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Abstract 1 Introduction

We first study the problem of doing Verifiable Secréh this paper, we consider three related problems, namely
Sharing (VSS) information theoretically secure for a gesecret sharingSS), verifiable secret sharingvSS) and
eral access structure. We do it in the model where pmiultiparty computatioiMPC).

vate channels between players and a broadcast channel&s was introduced by Shamir[16] and generalized by
given, and where an active, adaptive adversary can corrggh et al.[11]: aDealerhas a secretand distributes a set

any set of players not in the access structure. In particutsf'sharess; , . . ., s,, ton players, such thatcan be recon-

we consider the complexity of protocols for this problenatructed only by certaigualifiedsubsets of players while

as a function of the access structure and the number@tualified subsets have no information abauthe col-
players. For all access structures where VSS is possiligtion of qualified sets is called tizecess structuréWe

at all, we show that, up to a polynomial time black-boxtress that we consider here secret sharing for general ac-
reduction, the complexity of adaptively secure VSS is th@ss structures, rather than threshold schemes where the
same as that of ordinary secret sharing (SS), where ggcess structure may only consist of all sets of size larger
curity is only required against a passive, static adversafan some threshold. It is assumed that the dealer com-

Previously, such a connection was only known for linegites the shares correctly, and that players input correct
secret Sharing and VSS schemes. shares for reconstruction.

We then show an ImpOSSIblllty result indicating that a When these assumptions are dropped, we get the
similar equivalence does not hold for Multiparty Compyseemingly) harder problem of VSS (Chet al. [4]):
tation (MPC): we show that even if protocols are giveRere, some of the players, including the dealer, may not
black-box access for free to an idealized secret sharfg@ow the protocol. It may even be the case that some
scheme secure for the access structure in question, isfishem turn bad dynamically as the protocol proceeds, as
not possible to handle all relevant access structures gfihg as the total set of bad players remains unqualified.
Ciently, not even if the adversary is paSSive and static. gﬁ” the remaining honest p|ayers should be able to ver-
other words, general MPC can only be black-box reducgg that they have shares of a well defined secret, while
efficiently to secret sharing if extra properties of the séclihe cheating players should get no information about it, if
sharing scheme used (such as linearity) are assumed. the dealer is honest. Finally, the honest players should be

able to reconstruct the secret, even against the actions of
*Work done while employed at ETH Zurich, Comp. Sc. Dept. the Cheating players.
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players have a secret input, and the goal is to computetares. This may be seen as an indication that, as far
agreed functions of these inputs, while maintaining pas applicability to unconditionally secure MPC is con-
vacy of the inputs and correctness of the result, again asfned, there is a fundamental difference between linear
suming that the set of bad players at any given time 3§ schemes and general ones. By contrast, it is shown
unqualified. in[6] that general SS does suffice fovmputationallyse-

The classical results in unconditionally secureure MPC.

VSS/MPC by Ben-Or, Goldwasser and Wigderson[2],

Chaum, Crépeau and Damgard [3] and Rabin and Ben-Or . ]

[15] can be seen as results that build efficient VS8 A More Detailed View

and MPC protocols based on Shamir’s threshold secret

sharing scheme, in the model where secure channelsErexplain our results in more detail, we need to describe
assumed to exist between every pair of players. more precisely the model we use: we have a setify-

Gennaro [8] was the first to consider VSS secure férs, connected pairwise by private channels, moreover, a
general access structures. Then Hirt and Maurer [fopadcast channelis also available. We are givemoao-
characterized exactly those general access structuregdde access structuig thatis,I" consists of subsets of the
which VSS and MPC are possible. player set, such that € T"'andA C B impliesB € T.

Continuing the line of research from [2, 3, 15], Crame¥or instance[' could consist of all subsets of sizg/'2
Damgard and Maurer [6] have shown that VSS and MR more. For convenience in the following, we will in
for general access structures can be built efficiently on t9jgad talk about the familyl of subsets not id’. Such
of any linear SS scheme (see also [5]). Thus a natural fisatomplement of an access structure is known as an ad-
step is to ask what happens if we start fromaahitrary  versary structure, a general notion introduced by Hirt and
SS scheme? Maurer[10].

Informally, what we show in this paper is that VSS is as Finally we have amdversarywho can corrupt any sub-
easy to achieve efficiently as ordinary SS, more precisedgt A of players, as long ad € A. This is called anA-
there exists an efficient reduction that builds a secure V8@versary. The adversary may passive meaning that
protocol from any SS scheme secure for the same acdeggust gets access to all data of corrupted playeragcor
structure, provided VSS is possible at all for that strugtutive, meaning that he takes control over corrupted players
Since VSS trivially implies SS, this is an optimal result.and may make them deviate from the protocol they were

Similarly, showing that MPC in this sense is no hardeupposed to follow. Orthogonal to this, we distinguish be-
than SS would be an optimal result. However, we show tweenstatic adversaries who must decide before the pro-
impossibility result indicating that there is not much hogecol who to corrupt, anddaptiveadversaries [15] who
of proving this. A reduction showing how to do secursay decide dynamically throughout the protocol whom to
MPC for some access structure givamy SS-scheme for corrupt, as long as the total corrupted set islin
that structure cannot make any assumptions on the wayn this model, security of secret sharing (SS) can be
the SS-scheme works. So the natural approach is to tmegihrased to the requirement that a passive, static adver-
the secret sharing as a black box, relying only on the fursary gets (almost) no information about the secret when
tionality that follows from the definition of secure SS. Wi is distributed. And that the secret can be reconstructed,
show that if we restrict ourselves to such reductions, thexeen if the adversary can make the corrupted set of play-
are access structures that cannot be handled efficierehg, fail to input shares for reconstruction. Note that since
where by "efficiently”, we mean that protocols run in tim&SS protocols in our model usually have non-zero error
polynomial in the number of players, counting usage pfobability, we will allow SS schemes in our definition to
the SS-scheme as only one step. also have non-zero error, in order to make a reasonable

Thus, general reductions building MPC from SS woultbmparison of the two problems.
have to either depend on the particular kind of SS-schemén order to talk about the complexity and error proba-
being used (such as reductions depending on linearitybilfty of an SS scheme, we will think of it as two prob-
the SS scheme) or be inefficient on some access straigiistic algorithmsDistr and Recon, whereDistr gets



as input the secret, the number of players, and a se- a negligible (ink) amount of information about the
curity parametek as input, it then computes a setof secret.

shares as output. Shariagneans that one of the players,
the dealer, rundistr and sends the shares privately to
the players. For reconstruction, some subset of the shares
are broadcast, and each player canRenon, which gets

as input the subset of the sharasand k, and outputs a

!
values'. ) , . Hirt and Maurer [10] show that these criteria can be met
_ Thus, underlying this, we have not just one, but a fam-and only if the adversary structure @2: for any two
lly of adversary structures, one for eaeh We Will qotq in the structure, their union is not the whole player
say that(Distr, Recon) is secure against the familysey - The gbvious question is therefore: when can it be
F = {An}n=1.c0 if the following hold for anyn and yoneefiiciently> — which we here will take to mean in
any static, passival,-adversary: polynomial time in the number of players. The number of
. . structures is doubly exponential in(see [10]) so it
* Assummg_the deal_er is not corrupted, the amount f;zlows; from a counting argument that we cannot hope to
Shannon information that the adversary gets ab%ﬁndle all structures efficiently

the secret after it is shared is negligibletin One way we could hope to get upper and lower bounds

e Sharings and runningRecon on input a set of sharesfor VSS is by relating it to the simpler problem of SS.
not in A, results in outpus, except with probability Cramer, Damgard and Maurer [6] show that dimear
negligible ink. Running Recon on input a set of Secret shqu_ng scheme |mp!|es a VSS with polynomlally
shares ind,, results in output a special symbal, "elated eff|C|.encyL. Here, a linear secret sharing scheme
indicating that the input set was unqualified, agalfi ©n€ in which the shares and the secret are elements in

a finite field, and the secret can be obtained as a linear

function of the shares. Such schemes can be based on

Here, negligible ink means that the quantity converges tgonotone span programs [13, 1].

0 as a function ok faster than any p0|yn0mia| fraction. Our first main contribution is a similar reSUlt, that holds

Note that it would not make any essential difference if tigr anysecret sharing scheme. Since VSS trivially implies
behavior ofRecon on unqualified sets was left undefined®S Without significant loss of efficiency, this is the best
one can always test, with arbitrarily small error, if a set [gsult we can hope for.

qualified by sharing a random secrets and testing if they . )

can be reconstructed from the subset in question. THEOREM1 Given any secure secret sharing scheme

Going to VSS, we will think of this as first a protocof® = (Distr, Recon), secure against a family” of Q2
for distribution that takes a security parametteas input, adversary structures, there exists a VSS protocol secure

and where one of the players, the dealer, gets the se@gINSU- with complexity polynomialin, £ and the run-

as private input. Secondly, there is a protocol for Recofind time ofS.

struction, where each player starts from his view of the . - : : :
distribution (which we think of as his share), and recon-We show this by combining the information checking

structs a value for the secret. Such a VSS is secure agaflcri]es? of [15, 5] with a new technique for upgrading from

i ) - static to adaptive security.
he famil = — if the following hold for all
the family 7> .{A"}"Tl'm the fo 0 ) g hold for a Note that one way to prove such a result would be to
n and all adaptive, activel,,-adversaries:

provide a kind of "efficient compiler” that takes as input

e After distribution, a secret is uniquely defined frorfhe algorithmg Distr, Recon) and produces a VSS pro-
the views of the set of incorrupted players, excefficol for the same adversary structure, with polynomially
with probability negligible ink. 1in fact, they worked in a model with no broadcast and zerorerro

) but a stronger condition on the adversary structure. Hokyvéve result
¢ If the Dealer remains uncorrupted, the adversary hasslates to our model using the techniques of [5]

e Reconstruction of the secret results in all uncor-
rupted players reconstructing the secret defined at
distribution time, except with negligible probability
in k.

except with probability negligible it.




related efficiency. We prove a slightly stronger result, inill only be interested in what happens when batand
that we construct a single VSS protocol that works whéngo to infinity, so for simplicity, we only look at cases
given only black-box access to the algorithms of any S#heren = k.
scheme. So we define a protocol for computinty yp for an
A seemingly even harder problem than VSS is that afbitrary number of players as a family of Boolean cir-
MPC, as described above. For this problem a set of resultists of this type{C,| n = 1,2, ..}, whereC,, specifies
very similar to those for VSS is known: In was provethe actions of the protocol for players (and security pa-
in [10] that the@2 condition on the adversary structureameterk = n). A protocol is polynomial time, if each
is necessary and sufficient for MPC to be possible. @4, has size bounded by some polynomial.
[6] it is shown how to perform secure distributed multi- We will say that a protocol computefy yp securely
plication efficiently when given a linear SS scheme, argjainst a family7 = {A,},.-1. . Of adversary struc-
how efficient MPC follows from this given also a committures, if the following two conditions hold for all static,
ment scheme with extra homomorphic properties. UsipgssiveA,, -adversarie$:
a VSS construction from [5] as commitment and exploit- _ _
ing its linearity, it then follows that a linear SS schemgPTectness For any set of inputs bits;, ..., b, the pro-
for aQ2 adversary structure implies an MPC protocol for ~ t0¢0l computes as result for all playess/ ... A by,
the same structure with polynomially related efficiency, ~©€XCept with negligible probability (in = k).
secure against an active, adaptive adversary. riv
So it is natural to ask whether a result similar to Theg—
rem 1 holds for MPC? As for VSS, this is the best result
one can hope for in terms of poly-time efficiency. How-
ever, we show a result implying that a reduction of the
type we provided to prove Theorem 1 does not exist forNote that requiring only passive, static security makes
MPC, not even if we assume the adversary is passive ahe impossibility result stronger.
static. Informally, we show that MPC protocols which get Finally, we discuss how to model protocols that are al-
black-box access for free to secret sharing, but do not Usged to use SS secure against the adversary structures
any special properties of the SS scheme in question, cansome familyF = {A,,} ,—1...o but without relying on
not handle all)2 adversary structures efficiently. which particular SS-scheme is used.
Since, in both the passive and active models, distributedNote that it would not work to give the protocol black-
addition is easily handled (as we will argue later onpox access to the algorithn{@istr, Recon) of some
it follows that it is essentially distributed multiplicati, scheme. The shares thus produced depend of course on
or equivalently, Oblivious Transfer, that prohibits effithe algorithm, so as a result the protocol might still take
cient construction of MPC protocols from black-box SSactions depending on the particular scheme used. To
schemes. avoid this, we give in stead the protocols access to an
To make this more precise, we first fix (for concretédealized secret sharing where the shares are replaced by
ness) a function which will turn out to be hard to compute random number that is unrelated to any particular SS
securely for allQ2 structures, namely the functighyyp scheme.
which is theAN D of n input bits, one from each player. More precisely, we allow protocols to make use of an
We will allow protocols to be constructed nonextra uncorruptible playef’ with unbounded comput-
uniformly overn, k, this only makes the impossibility re-ing power called an S$-oracle T will implement an
sult stronger. Thus for a fixed value of &, we can write "ideal” SS w.r.t. A,, whenever there are players: any
down the computing done by each player at each rousidyer can send a message "shgrto T' containing a se-
of the protocol as a Boolean circuit. Sending of messaggets. ThenT will remembers and distribute to all play-
translates directly to wires connecting these circuitsl, am— — . . .
Usually, when defining security of multiparty computationg can-

the view of a player becomes the C.OHeCtion of Val_ues thidk separate correctness and privacy as we do here. Hovrever, par-
are handled by his part of the circuit. In the following, wecularly simple case of static and passive security, #isdt a problem

acy For A € A, if the adversary corruptd, he
learns nothing about inputs bits outside beyond
what is implied by input bits imd andb; A ... A by,
(except for an amount negligible in= k).




ers a randomly chosen but uniqgue numbBx(s). At any protocols with polynomially related efficiency that de-
later time, the protocol can issue a requesI'ttRecon- pend on the particular scheme, or class of schemes consid-
structA, I D(s)” meaning that the players in the subsget ered. Only the existence of a general black-box reduction
would like to reconstruct the secret identified b§(s). is ruled out.
Now, T' computes whethed is in A,,. If not, 7" will send
s to the players ilA. Otherwisel” will only say thatA is L .
in A,. 3 Distributed commitments

When measuring running time, acces§toounts only
as one step - the protocol is not charged for the interh@formally, a commitment scheme consists of a commit
computing done byi" 3. A protocol with such an extra Protocol, where one of the players, the committer, on in-
player is called aS-oracle protocolSuch a protocol is Put some value: to commit to, distributes some infor-
said to compute a function securely agaist it can do mation to the other players, possibly also some protocol

is: mation distributed is called theommitmentand is de-
noted[a] (suppressing random coins used in computing
THEOREM2 There exist familiesF of Q2 adversary the commitment). Assuming the Comm'“.ef IS T‘Ot cor-
structures, such that no polynomial-time SS-oracle pr{)u_pted, the adversary should get only negligible informa-
' . tion ona. If the committer is corrupted, he may succeed
tocol compute securely againsf. S . ; !
puteganp yag in distributing a commitment that is not well formed, we

Note that if talki bout protocols with will denote such &@adcommitment a$:].
ote that It we were taking about protoco’s wi nO.SecondIy, there is a protocol for opening a commit-

oracle access, we would have a lemma already shoergnt’ where all honest players either compute the same

[10] fo_r which a simple counting argument sufﬂce_s: LQ}alue or they all reject. If the committer stays incorrupted
a maximal@2 adversary structure be one to which w

. . fhen all incorrupted players computeas the result of
cannot add a new subset without Ioosmg@ﬂaproperty._ ening[a]. If the committer is corruptefl] will always
It is then easy to see that there are doubly EXponem'ag&rejected and openirig] is either rejected af is com-
many maximal)2-adversary structures onplayers. On uted ’
the other hand, there are only exponentially many diffé}'As .usual these conditions should hold, except with
ent protocols that can be specified by a number of blqggligible p,robability. '
polynomial inn. Thus, if the result was false, there would
exist some protocol that could handle several different ac-
cess structures. But the same protocol cannot be secdurd  Static Adversaries

for two different maximall)2 structures because it woul . . .
L dFor commitments secure against a static adversary, we can

then be secure for their union, which is ri@2. . ) .
. . . _generalize easily a commitment scheme from [15] (called
However, in our case this argument breaks down: our .
eak secret sharing (WSS) there).

protocols have access to an oracle giving answers that\ge-

. . basic tool introduced in [15], with efficiency im-
pend on the access structure in question, thus an oracle . . . . .
. . . fovements in [5], is Information Checking. This tool al-
protocol may take different actions for different access ; .
. ; . Tows a sendef to give a message to a receivelR (and
structures. The main technical problem we solve is 10

L . . end related information to other players) such that first,
show that even this is not sufficient to do MPC efficient . . play ).

e adversary will not learm if S, R are incorrupted,
for all structures. o
.and secondly, even i§ is corrupt, an honesk can later

Note that Theorem 2 does not rule out that a result Silloadcastn and convince all other honest players that

Itlr?rtt(; Theorem 1| could h%lg forhMPC: It ntl?y be thetcl\"z }e broadcasted value was really the one received from
at for every (class of) 55-scheme(s) there exis  This also means, of course, that a corrliptannot

3thus, in our circuit model, a call t& is modeled as a single oracleconV_inCe the players about a message if he actually
gate doing internally ali”’s computation. receivedm # m' from an honesp.




These properties hold unconditionally, with a neglighonest player, which leads to reject in the opening, except
ble error probability. Clearly, these are the essentigbpravith probability e;. Or the commitment is bad, which
erties that ordinary digital signatures could ensure, thasmeans opening it will be rejected, except with probability
however, on computational assumptions. e1.

For simplicity, we will describe the following protocol However, this argument only works because the set
using the terminology of digital signatures. Substitutingf corrupted players is fixed. Consider what happens if
Information Checking will then give unconditionally sethe adversary is adaptive. Clearly, a good commitment

cure protocols for the same purposes. stays good. But a bad commitment may become good
Given an SS schem@istr, Recon), a commitment as more players get corrupted. However, depending on
scheme can be built as follows: which players are corrupted, a commitméhtmay turn

. h . h . ) into a good commitment in several different ways, defin-

e To comnl:]ut toa, the committer s aresusLngﬁzstr, ing different values. This problem was observed for the
‘9 ggt sharés, ..., an. He. Signs each share an(Ease of threshold secret sharing in [5], and it was shown
distributes the shares and signatures to the playerg,gre how an adaptive adversary can break the commit-

e To open a commitment, the committer broadcadient scheme.

a, all the shares, and the random input used whenThe attack generalizes easily to many non-threshold
creating the shares. Each play@rchecks by run- structures, namely those that age, but not@3 *. Let
ning Distr that the broadcasted shares are consisteht 4, B be a disjoint partition of the player se?.
with @ and thata; matches the shares he receivddl is not difficult to see that it is possible to construct
originally. If not, he complains and broadcasts tife = (s1,---,sx) Such that when restricted to the play-
original share and signature. If a properly signe¥iS inA U B, this is a set o_f shares unlq_u_ely c_onS|stent
share is broadcast that does not match the comnifith a valuea, whereas restricted td’ U B, itis uniquely

ters broadcast, the opening is rejected. Otherwis€@nsistent with a different value/’, and such that both
is accepted. sets of shares have the right distribution: compute shares

in a, and delete the shares intended for SinceB is

Note that the use of the IC-scheme gives rise to twi@n-qualified, its shares can be extended (with the right
relevant error probabilities in this scheme. First, thebprodistribution) to a full set consistent wiitf. Finally, delete
ability eo that the adversary can successfully producetge shares for from this extension. Note that since the
forged signature in the opening phase (assuming that #eversary structure i§2, both AU B and A’ U B are
committer is honest), and second, the probabilitghat qualified sets.
a signature broadcast by an honest player in the opening in the commit phase the committer usesonstructed
phase is not accepted (assuming that the committer is GArthis way instead, he can later opendai he corrupts
rupted). The parameters of the IC-scheme can easilythe players ind’, and as/’ if he corrupts the ones iH.
set such that both error probabilities are negligible as asg to obtain adaptive security, we need to solve this
function of a security parametérand such that the com-proplem. A solution was given in [5], which however re-

plexity of the scheme is polynomial inand#:. _ quires that the underlying SS scheme be linear.
We now analyse the statically secure commitment

scheme. Clearly, since the adversary can only corrupt an _ _ )
unqualified set, he does not leainif the committer is 3.2 Upgrading to Adaptive Security

honest. L . N .
And since the adversary structure2, the comple- The basic idea to get adaptive security is to build on top

ment of the set of corrupted players is qualified, so o OUr Statically secure commitment scheme from Sec-

of the following two cases occur: either the commitmefP" 3-1 @ new one with the added property that we can

is good, i.e. all honest players hold consistent sharesEgfUre at commitment time that a commitment is good.

some value:. Then. evena Com_th committer cannot OPen 4 o3 adversary structure is one for which no three sets in the-stru
a different value without changing the share of at least ot cover the entire set of players




For simplicity, we will describe a bit commitmentat most2—*. Moreover, the event that remains honest
scheme in which only a single play&t verifies that the throughout and the commitment is not well-defined has
committerC' has created a good commitment. We theobability at mosg—*.
later describe how to use this to build protocols convinc-
ing all honest players. The first claim follows from the fact that clearly, the

We assume without loss of generality that our staticakgdversary has at most a negligible amount of information
secure commitment scheme allows a player to commitadbouta as a result of the generation of the commitment
any2n + k -+ 1 bits string,” and we set the error probabil{a], andz is an “encryption” ofv;, with the “one-time
ities © eg, e; in the statically secure commitment schemgad” a. The claim about the opening phase follows im-

such that both are at most*—1. mediately, sinceg < 2.
A commitment to bitb in the new scheme is denoted To show the second, note first the adversary loses im-
[[bl]c,v- mediately if he corruptd’, so we may assume that this
does not happen. Then the intuitive idea is that although
Protocol Commit C may open[a] in many different ways (since it is only

) _ statically secure), the maximum number is at n¥stex-

1. To make a commitmerifb]jc,v, the committerC’ .ot yith negligible probability). This is a negligible &ra
chooses a randomn + k + 1 bits stringa, and o, of the possible?™+++1 strings. This means that right
commits to it us_lng.the statically secure commitmeng;., having madéa], C is effectively committed (in the
scheme, resulting ifa). adaptivesense) to a negligible size subset of the possible

2. The verifier)” randomly chooses two distingt, +  StHings.

k + 1 bit stringsvo, v1, and broadcasts them. We argue as follows. Pretend fo_r the moment. that
the IC-signatures offer perfect security (more precisely,
3. C computes the string = v, ® a, and broadcasts it.e; = 0). Then consider the set B of players who are still

We set[[b]]c,v = ([a], vo, v1,2). honest aftefa] is opened. These players have of course
not changed their minds about the shares they received
initially. So they either have consistent shares determin-
ing some stringy’ which implies that the dealer can only
1. C broadcasts the bit, and opens the commitmenfiave opened successfullyals Or they have inconsistent

[a]. shares, meaning thét will be deemed corrupt. So it fol-

lows that for each sdB there is at most one string that the

2. Assuming that the opening in the previous step wagaler can claim successfully. And there are at st
accepted} accepts the opening ¢]]c,v if it in-  such sets.
deed holds that = v;, © a. Otherwise itis rejected.  Sincee; < 2%, it follows that, except with proba-

. "1 v . . )
We will say that a commitment isell-definedif after bility at most2 ' .C 'S effechxely committed to a sub
et of strings of size at mosx™.

the commit phase, there is at most one value that cansb . . . .
ooened sucf:)essfull %o be able to opefid]]c,v in two different ways in this
P Y- case, there must exiat,a; € W such thatz = v; & a;,

LEMMA 1 The above bit commitment scheffig]c, is ¢ = 0,1 It follows thatvo © vi = ap @ a;. Note
secure against an adaptive adversaryClfremains hon- that vo @ vy is a uniformly random2n + k + 1 bit
est during the commit phase, then the adversary getsSH{ng (different from the all-zero string), and is inde-

most a negligible amount of information @ and fur- Pendently distributed froril’. But the number of differ-

thermore, the probability that the opening phase fails &t a0 & a1 7 0 with ag,a; € W is clearly at most

22" — 2™, Thus we have that the probability th@tcan

Protocol Open

5|f the original scheme allows fag different values, then running
it [ times in parallel, yields a statically secure commitmetiesae that "Elements of our proof are reminiscent of a method introdungd
allows forq! different values M. Naor [14] in the context of ordinary, computationally sez com-
6This does not depend on whether the adversary is adaptivet or n mitments from pseudo-randomness




open the commitment in two different ways is at most We begin by a single verifier VSS protocol, i.e. where

(227 —2n)/(22nHhtl 1) < 27k-L a single playe#’ can verify the actions of the dealeér.
We conclude that the overall probability of cheating is As a tool for this, we need a protocol that produces
atmos2 k-1 4 27k-1 = 2=k from a commitment[z]]35 |, for any = a new commit-

ment[[x]]f.?j_rv, where P; can be any player. This must
reveal no information to the adversary if bathand P;
remain honest; and even if they are both corrupt, it must
] still be guaranteed that the two commitments contain the
4 VSS from Commitments same value. This is what is called a Commitment Transfer
Protocol (CTP) in [6]. We generalize the idea from there

In [12], a general techniques is presented, given any cobuild such a protocol for our scenario:
mitment scheme, for giving zero-knowledge proofs on

committed bits, i.e. a prover can commit to a set of bitSPT Protocol
and convince a verifier in zero-knowledge that the com- . . .
mitted bits satisfy any predicate that can be computed ir}' D s}e{nds:c_and all random mpgts u_sed In creating
polynomial time. At the heart of this is a technique (at- _[[x]]DaV _pnvately_ to i T_hus, ifD i hqnest,Pj
tributed there to Rudich) for building from any commit- IS ng)(w ina position equivalent to having created
ment scheme a new one, where comparison of committed (12115, himself.

bits is possible, i.e. the prover can convince the verifier, P; now create§[z]]X ,,, and proves, using the gen-

about the XOR of two committed bits, without revealing v

. . . i eral techniques described above, in zero-knowledge
further information. In the following, we apply this con-  hat it contains the same value as]]¥ ,, acting as

struction to the scheme from the previous section, and We it e created it himself using the data received in the
denote a commitment tin this new scheme bifb]]: , . previous step. If this proof succeeds, the protocol
where agairC' is the committer and” is the player than ends here acceptirif]]% .
can verify relations on committed bits. Since the con- a
struction treats the incoming bit commitment scheme a8 If the proof fails, it is clear that at least one 0f P;
a black box and does not use any assumptions about the is corrupt.D must then opef{z]] 5 - in public, and
way it works, the adaptive security of commitmentsis not P; is assigned a default commitment to the opened
affected by this. valuez.

Given such a tool, it |s_clear that a dealer ina VSS pro-yyig, this, we can build our single verifier VSS proto-
tocol can use the commitment scheme we just developegl
to commit to all inputs and outputs of a run of thestr
algorithmin our SS scheme, angl provein zero-knt_)wled_gﬁ]gle Verifier VSS
to the rest of the players that indeed the committed in-
puts result in the committed outputs (the shares of somé. D makes a commitmeritb]] 5, whereb is the bit
secret). This almost immediately leads to a VSS proto- D wants to VSS.
col. However, apart from the fact that this may result in
a huge loss of efficiency compared to the underlying S
scheme, it would also give a protocol whose actions de-
pends heavily on which particular secret sharing scheme
is used. Below, we give a protocol achieving something
slightly stronger, namely a VSS protocol that works given3. V' chooses at random a subdetconsisting of half
only black-box access to a secret sharing scheme and fur- the indicesl, ..., 2k, and broadcasts it. Now, for
thermore does not rely on any particular properties of this eachi € FE, D must open all commitments to
scheme. As we shall see, this matches the impossibility and eacls;;, and all random inputs used to generate
result we prove about MPC later. those shares;;.

. D chooses random bits,, ..., 7o, and, for eachi
generates shares,, . . ., s;;, wherer; is the secret.
Next, D makes commitments to all these values, re-
sulting in commitment§r;]| 5 v, [[si;]]5 v



4. V verifies that all openings of commitments were Consider for somé € FE the commitments@[ri]]ﬁv
valid, and for eachi € E, that each set of shargs, and the committed sharffs;;]]5 . Call the index good
consistently determines (he does it by running theif the s;; indeed consistently determimgand call itbad
distribution algorithm with the random input broadetherwise.
casted in the previous step). All information with Now if at least a constant fraction of the indices, say
i € E can now be discarded. 0.1k, are bad then except with negligible probability,

5. Write  for {1,...,2k} \ E. For eachi € B, D will reject in Step 4 of the disj[ribute protocol (in particu-
computes:; — b & ry, broadcasts it, and using théar, the subsek’ chosen bW.WI“ contaln.at I.east one bad
general techniques described abaReconvinces/’ index). On the other hand, if at mdsi k£ indices are bad,

in zero-knowledge that the XOR of the contents ¢fen even if all bad indices are outsiée the good ones
0% - and[r;]]X  is ¢; indeed will be in majority among the ones used in the reconstruc-
D,V illD, v i .

tion phase, and the correct valuebofill be computed.
6. Finally, for each € E and eacly, a CPT protocol is
executed to conveffs;;]] 3 v to [[si;]]3, v- VSS Protocol

In order to ensure that some value for the secret is (& finally prove Theorem 1, just note that a dealer can
most) always defined after the distribution, we adopt tR€rformn single verifier VSS's on the same bitvhere
convention that ifY” rejects in the above protocol, defaulBVery player gets to play the role df. As a side effect

consistent shares are assigned to the players. of this, we getr commitments[b;]]75 ,, where if D has
To later open such a VSS, the following is done: ~ been honest; = ... = b, = b. So clearly, all we need is
for D to convince separately every player that this relation
Single Verifier VSS reconstruct holds. The general zero-knowledge techniques mentioned

_ ) _earlier will suffice for this.
1. For eachi € E, each playet’; opens his commit-

ments to all thes;;’s he knows. All the data are sent

V. 5 Multiparty Computation
2. V verifies all openings and discards thosgs for
which the commitment was not correctly openedh this section we prove our impossibility result, Theo-
For those's where a qualified set of shares (supposem 2.
edly of ;) remains, he reconstructs a valtje Before doing so, we first point out, as claimed earlier,
that secure computation of linear functionals can be effi-
ciently handled using black-box SS, both in the passive
and active models. As a consequence, Theorem 2 can
also be interpreted as an impossibility result essentially
regarding secure multiplication, or equivalently, Oblivi
We now argue that this single verifier VSS works: firsqus Transfer.
if D remains honest, it follows directly from the secu- In the passive case, this is trivial: each input bis
rity of the commitment scheme that the adversary gesglit randomly intob = b; @ by @ ... @ b, andb; is given
(almost) no information oh. to playerP;. Each player then computes the desired lin-
On the other hand, suppokeremains honest. The in-ear function locally on thé;’s and publish the result. The
tuition then is that due to the cut-and-choose, a majoriiobal result is then the xor of the local results. Note that
of ther; with i € E are correctly shared, with the playerthe black-box SS-scheme is not needed for this. In the
committed to their shares. Hence, thesean be recon- active model, we can first establish a situation where the
structed, and whel XOR’s these with the correspondingnput bits and the;’s are verifiably secret shared. The
¢i's, V gets the bib as a result in a majority of the caseglayers then prove using general techniques that they per-
A more detailed analysis follows. formed their local computations correctly (see Section 4).

3. V XOR'’s r; with the value for; broadcasted earlier.
This gives a set of bits (which will all be equal to
if D has been honesty. decides by majority among
these bits the final value to reconstruct.



To prove Theorem 2, let us first recall the standarimber of such protocols is at most a single exponential
argument showing the impossibility result when no S8 n.
oracle is given. As mentioned,@2 adversary structure We will then show:
X is calledmaximalif there does not exist §2 adver-
sary structureX’ # X such thatX C X'. For the sake LEMMA 2 For everyn large enough there exist two ad-
of contradiction suppose that for every maximal adverersary structuresis, Ax C P(P,) such that
sary structured there exists a protocol which runs in time
bounded by some polynomial, and which computesp
securely againstl. Since the number of_maxim@Q ad- . 7(As) = 7(Ar), and
versary structures is double-exponential and the number
of polynomial-time protocols is single exponential then3. r(Ag) asks a membership query about a set in the

1. the size of the set of playeR; is 2n + 2,

(by a counting argument) there must exist a protacol symmetric difference ol and As with probabil-
computingfanp securely against two different maximal ity at most2—1-5". This probability is taken over
()2 adversary structure¥ andY. This means that is all random choices made in the protocol, and over
secure against = X U Y. By maximality of X and a random choice of thén + 2 input bits. More-

Y we have thatZ is notQ2. Thereforef,yp cannot be over,Ag contains a se#d, and Ar a setB, such that

computed securely against it, and we have a contradiction. |A| = |B|=n+1andAUB = P,

In our case the situation is more difficult because the
behavior of the players may depend on the oracle defore proving this, let us show how the existence of such
swers. Observe that when the SS-oracle is asked byl:a and As yields the contradiction. We will construct
set of players4 to reconstruct some secret then the prérom the protocotry := 7(Ag) = m(Ar) a new protocol
tocol gets the information whethet is a member of the for two players, Alice and Bob, with input bits,, b5 that
adversary structure. Thus we may assume that togetwdkcompute securely (and with negligible error probabil-
with reconstruction request comes a query about a mdty} b4 A bg. This is well known to be impossible, even
bership in the adversary structure and that together wiftlonly passive cheating occurs, and the honest Alice and
the SS-oracle we have a membership oracle. Bob are allowed unbounded computing power.

Therefore for two different adversary structurésand Consider the setd € Ag andB € Ar guaranteed by
Y the same protocol may behave in two different wayse lemma. We let Alice and Bob simulate an execution of
if it happens to ask a membership query about a set im@ where Alice controls the players i and Bob those
symmetric difference oK andY'. Intuitively the biggest in B. Alice selects as input bits for players.iha random
combinatorial difficulty of the proof is to show that therset ofn + 1 bits such that the AND of all of them equals
always exist two different maxima)2 adversary struc- b 4. Similarly for Bob. Then we execute,, where Alice
turesAs and Ar and a protocob working against both (Bob) executes the algorithms of playersdn(B). Every
of them, such that will, with large probability, not ask message from a player it to a player inB causes Alice
a membership query about any set in a symmetric difféo-send the message to Bob, and vice versa.
ence ofX andY'. Note that although efficiency of protocols plays a cru-

More precisely, the proof proceeds as follows. It isial role in proving the above lemma, we do not need to
enough to prove that for any polynomidl) the collection be concerned about efficiency at this point anymore, be-
of oracle protocols of sizg(n) cannot handle all maximalcause we are now headed towards establishing a contra-
Q2 adversary structures onplayers. So for the sake ofdiction by building a protocol for a problem for which no
contradiction suppose that there is a polynomialsuch protocol exists, even if unbounded computing is allowed.
that for every set of player® of sizen and every max- Hence we need n§S-oracle, we can use an arbitrary (in-
imal Q2 adversary structurgl C P(P) there exists an efficient) secret sharing scheme fag U Ar. Also, we
SS-oracle protocat(A) of size at mosp(n) computing may assume that Alice and Bob each have a list of the
fanp securely againstl. All such protocols can be specsets inAr and As. They will use it to answer member-
ified by a polynomial number of bits, and hence the totship queries as follows: in most casgsasks about a set
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whichis in bothAg, A7 orin neither of them, soiitis clear(we have|SP,| is Q(2?"/\/n) by standard combina-
what the answer should be. In the unlikely event that tharics, therefore this operation is always possible).
question is about a set in the symmetric difference, theNow observe that every subsgtC R,, determines a
protocol stops, we say it crashes. Alice and Bob use tineique adversary structurks in the following way: a set
result computed byry as their output if the protocol fin- of playersZ C P, belongs taAs if and only if one of the
ishes; if it crashes they let the output but be 1. following conditions is satisfied:

Observe that in casky = 0 or bp = 0, the prob-
ability of a crash is at mos2—"/2*2: if, say, by = 0,
we choose randqmly between a get of at I@&sinputs, « (Z,P\Z)€S,or
namely all those inputs to players.i where at least one
bitis 0. These cases constitute at least a frac2iof2 o (P\Z,2)¢85.
of the overall probability space, so even restricted to this
case, the crash probability is at ma@st!-®*/2="=2 = Such an adversary structure will be callespdit structure
2-7/2+2  This immediately implies that Alice and BobWe defineC,, to be the set of all split structurefs (where
compute correctly4 A bp except with negligible prob- S C R,,). Clearly every split structure is a maxim@k
ability in n. It also implies that privacy is satisfied: it isstructure.
enough to argue that 4 = 0, Alice learns a negligi- To avoid to many subscripts we fix. From now on
ble amount of information about. To see this, considerwe will consider only protocols running against the split
an idealized scenario, where there are no crashes andtallctures (what we can safely assume because we are
membership queries are answered accordingdoThen proving a negative result). Letrot be the set of all the
sincem is secure againsti s, it follows that whenever protocols assigned to the set of all split structuresrby
the players inA (alias Alice) have 1 or more zeros in thei(i.e. prot = 7(C,)). It is easy to see that now all the
input, they learn almost no information about the inputsembership queries about the sets of a size at smaller
of players inB. However, the only difference betweertthann + 1 are always answered positively. Similarly all
the actual protocol we specified for Alice and Bob amglueries about the sets of a size bigger that are always
the idealized case is the crashes. And since crashes oetiswered negatively. The only queries which give some
with negligible probability, it follows that Alice’s viewfo information about the adversary structure are the queries
the actual protocol is statistically indistinguishablerfr about the sets of the size exactly+ 1. Therefore we
what she sees in the idealized case. can now assume that instead of a membership oracle for

This completes the proof that Alice and Bob would bds every protocol is given a membership oracle for

able to compute the AND function securely, and so wiis assumption simplifies a bit the notation and views
have our contradiction. the problem in a more abstract way.

Let us now show the existence 4f; and Ay satisfying -6t ¢ be the maximum of the expected number of
the conditions (1)—(3). gueries asked by the protocols from the geit (more

. . . reciselly lett = expected number of queries
It will be enough to restrict ourselves to a certain clafs y maxaec, (Exp a

. . . asked byr(A) when it runs against the structudg). Let
of maximal@?2 structures. For a givemwe will construct 1_72"( ) L 9 . )
1.9n s =2 (the choice is somewhat arbitrary, what matters
aclas<,, of 2 such structures as follows. Take a s

% thats is much bigger than, but much smaller th .
of playersP, such tha{P,| = 2(n + 1). Definesplit to g 99 h af,|

; ) Divide R,, into s blocks of equal size in an arbitrary
i?\eaanpz:lrltr)(iifés bv); 3/ Sauggttgﬁii)(lil IS:PUZ k} ;t( L:snaerk)thlaxrtyway (this operation will always be possible for big enough
n . LetBy,...,Bs h Iti locks. We will
that (X,Y) ¢ SP, if and only if (v, X) ¢ SP, (for - L8t D1, Bs be the resuling blocks. We will say

lo: f | P and defineSP. to b ¢ that a setX is blinking in a blockB; iff there exists a set
example: fix a play€po € I and delines =, 10 be a Set y- g,y that all the following conditions are satisfied:
of all splits (X, P \ X) such thap, € X).

For a technical reason we make a further restriction,e the protocols assigned lyto X andY are the same,
and choose an arbitrary subget of SP,, of a size2!-o" ie.m(X)=m(Y)

° |Z|<n+1,
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e XNB;#YNBy, and o m(Ag) = n(blink(B;)),
e XN (Rn \B]) =YnNn (Rn \B]) . SﬂBj #* blmk(Bj) N Bj, and

The last two conditions mean in other words thaand e S\ B; = blink(B;) \ B;.

Y differ on a setB; and do not differ elsewhere. TheC ider th of (A inst the ad ¢
intuition here is that the protocal(X) may have some onsider the runs of(As) against the adversary struc-

difficulty in deciding if it is running againsk or ', since ture As and consider the_probability distribytion of these
it must ask a membership query iy to find out. runs over a random choice of the_lnput bits to the com-
putation as well as the random coins used. For evgry
LEmMMA 3 For every big enough there exists a set blink-1et pr(5B;) be the probability that (.S) asks a query about
ing everywhere (i.e. there exiss C R,, such thatS is some element iB;. It is easy to see that:; pr(B;) is
blinking for every blockB,, . .., B,). the expected number of queries askeddiyls). Recall
that this expected number of queries is polynomiatjn

PROOF. For every blockB; let N; denote the family and hence itis, for all large enoughsmaller thans by a
of setsnotblinking for B;. What we need to show is thafactor of at leasp!->". Therefore

Uj_1N; # P(R,). We will actually prove a stronger .

fact, namely . . Zpr(Bj) < 255”
>IN <22 (1) =1
j=1

Thus the average value pf(B;) is at most2—1-57. Let
Fix an arbitraryB;. Take an arbitrary se& C R, \ B;. B, be such thapr(B;) < 2-1°". In other words, with
Now take the familyG = { W C R, : W\ B; = Z } probability at leastt — 215 the machiner(Ag) will
(in other wordsG is a family of all sets whose projecnever ask about any element ). Therefore if we set
tion on R, \ B; is equal toZ). If two different sets in 7' = plink(B;) then the protocok(As) (which is by the
G were assigned the same protocol, then they would beihy equal tor(A7)) with a probabilityl — 215" will
blink in By, so it follows that the size of the family ofnot distinguish betweeA s and Ar.

sets ing that are not blinking in3; cannot be bigger than

the numberprot| of different protocols. Therefore af-

ter summing over all possible sefsc R, we have that 6 Error Free Protocols and Open
IN;| < |prot|22"""(s=D/s_ Since the choice oB; was Problems

arbitrary we get that the left-hand-side of (1) is not big-

ger thans|prot[22""(=1)/s. Therefore to prove (1) isIn this paper, we have dealt with the situation where a

enough to show that broadcast channel (in addition to the private ones) is-avalil
1o X able and access structures @2 It is known [10] that if
219 (s—1)/s 21-9m .
s|prot|2 <2 the adversary structure {33 (no three sets in the adver-
L , sary structure covers the player set) and no broadcast is
which is equivalent to given, then VSS and MPC with zero error probability is
41.97 j02n possible. Thus it is natural to ask if in this model we are
slprot| <27+ =2 (2) given anerror free SS scheme, can we build arror free

VSS scheme with polynomially related efficiency?
We sketch here how to build an error-free commitment
cheme. The construction requires a broadcast channel,
however, such a channel can be simulated, given an effi-
Let nown be big enough that the blinking everywhereient way to decide membership in the adversary structure
set exists. Leb € R,, be such a set. Thus for every blocksee [7]), and the secret sharing scheme we assume gives
B, there exists a séflink(B;) € C; such that precisely such a decision procedure.

The left hand side of (2) is single exponentiakirand so
for big enoughn the inequality (2) (and hence (1)) holdsS
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The commitment scheme works as follows: the corlReferences
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