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Abstract. We show that verifiable secret sharing (VSS) and secure
multi-party computation (MPC) among a set of n players can efficiently
be based on any linear secret sharing scheme (LSSS) for the players,
provided that the access structure of the LSSS allows MPC or VSS at
all. Because an LSSS neither guarantees reconstructability when some
shares are false, nor verifiability of a shared value, nor allows for the
multiplication of shared values, an LSSS is an apparently much weaker
primitive than VSS or MPC.

Our approach to secure MPC is generic and applies to both the informa-
tion-theoretic and the cryptographic setting. The construction is based
on 1) a formalization of the special multiplicative property of an LSSS
that is needed to perform a multiplication on shared values, 2) an efficient
generic construction to obtain from any LSSS a multiplicative LSSS for
the same access structure, and 3) an efficient generic construction to
build verifiability into every LSSS (always assuming that the adversary
structure allows for MPC or VSS at all).

The protocols are efficient. In contrast to all previous information-theo-
retically secure protocols, the field size is not restricted (e.g, to be greater
than n). Moreover, we exhibit adversary structures for which our pro-
tocols are polynomial in n while all previous approaches to MPC for
non-threshold adversaries provably have super-polynomial complexity.

1 Introduction

This paper is a more complete verison of the paper by the same authors that
appears in the proceedings of EuroCrypt 2000, Springer Verlag LNCS series.

Secure multi-party computation (MPC) can be defined as the problem of n
players to compute an agreed function of their inputs in a secure way, where
security means guaranteeing the correctness of the output as well as the privacy
of the players’ inputs, even when some players cheat. A key tool for secure
MPC, interesting in its own right, is verifiable secret sharing (VSS): a dealer
distributes a secret value s among the players, where the dealer and/or some
of the players may be cheating. It is guaranteed that if the dealer is honest,
then the cheaters obtain no information about s, and all honest players are later
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able to reconstruct s. Even if the dealer cheats, a unique such value s will be
determined and is reconstructible without the cheaters’ help.

It is common to model cheating by considering an adversary who may cor-
rupt some subset of the players. One can distinguish between passive and active
corruption. Passive corruption means that the adversary obtains the complete
information held by the corrupted players, but the players execute the protocol
correctly. Active corruption means that the adversary takes full control of the
corrupted players. It is (at least initially) unknown to the honest players which
subset of players is corrupted. Trivially, secure MPC is impossible if any subset
can be corrupted. The adversary’s corruption capability is characterized by an
adversary structure [26] A, a family of subsets where the adversary can corrupt
any subset in A. This is called an A-adversary. The adversary structure could
for instance consist of all subsets with cardinality less than some threshold value
t. Of course, an adversary structure must be monotone, i.e. if A ∈ A and B ⊂ A,
then B ∈ A.

Both passive and active adversaries may be static, meaning that the set of
corrupted players is chosen once and for all before the protocol starts, or adaptive
meaning that the adversary can at any time during the protocol choose to corrupt
a new player based on all the information he has at the time, as long as the total
corrupted set is in A.

Two basic models of communication have been considered in the literature.
In the cryptographic model [25], all players are assumed to have access to mes-
sages exchanged between players, and hence security can only be guaranteed in a
cryptographic sense, i.e. assuming that the adversary cannot solve some compu-
tational problem. In the information-theoretic (abbreviated i.t., sometimes also
called secure channels) model [6, 11], it is assumed that the players can commu-
nicate over pairwise secure channels, and security can then be guaranteed even
when the adversary has unbounded computing power.

An MPC protocol simulates an ideal setting in which the players give their
inputs to a trusted party who computes the result and gives it back to the
players. Security means that whatever an adversary can do in the real protocol
he could essentially also do in the ideal setting. This assures both privacy and
correctness. There are several technically different proposals for formalizing this
(see e.g. [2, 29, 9]). While either definition could be used for a formal security
proof of the protocols in this paper, any such proof would by far exceed the
space limitations. Instead, we include sketches of proofs, generic enough to fit
any of the definitions.

The outline of the paper is as follows: In Section 2 we review come previous
work. In Section 3 we introduce some terminology and concepts, state the results
and explain the role they play in comparison with earlier results. The technical
results on LSSS are proved in Section 4. The protocols we propose are described
in sections 5, 6, 7 and 8. Finally some issues relating to the complexity of our
protocols are treated in Section 9.



2 Previous Work

The classical MPC results in the information-theoretic model due to Ben-Or,
Goldwasser and Wigderson [6] and Chaum, Crépeau and Damg̊ard [11] who
showed that every function can be securely computed in presence of an adaptive,
passive adversary, resp. an adaptive, active adversary if and only if the adversary
corrupts less than n/2, resp. less than n/3 players. When a broadcast channel
is available, and one accepts a non-zero probability that the protocol computes
incorrect results, then one can tolerate less than n/2 active cheaters [32, 31].

The most general previous results for the cryptographic model are by Gol-
dreich, Micali and Wigderson [25] who showed that, assuming trapdoor one-way
permutations exist, any function can be securely computed in presence of a
static, active adversary corrupting less than n/2 players and by Canetti et al.
who show [10] that security against adaptive adversaries in the cryptographic
model can also be obtained. VSS was introduced in [12].

All results mentioned so far only apply to threshold adversary structures.
Gennaro [23] considered VSS in a non-threshold setting, and Hirt and Mau-
rer [26] introduced the concept of an adversary structure and characterized ex-
actly for which adversary structures VSS and secure MPC is possible. Let Q2,
resp. Q3 be the conditions on an adversary structure that no two, resp. no three
of the sets in the structure cover the full player set P . The result of [26] can then
be stated as follows: In the information-theoretic scenario, every function can
be securely computed in presence of an adaptive, passive A-adversary, resp. an
adaptive, active A-adversary if and only if A is Q2, resp. A is Q3. Beaver and
Wool [3] propose a somewhat more efficient protocol for the passive case. The
threshold results of [6], [11], [25] and [31] are special cases, where the adversary
structure contains all sets of size less than n/2 or n/3.

This general model leads to strictly stronger results. For instance, in the
case of 6 players {P1, . . . , P6} and active corruption, one can obtain a protocol
secure against the structure with maximal sets {{P1}, {P2, P4}, {P2, P5, P6},
{P3, P5}, {P3, P6}, {P4, P5, P6}}, whereas threshold type results tolerate only
active cheating by a single player.

3 Results of this Paper

In this paper, we consider linear secret sharing schemes (LSSS). An LSSS is
defined over a finite field K, and the secret to be distributed is an element in
K. Each player receives from the dealer a share consisting of one or more field
elements, each share is computed as a fixed linear function of the secret and
some random field elements chosen by the dealer 1. The size of an LSSS is the
total number of field elements distributed. Only certain subsets of players, the
qualified sets, can reconstruct the secret from their shares. Unqualified sets have
no information about the secret. The collection of qualified sets is called the

1 A seemingly weaker definition requires only that the reconstruction process be linear,
however, this is essentially equivalent to the definition given here [4].



access structure of the LSSS, and the collection of unqualified sets is called the
adversary structure.

Most proposed secret sharing schemes are linear, but the concept of an LSSS
was first considered in its full generality by Karchmer and Wigderson who in-
troduced the equivalent notion of Monotone Span Programs (MSP) which we
describe in detail later. MSP’s and LSSS’s are in natural 1-1 correspondence.

The main goal in our paper is to provide an efficient construction which from
any LSSS with adversary structure A builds MPC and VSS protocols secure
against A-adversaries (whenever this is possible). There are several motivations
for this. First, basing VSS and MPC on as simple and weak a primitive as
possible can help us design simpler and more efficient protocols because it is
easier to come up with an implementation of a simpler primitive. Indeed, a wide
range of general techniques for designing secret sharing schemes are known, e.g.,
Shamir [33], Benaloh-Leichter [5], Ito et al. [27], Bertilsson and Ingemarsson [7],
Brickell [8] and van Dijk [17]. All these techniques result in LSSS’s, and therefore
are directly applicable to VSS and MPC by our results. Secondly, since LSSS’s
can be designed for any adversary structure, our approach allows us to build
protocols handling any adversary structure for which VSS and MPC is possible
at all. For some adversary structures this provably leads to an exponentially
large efficiency improvement over known techniques, as we shall see.

We first give a brief overview of our basic approach: consider first the case
where the adversary is passive. It is then trivial to add secrets securely: Each
player holding an input shares it using the given LSSS, and each player adds up
the shares he holds. By linearity of the LSSS, this results in a set of shares of
the desired result.

Therefore, to do general MPC, it will suffice to implement multiplication
of shared secrets. That is, we need a protocol where each player initially holds
shares of secrets a and b, and ends up holding a share of ab. Such protocols are
described for the threshold case in [25, 6, 11] and more recently in [24], based
on Shamir’s secret sharing scheme. We show below that the latter generalizes to
work for any LSSS, provided that the LSSS is what we call multiplicative.

Loosely speaking, an LSSS is multiplicative if each player Pi can, from his
shares of secrets a and b, compute a value ci, such that the product ab can be
computed as a linear combination of all the ci’s. It is strongly multiplicative
if ab can be obtained using only values from honest players (we give a precise
definition later).

With these techniques, using a multiplicative LSSS to implement passively
secure MPC is quite straightforward. However, the multiplication property seems
to require a very special structure in the LSSS. Nevertheless we show, perhaps
somewhat surprisingly, that multiplicativity can be assumed without loss of gen-
erality: we give an efficient procedure that transforms any LSSS into a multi-
plicative LSSS of size at most twice that of the original one.

Finally, we consider the case of an active adversary. Basically, the same tech-
niques as for the passive case will apply, provided we can build a linear verifiable
secret sharing scheme from any given LSSS. We show that this can be done given



a commitment scheme with certain convenient homomorphic properties. And we
then build such a commitment scheme based also on the LSSS. With this VSS
and the techniques described earlier for multiplication, an MPC protocol for
active adversaries follows easily.

Thus, for the i.t. scenario, our main results are as follows:

Theorem 1 For any field K and any LSSS M with Q3 adversary structure
A, there exists an error-free VSS protocol in the information-theoretic scenario,
secure against any active and adaptive A-adversary. The protocol has complexity
polynomial in the size of M and log |K|.

Theorem 2 For any field K, any arithmetic circuit C over K, and any LSSS
M with Q2 adversary structure A, there is an error-free MPC protocol computing
C in the information theoretic scenario, secure against any adaptive and passive
A-adversary. The complexity of the protocol is polynomial in |C|, log |K|, and
the size of M.

Theorem 3 For any field K, any arithmetic circuit C over K, and any LSSS
M with Q3 adversary structure A, there is an MPC protocol computing C in
the information-theoretic scenario, secure against any adaptive and active A-
adversary. The complexity of the protocol is polynomial in |C|, log |K|, the size
of M and a security parameter k, where the error probability is exponentially
small in k. If M is strongly multiplicative, there exists an error-free protocol for
the same purpose, with complexity polynomial in |C|, log |K| and the size of M.

The statement of these results shows what can be done starting from a given
LSSS. In practice, it may be that an adversary structure A is given by the
application, and one wants the most efficient VSS or MPC possible for that
structure. Our results show that we can build such protocols starting from any
LSSS with a Q3 (or Q2) adversary structure containing A. Such an LSSS always
exists, by the results from Section 4. This leads naturally to a complexity measure
for adversary structures, namely the size of the smallest LSSS that will work in
this construction. From this perspective, our results show that the complexity
of doing VSS/MPC secure for adversary structure A is upper bounded by the
LSSS complexity of A, up to a reduction polynomial in the number of players.

To compare our results to those of [26, 3] in terms of efficiency, we note
that simple inspection of the protocols show that ours are more efficient by at
least an additive polynomial amount for any non-threshold adversary structure.
Moreover, the improvement can be much larger in some cases: we can show that
there exists a family {An}n=1,2... of adversary structures (where An is a structure
on n players) for which our results lead to protocols that are polynomial time in
n whereas any construction based on [26] or [3] has super-polynomial complexity.

A precise statement and proof of this result follows in Section 9. As an
illustration, we describe a natural example of a family of structures, for which no
previous solutions is known to work efficiently but for which linear size LSSS’s
can be built easily.



Suppose our player set is divided into two groups X and Y of m players
each (n = 2m) where the players are on friendly terms within each group but
tend to distrust players in the other group. Hence, a coalition of active cheaters
might consist of almost all players from X or from Y , whereas a mixed coalition
with players from both groups is likely to be quite small. Concretely, suppose we
assume that a group of active cheaters can consist of at most 9m/10 players from
only X or only Y , or it can consist of less than m/5 players coming from both X
and Y . This defines a Q3 adversary structure, and so multi-party computations
are possible in this scenario. Nevertheless, no threshold solution exists, since the
largest coalitions of corrupt players have size more than n/3. It can be shown
that no weighted threshold solution exists either for this scenario.

Note that it is trivial to give linear size monotone formulæ characterizing
these structures (when arbitrary threshold functions are allowed as operators),
and hence efficient LSSS’s for these structures follow immediately by results
from [5]. Therefore, our techniques can be used to build efficient MPC in these
scenarios. No efficient construction is known using the protocols from [26, 3].

It is natural to ask if the results can be improved, i.e., can we base VSS/MPC
on a even weaker primitive, for example an arbitrary secret sharing (SS) scheme?
This would be the best we could hope for since VSS trivially implies SS. Recently,
Cramer, Damg̊ard and Dziembowski [14] have shown that while VSS can indeed
be based on arbitrary SS schemes (by an efficient black-box reduction), there
exists no black-box reduction reducing MPC to SS that is efficient on all relevant
adversary structures. Thus, any generally efficient reduction would have to rely
on special properties of the SS scheme, such as linearity. Hence, improving our
MPC results in this direction seems like a highly non-trivial problem.

Remarkably, the situation for the cryptographic scenario is quite different.
We have the following generalization of the threshold result from [25] (where
the complexity of an SS scheme is defined as the complexity of distributing and
reconstructing a secret):

Theorem 4 Let C be an arithmetic circuit over a finite field K, let A be a Q2

adversary structure, and let S be an SS scheme over K for which all sets in A are
non-qualified and all complements of sets in A are qualified. If trapdoor one-way
permutations exist, then there exists a secure MPC protocol computing C in the
cryptographic scenario, secure against any active and static A-adversary. It has
complexity polynomial in |C|, the complexity of S, and the security parameter k.

The assumptions in this result are essentially minimal, but it does not lead to
very practical protocols. However, if S is an LSSS and one-way group homomor-
phisms with specific extra properties exist, so-called q-one-way group homomor-
phisms [13], then very efficient protocols can be built. Particular assumptions
sufficient for the existence of q-one way group homomorphisms include the RSA
assumption, hardness of discrete logarithm in a group of prime order, or the
decisional Diffie-Hellman assumption. As an example of what one obtains for
the most efficient implementation of the primitives, we state the following:



Theorem 5 Let C be an arithmetic circuit over K = GF (q) for a k-bit prime
q, and let A be a Q2 adversary structure. If Diffie-Hellmann based probabilistic
encryption in a group of order q is semantically secure, then there exists an MPC
protocol computing C for the cryptographic scenario secure against any active
and static A-adversary. It has communication complexity O(k·|C|(µGF (q)(A))2).

Both the above results hold only for static adversaries. Security against adap-
tive adversaries can be obtained (at a loss of efficiency) by using non-committing
encryption [10]. More details on this can be found in Section 8.

4 Multiplicative Monotone Span Programs

As mentioned earlier, Monotone Span Programs (MSP) are essentially equivalent
to LSSS’s (see e.g. [4]). It turns out to be convenient to describe our protocols
in terms of MSP’s, which we do for the rest of the paper. This section contains
some basic definitions, notation and results relating to MSP’s.

We first fix some notation for later use: The set of players in our protocols will
be denoted by P = {P1, ..., Pn}. Consider any monotone Boolean function f :
{0, 1}n → {0, 1}. By identifying subsets of P with their characteristic vectors2,
we can also apply f to subsets of P . A set S ⊂ P for which f(S) = 0 (or
f(S) = 1) is said to be rejected (or accepted) by f . The function f hence defines
naturally an adversary structure, denoted Af , consisting of the sets rejected by
f . Conversely, an adversary structure A defines a monotone function fA rejecting
exactly the sets in A.

For two vectors x and y over a field K, x ⊗ y denotes the matrix whose
i-th column is xiy, where xi is the i-th coordinate of x. If x and y have the
same length, then 〈x,y〉 denotes the standard scalar product. A d× e matrix M
defines a linear map from Ke to Kd. Im M denotes the image of this map, i.e.
the subspace of Kd spanned by the columns of M . Ker M denotes the kernel
of M , i.e. Ker M = {x ∈ Ke : Mx = 0}. For the subspace V of a finite-
dimensional vector space over K, the dual V ⊥ is defined as the subspace of
vectors whose scalar product is 0 with all vectors in V . It is a basic fact from
linear algebra that for any field K, (V ⊥)⊥ = V and this immediately implies
that (Ker M)⊥ = Im (MT ), which we refer to as duality argument.

Definition 1 A Monotone Span Program M is a triple (K,M,ψ), where K
is a finite field, M is a matrix (with d rows and e ≤ d columns) over K and
ψ : {1, . . . , d} −→ {1, . . . , n} is a surjective function. The size of M is the
number of rows (d).

ψ labels each row with a number from [1, . . . , n] corresponding to a player in P ,
so we can think of each player as being the “owner” of one or more rows.

2 The characteristic vector of a set S is a vector in {0, 1}n whose i-th component is 1
if and only if Pi ∈ S.



In the following, if M is the matrix of an MSP, and A is a subset of the
players, then MA denotes M restricted to those rows i with ψ(i) ∈ A. Similarly,
if x is a d-vector, then xA denotes x restricted to the coordinates i with ψ(i) ∈ A.

M yields a linear secret sharing scheme as follows: to distribute s ∈ K the
dealer chooses a random vector ρ ∈ Ke−1 and writes b := (s, ρ ). For each
row x in M , the scalar product 〈x,b〉 is given to the owner of x. We will denote
the d-vector thus distributed by M(s, ρ ). It turns out that a set of players can
reconstruct s precisely if the rows they own contain in their linear span the target
vector of M which we have here globally fixed to be (1, 0, ..., 0) (without loss of
generality). Otherwise they get no information on s (see [28] for a proof of this).
We note that the size of M is also the size of the corresponding LSSS.

The function computed by M is the monotone function accepting precisely
those subsets that can reconstruct the secret [28]. It is well-known that for every
field K, every monotone Boolean function is computed by some MSP over K.
For a monotone function f , mspK(f) will denote the size of the smallest MSP
over K computing f . We refer to [20] for a characterization of MSP complexity
in terms of certain combinatorial structures.

We now look at doing multiplication of values shared using MSP’s. If secrets
a and b have been shared using Shamir’s secret sharing scheme to obtain shares
(a1, .., an) and (b1, ..., bn), respectively, it is immediate (see [24]) that ab can be
computed as a linear combination of the values aibi, where each such value can
be computed locally by a single player. This can be generalized to LSSS’s based
on MSP’s:

Given two d-vectors x = (x1, ...xd),y = (y1, ..., yd), we let x ⋄y be the vector
containing all entries of form xi ·yj , where ψ(i) = ψ(j). Thus, if di is the number
of rows owned by player i, then x ⋄ y has m =

∑
i d

2
i entries. Hence if x and

y are the share-vectors resulting from sharing two secrets using M, then each
component of the vector x ⋄ y can be computed locally by some player.

Definition 2 A multiplicative MSP is an MSP M for which there exists an
m-vector r, called a recombination vector, such that for any two secrets s, s′ and
any ρ, ρ′, it holds that

s · s′ = 〈r,M(s, ρ) ⋄M(s′,ρ′)〉.

We say that M is strongly multiplicative if for any player subset A that is
rejected by M, MA is multiplicative.

The case of strong multiplication generalizes the threshold case with at most
t corrupted players where we share secrets using polynomials of degree t < n/3.
After multiplying points on two polynomials, the honest players can reconstruct
the product polynomial on their own.

We define µK(f) to be the size of the smallest multiplicative MSP overK with
computing f (∞ if f cannot be computed). Similarly, µ∗

K(f) is the complexity
of f using strongly multiplicative MSP’s. By definition, we have mspK(f) ≤
µK(f) ≤ µ∗

K(f). We now characterize the functions that (strongly) multiplicative



MSP’s can compute, and show that the multiplication property for an MSP can
be assumed without loss of efficiency.

Theorem 6 For every finite field K and every monotone function f we have
µK(f) <∞ if and only if f is Q2, and µ∗

K(f) <∞ if and only if f is Q3.

Theorem 7 There exists an efficient algorithm which, on input an MSP M
computing a Q2 function f , outputs a multiplicative MSP M′ (over the same
field) computing f and of size at most twice that of M. In particular µK(f) ≤
2 · mspK(f) for any K and f .

We do not know if a similar result is true for strongly multiplicative MSP’s.
But Lemma 2 below gives a upper bound on their size, and give methods for
constructing strongly multiplicative MSP’s.

Proof of Theorem 7. We make some observations first. Let f0 and f1
be monotone functions, computed by MSP’s M0 = (K,M0, ψ) and M1 =
(K,M1, ψ), respectively, whereM0 andM1 are d×ematrices, where the mapping
ψ is identical for both MSPs, and where the target vector is t = (1, 0, . . . , 0).
Now suppose that the matrices M0 and M1 satisfy

MT
0 M1 = E, (1)

where E is eo×e1 matrix that is zero everywhere, except in its upper-left corner
where the entry is 1. Next we prove the following claim.

Claim: From MSP’s M0 and M1 as defined above, one can construct a multi-
plicative MSP computing f0 ∨ f1 of size at most 2d.

Proof of Claim: Consider the following straightforward LSSS. The dealer
shares the secret s ∈ K using LSSS0 and LSSS1, given by M0 and M1, respec-
tively. That is, he selects a pair of vectors (b0,b1) at random, except that the
first entries are both s: 〈t,b0〉 = 〈t,b1〉 = s. Then he computes the pair of vec-
tors (s0, s1) = (M0b0,M1b1), and sends for i = 1, . . . , n the i-th coordinates of
s0 and s1 to player Pψ(i). It is clear that a subset A of the players can reconstruct
s from their joint shares if and only if A is accepted by the function f0 ∨ f1, i.e.
A must be qualified w.r.t. either LSSS0 or LSSS1.

Now we look at multiplication. Assume that s′ ∈ K is a secret with full set
of shares (s′0, s

′
1) = (M0b

′
0,M1b

′
1), where 〈t,b′

0〉 = 〈t,b′
1〉 = s′. Let s0 ∗ s′1 be

the d-vector obtained by coordinate-wise multiplication of s0 and s′1. Then from
(1) we have

〈1, s0 ∗ s′1〉 = sT0 s′1 = bT0M
T
0 M1b

′
1 = bT0 Eb′

1 = ss′, (2)

where 1 denotes the all-one vector of appropriate length. Note that for each i,
the shares in the i-th coordinate of s0 and the i-th coordinate of s′1 are held by
the same player.

We now build an MSP M with a 2d by 2e matrix M as follows: first make a
matrix M ′ filled in with M0 in the upper left corner and M1 in the lower right



corner. Let k be the column in M ′ that passes through the first column of M1.
Add k to the first column of M ′ and delete k from the matrix. Let M be the
result of this. The labeling of M is carried over in the natural way from M0 and
M1. Clearly, M corresponds exactly to the LSSS we just constructed. It is clear
that the vector (s0, s1) ⋄ (s′0, s

′
1) contains among its entries the entries of s0 ∗ s′1.

Thus the vector with 1’s corresponding to these entries and 0’s elsewhere can
be used as recombination vector, which shows that M is multiplicative. This
concludes the proof of the claim.

We are now ready to prove Theorem 7. Recall that the dual function f∗ of
f is defined by: f∗(x) = f(x). We assume in the following that f is Q2, i.e.
f(x) = 0 implies f(x) = 1 and thus f∗(x) = 0. It follows that f = f ∨ f∗.

Let M = (K,M,ψ) be an MSP computing f , with target vector equal to
t = (1, 0, . . . , 0). To build a multiplicative MSP for f , we apply the above claim.
We set f0 = f , f1 = f∗ and M0 = M. It is then sufficient to find M1 computing
f1 = f∗ so that the pair M0, M1 satisfies equation (1).

In [21] a construction is presented which, given an MSP N = (K,N,ψ) of
size d computing f (and with target vector (1, . . . , 1)), yields a “dual” MSP
N ∗ = (K,N∗, ψ) computing f∗ (also with target vector (1, . . . , 1)). The con-
struction is as follows. N∗ has also d rows and the same labeling as N and
consists of one column for each set A accepted by f , namely a (reconstruction)
vector λ satisfying λTN = (1, . . . , 1) and λA = 0. The matrix N∗ has generally
exponentially many columns, but it is easy to see that any linearly independent
generating subset of them (at most d) will also constitute a matrix of an MSP
for the same access structure. It follows from the construction that NTN∗ is an
all-one matrix, which we call U .

In our case the target vector of M is t = (1, 0, . . . , 0) instead of (1, . . . , 1),
but the target vector can be transformed by adding the first column of M to
every other column of M . More formally, let H be the isomorphism that sends
an e-(column) vector to an e-(column) vector by adding its first coordinate to
each other coordinate. Write N = MHT . Then the MSP N = (K,N,ψ) is as M
except that the target vector is all-one. Now let N ∗ = (K,N∗, ψ) be its dual MSP
as constructed above. Finally write M∗ = N∗(H−1)T . Then M∗ = (K,M∗, ψ)
has target vector t and computes f∗. Observe that MTM∗ = H−1U(H−1)T =
E, as desired. This proves that a suitable matrix M∗ exists, but does not always
give an efficient method for constructing it. However, the following method due
to Serge Fehr [18] shows how construct M∗ directly and efficiently from M :
compute w0 be such that MTv0 = (1, 0, ..., 0), and compute w1, ..., wd−e as a
basis of the subspace ker(MT ) (we may assume without loss of generality that
e ≤ d and that the columns of M are linearly independent). Then let M∗ be the
matrix with columns w0, w1, ..., wd−e. This is a matrix with d rows and d− e+1
columns. Using the same labelling as for M we can turn this into an MSP, and
it is elementary to show that this MSP computes f∗ and satisfies MTM∗ = E.
Theorem 7 follows. △

Proof of Theorem 6. Since MSP’s compute all monotone functions, it
follows directly from this fact and Theorem 7 that every Q2-function is com-



puted by a multiplicative MSP. This also follows from secret sharing scheme
used in [3], and this argument can be extended to prove that every Q3-function
is computed by a strongly multiplicative MSP. We conclude the proof by show-
ing that multiplicative MSP’s compute Q2-functions. The proof in the Q3-case
is similar, and is omitted.

Let M = (K,M,ψ) be an MSP with target vector t computing a monotone
boolean function f on n input bits, and let Af be the adversary structure asso-
ciated with f . Suppose that M is multiplicative, but that Af is not Q2. Thus,
there exists a set A ⊂ {1, . . . , n} such that A ∪ A = {1, . . . , n} and A,A ∈ Af .
The latter implies that neither the rows of MA nor those of MA span t. Hence,
by the duality argument there exist vectors κ and κ′, both with first coordinate
equal to 1, such that MAκ = 0 and MAκ′ = 0. By the multiplication property,
on one hand it follows that 〈r,Mκ ⋄Mκ′〉 = 1, where r is the recombination
vector. But on the other hand, Mκ ⋄ Mκ′ = 0, by the choice of κ, κ′, and
the fact that A ∪ A = {1, . . . , n}, so this scalar product must be equal to 0: a
contradiction. △

4.1 Constructing MSP’s from adversary structures

Our main results show how to build VSS and MPC from a given MSP. The result-
ing protocols will be seure for whatever adversary structure the MSP happens
to implement. However, in a practical situation, it will often be the case that
an adversary structure is given by the application, and it is therefore of interest
how one can build an MSP that is secure for a given adversary structure.

To this end, we will assume that the structure is described in terms of a
monotone Boolean formula. Such formulas are usually defined to be Boolean
formulas where only AND- and OR-operators occur. We will consider here a
slightly different concept, namely we will allow arbitrary operators of form T tm,
where T tm is the threshold function that outputs 1 if and only if at least t of its
m inputs are 1 (AND and OR are special cases - we do not assume that m, t
are the same for all operations in the formula) . Furthermore we will assume
that no constants are used. We call this generalized monotone formulae with no
constants, GMNC formulae for short.

Any such formula φ computes a monotone function fφ on its input variables,
this in turn defines an adversary structure Aφ in the same way as we have seen
earlier. It is clear that for any adversary structure, there exists a GMNC formula
characterizing it in this way. If nothing else, it can always be constructed trivially
from a complete list of the sets in the structure. But often, much smaller such
formulae exist. In the following, |φ| denotes the size of a formula φ.

In [5], a construction is given which from a monotone formula constructs
an LSSS secure for the corresponding adversary structure. This construction
generalizes trivially to GMNC formulae, provided the field used is larger than
the largest fan-in occurring in the formula. Basically this construction uses, for
each operator T tm, an instance of Shamir’s secret sharing scheme with m players
and threhold t.



The construction results in an LSSS of size equal to the number of times the
formula reads an input variable. An MSP can be obtained immediately from this.
If one wants to work in a field K which not large enough, one can first do the
construction over an extention field of K, and then use a technique appearing
in [28] for constructing a new MSP over K. This blows up the size by at most a
logarithmic factor, and so we have

Lemma 1 There exists an efficient procedure which from any GMNC formula φ
constructs an MSP (over any field K) which computes the function fφ and has
size O(|φ| log |φ|).

In case fφ is Q2, we can invoke Theorem 7 to get a multiplicative MSP.
Unfortunately, the situation is not so nice for strongly multiplicative MSP’s.

We can, however, prove a corresponding result in this case if we place further
restrictions on the formula.

We call a monotone formula 1/3-accepting if each of the operators T tm satisfies
t− 1 < m/3. The complexity of a monotone function f in this model is denoted
φ1/3(f) (=∞ if it is not computable).

As an example, consider the formula on six variables:

ψ = T 2
4 (x1, x3, T

2
4 (x1, x2, x3, x4), T

2
4 (x1, x2, x5, x6))

Then Aψ is the example structure on 6 players mentioned in the introduction.
We then have:

Lemma 2 For any monotone Boolean function f we have: f is Q3 iff φ1/3(f) <
∞. Moreover, from any 1/3-accepting formula φ, one can efficiently construct
a strongly multiplicative MSP M over field K computing fφ, such that M has
size at most |φ| if |K| > |φ|, and otherwise the size of M is O(|φ| log |φ|).
Proof. We first observe that if we use the above construction to build an MSP
M from 1/3-accepting formula φ, then this MSP will automatically be strongly
multiplicative. This follows from that fact that basic unit used in the construc-
tion is Shamir’s scheme with parameters (t,m) such that t − 1 < m/3, and
such a scheme is already strongly multiplicative. It can then be shown by induc-
tion that MSP resulting from the Benaloh-Leichter construction is also strongly
multiplicative.

From the above and Theorem 6 it now follows that functions computed by
1/3-accepting formulas are Q3.

Finally, it can be shown by induction that each Q3 function f is computable
by a 1/3-accepting formula that consists only of OR- and 2-out-of-4-gates. This
construction is exponential in general, but we can now conclude that the 1/3-
accepting formulas compute exactly all of the Q3-monotone functions.

5 Homomorphic Commitments and VSS

5.1 Preliminaries

We introduce some conventions and notation to be used in the protocol descrip-
tions throughout the rest of the paper. We assume throughout (without loss of



generality, and in accordance with the previous literature) that the function to
be computed by {P1, . . . , Pn} is given as an arithmetic circuit C of size |C| over
some finite field K, consisting of addition and multiplication gates. Our proto-
cols are described making use of a broadcast channel. But note that in the i.t.
scenario with an active adversary, we do not assume that such a channel is given
for free as part of the model, however it can efficiently be simulated using the
protocol of [19] that is secure against any given Q3 adversary structure.

Let M be an MSP computing a Q2 (or Q3) function f . We will assume for
simplicity that ψ is 1 − 1, i.e. each player owns exactly one row in M. In this
case, (a1, ..., an) ⋄ (b1, ..., bn) = (a1b1, ..., anbn). The generalization to many rows
per player is straightforward, but would lead to rather complicated notation.

5.2 Overview of Commitments and Related Protocols

To prove Theorem 1, it is sufficient to construct, for each MSP M = (K,M,ψ)
computing a Q3 function f , an efficient VSS that is secure against an active Af -
adversary. We first discuss generic primitives sufficient to construct an efficient
VSS protocol and conclude by providing concrete realizations of these primitives.

A commitment scheme (for a given adversary structure A) consists of two
protocols: the protocol Commit allows a player Pi (the dealer) to commit to a
value a and the protocol Open allows him later to reveal the committed value.
The total information stored by the players after the protocol Commit is called
the commitment and will be denoted [a]i. Both protocols may be interactive pro-
tocols among the players and result either in the players accepting the outcome,
or disqualifying the dealer. A commitment scheme must hide the committed
value in the presence of an A-adversary, and it must bind the dealer to the com-
mitted value, i.e. there is at most one value that the dealer can get accepted
during the Open protocol. Both these properties can hold unconditionally, or
relative to a computational assumption, depending on the scenario.

The crucial property we need is that commitments are homomorphic, which
means that from commitments [a]i and [b]i the players can compute without
interaction a commitment [a + b]i by Pi to the sum of the values, and that for
a constant m they can compute [ma]i. Thus, any linear function on commit-
ted values can be computed non-interactively. Homomorphic commitments have
been used before in the context of zero-knowledge (e.g. [13]) and are implicit in
some MPC protocols (e.g. [11]). We need two auxiliary protocols:

– A commitment transfer protocol (CTP) allows player Pi to transfer a com-
mitment to player Pj (who of course learns a in the process), i.e. to convert
[a]i into [a]j . It must be guaranteed that this protocol leaks no information
to the adversary if Pi and Pj are honest throughout the protocol, but also
that the new commitment contains the same value as the old, even if Pi and
Pj are both corrupt. It is therefore less trivial than one might expect.

– A commitment sharing protocol (CSP) allows player Pi to convert a commit-
ted value [a]i into a set of commitments to shares of a: [a1]1, ..., [an]n, where
(a1, ..., an) = M(a,ρ) for a random vector ρ chosen by Pi. This must hold



even if Pi is corrupt, and must leak no information to the adversary if Pi is
honest throughout the protocol.

The CSP protocol is easy to describe at a general level: starting from [a]i, Pi
chooses a random vector (ρ1, ..., ρe−1) and commits to ρ1, ..., ρe−1, resulting in
[ρ1]i, ..., [ρe−1]i. Let (a1, ..., an) be the shares resulting from sharing a using the
ρi’s as random choices. Each ai is a linear function of the committed values, and
hence the players can compute [a1]i, ..., [an]i non-interactively. Finally, Pi uses
CTP to convert [aj ]j into [aj ]i, for j = 1, . . . , n.

Committing to a and then performing CSP is equivalent to verifiably secret
sharing (VSS) of a: the commitments to shares prevent corrupted players from
contributing false shares when the secret is reconstructed. It remains to give
efficient realizations of commitments and the CTP.

5.3 Realization of Commitments

To have a player D commit to a one could have him secret share a using M.
However, D may be corrupt and so must be prevented from distributing incon-
sistent shares. In the special case of threshold secret sharing, this means ensuring
that all uncorrupted players hold points on a polynomial of bounded degree. For
this purpose, we propose a protocol that can be seen as a generalization of the
BGW-protocol from [6] where a bivariate polynomial was used3:

1. To commit to s ∈ K, D chooses a symmetric e × e matrix R at random,
except that R has s in the upper left corner.4 Let vi be the row inM assigned
to Pi and let vTi be its transpose (a column vector). Then D sends to Pi the
vector ui = R·vTi . The share si of s given to Pi is defined to be the first entry
of ui. Hence the product 〈vj ,ui〉 := sij can be thought of as a share of si
given to Pj . Note that we have 〈vj ,ui〉 = 〈vjR,vTi 〉 = 〈vi, RvTj 〉 = 〈vi,uj〉.

2. Pi sends to each Pj the value 〈vj ,ui〉, who compares this to 〈vi,uj〉 and
broadcasts a message complaint(i, j) if the values are not equal.

3. In response to complaint(i, j), D must broadcast the correct value of sij .
4. If any player Pi finds that the information broadcast by D does not match

what he received fromD in step 1, he broadcasts an accusation, thus claiming
that D is corrupt.

5. In response to an accusation by Pi, D must broadcast all information sent
to Pi in step 1.

6. Every player checks whether the information broadcast by D in the previous
step is consistent with everything he has received from D previsously. If

3 Apart from the threshold case [6], our protocol is a VSS, i.e. efficient reconstruction
without the help of the dealer is possible, if for each set B whose complement is in A,
the matrix MB has full rank. In this case, players should store all information received
by the dealer to reconstruct efficiently. In general, however, we cannot guarantee
efficient reconstruction, so we only use it here as a commitment scheme.

4 One can think of step 1 in this protocol (choosing R) as corresponding to choosing
a symmetric bivariate polynomial in the VSS protocol of [6].



this is not the case he broadcasts an accusation against D. If at this point,
the set of accusing players is in A, the commit protocol is accepted by the
honest players, and accusing players accept the share broadcast for them by
D. Otherwise the commit protocol is rejected.

To open a commitment, D broadcasts s and the full set of shares {si}, and
each player broadcasts a binary message (”agree” or ”complain”). If the shares
consistently determine s and only a set of players in A complained, then the
opening is accepted.

We now explain why this commitment scheme works. First, assume D re-
mains honest throughout the commit protocol. To show that the adversary ob-
tains no information about s, note first that steps 2-6 of the commit protocol
are designed such that the adversary learns nothing he was not already told in
step 1. Now let A be any set in A, and let MAR denote the information re-
ceived by the players in A in the commit phase, finally let X be any symmetric
matrix satisfying the equation MAX = MAR, and having some s̃ ∈ K in its
upper-left corner. Since A is rejected by M, it follows by the duality argument
that there exists a vector µ = (µ1, . . . , µe) ∈ KerMA with µ1 = 1. Consider
the matrix µ ⊗ µ. Note that this matrix is symmetric and that it has 1 in its
upper-left corner. Then X + (s− s̃)µ⊗µ satisfies the equation as well, has s in
its upper left corner and is symmetric. Hence, for each possible s̃, the number of
different solutions X with s̃ in the upper left corner is the same, and hence the
adversary learns no information on s in step 1. Finally note that if D remains
honest throughout, all honest players will agree with him, so the opening always
succeeds.

Now assume that D is corrupt and that the commit protocol has been ac-
cepted. Consider the full set of players and subtract the set of accusers and the
set of corrupted players. By the Q3 property, we know that the remaining set
of (honest) players is not in A, i.e. it is large enough to uniquely determine a
secret shared by M (this is called a qualified set). Assume wlog that these are
the first t players. These players have information that is consistent with each
other and also with the information broadcast by the dealer (since they did not
accuse the dealer). It follows that every pair of honest players agree on the value
sij they have in common. And furthermore, that if Pi is honest, all the sij ’s
known to him are consistent with ui. Define the symmetric n×n matrix S to be
the matrix containing all the sij ’s known to players P1, ..., Pt (this leaves entries
sij with i, j > t undefined). For i ≤ t, the i’th column determines si uniquely,
as a fixed linear combination of the first t entries (since the first t players form
a qualified set). The coefficients in this linear combination depend only on M
and so are the same for any column. It follows that the row of shares (s1, ..., sn)
is determined as a linear combination of the first t rows of S. Since each of these
rows consistently determines a secret (namely si for the i’th row), it follows by
linearity of MSP secret sharing that the row (s1, ..., sn) consistently determines
some secret s.

It remains to be shown that opening the commitment must either reveal s or
be rejected. Assume the opening is accepted. Then consider the full player set



and subtract the set of corrupt players and the set of players who complained
about the opening. The remaining set cannot be in A by the Q3 property and
so is qualified. It consists of honest players that did not complain, i.e. the shares
revealed for them are the same as those received in the commitment phase. Hence
the revealed value must be s.

5.4 Realization of the CTP

The following protocol converts [a]i into [a]j :

1. Given a commitment [a]i realized as above with Pi in the role of D, Pi sends
privately the shares determining a to Pj . If this information is not consistent,
then Pj broadcasts a complaint, and the protocol continued at step 4.

2. Pj commits to a (independently), resulting in [a]j .
3. Using linearity of commitments, Pj opens the difference [a]i−[a]j to reveal 0,

using the information from step 1 as if he created [a]i himself. If this succeeds,
the protocol ends. Otherwise do Step 4.

4. If we arrive at this step, it is clear that at least one of Pi and Pj is corrupt,
so Pi must then open [a]i in public, and we either disqualify Pi (if he fails)
or continue with a default commitment to a assigned to Pj .

6 MPC Secure Against Passive Adversaries

To prove Theorem 2, it is sufficient to construct for each MSP M = (K,M,ψ)
computing a Q2 function f , an efficient protocol that is secure against a pas-
sive Af -adversary. By Theorem 7 we can assume without loss of generality (or
efficiency) that M is multiplicative.

The protocol, which is a generalization of a threshold protocol appearing
in [24], starts by letting each player share each of his inputs using M and send
a share to each player. The given arithmetic circuit over K is then processed
gate by gate, maintaining as invariant that all inputs and intermediate results are
secret-shared, i.e. each such value a ∈ K is shared (using M) by shares a1, ..., an,
where Pi holds ai. Moreover, if a depends on an input from an honest player, this
must be a random set of shares with the only constraint that it determines a. At
the beginning, only the input values are classified as having been computed. Once
an output value x has been computed, it can be reconstructed in the obvious
way by broadcasting the shares x1, ..., xn. It is therefore sufficient to show how
addition and multiplication gates are handled. Assume the input values to a gate
are a and b, determined by shares a1, ..., an and b1, ..., bn, respectively.

Addition For i = 1, . . . , n, Pi computes ai + bi. The shares a1 + b1, . . . , an + bn
determine a+ b as required by the invariant.

Multiplication For i = 1, . . . , n, Pi computes ai · bi = c̃i.
Resharing step: Pi secret shares c̃i, resulting in shares ci1, ..., cin, and sends
cij to player Pj .



Recombination step: For j = 1, . . . , n, player Pj computes cj =
∑n

i=1 ricij ,
where (r1, . . . , rn) is a fixed recombination vector of M. The shares c1, . . . , cn
determine c = ab as required by the invariant.

We do not have space to prove formally the security of this protocol here.
However, to get a feeling for why it is secure, note first that the addition and
multiplication step compute correct results simply by linearity of the secret shar-
ing, and by the multiplication property. To argue that privacy is maintained, the
crucial point is to show that the sharing of a result c of the multiplication step
starting from a, b is random with the only restriction that it determines c (the
corresponding result for addition is trivial).

It is easily seen that the set of shares determining c can be written as
(c1, ..., cn) = M(c,ρ ), where in fact ρ =

∑n
i=1 riρi and where ρi was chosen by

Pi. Let B = {Pi| ri 6= 0}. We claim that B 6∈ A. Indeed, let M be an MSP with
multiplication, and let r be a recombination vector. Then B = {Pi| ri 6= 0} 6∈ A.
Towards a contradiction, suppose B ∈ A. By the duality argument, choose κ

such that MBκ = 0 and the first coordinate κ1 of κ is 1. Then by definition
of the multiplication property we have that 1 = κ2

1 = 〈r,Mκ ⋄Mκ〉. But on
the other hand, since MBκ ⋄MBκ = 0 and rB = 0, this must be equal to 0,
a contradiction. This proves the claim. Therefore, the choice of at least one ρi
where ri 6= 0 remains unknown to the adversary and is made randomly and
independently of anything else. This can be used when building a simulator for
an adversary: when he corrupts a player, what we have to do is essentially to
come up with a random share for this player of each shared value. Each such
share must be consistent with what the adversary already knows. By the above,
this can be handled independently for each shared value, and so can be easily
done by solving a system of linear equations.

7 MPC Secure Against Active Adversaries

To prove Theorem 3, it is sufficient to construct for each MSP M = (K,M,ψ)
computing a Q3 function f , an efficient protocol that is secure against an ac-
tive Af -adversary. Since Q3-functions are in particular Q2, we can assume by
Theorem 7 without loss of generality (or efficiency) that M is multiplicative.

Like in some previous protocols, the basic approach is to ensure that all
players are committed to the values they hold, and to have them prove that
they are performing their local operations correctly. In what follows, we use a
generic commitment scheme and auxiliary protocols as in Section 5.

7.1 The CMP Protocol

We need an additional primitive, namely a Commitment Multiplication Protocol
(CMP). Such a protocol starts from commitments [a]i, [b]i, [c]i and allows Pi
to convince the other players that ab = c. If Pi is corrupted, then the honest
players should accept the proof only if ab = c (in the cryptographic scenario,



an negligible error probability is allowed). If Pi remains honest, it must leak no
information to the adversary beyond the fact that ab = c. Moreover, in the event
that [c]i is opened, the adversary must learn nothing about a, b beyond what is
implied by c and the other information he holds. The following CMP protocol is
a generalization of a protocol suggested in [15] and works for any homomorphic
commitment scheme.

1. Inputs are commitments [a]i, [b]i, [c]i where Pi claims that ab = c. Pi chooses
a random β and makes commitments [β]i, [βb]i.

2. The other players jointly generate a random challenge r using standard tech-
niques.

3. Pi opens the commitments r[a]i + [β]i to reveal a value r1. Pi opens the
commitment r1[b]i − [βb]i − r[c]i to reveal 0.

4. If any of these opening fail, the proof is rejected, else it is accepted.

It is easy to show that if Pi is honest, then all values opened are random (or
fixed to 0) and so reveal no extra information to the adversary. Furthermore,
if after committing in step 2, Pi can answer correctly two different challenges,
then ab = c. Thus the error probability is at most 1/|K|, and the protocol can
be iterated to reach any desired error probability.

CMP with zero error For commitments based on MSP’s, as we have seen
earlier, one can construct an error-free CMP protool, provided the MSP we have
is strongly multiplicative:

In the threshold case, when values a, b have been shared using two polynomi-
als of degree t, multiplying corresponding shares of a, b yields a sharing of ab, but
in a new secret sharing scheme: we now need 2t+ 1 players in stead of t+ 1 to
reconstruct the secret. Something similar can be shown to hold for MSP-based
secret sharing:

Let M = (K,M,Ψ) be an MSP with strong multiplication. It can be shown
that there exists (an efficiently constructible) MSP M′ = (K,M ′, Ψ ′) such that
the following holds.

– For all a,ρa and b,ρb, there exists a ρ such that M(a,ρa) ⋄ M(b,ρb) =
M ′(ab,ρ) (*)

– If a set A is rejected by M then A is also rejected by M′, but A is accepted
by M′.

We omit the technical and fairly straightforward proof of this claim.
In other words, if s and s′ are full sets of shares for a and b, respectively,

then s ⋄ s′ is a full set of shares of ab according to M. Moreover, the secret ab is
determined uniquely even if we delete from s ⋄ s′ the shares that belong to a set
A rejected by M.

The CMP protocol is now as follows:

1. Inputs are commitments [a]i, [b]i, [c]i where Pi claims that ab = c. First Pi
performs CSP on commitments [a]i, [b]i to get committed shares [a1]1, ..., [an]n
and [b1]1, ..., [bn]n.



2. Pi computes the vector ρ as defined in equation (*) above (easy by solving
a set of linear equations) and commits to each entry of ρ. From these com-
mitments and [c]i, the players compute (by linear operations) commitments
to the shares of c under M ′, [c1]i, ..., [cn]i where of course Pi claims that
ajbj = cj , for 1 ≤ j ≤ n.

3. For j = 1, . . . , n, commitment [cj ]i is openened privately to Pj , i.e. the shares
needed to open it are sent to Pj (instead of being broadcast). If the value
revealed this way is not ajbj , Pj broadcasts a complaint and opens (his own)
commitments [aj ]j , [bj ]j . In response, Pi must open [cj ]i and is disqualified
if ajbj 6= cj .

Very briefly, this works since the protocol guarantees that c1, .., cn are a set of
shares of c under M ′. Even if Pi is corrupt, he must have ajbj = cj for each
honest Pj or be disqualified. But since the set of honest players can determine
uniquely a secret shared under M ′, it follows that ab = c.

7.2 The General MPC Protocol

The general MPC protocol starts by asking each player to VSS each of his input
values as described above: he commits to the value and then performs CSP. A
player failing to execute this correctly is disqualified and we take default values
for his inputs.

We then work our way through the given arithmetic circuit, maintaining as
invariant that all inputs and intermediate results computed so far are VSS’ed as
described above, i.e. each such value a is shared (using M) by committed shares
[a1]1, ..., [an]n where all these shares are correct, also those held by corrupted
players. Moreover, if a depends on an input from an honest player, this must
be a random set of shares with the only constraint that it determines a. At the
beginning, only the input values are classified as having been computed.

Once an output value x has been computed, it can be reconstructed in the
obvious way by opening commitments to the shares x1, ..., xn. This will succeed,
as the honest players will contribute enough correct shares, and a corrupted
player can only choose between contributing a correct share, or be disqualified by
trying to open an incorrect value. It is therefore sufficient to show how addition
and multiplication gates are handled. Assume the input values to a gate are a
and b, determined by committed shares [a1]1, ..., [an]n and [b1]1, ..., [bn]n.

Addition For i = 1, . . . , n, Pi computes ai+bi and the players (non-interactively)
compute [ai + bi]i. By linearity of the secret sharing and commitments,
[a1 + b1]1, ..., [an + bn]n determine a+ b as required by the invariant.

Multiplication For i = 1..n, Pi computes ai · bi = c̃i, commits to it, and
performs CMP on inputs [ai]i, [bi]i, [c̃i]i.
Resharing step: Pi performs CSP on [c̃i]i, resulting in the commitments
[ci1]1, ..., [cin]n. We describe below how to recover if Pi fails to execute this
phase correctly.



Recombination step: For j = 1..n, player Pj computes cj =
∑n

i=1 ricij , where
(r1, ..., rn) is a fixed recombination vector. Also all players compute (non-
interactively) [cj ]j =

∑n
i=1 ri[cij ]j = [

∑n
i=1 ricij ]j . By the multiplication

property and linearity of M, the commitments [c1]1, ..., [cn]n determine c =
ab as required by the invariant.

It remains to be described what should be done if a player Pi fails to execute
the multiplication and resharing step above. In general, the simplest way to han-
dle such failures is to go back to the start of the computation, open the input
values of the players that have just been disqualified, and restart the compu-
tation, simulating openly the disqualified players. This allows the adversary to
slow down the protocol by a factor at most linear in n. This protocol, together
with the VSS and main MPC protocols described previously, are the basis for
proving Theorem 3.

The described approach for dealing with cheaters can be used only for secure
function evaluation, but not for an ongoing secure computation. For the latter,
one can introduce an additional level of sharings: each value a player is committed
to in the above description is in addition verifiably secret shared, this can be
accomplished using the CSP protocol. Then, if a player fails, the honest players
can immediately open all his secret values and simulate the failed player openly
from that point.

8 The Cryptographic Scenario

The cryptographic scenario can be handled in various ways. One way is to start
from the full information theoretically secure protocol for an active adversary and
replace every transmission of a message (over a secure channel) by transmission
over an open network of a non-committing encryption[10] of the same message.
This will, by the results shown in [10] lead to an adaptively secure protocol for the
cryptograhic scenario. This protocol will only be secure against a Q3-adversary.
However doing the same transformation on the Q2 secure protocol from [15]
(which is derived from a threshold protocol using ideas from this paper) will
give us Q2-security in the cryptographic scenario.

Current state of the art for non-committing encryption menas that these
transformations result in rather inefficient protocols. If we are willing to settle
for static security, a more efficient translation can be done by noting that the
general MPC protocol outlined in section 7.2 can be used with no change in the
cryptographic scenario, provided we can implement homomorphic commitments
and a CTP protocol for the cryptographic scenario (note that the CSP and CMP
(with eror) protocols we described earlier do not depend on the scenario).

Starting from this, we sketch a proof of Theorem 5. As commitments in this
scenario, we use the commitments from [13] based on q-one-way homomorphisms,
which exists, e.g. if RSA is hard to invert or if the decisional Diffie-Hellman
problem in some prime order group is hard. We then require that the field over
which we compute is GF (q). A simple example is if we have primes p, q, where



q|p− 1 and g, h, y are elements in Z∗
p of order q chosen as public key by player

Pi. Then [a]i is of form (gr, yahr), i.e. a Diffie-Hellman (El Gamal) encryption
of ya under public key g, h. In [13], protocols are shown for proving efficiently
in zero-knowledge that you know the contents of a commitment, and that two
commitments contains the same value, even if they were done w.r.t. different
public keys. It is trivial to derive a CTP from this: Pi privately reveals the
contents and random bits for [a]i to Pj . If this is not correct, Pj complains,
otherwise he makes [a]j and proves it contains the same value as [a]i.

We note that for technical reasons, in order to be able to do a simulation-
based proof of security of the overall MPC protocol using these commitments,
each player must prove knowledge of his secret key intially, as well as prove
that he knows the contents of each commitment he makes. These commitments,
together with the VSS and main MPC protocols described earlier, form the basis
for proving Theorem 5.

To show Theorem 4, we need to depart a bit from the general framework
we have used until now. We sketch the construction of the protocol claimed,
omitting many technical details: First, note that the constructions of [25] imply
that (cryptographic) commitment and oblivious transfer between any pair of
players can be done under our assumption on existence of one-way trapdoor
permutations. Hence, a player can VSS a value a by sharing it according to S,
encrypting each share under the public key of the receiver, and proving in zero-
knowledge that this was done correctly. Thus, in the Input Distribution Stage, we
have each player VSS his inputs in this way. For the computation stage, we use
the fact that oblivious transfer is sufficient to do MPC with an arbitrary number
of cheater, where however it cannot be guaranteed that the protocol completes
successfully. Also this follows essentially from [25], an explicit reduction can be
found in the later [16], which shows how to do MPC based on commitments
and oblivious transfer as blackboxes. This protocol makes no assumption on
the adversary structure, but on the other hand stops completely if a cheater is
detected. In our case, however, such an event is easily handled: the players go
back to the VSS’s from the first stage, reconstruct the inputs of the cheater, and
redo the computation without him.

9 Complexity Issues

In this section, we look at the consequences our reults have for the complexity
of doing MPC secure against adversary structures in general. In other words,
we ask: what is the most efficient MPC protocol secure for a given adversary
structure A that our results can yield? and how does this compare to earlier
constructions of MPC protocols?

It is clear from the above that for an active (passive) adversary our most
efficient protocol will be the one that is derived from the smallest MSP whoose
adversary structure is Q3(Q2) and contains A. In other words, to protect against
an A-adversary, it is enough to protect against an even stronger adversary who



can corrupt more sets, and this might be easier, if this stronger adversary has a
simpler description in terms of a smaller MSP.

Motivated by this, we define

Definition 3 For all adversary structures A:
mspK(A;Q2) = min{mspK(f)|f is Q2 and f rejects A}
mspK(A;Q3) = min{mspK(f)|f is Q3 and f rejects A}.

Clearly, mspK(A;Q2) (mspK(A;Q3)) is finite iff A is Q2 (Q3). With this
notation we can say that the best protocols we can build for adversary structure
A have complexity polynomial in mspK(A;Q2) (mspK(A;Q3)).

A similar description of protocol complexity can be given for the construc-
tions of Hirt and Maurer [26]. We defined earlier 1/3-accepting formulae as
monotone formulae with no constants and containing only threshold operators
T tm where t − 1 < m/3. We define majority-accepting formulae to be the same,
except that t−1 < m/2. Similarly to the complexity measures for MSP’s, we let
Φ1/3(f) ( Φ1/2(f)) be the size of the smallest 1/3-accepting (majority-accepting)
formula computing f - ∞ if f cannot be computed. Then we define

Definition 4 For all adversary structures A:
Φ1/2(A) = min{Φ1/2(f)|f rejects A}
Φ1/3(A) = min{Φ1/3(f)|f rejects A}

The point of this is that it now follows from simple inspection of the con-
struction from [26] that the most efficient protocols they can build for adversary
structure A and an active (passive) adversary have complexity polynomial in
Φ1/3(A) (Φ1/2(A)). From this, Lemma 2, and inspection of the protocols, it fol-
lows that for any adversary structure, we can always do at least as well as [26].
But in some cases, we can do much better, as can be seen from the following
theorem:

Theorem 8 There exists families {fn} and {gn} of monotone Boolean functions
on n variables such that every fn is maximal Q2 and every gn is maximal Q3.
Furthermore mspGF (2)(fn) and mspGF (2)(gn) are O(n), but both families require
superpolynomial size monotone circuits, in particular φma(fn) and φ1/3(gn) are

nΩ(logn).

The fact that gn is maximal Q3, means that gn is the only Q3 function reject-
ing the adversary structure Agn

, and similarly for fn. Hence we get immediately

Corollary 1 Notation as in Theorem 8. Then we have that mspGF (2)(Afn
;Q2),

mspGF (2)(Agn
;Q3) are linear in n, but φ1/2(Afn

), φ1/3(Agn
) are superpolyno-

mial.

Thus our MPC protocols for these adversary structures (and in particular
our VSS construction for Agn

) are polynomial in n, while any construction based
on any kind of monotone formulas such as [26] or [3] is superpolynomial.

The key to the proof of the theorem will be the following lemma:



Lemma 3 Let h : {0, 1}n → {0, 1} be any monotone function, and suppose
that an MSP of size m computes h. Then there exist monotone functions f :
{0, 1}n+1 → {0, 1} and g : {0, 1}n+2 → {0, 1} such that: f is maximal Q2, g is
maximal Q3, both f and g can be computed by MSPs of size O(m); and finally
any monotone Boolean circuit computing f (or g) yields immediately a mono-
tone Boolean circuit computing h on any input of Hamming weight less than
n/2.

This can be shown by defining the function h̃ on n variables as

h̃(x) = h(x) ∨ T n/2n (x).

Then we can construct the claimed functions f, g by introducing two new Boolean
variables y, z and defining

f(x, y) = T 2
3 (y, h̃(x), h̃∗(x))

and

g(x, y, z) = f(x, y) ∨ (z ∧ (∨ni=1xi)).

The claims on the properties of f, g follow from a theorem on the composition of
MSP’s (see [30]), the well known fact that threshold functions have linear MSP
complexity and that a function and its dual have the same MSP complexity (see
e.g. [21]).

In [1], the monotone function ODDFACTOR is studied. This function is
defined on bipartite graphs on t =

√
n pairs of vertices, where an input graph

can be specified by n Boolean variables, one for each of the potential edges. An
input graph is accepted if and only it contains an odd factor, i.e. a subgraph
in which every vertex has odd degree (in particular degree > 0). The following
result is proved in [1]:

Theorem 9 The ODDFACTOR function on n variables can be computed by
an MSP over GF (2) of size n, but a monotone Boolean circuit computing the
function must have size nΩ(logn).

Now suppose we are given a monotone Boolean circuit family that for any
n computes ODDFACTOR on input graphs with less than n/2 edges. A sim-
ple reduction will show that this family can in fact compute ODDFACTOR in
general, at polynomial extra cost. This, together with Theorem 9 and Lemma 3,
immediately implies Theorem 8.
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