary's behavior as follows: if P

i

and P

j

are honest, and the adversary delivers a message

M of the form (TID ; i; j; : : : ) to P

j

, then the message M must have been generated by P

i

at

some prior point in time. It is reasonable to build authentiation into our model beause it an

be implemented very heaply using standard symmetri-key ryptographi tehniques.

The three basi properties that an agreement protool must satisfy are agreement, termina-

tion, and validity.

Agreement. Any two honest parties that deide a value for a partiular TID must deide

the same value. More preisely, it is omputationally infeasible for an adversary to make two

honest parties deide on di�erent values.

Termination. The traditional approah in the distributed omputing literature is to assume

that all messages between honest parties are \eventually" delivered, and then to de�ne the

termination ondition to be that all honest parties \eventually" deide (with probability 1). In

formalizing these de�nitions, one onsiders in�nite runs of a protool; however, in the ompu-

tationally bounded setting, this simply does not work.

We present here a workable de�nition in our setting that aptures the intuition that to the

extent the adversary delivers messages among honest parties, the honest parties quikly deide.

Although the intuition is fairly lear, one has to be areful with the details. For us, termination

onsists of two onditions: deadlok freeness and fast onvergene.

Deadlok freeness. It is infeasible for the adversary to reate a situation where for some TID

there are some honest parties who are not deided, yet all honest parties have been

ativated on TID , and all messages relating to this TID generated by honest parties have

been delivered.
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Fast Convergene. For s = 1; 2; : : : ; let TID

s

denote the sth transation identi�er introdued

by the adversary, and de�ne X

s

to be the total number of messages generated by all

honest parties that relate to TID

s

. Then there exist �xed polynomials B and C in n and

in the seurity parameter suh that for all s � 1 and m � 1,

Pr[X

s

� mB + C℄ � 2

�m

+ �;

where � is a funtion that is negligible in the seurity parameter (i.e., it vanishes faster

than any polynomial in the seurity parameter). Note that while � may depend on the

adversary, the polynomials B and C depend only on the agreement protool, and are

independent of the adversary.

The deadlok freeness property rules out trivial protools that never deide and never gen-

erate any messages to be delivered. The fast onvergene property ensures timely onvergene,

provided the adversary delivers messages; also, the fat that B and C are independent of the ad-

versary rules out trivial protools that never deide but always generate \make work" messages

to be delivered.

Our de�nition of termination implies that an adversary ould quikly make all honest parties

make a deision on a given TID (with probability exponentially lose to 1) by delivering a (�xed)

polynomially bounded number of messages; however, we do not fore the adversary to do so|see

[10℄ for a de�nition more along these lines.

Validity. If all honest parties that are ativated on a given TID have the same initial value,

then any honstest party that deides must deide this value.

This is the usual de�nition of validity in the literature. A weaker notion of validity may

sometimes be more appropriate for partiular appliations. For instane, initial values may

ome with validating data (e.g., a digital signature) that establishes the \validity" of a value in

a partiular ontext. One ould then simply require that an honest party may only deide on a

value for whih it has the aompanying validating data|even if all honest parties start with

0, they may still deide on 1 if they obtain the orresponding validating data for 1 during the

agreement protool.

4 Cryptographi Primitives

4.1 Digital Signatures

A digital signature sheme [25℄ onsists of a key generation algorithm, a signing algorithm, and

a veri�ation algorithm. The key generation algorithm takes as input a seurity parameter, and

outputs a publi key/private key pair (PK;SK). The signing algorithm takes as input SK and

a message M , and produes a signature �. The veri�ation algorithm takes PK, a message M ,

and a putative signature �, and outputs either aept or rejet. A signature is onsidered

valid if and only if the veri�ation algorithm aepts. All signatures produed by the signing

algorithm must be valid.

The basi seurity property is unforgeability. The attak senario is as follows. An adversary

is given the publi key, and then requests the signatures on a number of messages, where the

messages themselves may depend on previously obtained signatures. If at the end of the attak,

the adversary an output a message M and a valid signature � on M , suh that M was not

one of the messages whose signature he requested, then the adversary has suessfully forged

a signature. Seurity means that it is omputationally infeasible for an adversary to forge a

signature.
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4.2 Threshold Signatures

In this setion, we de�ne the notion of an (n; k; t) dual-threshold signature sheme. The basi

idea is that there are n parties, up to t of whih may be orrupted. The parties hold shares

of the seret key of a signature sheme, and may generate shares of signatures on individual

messages|k signature shares are both neessary and suÆient to onstrut a signature. The

only requirement on k is that t < k � n � t. As mentioned in the introdution, previous

investigations into threshold signatures have only onsidered the ase k = t+ 1. Also, we shall

require that the generation and veri�ation of signature shares is ompletely non-interative|

this is essential in the appliation of asynhronous Byzantine agreement.

A threshold signature sheme is a multi-party protool, and we shall work in our basi

system model for suh protools (see x2).

The Ation. The dealer generates a publi key PK along with seret key shares SK

1

; : : : ;SK

n

,

a global veri�ation key VK, and loal veri�ation keys VK

1

; : : : ;VK

n

. The initial state in-

formation for party P

i

onsists of the seret key SK

i

along with the publi key and all the

veri�ation keys.

After the dealing phase, the adversary submits signing requests to the honest parties for

messages of his hoie. Upon suh a request, party P

i

omputes a signature share for the given

message using SK

i

.

Combining Signature Shares. The threshold signature sheme also spei�es three algo-

rithms: a signature veri�ation algorithm, a share veri�ation algorithm, and a share ombining

algorithm.

� The signature veri�ation algorithm takes as input a message and a signature (generated

by the share-ombining algorithm), along with the publi key, and determines if the

signature is valid.

� The share veri�ation algorithm takes as input a message, a signature share on that

message from a party P

i

, along with PK, VK, and VK

i

, and determines if the signature

share is valid.

� The share ombining algorithm takes as input a message and k valid signature shares on

the message, along with the publi key and (perhaps) the veri�ation keys, and (hopefully)

outputs a valid signature on the message.

Seurity Requirements. The two basi seurity requirements are robustness and non-

forgeability.

Robustness. If it omputationally infeasible for an adversary to produe k valid signature

shares suh that the output of the share ombining algorithm is not a valid signature.

Non-forgeability. It is omputationally infeasible for the adversary to output a valid signa-

ture on a message that was submitted as a signing request to less than k � t honest parties.

Note that if the adversary atually orrupts f < t parties, the relevant threshold is still k � t

and not k � f .

Implementation. Note that our de�nition of a threshold signature sheme admits the trivial

implementation of just using a set of k ordinary signatures. For relatively small values of n,
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this may very well be a perfetly adequate implementation. (Suh a sheme annot be used to

implement the oin-tossing sheme, however.)

The sheme of Shoup [38℄ is well suited to our purposes and is muh more eÆient than the

above trivial implementation when n gets large. Eah signature share is essentially the size of an

RSA signature, and shares an be quite eÆiently ombined to obtain a ompletely standard

RSA signature. The signature shares ome with \proofs of orretness." These orretness

proofs are not muh bigger than RSA signatures; however, in an eÆient implementation, one

would most likely omit these proofs (and their veri�ation), and only provide them if they are

expliitly requested, presumably by a party whose share ombination algorithm has failed to

produe a orret signature.

4.3 Threshold Coin-Tossing Sheme

In this setion, we de�ne the notion of an (n; k; t) dual-threshold oin-tossing sheme. The basi

idea is that there are n parties, up to t of whih may be orrupted. The parties hold shares of

an unpreditable funtion F mapping the name C (whih is an arbitrary bit string) of a oin

to its value F (C) 2 f0; 1g. The parties may generate shares of a oin|k oin shares are both

neessary and suÆient to onstrut the value of the partiular oin. The only requirement on

k is that t < k � n� t, analogous to threshold signatures. The generation and veri�ation of

oin shares are ompletely non-interative; we work in the basi system model of x2.

The Ation. The dealer generates seret key shares SK

1

; : : : ;SK

n

, and veri�ation keys

VK;VK

1

; : : : ;VK

n

. The initial state information for party P

i

onsists of the seret key SK

i

along with all the veri�ation keys. The seret keys impliitly de�ne a funtion F mapping

names to f0; 1g.

After the dealing phase, the adversary submits reveal requests to the honest parties for oins

of his hoie. Upon suh a request, party P

i

outputs a oin share for the given oin, whih it

omputes using SK

i

.

Combining Coin Shares. The oin-tossing sheme also spei�es two algorithms: a share

veri�ation algorithm, and a share ombining algorithm.

� The share veri�ation algorithm takes as input the name of a oin, a share on this oin

from a party P

i

, along with VK and VK

i

, and determines if the oin share is valid.

� The share ombining algorithm takes as input a the name C of a oin and k valid shares

of C, along with (perhaps) the veri�ation keys, and (hopefully) outputs F (C).

Seurity Requirements. The two basi seurity requirements are robustness and unpre-

ditability.

Robustness. It is omputationally infeasible for an adversary to produe a name C and k

valid shares of C suh that the output of the share ombining algorithm is not F (C).

Unpreditability. An adversary's advantage in the following game is negligible. The adver-

sary interats with the honest parties as above, and at the end of this interation, he outputs

a name C that was submitted as a reveal request to fewer than k � t honest parties, and a bit

b 2 f0; 1g. The adversary's advantage in this game is de�ned to be the distane from 1=2 of

the probability that F (C) = b. Note that if the adversary atually orrupts f < t parties, the

relevant threshold is still k � t and not k � f .
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Unpreditability for Sequenes of Coins. The unpreditability property above implies

the following more general unpreditability property that we atually need in order to analyze

agreement protools.

Consider an adversary A that interats with the honest parties as above, but as it interats,

it makes a sequene of preditions, prediting b

i

2 f0; 1g as the value of oin C

i

for i = 1; : : : ; q

for some q. A's preditions are interleaved with reveal requests in an arbitrary way, subjet

only to the restrition that at the point in time that A predits the value of oin C

i

, it has

made fewer than k � t reveal requests for C

i

. After it predits C

i

, it may make as many reveal

requests for C

i

as it wishes. For 1 � i � q, let e

i

= F (C

i

) � b

i

. This de�nes the error vetor

(e

1

; : : : ; e

q

).

The unpreditability property above implies that the error vetor is omputationally in-

distinguishable from a random bit-vetor of length q. This means that there is no e�etive

statistial test that distinguishes the error vetor from a random vetor|the important point

is that we are onsidering statistial tests that reeive only the test vetor as input, and no

additional information about A's interation in the above game.

A proof of this an be adapted easily from the work of Beaver and So [2℄, although their

setting is slightly di�erent. The idea of the proof runs as follows. By the universality of the next-

bit test [42℄, if the error vetor were distinguishable from a random vetor, then there would

be an algorithm D that on input j, hosen randomly from f1; : : : ; qg, along with e

1

; : : : ; e

j�1

,

outputs a value that orretly predits e

j

with probability signi�antly better than 1=2. Given

this D and A, we onstrut a new adversary A

0

that predits a single oin, ontraditing the

unpreditability assumption. A

0

runs as follows. First, it hooses j 2 f1; : : : ; qg at random.

Next, it runs A as a subroutine. Just after A predits oin C

i

for 1 � i < j, A

0

immediately

makes a suÆient number of reveal requests to obtain F (C

i

), and hene e

i

. A

0

stops A just

after A makes its predition b

j

for the value of F (C

j

), and then A

0

omputes

^

b

j

= D(j; e

1

; : : : ; e

j�1

)� b

j

as its predition for F (C

j

) and halts. It is easy to see that

^

b

j

is orret with probability

signi�antly better than 1=2.

Given the pseudo-random quality of the error vetor, one an now easily derive a number of

simple statistial properties. The only we will need is this: for any 1 � m � q, the probability

that A orretly predits the �rstm oins is bounded by 2

�m

+�, where � is a negligible funtion

in the seurity parameter.

Implementation. Note that an implementation of a oin-tossing sheme an be obtained

from any non-interative threshold signature sheme with the property that there is only one

valid signature per message, suh as the RSA-based sheme mentioned earlier [38℄. Then a

ryptographi hash of the signature an be used as the value of the oin. It is straightforward

to see that in the random orale model, this yields a seure oin-tossing sheme. It also allows

an implementation to \optimistially" skip the veri�ation tests unless neessary.

In x6 we present also a diret implementation of a oin-tossing sheme based on the DiÆe-

Hellman problem.
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5 Asynhronous Byzantine Agreement

5.1 Protool ABBA

We now present our protool ABBA, whih stands for Asynhronous Binary Byzantine Agree-

ment. As usual there are n parties P

1

; : : : ; P

n

, up to t of whih may be orrupted by the

adversary. We denote by f the atual number of parties orrupted.

The protool uses an (n; n� t; t) threshold signature sheme S and an (n; t+1; t) threshold

signature sheme S

0

(see x4.2), as well as an (n; n � t; t) threshold oin-tossing sheme (see

x4.3). Let F (C) denote the value of oin with name C.

Overview. For a given transation identi�er TID , eah party P

i

has an initial value V

i

2

f0; 1g, and the protool proeeds in rounds r = 1; 2; : : : The �rst round starts with a speial

pre-proessing step:

0. Eah party sends its initial value to all other parties signed with an S

0

-signature share.

On reeiving 2t+1 suh votes, eah party ombines the signature shares of the value with

the simple majority (i.e., at least t + 1 votes) to a threshold signature of S

0

. This value

will be the value used in the �rst pre-vote. (This step is not neessary if the input values

are aompanied by validating data.)

After that eah round ontains four basi steps:

1. Eah party asts a pre-vote for a value b 2 f0; 1g. These pre-votes must be justi�ed by

an appropriate S-threshold signature, and must be aompanied by a valid S-signature

share on an appropriate message.

2. After olleting n�t valid pre-votes, eah party asts a main-vote v 2 f0; 1; abstaing. As

with pre-votes, these main-votes must be justi�ed by an appropriate S-threshold signa-

ture, and must be aompanied by a valid S-signature share on an appropriate message.

3. After olleting n� t valid main-votes, eah party examines these votes. If all votes are

for a value b 2 f0; 1g, then the party deides b for TID , but ontinues to partiipate in

the protool for one more round. Otherwise, the party proeeds.

4. The value of oin (TID ; r) is revealed, whih may be used in the next round.

We now proeed with the details of the protool given in Figure 1. We �rst introdue some

onventions.

Reall that a message from P

i

to P

j

has the form (TID ; i; j; payload), so that in speifying

a message, we will only speify the payload if neessary; the values of TID , i, and j are implied

from the ontext.

The pre-vote and main-vote messages have to ontain a proper justi�ation, whih onsists

of threshold signatures on olleted votes as follows.

Pre-Vote Justi�ation. In round r = 1, party P

i

's pre-vote is the majority of the pre-

proessing votes from step 0. There must be at least t+ 1 votes for the same value b 2 f0; 1g

(although this b might not be unique if n > 3t + 1). For the justi�ation, a party selets

t+1 suh votes, and ombines the aompanying S

0

-signature shares to obtain an S

0

-threshold

signature on the message

(TID ; pre-proess; b):
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In rounds r > 1, a pre-vote for b may be justi�ed in two ways:

� either with an S-threshold signature on the message

(TID ; pre-vote; r � 1; b);

we all this a hard pre-vote for b;

� or with an S-threshold signature on the message

(TID ; main-vote; r � 1; abstain)

for the pre-vote b = F (TID ; r � 1); we all this a soft pre-vote for b.

Intuitively, a hard pre-vote expresses P

i

's preferene for b based on evidene for preferene b in

round r � 1, whereas a soft pre-vote is just a vote for the value of the oin, based evidene of

oniting votes in round r � 1. The threshold signatures are obtained from the omputations

in previous rounds (see below). We assume that the justi�ation indiates whether the pre-vote

is hard or soft.

Main-Vote Justi�ation. A main-vote v in round r is one of the values f0; 1; abstaing and,

like pre-votes, aompanied by a justi�ation as follows:

� If among the n� t justi�ed round-r pre-votes olleted by P

i

there is a pre-vote for 0 and

a pre-vote for 1, then P

i

's main-vote v for round r is abstain. The justi�ation for this

main-vote onsists of the justi�ations for the two oniting pre-votes.

� Otherwise, P

i

has olleted n � t justi�ed pre-votes for some b 2 f0; 1g in round r, and

sine eah of these omes with a valid S-signature share on the message

(TID ; pre-vote; r; b);

party P

i

an ombine these shares to obtain a valid S-threshold signature on this message.

Party P

i

's main-vote v in this ase is b, and its justi�ation is this threshold signature.

The protool is shown in Figure 1.

5.2 Analysis

Theorem 1 Assuming a seure threshold signature sheme, a seure threshold oin-tossing

sheme, and a seure message authentiation ode, protool ABBA solves asynhronous Byzan-

tine agreement for n > 3t.

The rest of this setion outlines a proof of this theorem. We have to show validity, agreement,

and termination.

It is straightforward to hek that protool ABBA satis�es the validity ondition.

We prove agreement and termination assuming the adversary orrupts exatly f = t parties;

we then disuss the modi�ations neesarry for the ase that f < t.

Fix a given TID and onsider the pre-votes ast by honest parties in round r � 1. Beause

n > 3t, there will be at most one value b 2 f0; 1g that garners at least n � 2t suh pre-votes,

and we de�ne �

r

to be this value (if it exists), and otherwise we say that �

r

is unde�ned. We

say that �

r

is de�ned at the point in the game at whih time suÆient pre-votes are ast.
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Protool ABBA for party P

i

with initial value V

i

0. Pre-Proessing. Generate an S

0

-signature share on the message

(TID ; pre-proess; V

i

):

and send a message of the form

(pre-proess; V

i

; signature share)

to all parties.

Collet 2t+ 1 proper pre-proessing messages.

Repeat the following steps 1{4 for rounds r = 1; 2; : : : .

1. Pre-Vote. If r = 1, let b be the simple majority of the reeived pre-proessing votes.

Otherwise, if r > 1, selet n� t properly justi�ed main-votes from round r � 1 and let

b =

8

>

<

>

:

0 if there is a main-vote for 0;

1 if there is a main-vote for 1;

F (TID ; r � 1) if all main-votes are abstain:

Produe an S-signature share on the message

(TID ; pre-vote; r; b):

Produe the orresponding justi�ation (see text) and send to all parties a message of

the form

(pre-vote; r; b; justi�ation; signature share):

2. Main-Vote. Collet n� t properly justi�ed round-r pre-vote messages. Consider these

pre-votes and let

v =

8

>

<

>

:

0 if there are n� t pre-votes for 0;

1 if there are n� t pre-votes for 1;

abstain if there are pre-votes for 0 and 1:

Produe an S-signature share on the message

(TID ; main-vote; r; v):

Produe the orresponding justi�ation (see text) and send to all parties a message of

the form

(main-vote; r; v; justi�ation; signature share):

3. Chek for deision. Collet n� t properly justi�ed main-votes of round r. If these

are all main-votes for b 2 f0; 1g, then deide the value b for TID , and ontinue for one

more round (up to step 2). Otherwise, simply proeed.

4. Common oin. Generate a oin share of the oin (TID ; r), and send to all parties a

message of the form

(oin; r; oin share):

Collet n � t shares of the oin (TID ; r), and ombine these shares to get the value

F (TID ; r) 2 f0; 1g.

Figure 1: Asynhronous Binary Byzantine Agreement
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Lemma 2 For r � 1, the following holds (with all but negligible probability):

(a) if an honest party asts or aepts a main-vote of b 2 f0; 1g in round r, then �

r

is de�ned

and �

r

= b;

(b) if an honest party asts or aepts a hard pre-vote for b 2 f0; 1g in round r + 1, then �

r

is de�ned and �

r

= b;

() if an honest party asts or aepts a main-vote of abstain in round r + 1, then �

r

is

de�ned and �

r

= 1� F (TID ; r);

(d) if r is the �rst round in whih any honest party deides, then all honest parties that

eventually deide, deide the same value in either round r or r + 1.

Proof. To prove (a), suppose an honest party aepts a main-vote of b 2 f0; 1g in round r. To

be justi�ed, this main-vote must be aompanied by a valid threshold signature on the message

(pre-vote;TID ; r; b):

By the non-forgeability property of the signature sheme, this implies that at least (n� t)� t =

n � 2t honest parties ast pre-votes for b. Thus, �

r

has been de�ned and is equal to b. That

proves (a).

Part (b) now simply follows from the fat that a hard pre-vote for b 2 f0; 1g in round r+1

is justi�ed by the same threshold signature as the main-vote from round r in part (a).

Now for part (). A main vote of abstain in round r + 1 must be aompanied by a

justi�ation for a pre-vote of 0 in round r+1 and a justi�ation for pre-vote of 1 in round r+1.

These pre-votes annot both be soft pre-votes, and so one of these two pre-votes must be hard.

It follows from (b) that this hard pre-vote must be for �

r

, and hene the other pre-vote must

be a soft pre-vote for 1� �

r

, and hene F (TID ; r) = 1� �

r

. Part () now follows.

Now for part (d). Suppose some party P

i

deides b 2 f0; 1g in some round r, and no party

has deided in a previous round. Then in this round, P

i

aepted n � t main-votes for b. By

part (a), we must have b = �

r

. So any other honest party who deides in round r must also

deide �

r

.

Of the n� t main-votes for b that P

i

aepted, at least n� 2t ame from honest parties who

main-voted b, and sine n > 3t, fewer than (n� t)� t = n� 2t signature shares on the message

(main-vote; r; abstain)

have been or ever will be generated by honest parties. This in turn implies that a soft pre-vote

in round r + 1 annot be justi�ed. Thus, the only justi�able pre-votes in round r + 1 are hard

pre-votes, and by part (b), these must be hard pre-votes of b. Finally, this implies that the

only justi�able main-votes in round r + 1 are main-votes for b, and so all main-votes aepted

by honest parties in round r + 1 will be main-votes for b. 2

Agreement follows from part (d). All that remains is termination. For this, we need to show

deadlok freeness and fast onvergene.

Deadlok freeness is fairly straightforward. It is lear that honest parties will proeed from

one round to the next, provided the adversary delivers enough messages between the honest

parties. The deadlok freeness property follows from this observation, along with part (d) of

Lemma 2, and the fat that parties who deide play along for one more round.
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All that remains is fast onvergene. Lemma 2 says that in a given round r + 1, for r � 1,

the set of n� t main-votes aepted by an honest party in step 3 ontains votes for either 0 or

1, but not both. Also, suh an honest party will deide in this round unless it aepts at least

one main-vote of abstain. But if it does aept an abstain, then �

r

= 1 � F (TID ; r). The

key to showing fast termination will be to show that the value of �

r

is determined before the

oin (TID ; r) is revealed.

By \�

r

is determined at a partiular point in time," we mean the following: There is an

eÆient proedureW that takes as input a transript desribing the adversary's interation with

the system up to the given point in time, along with TID and r � 1, and outputs w 2 f0; 1; ?g.

Furthermore, if the output is w 6= ?, then if �

r

ever beomes de�ned, it must be equal to w (or

at least, it should be omputationally infeasible for an adversary to ause this not to happen).

By \the oin (TID ; r) is revealed at a partiular point in time," we mean the point in time

when an honest party generates the (n� 2t)-th share of the oin (TID ; r).

Lemma 3 There is a funtion W that determines �

r

, as desribed above, suh that for all

r � 1, either �

r

is determined before oin (TID ; r) is revealed, or �

r+1

is determined before

(TID ; r + 1) is revealed.

Proof. Suppose an honest party P

i

is just about to generate the (n�2t)-th share of oin (TID ; r)

in step 1 of round r + 1. As suh, there is a set S of at least n � 2t honest parties who have

also reahed step 1 of round r + 1; this set inludes P

i

, who is just about to release its share;

all other members of S have already released their share. Almost all round r + 1 pre-votes for

the parties in S, as well as their justi�ations, are ompletely determined at this point, even

if these votes have not atually been ast. The only exeption are soft pre-votes, whose atual

value is equal to F (TID ; r), whih is not yet known.

If any party in S is going to ast a hard pre-vote for b 2 f0; 1g, then by Part (b) of Lemma 2,

b is the only possible value for �

r

. Thus, �

r

is already determined|in fat, it is already de�ned.

Otherwise, all parties in S are going to ast soft pre-votes, hoosing the value F (TID ; r)

as the value of their round r + 1 pre-vote. It follows that the only possible value for �

r+1

is

F (TID ; r). Therefore, immediately after P

i

reveals its share of oin (TID ; r), �

r+1

is deter-

mined. Moreover, the oin (TID ; r+1) has not yet been revealed at this point, sine fewer than

n� 2t honest parties have gone beyond step 2 of round r+ 1. Thus, �

r+1

is determined before

oin (TID ; r + 1) is revealed. 2

This lemma, together with the unpreditability property of sequenes of oins desribed in

x4.3, implies that the probability that any honest party advanes more than 2r + 1 rounds is

bounded by 2

�r

+ �, where � is negligible. Fast onvergene follows immediately. Note that to

make this argument rigorous, we need to be able to expliitly \predit" (as in x4.3) the desired

value of the oin (1� �

r

) that would delay termination, whih is why we de�ned the notion of

\determining" �

r

as we did.

We remark that if the �rst honest parties to deide make their deision in round r, there

may be others who make their deision in round r + 1. The \early deiders" play along for

round r + 1, whih allows the \late deiders" to deide. However, the \late deiders" do not

\know" they are \late," so they attempt to play along for round r + 2. What happens is that

in round r + 2, the protool will \�zzle out": the \late deiders" will simply end up waiting in

step 2 for n� t messages that never arrive. This \�zzling out" does indeed satisfy our tehnial

de�nition of termination, and is perhaps adequate for some settings; however, a more \deisive"

termination an be ahieved with a minor modi�ation of the protool (see x5.3.1).
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That ompletes the proof of agreement and termination for the ase f = t. We now sketh

the di�erenes for the ase f < t. There are some annoying tehnial problems that arise in

this ase beause there is a gap between the number (n� 2t) of shares for a signature (or oin)

that need to be revealed before the signature (or oin) may be reonstrutible, and the number

(n � t � f) of shares that need to be revealed before it an be reonstruted. We ould have

de�ned seurity for threshold signatures (oins) so that this gap did not exist; however, suh a

de�nition would be stronger than neessary.

Consider an adversary that hooses to orrupt a set C of f < t parties. Let H denote the set

of n�f honest parties. We hoose an arbitrary subset Q � H of t�f \quasi-orrupted" parties.

The idea is that for the purposes of agreement and termination, parties in Q are onsidered to

be honest, but for the purposes of the threshold signature and oin-tossing shemes, parties in

Q are onsidered orrupted.

What this means onretely is that for parties in Q, their seret shares for the threshold

shemes are revealed to the adversary, but they otherwise behave as honest players with whih

the adversary interats in the usual way. The main impliation of this is that a partiular

signature or oin an be reonstruted if and only if at least n� 2t parties in HnQ ontribute

shares. We also modify the proof as follows:

� In formulating the de�nition of �

r

, we only ount votes ast by members of HnQ.

� In formulating the notion of preisely when a oin is revealed, we only ount shares

generated by parties in HnQ.

With these modi�ations, Lemmas 2 and 3 an easily be proved, exatly as stated, and from

these, agreement and termination follow.

5.3 Variations

Protool ABBA an be modi�ed several ways.

5.3.1 Ahieving Stronger Termination

As we briey disussed in x5.2, some parties may terminate an instane of a protool in a

rather indeisive way: although they have made a deision, they do not know that they an

stop; instead, they will simply blok, waiting forever for messages that will never arrive. It is

not lear to what extent this is a serious problem, but anyway, it is easy to modify protool

ABBA so that parties not only deide, but terminate in a more deisive fashion. Namely, when

a party P

i

deides b for TID in round r, it an ombine the signature shares that it has on hand

to onstrut an S-threshold signature on the message

(main-vote;TID ; r; b):

It then sends this threshold signature to all parties and stops. Thus, P

i

an e�etively erase all

data in its internal state relevant to TID , and ignore all future inoming messages relating to

TID . Any other party that is waiting for some other message, but instead reeives the above

threshold signature, an also deide b for TID , send the this signature to all parties, and then

stop.

Note that without this modi�ation, the threshold signatures on main-votes other than

abstain are atually not used by the protool, and ould be deleted.
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5.3.2 Using an (n; t+ 1; t) Coin-Tossing Sheme

Instead of an (n; n� t; t) oin-tossing sheme, one ould use an (n; t+1; t) oin-tossing sheme,

provided that before a party releases its share of a oin, it sends an appropriate \ready" message

to all parties, and waits for n � t orresponding \ready" messages from other parties. These

\ready" messages do not need to be signed|the authentiity of the messages is enough. This

modi�ation inreases the ommuniation omplexity of the protool; however, an (n; t + 1; t)

oin an be implemented based on weaker intratability assumptions than and (n; n� t; t) oin,

and so the tradeo� may be worthwhile in some settings.

5.3.3 Further Optimizations

Although we have strived to make our protool as eÆient as possible, we have omitted several

optimizations in order to simplify the presentation; they are desribed next. Some of them lead

to a more exible, \pipelined" exeution of the protool steps.

1. A party need not generate a share of the oin in round r+1 if it did not aept a main-vote

of abstain in round r.

2. A party need not wait for n� t oin shares, unless it is going to ast a soft pre-vote, or

unless it needs to later verify the justi�ation of a soft pre-vote (it an always wait for

them later if needed).

3. A party need not wait for n� t pre-votes one it aepts two oniting pre-votes, sine

then it is already in a position to ast a main-vote of abstain.

4. A party need not wait for n � t main-votes if it has already aepted a main-vote for

something other than abstain, sine then it is already in a position to move to the next

round; however, the deision ondition should be heked before the end of the next round.

5. It is possible to ollapse steps 4 and 1; however, some adjustments must be made to

aommodate the threshold signature. If a party wants to make a hard pre-vote for b, he

should generate signature shares on two messages that say \I pre-vote b if the oin is 0"

and \I pre-vote b if the oin is 1." If a party wants to make a soft pre-vote, he should

generate signature shares on two messages that say \I pre-vote 0 if the oin is 0" and \I

pre-vote 1 if the oin is 1." This allows the parties to make soft pre-votes and reveal the

oin onurrently, while also making it possible to ombine both soft and hard pre-votes

for the same value to onstrut the neessary main-vote justi�ations. This variation

redues the round and message omplexity by a fator of 1=3, at the expense of somewhat

higher omputational and bit omplexity; it also preludes variations (1) and (2) above.

6 A DiÆe-Hellman Based Threshold Coin-Tossing Sheme

6.1 The Sheme

In this setion, we present an (n; k; t) threshold oin-tossing sheme based on the DiÆe-Hellman

problem. We work with a group G of large prime order q.

At a high level, our sheme works as follows. The value of a oin C is obtained by �rst

hashing C to obtain ~g 2 G, then raising ~g to a seret exponent x

0

2 Z

q

to obtain ~g

0

2 G, and

�nally hashing ~g

0

to obtain the value F (C) 2 f0; 1g. The seret exponent x

0

is distributed
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among the parties using Shamir's seret sharing sheme [35℄. Eah party P

i

holds a share x

i

of x

0

; its share of F (C) is ~g

x

i

, along with a \validity proof." Shares of oin C an then be

ombined to obtain ~g

0

by interpolation \in the exponent."

In more detail, we need ryptographi hash funtions

H : f0; 1g

�

! G;

H

0

: G

6

! Z

q

;

H

00

: G! f0; 1g:

No spei� requirements are made for these hash funtions, but they will be modeled as random

orales in the analysis. (H

00

ould atually be implemented in the standard model, e.g., by the

inner produt of the bit representation of the input with a random bit string, hosen one and

for all by the dealer.)

In the dealing phase, the dealer selets k oeÆients of a random polynomial f(T ) over Z

q

of degree less than k and a random generator g of G. For 0 � i � n, let x

i

= f(i) and g

i

= g

x

i

.

Party P

i

's seret key SK

i

is x

i

, and his veri�ation key VK

i

is g

i

. The global veri�ation key

VK onsists of a desription of G (whih inludes q) and g.

For a general oin C 2 f0; 1g

�

, we let ~g = H(C), and ~g

i

= ~g

x

i

for 0 � i � n. The value of

the oin is F (C) = H

00

(~g

0

).

For a given oin C, party P

i

's share of the oin is ~g

i

, together with a \validity proof," i.e., a

proof that log

~g

~g

i

= log

g

g

i

. This proof is the well-known interative proof of equality of disrete

logarithms (see [14℄), ollapsed into a non-interative proof using the Fiat-Shamir heuristi [22℄.

A valid proof is a pair (; z) 2 Z

q

� Z

q

, suh that

 = H

0

(g; g

i

; h; ~g; ~g

i

;

~

h); (1)

where

h = g

z

=g



i

and

~

h = ~g

z

=~g



i

:

Party P

i

omputes suh a proof by hoosing s 2 Z

q

at random, omputing h = g

s

,

~

h = ~g

s

, and

obtaining  as in (1) and z = s+ x

i

.

Now, for any set S of k distint points in Z

q

, and any � 2 Z

q

, there exist elements �

S

�;�

2 Z

q

for � 2 S, suh that

X

�2S

f(�)�

S

�;�

= f(�):

These �-values are independent of f(T ), and an be omputed from the formulas for Lagrange

interpolation.

To ombine a set of valid shares f~g

�

: � 2 Sg, one simply omputes

~g

0

=

Y

�2S

~g

�

S

�;0

�

:

The value of the oin is then omputed as H

00

(~g

0

).

6.2 Seurity Analysis

To analyze this sheme, we need to onsider the following two intratability assumptions.

For g; g

0

; ĝ 2 G, de�ne DH(g; g

0

; ĝ) to be ĝ

0

= ĝ

x

0

, provided that g

0

= g

x

0

. Also, de�ne

DHP(g; g

0

; ĝ; ĝ

0

) to be 1 if ĝ

0

= DH(g; g

0

; ĝ), and 0 otherwise.
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The Computational DiÆe-Hellman (CDH) assumption is the assumption that DH is hard

to ompute|that is, there is no eÆient, probabilisti algorithm that omputes DH orretly

(with negligible error probability) on all inputs.

The Deisional DiÆe-Hellman (DDH) assumption is the assumption that DHP is hard to

ompute|that is, there is no eÆient, probabilisti algorithm that omputes DHP orretly

(with negligible error probability) on all inputs.

Theorem 4 In the random orale model, the above oin-tossing sheme is seure under the

CDH assumption, if k = t+ 1, and under the DDH assumption otherwise.

We need to show robustness and unpreditability.

The robustness of the sheme follows from the soundness of the interative proof of equality

of disrete logarithms, and the fat that in the random orale model, the hallenges  are the

output of the random orale H

0

.

To prove unpreditability, we assume we have an adversary that an predit a oin with

non-negligible probability, and show how to use this adversary to eÆiently ompute DH (if

k = t+ 1) or DHP (if k > t+ 1).

We �rst make a few simplifying assumptions:

� the adversary orrupts parties P

k�t

; : : : ; P

k�1

;

� before the adversary requests the share of a oin or predits a oin, he has already evalu-

ated H at that oin's name;

� the adversary evaluates H suessively at distint points C

1

; : : : ; C

l

, where l is a bound

that is �xed for a given adversary and seurity parameter.

We denote the \target" oin, whih the adversary attempts to predit, by

^

C, and we let ĝ =

H(

^

C), and ĝ

i

= ĝ

x

i

for 0 � i � n.

We may assume that

^

C is equal to C

s

, where s is randomly hosen from f1; : : : ; lg. Should

the adversary makes k � t requests to reveal shares of

^

C, we simply stop the game. This

dereases the adversary's advantage by a fator of l.

Case 1: k = t + 1. Here is how we use this adversary to ompute DH. By the results of

Shoup [36℄, it is suÆient to onstrut an algorithm that on random inputs g; g

0

; ĝ 2 G, outputs

a list of group elements that ontains ĝ

0

= DH(g; g

0

; ĝ) with non-negligible probability.

We simulate the adversary's interation with the oin-tossing sheme as follows. By our

simplifying assumption, the adversary orrupts parties P

1

; : : : ; P

t

. As the notation suggests,

we use the given value g in the global veri�ation key. We hoose x

1

; : : : ; x

t

2 Z

q

at random,

set S = f0; 1; : : : ; tg, ompute g

i

= g

x

i

for 1 � i � t, and let for t+ 1 � i � n

g

i

=

k�1

Y

j=0

g

�

S

j;i

j

:

In the random orale model, the adversary expliitly queries the random orales H;H

0

;H

00

.

The simulator we are building is responsible for the operation of these orales|it sees the

queries made by the adversary, and is free to respond as it wishes so long as its responses are

onsistent and orretly distributed. As the notation suggests, we use the given ĝ as the value

of H at

^

C (whatever

^

C turns out to be).
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For oins C 6=

^

C, we hoose r 2 Z

q

at random and ompute ~g = g

r

. The simulator uses the

given ~g as the value of H at C. We then ompute the shares ~g

i

= g

r

i

for t + 1 � i � n. The

validity proofs an be simulated using standard zero-knowledge tehniques [24℄.

For the target oin

^

C, we never have to ompute any shares for honest parties, sine k = t+1.

When the adversary terminates, we simply output the list of queries made by the adversary to

the orale H

00

.

It is easily veri�ed that the above simulation is nearly perfet: the adversary's view has

preisely the same distribution as in the atual interation (but there is atually a negligible

probability that the zero-knowledge simulations fail).

Observe that beause the adversary has a non-negligible advantage in prediting the value of

the oin

^

C, he must evaluate H

00

at the orresponding point ĝ

0

with non-negligible probability.

That ompletes the proof of Theorem 4 for Case 1.

Case 2: k > t+ 1. The above simulation does not work in this ase beause we would have to

simulate the shares of the oin

^

C from up to k� t� 1 > 0 honest parties. Moreover, we annot

view these honest parties as �xed: the adversary may adaptively selet whih honest parties

ontribute shares of the target oin. So instead, in this ase, we use the adversary to ompute

DHP. Atually, it is suÆient [39, 31℄ to onstrut a statistial test that distinguishes between

the following two distributions

D: the set of tuples

(g; g

0

; : : : ; g

k�t�1

; ĝ; ĝ

0

; : : : ; ĝ

k�t�1

);

where g; g

0

; : : : ; g

k�t�1

2 G are random, and ĝ = g

r

; ĝ

0

= g

r

0

; : : : ; ĝ

k�t�1

= g

r

k�t�1

for

randomly hosen r 2 Z

q

; and

R: the set of tuples

(g; g

0

; : : : ; g

k�t�1

; ĝ; ĝ

0

; : : : ; ĝ

k�t�1

);

where g; g

0

; : : : ; g

k�t�1

; ĝ

0

; : : : ; ĝ

k�t�1

2 G are random.

Our statistial test works as follows. Let

(g; g

0

; : : : ; g

k�t�1

; ĝ; ĝ

0

; : : : ; ĝ

k�t�1

)

be the input \test" tuple. We simulate the adversary's interation with the oin-tossing sheme

as follows. By our simplifying assumption, the adversary orrupts P

k�t

; : : : ; P

k�1

. As the

notation suggests, we simulate the dealer by using the given g in the global veri�ation key,

and g

1

; : : : ; g

k�t�1

in the loal veri�ation keys for P

1

; : : : ; P

k�t�1

. We hoose the seret keys

x

k�t

; : : : ; x

k�1

2 Z

q

at random and set S = f0; 1; : : : ; k � 1g; for k � t � i � k � 1, ompute

g

i

= g

x

i

, and for k � i � n, let

g

i

=

k�1

Y

j=0

g

�

S

j;i

j

:

Also, we will use the given ĝ as the output of H at

^

C, and the given ĝ

1

; : : : ; ĝ

k�t�1

as the

orresponding shares of

^

C from parties P

1

; : : : ; P

k�t�1

. We will use the given ĝ

0

to ompute

the shares of

^

C from the other honest parties as follows: for k� t � i � k� 1, set ĝ

i

= ĝ

x

i

, and

for k � i � n, ompute

ĝ

i

=

k�1

Y

j=0

ĝ

�

S

j;i

j

:
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Whenever the adversary requests a share of

^

C for an honest party P

i

, we give the adversary

ĝ

i

as omputed above.

We reveal the shares of a oin C 6=

^

C just as in Case 1: we hoose r 2 Z

q

at random, and

ompute ~g = g

r

and ~g

i

= g

r

i

for all 1 � i < k � t and k � i � n.

For both target and non-target oins, we onstrut simulated proofs of orretness just as

in Case 1.

At the end of the adversary's interation, when the adversary makes a predition b 2 f0; 1g

for the value of oin

^

C, we output X = 1 if b = H

00

(ĝ

0

), and X = 0 otherwise.

We laim that this algorithm is an e�etive statistial test distinguishing D from R.

Observe that if the test tuple omes from D, the above simulation is nearly perfet, and so

the probability that X = 1 is essentially the adversary's advantage, whih di�ers from 1=2 by

a non-negligible amount.

Therefore, it will suÆe to show that if the test tuple omes from R, the probability that

X = 1 di�ers from 1=2 by a negligible amount. But this follows from the observation that for

any sequene of distint indies i

1

; : : : ; i

k�t�1

belonging to honest parties, the group elements

ĝ

0

; ĝ

i

1

; : : : ; ĝ

i

k�t�1

are independent and uniformly distributed. Thus, after revealing any k � t� 1 of the \shares"

ĝ

i

belonging to honest parties, then onditioning on the adversary's view, the value of ĝ

0

is still

random, and hene the probability that X = 1 in this ase is essentially 1=2.

This ompletes the proof of Theorem 4 for Case 2. Note that in the proof of this, we do

not need to model H

00

as a random orale|we only need the property that for random ĝ

0

2 G,

H

00

(ĝ

0

) has a nearly uniform distribution. For example, using the Entropy Smoothing Theorem

[27, Chapter 8℄, one ould implement H

00

as the inner produt of the bit representation of ĝ

0

with a random bit string (hosen one and for all by the dealer). Also note that using the same

proof tehnique, one ould prove the unpreditability property using the threshold k�f instead

of k � t, where f is the atual number of orrupted parties.
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