
On the Complexity of Verifiable Secret Sharing and Multiparty
Computation

Ronald Cramer∗, Ivan Damgård, Stefan Dziembowski†
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Abstract

We first study the problem of doing Verifiable Secret
Sharing (VSS) information theoretically secure for a gen-
eral access structure. We do it in the model where pri-
vate channels between players and a broadcast channel is
given, and where an active, adaptive adversary can corrupt
any set of players not in the access structure. In particular,
we consider the complexity of protocols for this problem,
as a function of the access structure and the number of
players. For all access structures where VSS is possible
at all, we show that, up to a polynomial time black-box
reduction, the complexity of adaptively secure VSS is the
same as that of ordinary secret sharing (SS), where se-
curity is only required against a passive, static adversary.
Previously, such a connection was only known for linear
secret sharing and VSS schemes.

We then show an impossibility result indicating that a
similar equivalence does not hold for Multiparty Compu-
tation (MPC): we show that even if protocols are given
black-box access for free to an idealized secret sharing
scheme secure for the access structure in question, it is
not possible to handle all relevant access structures effi-
ciently, not even if the adversary is passive and static. In
other words, general MPC can only be black-box reduced
efficiently to secret sharing if extra properties of the secret
sharing scheme used (such as linearity) are assumed.
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1 Introduction

In this paper, we consider three related problems, namely
secret sharing(SS),verifiable secret sharing(VSS) and
multiparty computation(MPC).

SS was introduced by Shamir[16] and generalized by
Itoh et al.[11]: aDealerhas a secrets and distributes a set
of sharess1, . . . , sn ton players, such thats can be recon-
structed only by certainqualifiedsubsets of players while
unqualified subsets have no information abouts. The col-
lection of qualified sets is called theaccess structure. We
stress that we consider here secret sharing for general ac-
cess structures, rather than threshold schemes where the
access structure may only consist of all sets of size larger
than some threshold. It is assumed that the dealer com-
putes the shares correctly, and that players input correct
shares for reconstruction.

When these assumptions are dropped, we get the
(seemingly) harder problem of VSS (Choret al. [4]):
here, some of the players, including the dealer, may not
follow the protocol. It may even be the case that some
of them turn bad dynamically as the protocol proceeds, as
long as the total set of bad players remains unqualified.
Still the remaining honest players should be able to ver-
ify that they have shares of a well defined secret, while
the cheating players should get no information about it, if
the dealer is honest. Finally, the honest players should be
able to reconstruct the secret, even against the actions of
the cheating players.

Our final, still more general problem is that of MPC (A.
Yao [17], Goldreich, Micali and Wigderson [9]): here, all
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players have a secret input, and the goal is to compute an
agreed functions of these inputs, while maintaining pri-
vacy of the inputs and correctness of the result, again as-
suming that the set of bad players at any given time is
unqualified.

The classical results in unconditionally secure
VSS/MPC by Ben-Or, Goldwasser and Wigderson[2],
Chaum, Crépeau and Damgård [3] and Rabin and Ben-Or
[15] can be seen as results that build efficient VSS
and MPC protocols based on Shamir’s threshold secret
sharing scheme, in the model where secure channels are
assumed to exist between every pair of players.

Gennaro [8] was the first to consider VSS secure for
general access structures. Then Hirt and Maurer [10]
characterized exactly those general access structures for
which VSS and MPC are possible.

Continuing the line of research from [2, 3, 15], Cramer,
Damgård and Maurer [6] have shown that VSS and MPC
for general access structures can be built efficiently on top
of any linear SS scheme (see also [5]). Thus a natural final
step is to ask what happens if we start from anarbitrary
SS scheme?

Informally, what we show in this paper is that VSS is as
easy to achieve efficiently as ordinary SS, more precisely,
there exists an efficient reduction that builds a secure VSS
protocol from any SS scheme secure for the same access
structure, provided VSS is possible at all for that structure.
Since VSS trivially implies SS, this is an optimal result.

Similarly, showing that MPC in this sense is no harder
than SS would be an optimal result. However, we show an
impossibility result indicating that there is not much hope
of proving this. A reduction showing how to do secure
MPC for some access structure givenanySS-scheme for
that structure cannot make any assumptions on the way
the SS-scheme works. So the natural approach is to treat
the secret sharing as a black box, relying only on the func-
tionality that follows from the definition of secure SS. We
show that if we restrict ourselves to such reductions, there
are access structures that cannot be handled efficiently,
where by ”efficiently”, we mean that protocols run in time
polynomial in the number of players, counting usage of
the SS-scheme as only one step.

Thus, general reductions building MPC from SS would
have to either depend on the particular kind of SS-scheme
being used (such as reductions depending on linearity of
the SS scheme) or be inefficient on some access struc-

tures. This may be seen as an indication that, as far
as applicability to unconditionally secure MPC is con-
cerned, there is a fundamental difference between linear
SS schemes and general ones. By contrast, it is shown
in[6] that general SS does suffice forcomputationallyse-
cure MPC.

2 A More Detailed View

To explain our results in more detail, we need to describe
more precisely the model we use: we have a set ofn play-
ers, connected pairwise by private channels, moreover, a
broadcast channel is also available. We are given amono-
tone access structureΓ, that is,Γ consists of subsets of the
player set, such thatA ∈ Γ andA ⊂ B impliesB ∈ Γ.
For instance,Γ could consist of all subsets of sizen/2
or more. For convenience in the following, we will in
stead talk about the familyA of subsets not inΓ. Such
a complement of an access structure is known as an ad-
versary structure, a general notion introduced by Hirt and
Maurer[10].

Finally we have anadversarywho can corrupt any sub-
setA of players, as long asA ∈ A. This is called anA-
adversary. The adversary may bepassive, meaning that
he just gets access to all data of corrupted players, orac-
tive, meaning that he takes control over corrupted players
and may make them deviate from the protocol they were
supposed to follow. Orthogonal to this, we distinguish be-
tweenstaticadversaries who must decide before the pro-
tocol who to corrupt, andadaptiveadversaries [15] who
may decide dynamically throughout the protocol whom to
corrupt, as long as the total corrupted set is inA.

In this model, security of secret sharing (SS) can be
rephrased to the requirement that a passive, static adver-
sary gets (almost) no information about the secret when
it is distributed. And that the secret can be reconstructed,
even if the adversary can make the corrupted set of play-
ers fail to input shares for reconstruction. Note that since
VSS protocols in our model usually have non-zero error
probability, we will allow SS schemes in our definition to
also have non-zero error, in order to make a reasonable
comparison of the two problems.

In order to talk about the complexity and error proba-
bility of an SS scheme, we will think of it as two prob-
abilistic algorithmsDistr andRecon, whereDistr gets
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as input the secrets, the number of playersn, and a se-
curity parameterk as input, it then computes a set ofn
shares as output. Sharings means that one of the players,
the dealer, runsDistr and sends the shares privately to
the players. For reconstruction, some subset of the shares
are broadcast, and each player can runRecon, which gets
as input the subset of the shares,n andk, and outputs a
values′.

Thus, underlying this, we have not just one, but a fam-
ily of adversary structures, one for eachn. We will
say that(Distr, Recon) is secure against the family
F = {An}n=1..∞ if the following hold for anyn and
any static, passiveAn-adversary:

• Assuming the dealer is not corrupted, the amount of
Shannon information that the adversary gets about
the secret after it is shared is negligible ink.

• Sharings and runningRecon on input a set of shares
not inAn results in outputs, except with probability
negligible in k. RunningRecon on input a set of
shares inAn results in output a special symbol⊥,
indicating that the input set was unqualified, again
except with probability negligible ink.

Here, negligible ink means that the quantity converges to
0 as a function ofk faster than any polynomial fraction.
Note that it would not make any essential difference if the
behavior ofRecon on unqualified sets was left undefined:
one can always test, with arbitrarily small error, if a set is
qualified by sharing a random secrets and testing if they
can be reconstructed from the subset in question.

Going to VSS, we will think of this as first a protocol
for distribution that takes a security parameterk as input,
and where one of the players, the dealer, gets the secret
as private input. Secondly, there is a protocol for Recon-
struction, where each player starts from his view of the
distribution (which we think of as his share), and recon-
structs a value for the secret. Such a VSS is secure against
the familyF = {An}n=1..∞ if the following hold for all
n and all adaptive, activeAn-adversaries:

• After distribution, a secret is uniquely defined from
the views of the set of incorrupted players, except
with probability negligible ink.

• If the Dealer remains uncorrupted, the adversary has

a negligible (ink) amount of information about the
secret.

• Reconstruction of the secret results in all uncor-
rupted players reconstructing the secret defined at
distribution time, except with negligible probability
in k.

Hirt and Maurer [10] show that these criteria can be met
if and only if the adversary structure isQ2: for any two
sets in the structure, their union is not the whole player
set. The obvious question is therefore: when can it be
doneefficiently? – which we here will take to mean in
polynomial time in the number of players. The number of
Q2 structures is doubly exponential inn (see [10]) so it
follows from a counting argument that we cannot hope to
handle all structures efficiently.

One way we could hope to get upper and lower bounds
for VSS is by relating it to the simpler problem of SS.
Cramer, Damgård and Maurer [6] show that anylinear
secret sharing scheme implies a VSS with polynomially
related efficiency1. Here, a linear secret sharing scheme
is one in which the shares and the secret are elements in
a finite field, and the secret can be obtained as a linear
function of the shares. Such schemes can be based on
monotone span programs [13, 1].

Our first main contribution is a similar result, that holds
for anysecret sharing scheme. Since VSS trivially implies
SS without significant loss of efficiency, this is the best
result we can hope for.

THEOREM 1 Given any secure secret sharing scheme
S = (Distr, Recon), secure against a familyF of Q2
adversary structures, there exists a VSS protocol secure
againstF with complexity polynomial inn, k and the run-
ning time ofS.

We show this by combining the information checking
idea of [15, 5] with a new technique for upgrading from
static to adaptive security.

Note that one way to prove such a result would be to
provide a kind of ”efficient compiler” that takes as input
the algorithms(Distr, Recon) and produces a VSS pro-
tocol for the same adversary structure, with polynomially

1In fact, they worked in a model with no broadcast and zero error
but a stronger condition on the adversary structure. However, the result
translates to our model using the techniques of [5]
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related efficiency. We prove a slightly stronger result, in
that we construct a single VSS protocol that works when
given only black-box access to the algorithms of any SS
scheme.

A seemingly even harder problem than VSS is that of
MPC, as described above. For this problem a set of results
very similar to those for VSS is known: In was proved
in [10] that theQ2 condition on the adversary structure
is necessary and sufficient for MPC to be possible. In
[6] it is shown how to perform secure distributed multi-
plication efficiently when given a linear SS scheme, and
how efficient MPC follows from this given also a commit-
ment scheme with extra homomorphic properties. Using
a VSS construction from [5] as commitment and exploit-
ing its linearity, it then follows that a linear SS scheme
for aQ2 adversary structure implies an MPC protocol for
the same structure with polynomially related efficiency,
secure against an active, adaptive adversary.

So it is natural to ask whether a result similar to Theo-
rem 1 holds for MPC? As for VSS, this is the best result
one can hope for in terms of poly-time efficiency. How-
ever, we show a result implying that a reduction of the
type we provided to prove Theorem 1 does not exist for
MPC, not even if we assume the adversary is passive and
static. Informally, we show that MPC protocols which get
black-box access for free to secret sharing, but do not use
any special properties of the SS scheme in question, can-
not handle allQ2 adversary structures efficiently.

Since, in both the passive and active models, distributed
addition is easily handled (as we will argue later on),
it follows that it is essentially distributed multiplication,
or equivalently, Oblivious Transfer, that prohibits effi-
cient construction of MPC protocols from black-box SS-
schemes.

To make this more precise, we first fix (for concrete-
ness) a function which will turn out to be hard to compute
securely for allQ2 structures, namely the functionfAND

which is theAND of n input bits, one from each player.
We will allow protocols to be constructed non-

uniformly overn, k, this only makes the impossibility re-
sult stronger. Thus for a fixed value ofn, k, we can write
down the computing done by each player at each round
of the protocol as a Boolean circuit. Sending of messages
translates directly to wires connecting these circuits, and
the view of a player becomes the collection of values that
are handled by his part of the circuit. In the following, we

will only be interested in what happens when bothn and
k go to infinity, so for simplicity, we only look at cases
wheren = k.

So we define a protocol for computingfAND for an
arbitrary number of playersn as a family of Boolean cir-
cuits of this type{Cn| n = 1, 2, ..}, whereCn specifies
the actions of the protocol forn players (and security pa-
rameterk = n). A protocol is polynomial time, if each
Cn has size bounded by some polynomial.

We will say that a protocol computesfAND securely
against a familyF = {An}n=1..∞ of adversary struc-
tures, if the following two conditions hold for all static,
passiveAn-adversaries2:

correctness For any set of inputs bitsb1, ..., bn, the pro-
tocol computes as result for all playersb1 ∧ ... ∧ bn,
except with negligible probability (inn = k).

privacy For A ∈ An, if the adversary corruptsA, he
learns nothing about inputs bits outsideA, beyond
what is implied by input bits inA andb1 ∧ ... ∧ bn

(except for an amount negligible inn = k).

Note that requiring only passive, static security makes
the impossibility result stronger.

Finally, we discuss how to model protocols that are al-
lowed to use SS secure against the adversary structures
in some familyF = {An}n=1..∞ but without relying on
which particular SS-scheme is used.

Note that it would not work to give the protocol black-
box access to the algorithms(Distr, Recon) of some
scheme. The shares thus produced depend of course on
the algorithm, so as a result the protocol might still take
actions depending on the particular scheme used. To
avoid this, we give in stead the protocols access to an
idealized secret sharing where the shares are replaced by
a random number that is unrelated to any particular SS
scheme.

More precisely, we allow protocols to make use of an
extra uncorruptible playerT with unbounded comput-
ing power called an SS-F -oracle. T will implement an
”ideal” SS w.r.t. An whenever there aren players: any
player can send a message ”shares” to T containing a se-
crets. ThenT will remembers and distribute to all play-

2Usually, when defining security of multiparty computation,one can-
not separate correctness and privacy as we do here. However,in our par-
ticularly simple case of static and passive security, this is not a problem
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ers a randomly chosen but unique numberID(s). At any
later time, the protocol can issue a request toT ”Recon-
structA, ID(s)” meaning that the players in the subsetA
would like to reconstruct the secret identified byID(s).
Now,T computes whetherA is inAn. If not, T will send
s to the players inA. OtherwiseT will only say thatA is
in An.

When measuring running time, access toT counts only
as one step - the protocol is not charged for the internal
computing done byT 3. A protocol with such an extra
player is called anSS-oracle protocol. Such a protocol is
said to compute a function securely againstF if it can do
so when given access to an SS-F -oracle. Our result now
is:

THEOREM 2 There exist familiesF of Q2 adversary
structures, such that no polynomial-time SS-oracle pro-
tocol computesfAND securely againstF .

Note that if we were talking about protocols with no
oracle access, we would have a lemma already shown in
[10] for which a simple counting argument suffices: Let
a maximalQ2 adversary structure be one to which we
cannot add a new subset without loosing theQ2 property.
It is then easy to see that there are doubly exponentially
many maximalQ2-adversary structures onn players. On
the other hand, there are only exponentially many differ-
ent protocols that can be specified by a number of bits
polynomial inn. Thus, if the result was false, there would
exist some protocol that could handle several different ac-
cess structures. But the same protocol cannot be secure
for two different maximalQ2 structures because it would
then be secure for their union, which is notQ2.

However, in our case this argument breaks down: our
protocols have access to an oracle giving answers that de-
pend on the access structure in question, thus an oracle
protocol may take different actions for different access
structures. The main technical problem we solve is to
show that even this is not sufficient to do MPC efficiently
for all structures.

Note that Theorem 2 does not rule out that a result sim-
ilar to Theorem 1 could hold for MPC: it may be the case
that for every (class of) SS-scheme(s) there exist MPC

3thus, in our circuit model, a call toT is modeled as a single oracle
gate doing internally allT ’s computation.

protocols with polynomially related efficiency that de-
pend on the particular scheme, or class of schemes consid-
ered. Only the existence of a general black-box reduction
is ruled out.

3 Distributed commitments

Informally, a commitment scheme consists of a commit
protocol, where one of the players, the committer, on in-
put some valuea to commit to, distributes some infor-
mation to the other players, possibly also some protocol
is carried out to verify this information. The total infor-
mation distributed is called thecommitmentand is de-
noted[a] (suppressing random coins used in computing
the commitment). Assuming the committer is not cor-
rupted, the adversary should get only negligible informa-
tion ona. If the committer is corrupted, he may succeed
in distributing a commitment that is not well formed, we
will denote such abadcommitment as[·].

Secondly, there is a protocol for opening a commit-
ment, where all honest players either compute the same
value or they all reject. If the committer stays incorrupted,
then all incorrupted players computea as the result of
opening[a]. If the committer is corrupted[·] will always
be rejected, and opening[a] is either rejected ora is com-
puted.

As usual, these conditions should hold, except with
negligible probability.

3.1 Static Adversaries

For commitments secure against a static adversary, we can
generalize easily a commitment scheme from [15] (called
weak secret sharing (WSS) there).

A basic tool introduced in [15], with efficiency im-
provements in [5], is Information Checking. This tool al-
lows a senderS to give a messagem to a receiverR (and
send related information to other players) such that first,
the adversary will not learnm if S, R are incorrupted,
and secondly, even ifS is corrupt, an honestR can later
broadcastm and convince all other honest players that
the broadcasted value was really the one received from
S. This also means, of course, that a corruptR cannot
convince the players about a messagem′, if he actually
receivedm 6= m′ from an honestS.
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These properties hold unconditionally, with a negligi-
ble error probability. Clearly, these are the essential prop-
erties that ordinary digital signatures could ensure, based,
however, on computational assumptions.

For simplicity, we will describe the following protocol
using the terminology of digital signatures. Substituting
Information Checking will then give unconditionally se-
cure protocols for the same purposes.

Given an SS scheme(Distr, Recon), a commitment
scheme can be built as follows:

• To commit toa, the committer sharesa usingDistr,
to get sharesa1, . . . , an. He signs each share and
distributes the shares and signatures to the players.

• To open a commitment, the committer broadcasts
a, all the shares, and the random input used when
creating the shares. Each playerPi checks by run-
ningDistr that the broadcasted shares are consistent
with a and thatai matches the shares he received
originally. If not, he complains and broadcasts the
original share and signature. If a properly signed
share is broadcast that does not match the commit-
ters broadcast, the opening is rejected. Otherwise it
is accepted.

Note that the use of the IC-scheme gives rise to two
relevant error probabilities in this scheme. First, the prob-
ability e0 that the adversary can successfully produce a
forged signature in the opening phase (assuming that the
committer is honest), and second, the probabilitye1 that
a signature broadcast by an honest player in the opening
phase is not accepted (assuming that the committer is cor-
rupted). The parameters of the IC-scheme can easily be
set such that both error probabilities are negligible as a
function of a security parameterk and such that the com-
plexity of the scheme is polynomial inn andk.

We now analyse the statically secure commitment
scheme. Clearly, since the adversary can only corrupt an
unqualified set, he does not learna, if the committer is
honest.

And since the adversary structure isQ2, the comple-
ment of the set of corrupted players is qualified, so one
of the following two cases occur: either the commitment
is good, i.e. all honest players hold consistent shares of
some valuea. Then even a corrupt committer cannot open
a different value without changing the share of at least one

honest player, which leads to reject in the opening, except
with probability e1. Or the commitment is bad, which
means opening it will be rejected, except with probability
e1.

However, this argument only works because the set
of corrupted players is fixed. Consider what happens if
the adversary is adaptive. Clearly, a good commitment
stays good. But a bad commitment may become good
as more players get corrupted. However, depending on
which players are corrupted, a commitment[·]i may turn
into a good commitment in several different ways, defin-
ing different values. This problem was observed for the
case of threshold secret sharing in [5], and it was shown
there how an adaptive adversary can break the commit-
ment scheme.

The attack generalizes easily to many non-threshold
structures, namely those that areQ2, but notQ3 4. Let
A, A′, B be a disjoint partition of the player setP .
It is not difficult to see that it is possible to construct
s = (s1, . . . , sn) such that when restricted to the play-
ers inA ∪ B, this is a set of shares uniquely consistent
with a valuea, whereas restricted toA′∪B, it is uniquely
consistent with a different valuea′, and such that both
sets of shares have the right distribution: compute shares
in a, and delete the shares intended forA′. SinceB is
non-qualified, its shares can be extended (with the right
distribution) to a full set consistent witha′. Finally, delete
the shares forA from this extension. Note that since the
adversary structure isQ2, both A ∪ B andA′ ∪ B are
qualified sets.

If in the commit phase the committer usess constructed
in this way instead, he can later open asa if he corrupts
the players inA′, and asa′ if he corrupts the ones inA.

So to obtain adaptive security, we need to solve this
problem. A solution was given in [5], which however re-
quires that the underlying SS scheme be linear.

3.2 Upgrading to Adaptive Security

The basic idea to get adaptive security is to build on top
of our statically secure commitment scheme from Sec-
tion 3.1 a new one with the added property that we can
ensure at commitment time that a commitment is good.

4A Q3 adversary structure is one for which no three sets in the struc-
ture cover the entire set of players
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For simplicity, we will describe a bit commitment
scheme in which only a single playerV verifies that the
committerC has created a good commitment. We then
later describe how to use this to build protocols convinc-
ing all honest players.

We assume without loss of generality that our statically
secure commitment scheme allows a player to commit to
any2n+k+1 bits string,5 and we set the error probabil-
ities 6 e0, e1 in the statically secure commitment scheme
such that both are at most2−k−1.

A commitment to bitb in the new scheme is denoted
[[b]]C,V .

Protocol Commit

1. To make a commitment[[b]]C,V , the committerC
chooses a random2n + k + 1 bits stringa, and
commits to it using the statically secure commitment
scheme, resulting in[a].

2. The verifierV randomly chooses two distinct2n +
k + 1 bit stringsv0,v1, and broadcasts them.

3. C computes the stringz = vb ⊕a, and broadcasts it.
We set[[b]]C,V = ([a],v0,v1, z).

Protocol Open

1. C broadcasts the bitb, and opens the commitment
[a].

2. Assuming that the opening in the previous step was
accepted,V accepts the opening of[[b]]C,V if it in-
deed holds thatz = vb ⊕ a. Otherwise it is rejected.

We will say that a commitment iswell-defined, if after
the commit phase, there is at most one value that can be
opened successfully.

LEMMA 1 The above bit commitment scheme[[b]]C,V is
secure against an adaptive adversary: IfC remains hon-
est during the commit phase, then the adversary gets at
most a negligible amount of information onb, and fur-
thermore, the probability that the opening phase fails is

5If the original scheme allows forq different values, then running
it l times in parallel, yields a statically secure commitment scheme that
allows forql different values

6This does not depend on whether the adversary is adaptive or not

at most2−k. Moreover, the event thatV remains honest
throughout and the commitment is not well-defined has
probability at most2−k.

The first claim follows from the fact that clearly, the
adversary has at most a negligible amount of information
abouta as a result of the generation of the commitment
[a], andz is an “encryption” ofvb with the “one-time
pad” a. The claim about the opening phase follows im-
mediately, sincee0 ≤ 2−k.

To show the second, note first the adversary loses im-
mediately if he corruptsV , so we may assume that this
does not happen. Then the intuitive idea is that although
C may open[a] in many different ways (since it is only
statically secure), the maximum number is at most2n (ex-
cept with negligible probability). This is a negligible frac-
tion of the possible22n+k+1 strings. This means that right
after having made[a], C is effectively committed (in the
adaptivesense) to a negligible size subset of the possible
strings7.

We argue as follows. Pretend for the moment that
the IC-signatures offer perfect security (more precisely,
e1 = 0). Then consider the set B of players who are still
honest after[a] is opened. These players have of course
not changed their minds about the shares they received
initially. So they either have consistent shares determin-
ing some stringa′ which implies that the dealer can only
have opened successfully asa

′. Or they have inconsistent
shares, meaning thatC will be deemed corrupt. So it fol-
lows that for each setB there is at most one string that the
dealer can claim successfully. And there are at most2n

such sets.
Sincee1 ≤ 2−k−1, it follows that, except with proba-

bility at most2−k−1, C is effectively committed to a sub-
setW of strings of size at most2n.

To be able to open[[b]]C,V in two different ways in this
case, there must exista0,a1 ∈ W such thatz = vi ⊕ ai,
i = 0, 1. It follows that v0 ⊕ v1 = a0 ⊕ a1. Note
that v0 ⊕ v1 is a uniformly random2n + k + 1 bit
string (different from the all-zero string0), and is inde-
pendently distributed fromW . But the number of differ-
ent a0 ⊕ a1 6= 0 with a0,a1 ∈ W is clearly at most
22n − 2n. Thus we have that the probability thatC can

7Elements of our proof are reminiscent of a method introducedby
M. Naor [14] in the context of ordinary, computationally secure com-
mitments from pseudo-randomness
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open the commitment in two different ways is at most
(22n − 2n)/(22n+k+1 − 1) ≤ 2−k−1.

We conclude that the overall probability of cheating is
at most2−k−1 + 2−k−1 = 2−k.

4 VSS from Commitments

In [12], a general techniques is presented, given any com-
mitment scheme, for giving zero-knowledge proofs on
committed bits, i.e. a prover can commit to a set of bits,
and convince a verifier in zero-knowledge that the com-
mitted bits satisfy any predicate that can be computed in
polynomial time. At the heart of this is a technique (at-
tributed there to Rudich) for building from any commit-
ment scheme a new one, where comparison of committed
bits is possible, i.e. the prover can convince the verifier
about the XOR of two committed bits, without revealing
further information. In the following, we apply this con-
struction to the scheme from the previous section, and we
denote a commitment tob in this new scheme by[[b]]XC,V ,
where againC is the committer andV is the player than
can verify relations on committed bits. Since the con-
struction treats the incoming bit commitment scheme as
a black box and does not use any assumptions about the
way it works, the adaptive security of commitments is not
affected by this.

Given such a tool, it is clear that a dealer in a VSS pro-
tocol can use the commitment scheme we just developed
to commit to all inputs and outputs of a run of theDistr
algorithm in our SS scheme, and prove in zero-knowledge
to the rest of the players that indeed the committed in-
puts result in the committed outputs (the shares of some
secret). This almost immediately leads to a VSS proto-
col. However, apart from the fact that this may result in
a huge loss of efficiency compared to the underlying SS
scheme, it would also give a protocol whose actions de-
pends heavily on which particular secret sharing scheme
is used. Below, we give a protocol achieving something
slightly stronger, namely a VSS protocol that works given
only black-box access to a secret sharing scheme and fur-
thermore does not rely on any particular properties of this
scheme. As we shall see, this matches the impossibility
result we prove about MPC later.

We begin by a single verifier VSS protocol, i.e. where
a single playerV can verify the actions of the dealerD.

As a tool for this, we need a protocol that produces
from a commitment[[x]]XD,V for any x a new commit-
ment [[x]]XPj ,V , wherePj can be any player. This must
reveal no information to the adversary if bothD andPj

remain honest; and even if they are both corrupt, it must
still be guaranteed that the two commitments contain the
same value. This is what is called a Commitment Transfer
Protocol (CTP) in [6]. We generalize the idea from there
to build such a protocol for our scenario:

CPT Protocol

1. D sendsx and all random inputs used in creating
[[x]]XD,V privately to Pj . Thus, if D is honest,Pj

is now in a position equivalent to having created
[[x]]XD,V himself.

2. Pj now creates[[x]]XPj ,V , and proves, using the gen-
eral techniques described above, in zero-knowledge
that it contains the same value as[[x]]XD,V , acting as
if he created it himself using the data received in the
previous step. If this proof succeeds, the protocol
ends here accepting[[x]]XPj ,V .

3. If the proof fails, it is clear that at least one ofD, Pj

is corrupt.D must then open[[x]]XD,V in public, and
Pj is assigned a default commitment to the opened
valuex.

With this, we can build our single verifier VSS proto-
col:

Single Verifier VSS

1. D makes a commitment[[b]]XD,V , whereb is the bit
D wants to VSS.

2. D chooses random bitsr1, ..., r2k and, for eachi
generates sharessi1, . . . , sin whereri is the secret.
Next,D makes commitments to all these values, re-
sulting in commitments[[ri]]

X
D,V , [[sij ]]

X
D,V .

3. V chooses at random a subsetE consisting of half
the indices1, . . . , 2k, and broadcasts it. Now, for
eachi ∈ E, D must open all commitments tori

and eachsij , and all random inputs used to generate
those sharessij .
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4. V verifies that all openings of commitments were
valid, and for eachi ∈ E, that each set of sharessij

consistently determinesri (he does it by running the
distribution algorithm with the random input broad-
casted in the previous step). All information with
i ∈ E can now be discarded.

5. Write E for {1, . . . , 2k} \ E. For eachi ∈ E, D
computesci = b ⊕ ri, broadcasts it, and using the
general techniques described above,D convincesV
in zero-knowledge that the XOR of the contents of
[[b]]XD,V and[[ri]]

X
D,V is ci indeed.

6. Finally, for eachi ∈ E and eachj, a CPT protocol is
executed to convert[[sij ]]

X
D,V to [[sij ]]

X
Pj ,V .

In order to ensure that some value for the secret is (al-
most) always defined after the distribution, we adopt the
convention that ifV rejects in the above protocol, default
consistent shares are assigned to the players.

To later open such a VSS, the following is done:

Single Verifier VSS reconstruct

1. For eachi ∈ E, each playerPj opens his commit-
ments to all thesij ’s he knows. All the data are sent
to V .

2. V verifies all openings and discards thosesij ’s for
which the commitment was not correctly opened.
For thosei’s where a qualified set of shares (suppos-
edly ofri) remains, he reconstructs a valuer′i.

3. V XOR’s r′i with the value forci broadcasted earlier.
This gives a set of bits (which will all be equal tob
if D has been honest).V decides by majority among
these bits the final value to reconstruct.

We now argue that this single verifier VSS works: first,
if D remains honest, it follows directly from the secu-
rity of the commitment scheme that the adversary gets
(almost) no information onb.

On the other hand, supposeV remains honest. The in-
tuition then is that due to the cut-and-choose, a majority
of theri with i ∈ E are correctly shared, with the players
committed to their shares. Hence, theseri can be recon-
structed, and whenV XOR’s these with the corresponding
ci’s, V gets the bitb as a result in a majority of the cases.
A more detailed analysis follows.

Consider for somei ∈ E the commitments[[ri]]
X
D,V

and the committed shares[[sij ]]
X
D,V . Call the indexi good

if the sij indeed consistently determineri and call itbad
otherwise.

Now if at least a constant fraction of the indices, say
0.1k, are bad then except with negligible probability,V
will reject in Step 4 of the distribute protocol (in particu-
lar, the subsetE chosen byV will contain at least one bad
index). On the other hand, if at most0.1k indices are bad,
then even if all bad indices are outsideE, the good ones
will be in majority among the ones used in the reconstruc-
tion phase, and the correct value ofb will be computed.

VSS Protocol

To finally prove Theorem 1, just note that a dealer can
performn single verifier VSS’s on the same bitb where
every player gets to play the role ofV . As a side effect
of this, we getn commitments[[bi]]

X
D,Pi

, where ifD has
been honestb1 = ... = bn = b. So clearly, all we need is
for D to convince separately every player that this relation
holds. The general zero-knowledge techniques mentioned
earlier will suffice for this.

5 Multiparty Computation

In this section we prove our impossibility result, Theo-
rem 2.

Before doing so, we first point out, as claimed earlier,
that secure computation of linear functionals can be effi-
ciently handled using black-box SS, both in the passive
and active models. As a consequence, Theorem 2 can
also be interpreted as an impossibility result essentially
regarding secure multiplication, or equivalently, Oblivi-
ous Transfer.

In the passive case, this is trivial: each input bitb is
split randomly intob = b1 ⊕ b2 ⊕ ...⊕ bn, andbi is given
to playerPi. Each player then computes the desired lin-
ear function locally on thebi’s and publish the result. The
global result is then the xor of the local results. Note that
the black-box SS-scheme is not needed for this. In the
active model, we can first establish a situation where the
input bits and thebi’s are verifiably secret shared. The
players then prove using general techniques that they per-
formed their local computations correctly (see Section 4).
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To prove Theorem 2, let us first recall the standard
argument showing the impossibility result when no SS-
oracle is given. As mentioned, aQ2 adversary structure
X is calledmaximalif there does not exist aQ2 adver-
sary structureX ′ 6= X such thatX ⊂ X ′. For the sake
of contradiction suppose that for every maximal adver-
sary structureA there exists a protocol which runs in time
bounded by some polynomial, and which computesfAND

securely againstA. Since the number of maximalQ2 ad-
versary structures is double-exponential and the number
of polynomial-time protocols is single exponential then
(by a counting argument) there must exist a protocolπ
computingfAND securely against two different maximal
Q2 adversary structuresX andY . This means thatπ is
secure againstZ = X ∪ Y . By maximality of X and
Y we have thatZ is notQ2. ThereforefAND cannot be
computed securely against it, and we have a contradiction.

In our case the situation is more difficult because the
behavior of the players may depend on the oracle an-
swers. Observe that when the SS-oracle is asked by a
set of playersA to reconstruct some secret then the pro-
tocol gets the information whetherA is a member of the
adversary structure. Thus we may assume that together
with reconstruction request comes a query about a mem-
bership in the adversary structure and that together with
the SS-oracle we have a membership oracle.

Therefore for two different adversary structuresX and
Y the same protocol may behave in two different ways
if it happens to ask a membership query about a set in a
symmetric difference ofX andY . Intuitively the biggest
combinatorial difficulty of the proof is to show that there
always exist two different maximalQ2 adversary struc-
turesAS andAT and a protocolδ working against both
of them, such thatδ will, with large probability, not ask
a membership query about any set in a symmetric differ-
ence ofX andY .

More precisely, the proof proceeds as follows. It is
enough to prove that for any polynomialp() the collection
of oracle protocols of sizep(n) cannot handle all maximal
Q2 adversary structures onn players. So for the sake of
contradiction suppose that there is a polynomialp() such
that for every set of playersP of sizen and every max-
imal Q2 adversary structureA ⊆ P(P ) there exists an
SS-oracle protocolπ(A) of size at mostp(n) computing
fAND securely againstA. All such protocols can be spec-
ified by a polynomial number of bits, and hence the total

number of such protocols is at most a single exponential
in n.

We will then show:

LEMMA 2 For everyn large enough there exist two ad-
versary structuresAS , AT ⊆ P(Pn) such that

1. the size of the set of playersPn is 2n + 2,

2. π(AS) = π(AT ), and

3. π(AS) asks a membership query about a set in the
symmetric difference ofAT and AS with probabil-
ity at most2−1.5n. This probability is taken over
all random choices made in the protocol, and over
a random choice of the2n + 2 input bits. More-
over,AS contains a setA, andAT a setB, such that
|A| = |B| = n + 1 andA ∪ B = Pn

Before proving this, let us show how the existence of such
AT andAS yields the contradiction. We will construct
from the protocolπ0 := π(AS) = π(AT ) a new protocol
for two players, Alice and Bob, with input bitsbA, bB that
will compute securely (and with negligible error probabil-
ity) bA ∧ bB. This is well known to be impossible, even
if only passive cheating occurs, and the honest Alice and
Bob are allowed unbounded computing power.

Consider the setsA ∈ AS andB ∈ AT guaranteed by
the lemma. We let Alice and Bob simulate an execution of
π0, where Alice controls the players inA and Bob those
in B. Alice selects as input bits for players inA a random
set ofn + 1 bits such that the AND of all of them equals
bA. Similarly for Bob. Then we executeπ0, where Alice
(Bob) executes the algorithms of players inA (B). Every
message from a player inA to a player inB causes Alice
to send the message to Bob, and vice versa.

Note that although efficiency of protocols plays a cru-
cial role in proving the above lemma, we do not need to
be concerned about efficiency at this point anymore, be-
cause we are now headed towards establishing a contra-
diction by building a protocol for a problem for which no
protocol exists, even if unbounded computing is allowed.
Hence we need noSS-oracle, we can use an arbitrary (in-
efficient) secret sharing scheme forAS ∪ AT . Also, we
may assume that Alice and Bob each have a list of the
sets inAT andAS . They will use it to answer member-
ship queries as follows: in most casesπ0 asks about a set
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which is in bothAS , AT or in neither of them, so it is clear
what the answer should be. In the unlikely event that the
question is about a set in the symmetric difference, the
protocol stops, we say it crashes. Alice and Bob use the
result computed byπ0 as their output if the protocol fin-
ishes; if it crashes they let the output but be 1.

Observe that in casebA = 0 or bB = 0, the prob-
ability of a crash is at most2−n/2+2: if, say, bA = 0,
we choose randomly between a set of at least2n inputs,
namely all those inputs to players inA, where at least one
bit is 0. These cases constitute at least a fraction2−n−2

of the overall probability space, so even restricted to this
case, the crash probability is at most2−1.5k/2−n−2 =
2−n/2+2. This immediately implies that Alice and Bob
compute correctlybA ∧ bB except with negligible prob-
ability in n. It also implies that privacy is satisfied: it is
enough to argue that ifbA = 0, Alice learns a negligi-
ble amount of information aboutbB. To see this, consider
an idealized scenario, where there are no crashes and all
membership queries are answered according toAS . Then
sinceπ0 is secure againstAS , it follows that whenever
the players inA (alias Alice) have 1 or more zeros in their
input, they learn almost no information about the inputs
of players inB. However, the only difference between
the actual protocol we specified for Alice and Bob and
the idealized case is the crashes. And since crashes occur
with negligible probability, it follows that Alice’s view of
the actual protocol is statistically indistinguishable from
what she sees in the idealized case.

This completes the proof that Alice and Bob would be
able to compute the AND function securely, and so we
have our contradiction.

Let us now show the existence ofAS andAT satisfying
the conditions (1)–(3).

It will be enough to restrict ourselves to a certain class
of maximalQ2 structures. For a givenn we will construct
a classCn of 221.9n

such structures as follows. Take a set
of playersPn such that|Pn| = 2(n + 1). Definesplit to
be a pair(X, P \X) such that|X | = |P \X | = n+1. Fix
in an arbitrary way a set of splitsSPn that has a property
that (X, Y ) ∈ SPn if and only if (Y, X) 6∈ SPn (for
example: fix a playerp0 ∈ Pn and defineSPn to be a set
of all splits(X, P \ X) such thatp0 ∈ X).

For a technical reason we make a further restriction,
and choose an arbitrary subsetRn of SPn of a size21.9n

(we have|SPn| is Ω(22n/
√

n) by standard combina-
torics, therefore this operation is always possible).

Now observe that every subsetS ⊆ Rn determines a
unique adversary structureAS in the following way: a set
of playersZ ⊆ Pn belongs toAS if and only if one of the
following conditions is satisfied:

• |Z| < n + 1,

• (Z, P \ Z) ∈ S, or

• (P \ Z, Z) 6∈ S.

Such an adversary structure will be called asplit structure.
We defineCn to be the set of all split structuresAS (where
S ⊆ Rn). Clearly every split structure is a maximalQ2
structure.

To avoid to many subscripts we fixn. From now on
we will consider only protocols running against the split
structures (what we can safely assume because we are
proving a negative result). Letprot be the set of all the
protocols assigned to the set of all split structures byπ
(i.e. prot = π(Cn)). It is easy to see that now all the
membership queries about the sets of a size at smaller
thann + 1 are always answered positively. Similarly all
queries about the sets of a size bigger thann+1 are always
answered negatively. The only queries which give some
information about the adversary structure are the queries
about the sets of the size exactlyn + 1. Therefore we
can now assume that instead of a membership oracle for
AS every protocol is given a membership oracle forS.
This assumption simplifies a bit the notation and views
the problem in a more abstract way.

Let t be the maximum of the expected number of
queries asked by the protocols from the setprot (more
preciselly lett = maxA∈Cn

(expected number of queries
asked byπ(A) when it runs against the structureA)). Let
s = 21.7n (the choice is somewhat arbitrary, what matters
is thats is much bigger thant, but much smaller that|Rn|.

Divide Rn into s blocks of equal size in an arbitrary
way (this operation will always be possible for big enough
n). Let B1, . . . , Bs be the resulting blocks. We will say
that a setX is blinking in a blockBj iff there exists a set
Y such that all the following conditions are satisfied:

• the protocols assigned byπ to X andY are the same,
i.e.π(X) = π(Y )
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• X ∩ Bj 6= Y ∩ Bj , and

• X ∩ (Rn \ Bj) = Y ∩ (Rn \ Bj).

The last two conditions mean in other words thatX and
Y differ on a setBj and do not differ elsewhere. The
intuition here is that the protocolπ(X) may have some
difficulty in deciding if it is running againstX or Y , since
it must ask a membership query inBj to find out.

LEMMA 3 For every big enoughn there exists a set blink-
ing everywhere (i.e. there existsS ⊆ Rn such thatS is
blinking for every blockB1, . . . , Bs).

PROOF. For every blockBj let Nj denote the family
of setsnot blinking for Bj . What we need to show is that
∪s

j=1Nj 6= P(Rn). We will actually prove a stronger
fact, namely

s∑

j=1

|Nj | < 221.9n

. (1)

Fix an arbitraryBj. Take an arbitrary setZ ⊂ Rn \ Bj .
Now take the familyG = { W ⊆ Rn : W \ Bj = Z }
(in other wordsG is a family of all sets whose projec-
tion on Rn \ Bj is equal toZ). If two different sets in
G were assigned the same protocol, then they would both
blink in Bj , so it follows that the size of the family of
sets inG that are not blinking inBj cannot be bigger than
the number|prot | of different protocols. Therefore af-
ter summing over all possible setsZ ⊂ Rn we have that
|Nj | ≤ |prot |221.9n(s−1)/s. Since the choice ofBj was
arbitrary we get that the left-hand-side of (1) is not big-
ger thans|prot |221.9n(s−1)/s. Therefore to prove (1) is
enough to show that

s|prot |221.9n(s−1)/s < 221.9n

which is equivalent to

s|prot | < 2
2
1.9n

s = 220.2n

(2)

The left hand side of (2) is single exponential inn and so
for big enoughn the inequality (2) (and hence (1)) holds.

△
Let nown be big enough that the blinking everywhere

set exists. LetS ∈ Rn be such a set. Thus for every block
Bj there exists a setblink(Bj) ∈ Cj such that

• π(AS) = π(blink (Bj)),

• S ∩ Bj 6= blink (Bj) ∩ Bj , and

• S \ Bj = blink (Bj) \ Bj .

Consider the runs ofπ(AS) against the adversary struc-
tureAS and consider the probability distribution of these
runs over a random choice of the input bits to the com-
putation as well as the random coins used. For everyBj

let pr (Bj) be the probability thatπ(S) asks a query about
some element inBj . It is easy to see that

∑
j pr(Bj) is

the expected number of queries asked byπ(AS). Recall
that this expected number of queries is polynomial inn,
and hence it is, for all large enoughn, smaller thans by a
factor of at least21.5n. Therefore

s∑

j=1

pr(Bj) <
s

21.5n

Thus the average value ofpr(Bj) is at most2−1.5n. Let
Bl be such thatpr (Bl) ≤ 2−1.5n. In other words, with
probability at least1 − 2−1.5n the machineπ(AS) will
never ask about any element inBl. Therefore if we set
T = blink (Bl) then the protocolπ(AS) (which is by the
way equal toπ(AT )) with a probability1 − 2−1.5n will
not distinguish betweenAS andAT .

6 Error Free Protocols and Open
Problems

In this paper, we have dealt with the situation where a
broadcast channel (in addition to the private ones) is avail-
able and access structures areQ2. It is known [10] that if
the adversary structure isQ3 (no three sets in the adver-
sary structure covers the player set) and no broadcast is
given, then VSS and MPC with zero error probability is
possible. Thus it is natural to ask if in this model we are
given anerror freeSS scheme, can we build anerror free
VSS scheme with polynomially related efficiency?

We sketch here how to build an error-free commitment
scheme. The construction requires a broadcast channel,
however, such a channel can be simulated, given an effi-
cient way to decide membership in the adversary structure
(see [7]), and the secret sharing scheme we assume gives
precisely such a decision procedure.

12



The commitment scheme works as follows: the com-
mitter shares his secrets to get sharess1, ..sn. He further
shares eachsi to get sets of subshares{sij}. He sends
s1j , ..., snj to Pj and sendssi plus the random bits used
in sharingsi to Pi. This allows bothPi andPj to compute
sij , so they can privately compare their values and ask the
committer to publicly announcesij if there is a mismatch.
If somePi realizes that the committer is corrupt,Pi ac-
cuses the committer, who must then make public all data
sent toPi.

In the same way as in the VSS from [2], this will ensure
that the committer is always either disqualified because
there are too many complaints, or the honest players agree
on all subshares they know.

To open the commitment, the committer will makes
and the shares{si} public. Also eachPi will make his
sharesi and the subshares{sij} public. EachPj an-
nounces if he agrees withsij or not. The share announced
by Pi approved if all players except a non-qualified sub-
set agree with the subshares he claims. The opening is
accepted, if and only if the shares claimed by the com-
mitter are consistent and agree with all approved shares
announced by the other players.

Since all players who have remained honest agree on
subshare values, all honest players will always have their
shares approved. Therefore, if the honest players have in-
consistent shares, the commitment cannot be opened con-
vincingly. But if the honest players do have consistent
shares, theQ3 property implies that the commitment can
only be opened in one way. On the other hand, if the
dealer remains honest, then the honest players will have
consistent subshares ofsi, even ifPi is corrupt. HencePi

can (again by theQ3 property) only have the correctsi

approved, so an honest committer can always open suc-
cessfully.

Naturally, this commitment scheme can be used to
build a VSS scheme based on zero-knowledge techniques
as shown earlier. But this scheme will have a non-zero
error probability. We do not know how to build error free
VSS efficiently from error freeSS for this scenario, and
leave this as an open problem.
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