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Abstract

We de�ne a new mode of operation for block encryption which in addition to assuring con�den-

tiality also assures message integrity. In contrast, previously for message integrity a separate pass

was required to compute a cryptographic message authentication code (MAC). The new mode of

operation, called Integrity Aware CBC (IACBC), requires a total of m + logm block encryptions

on a plaintext of length m blocks. The well known CBC (cipher block chaining) mode requires m

block encryptions. The second pass of computing the MAC essentially requires additional m block

encryptions. We also show a lower bound of 
(logm) additional block encryptions for any reasonably

modeled scheme which assures message integrity along with con�dentiality.

1. Introduction

Symmetric key encryption has become an integral part of today's world of communication. It refers

to the schemes and algorithms used to secretly communicate data over an insecure channel between

parties sharing a secret key. It is also used in other scenarios like data storage.

There are two primary aspects of any security system: con�dentiality and authentication. In its most

prevalent form, con�dentiality is attained by encryption of bulk digital data using block ciphers. The

block ciphers (e.g. DES [4]), which are used to encrypt �xed length data, are used in various chaining

modes to encrypt bulk data. One such mode of operation is cipher block chaining (CBC) ([1, 2, 3]).

The security of CBC has been well studied [8].

Cipher block chaining of block ciphers is also used for authentication. The CBC-MAC (CBCMessage

Authentication Code) is an international standard [5]. The security of CBC MAC was demonstrated in

[6]. Authentication in this setting is also called Message Integrity.

Despite similar names, the two CBC modes, one for encryption and the other for MAC are di�erent,

as in the latter the intermediate results of the computation of the MAC are kept secret. In fact in most
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standards (TSL, IPsec [12, 11]) and proprietary security systems, two di�erent passes with two di�erent

keys, one each of the two modes is used to achieve both con�dentiality and authentication.

Nevertheless, it is enticing to combine the two passes into one, that is in a single cipher block

chaining pass, both con�dentiality and authentication are assured. Many such attempts have been

made, which essentially use a simple checksum or manipulation detection code (MDC) in the chaining

mode ([9, 10, 13]). Unfortunately, all such previous schemes are susceptible to attacks (see e.g. [14],

Appendix B).

In this paper, we present a new variant of CBC mode, which in a single pass achieves both con�den-

tiality and authentication. To encrypt a message of length m blocks, it requires a total of (m+ logm)

block encryptions. All other operations are simple operations, like exclusive-or. To contrast this with

the usual CBC mode, the encryption pass requires m block encryptions, and the MAC computation

requires another m block encryptions.

We also show that there is indeed a matching lower bound to our mode of operation, in a reasonable

model of computation. This also explains why all previous attempts which tried to attain both features

together, without the extra logm cryptographic operations, have failed.

Our new mode of operation is also simple. A simpler (though not as e�cient) version of the mode

just requires a usual CBC encryption of the plaintext appended with the checksum (MDC), with a

random initial vector r. As already mentioned, such a scheme is susceptible to message integrity

attacks. However, if one \whitens" the complete output with a random sequence, the scheme becomes

secure against message integrity attacks. Whitening just refers to xor-ing the output with a random

sequence. The random sequence could be generated by running the block cipher on r+1, r+2, ... r+m

(but with a di�erent shared key). This requires m additional cryptographic operations, and hence is no

more e�cient than generating a MAC.

The e�ciency of the new mode comes from proving that the output whitening random sequence need

only be pair-wise independent. In other words, if the output whitening sequence is s

1

, s

2

,...s

m

, then

each s

i

is required to be random, but only pairwise-independent of the other entries. Such a sequence

is easily generated by performing only logm cryptographic operations like block encryption.

The rest of the paper is organized as follows. Section 2 describes the new mode of operation.

Section 3 gives de�nitions of random permutations, and formalizes the notions of security, for both

con�dentiality and message integrity. In section 4 we state the theorem for the security of the new

mode of operation. In section 5 we prove that the new scheme is secure for message integrity. In section

6 we describe our model of computation for the lower bound, and prove the lower bound.
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2. The New Mode of Operation - IACBC

In this section we describe the new mode of operation for encryption, which also guarantees message

integrity. Although, the subsequent proofs generalize to various variants, we only present here a mode

of operation which is most similar to CBC (cipher block chaining) mode of operation. We call this mode

IACBC for integrity aware cipher block chaining.

Let n be the block size of the underlying block cipher (or pseudorandom permutation). If the block

cipher requires keys of length k, then this mode of operation requires two independent keys of length

k (however, see the end of this section for a further discussion). Let these keys be called K0 and K1.

From now on, we will use f

x

to denote the encryption function under key x. The same notation also

holds for pseudorandom permutations.
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Figure 1: Encryption with Message Integrity (IACBC)

The message to be encrypted P , is divided into blocks of length n each. Let these blocks be

P

1

; P

2

; :::P

m�1

. As in CBC, a random initial vector of length n (bits) is chosen. This random vector r

is expanded into t = dlogme new random and independent vectors using the block cipher and key K0

as follows:

for i = 1 to t do

IV

i

= f

K0

(r + i)

end for

The t random and independent vectors are used to prepare 2

t

� 1 new pair-wise independent random

vectors S

0

; S

1

; :::; S

2

t

�2

. One way to do this is as follows:
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for i = 1 to 2

t

� 1 do

Let < a

1

; a

2

; :::a

t

> be the binary representation of i

S

i�1

=

P

t

j=1

(a

j

� IV

j

)

end for

The summation in the for loop above is an xor-sum.

The ciphertext message C = < C

0

; C

1

; :::; C

m

> is generated as follows (see Figure 1):

M

0

= r

N

0

= f

K1

(M

0

)

C

0

= N

0

for i = 1 to m� 1 do

M

i

= P

i

� N

i�1

N

i

= f

K1

(M

i

)

C

i

= N

i

� S

i

end for

checksum =

P

m�1

i=1

P

i

M

m

= checksum �N

m�1

N

m

= f

K1

(M

m

)

C

m

= N

m

� S

0

Again, the summation above is an xor-sum. Note that S

0

is used in the last step.

It is easy to see that that the above scheme is invertible. The inversion process yields blocks

P

1

; P

2

; :::; P

m

. The decrypted plaintext is < P

1

; P

2

; :::; P

m�1

>. Message integrity is veri�ed by checking

P

m

= P

1

� P

2

� :::� P

m�1

.

Note that, the random vectors IV

1

; :::IV

t

could have been generated by a pseudorandom function

(rather than pseudorandom permutation).

There is another way of generating the pairwise independent vectors S

0

; S

1

; :::; S

2

t

�2

. Instead of using

the subset construction, one could use an algebraic construction, i.e. generate two random vectors IV

1

,

and IV

2

, and then let S

i

= (IV

1

+ IV

2

� i)mod p, where p is a prime of appropriate size. For example,

if the block cipher has block size 64 bits, p could be chosen to be 2

64

� 257. This leads to a fast

implementation. Theorem 3 holds for this construction as well, as the main requirement there is for the

output whitening sequence to be pairwise independent.

4



2.1 Parallelizable Mode

We now describe another mode, which is highly parallelizable. We call this mode the Integrity

Aware Parallelizable Mode (IAPM). In a way, it is similar to the counter mode of encryption. However,

IAPM also assures message integrity.

In this mode, there is no ciphertext chaining. Instead, the security of the scheme is obtained by

\whitening" the input with the same pairwise independent sequence which is used to whiten the output,

i.e., S

0

; S

1

; :::S

m�1

. The proofs of security as given in section 4 and 5 for the IACBC scheme also work

for IAPM.

The scheme is described in Figure 2.
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Figure 2: Parallelizable Encryption with Message Integrity (IAPM)

3. Preliminaries and De�nitions

3.1 Random Permutation-like Functions

De�nition (Random Function) A Random function is a function chosen randomly from f0; 1g

n

!f0; 1g

l

.

It could also be viewed as a random sequence (uniformly chosen) of length 2

n

of l bit strings.

De�nition (Random Permutation) A Random permutation is a function chosen randomly from class

of permutations in f0; 1g

n

!f0; 1g

n

. It could also be viewed as a random sequence chosen uniformly

from the class of all 2

n

length sequences of l bit strings, such that each l bit string is represented once

in every sequence.

The following notion is new (i.e. non-standard). The new notion and the following theorem help
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simplify the proof of message integrity. It essentially separates the approximations in calculating the

success probability that result from replacing random permutations by random functions in Theorem

3.

De�nition (Random Permutation-like Functions (RPF)) A Random Permutation-like Function with

parameter q is a pair of random functions < f; g >, with the following restriction

� For i 2 [1::q] de�ne �(i) = minfj : j � q and f(j) = f(i)g

� if j = f(i) for some i � q, j arbitrary, then g(j) = �(i).

A permutation f can be viewed as a pair < f; f

�1

>.

Theorem 1: Let < F;G > be a random permutation-like function with parameter q. Let P be a

random permutation. Consider an adversary which is allowed calls to a pair of oracles < O

1

; O

2

>, with

the restriction that it is only allowed to call O

1

on inputs 1; 2; :::; q, whereas there is no restriction on

calls to O

2

. Any such adversary A that makes at most q total queries to a pair of oracles has probability

at most q

2

=2

n

of distinguishing < F;G > from < P;P

�1

>.

3.2 Encryption Schemes: Message Security with Integrity Awareness

The de�nitions of pseudorandom functions and permutations are not given here (see [7] for instance).

We instead give de�nitions of schemes which explicitly de�ne the notion of secrecy of the input message.

Of course, pseudorandom permutations can be used to build encryption schemes which guarantee such

message secrecy (see [7] for example).

In addition, we also de�ne the notion of message integrity. Moreover, we allow arbitrary length

input messages (upto a certain bound).

Let Coins be the set of in�nite binary strings. Let l(n) = 2

O(n)

, and w(n) = O(n). Let N be the

natural numbers.

De�nition A (probabilistic, symmetric, stateless) encryption scheme with message integrity consists of

the following:

� initialization: All parties exchange information over private lines to establish a private key

x 2 f0; 1g

n

. All parties store x in their respective private memories, and jxj = n is the security

parameter.

� message sending with integrity awareness:

Let E : f0; 1g

n

� Coins�N � f0; 1g

l(n)

! f0; 1g

l(n)
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D : f0; 1g

n

�N � f0; 1g

l(n)

! f0; 1g

l(n)+w(n)

MDC : N � f0; 1g

l(n)

! f0; 1g

w(n)

be polynomial-times function ensembles. In E, the third argument is supposed to be the length

of the plaintext. Similarly, in D the second argument is the length of the ciphertext. We will drop

this argument when it is clear from context. The functions E and D have the property that for all

x 2 f0; 1g

n

, for all m 2 f0; 1g

l(n)

, c 2 Coins

D

x

(E

x

(c;m)) = mkMDC(m)

We will usually drop the random argument to E as well, and just think of E as a probabilistic

function ensemble. We will also drop n when it is clear from context. Thus we will write l for l(n) etc.

De�nition (Security under Find-then-Guess [8, 7]) Consider an adversary A that runs in two stages.

During the adversary's �nd stage he endeavors to come up with a pair of equal length messages, m

0

, m

1

,

whose encryptions he wants to tell apart. He also retains some state information s. In the adversary's

guess stage he is given a random ciphertext y for one of the plaintexts m

0

, m

1

, together with s. The

adversary is said to \win" if he correctly identi�es the plaintext.

An Encryption Scheme is said to be (t; q; �; �)-secure in the �nd-then-guess sense, if for any adversary

A which runs in time at most t and asks at most q queries , these totaling at most � bits,

Adv

A

def

= 2 � Pr[(m

0

;m

1

; s) A

E

x

(�)

(�nd); b f0; 1g; y E

x

(m

b

) : A

E

x

(�)

(guess; y; s) = b]� 1 � �

De�nition (Integrity Awareness): Consider an adversary A running in two stages. In the �rst stage

(�nd) A asks r queries of the oracle E

x

. Let the oracle replies be C

1

; :::C

r

. Subsequently, A produces

a ciphertext C, di�erent from each C

i

, i 2 [1::r]. Since D has length of the ciphertext as a parameter,

the breakup of D

x

(C) as mkm

0

, where jm

0

j = w(n), is well de�ned. The adversary's success probability

is given by

Succ

def

= Pr[MDC(m) = m

0

]

4. Message Secrecy

We state the theorem for security under the Find-then-Guess notion of security. The proof follows

standard techniques ([8, 7]), and will be given in the full version of the paper.

Theorem 2: Let A be an adversary attacking the IACBC encryption scheme (with f being a random

function F ) in the �nd-then-guess sense, making at most q queries, totaling at most � bits. Then,

Adv

A

� (

�

2

n

2

�

�

n

) �

1

2

n
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5. Message Integrity

In this section we show that the mode of operation IACBC guarantees message integrity with high

probability.

We start with some informal observations to aid the reader in the eventual formal proof. First thing

to note is that since each encryption has a new random seed r, it does not help the adversary to have

more than one pair of plaintext-ciphertext messages. Thus, essentially the problem of message integrity

is the following. Given P

1

, and corresponding C

1

, can the adversary generate another C

2

di�erent from

C

1

, such that on decryption the plaintext passes the integrity check.

We will take the following approach. We �rst restrict ourselves to the random permutation-like func-

tion model. That is, we model the block cipher by a random permutation-like function. Using Theorem

1 (section 3.1), one can show that the following theorem also holds for the random permutation model.

Finally, yet another standard reduction shows that the theorem holds for pseudorandom permutations.

Theorem 3: Let A be an adversary attacking the IACBC encryption scheme with random permutation-

like function < F;G > making at most r queries in the �rst stage, totaling at most � bits (where � � qn,

q being the parameter of F ). Then,

Succ < (

�

2

n

2

) �

1

2

n

Proof:

For sake of clarity, we assume that the adversary only has one query in the �rst stage with plaintext

P of length m blocks and corresponding ciphertext C (� = mn).

In the �rst stage, we do a modi�cation to the IACBC algorithm. The modi�ed algorithm uses

F (�(i)) instead of F (M

i

) for queries F (M

i

), where

�(i) = min fj : j � i and M

j

=M

i

g

Given that F is random, the behavior of the modi�ed algorithm and the original algorithm is identical.

Its query in the second stage is with ciphertext C

0

6= C. We will used primed variables to denote the

variables in the second stage. For example, P

0

m

will denote the last decrypted block (if C

0

= C

0

0

; :::C

0

m

).

First note that, r; IV

1

; IV

2

; :::; IV

t

are uniformly random and independent variables. Also, they are all

independent of P .

Now assume that P and r are such that

8i; j : M

i

6=M

j
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This happens with high probability as in Theorem 2. This implies that N

0

; N

1

; :::; N

m

are uniformly

random and independent variables. Also, they are all independent of r; IV

1

; IV

2

; :::; IV

t

.

We �rst consider the case where the length of C

0

and C is same.

Let i be the smallest index in which C and C

0

di�er. It is easy to see that N

i

6= N

0

i

.

The case i = m is trivial, as M

0

m

6=M

m

with high probability, and hence P

0

m

6=

P

m�1

i=1

P

0

i

=

P

m�1

i=1

P

i

.

Next, we consider the case i 2 [1::m� 1]. We �rst prove the following :

With high probability the following does not hold:

(1) 9j : j = 0::m;N

0

i

= N

j

or (2) 9j : j = 0::m; j 6= i;N

0

i

= N

0

j

Now, N

0

i

= C

0

i

� S

i

, as S

0

i

= S

i

, i being greater than zero.

Thus, for (1) to hold for a particular j would require

S

i

� S

j

= C

0

i

�C

j

But, C

j

= N

j

�S

j

(for j > 0), and N

j

is independent of S

j

. Thus, C

j

is independent of S

j

. In fact, since

N

0

; N

1

; :::; N

m

are independent of IV

1

; IV

2

; :::; IV

t

, the whole of C is independent of IV

i

; IV

2

; :::; IV

t

, and

hence independent of each S

k

(for any k 2 [0::m]). We already know that P is independent of each

S

k

. Also, C

0

is completely determined by C and P , and hence C

0

is �xed independent of S

k

(for any

k 2 [0::m]). Since i 6= j (we already know that N

0

i

6= N

i

), S

i

�S

j

= S

k

, for some k 2 [0::m]. Since, S

k

is

random and independent of C and C

0

, the probability that S

k

= C

0

i

� C

j

is 2

�n

. The case when j = 0

is proved similarly.

For case (2), for j < i, N

0

j

= N

j

, and hence case (1) applies. For case (2) to hold for a particular

j > i would require

S

i

� S

j

= C

0

i

�C

0

j

Again, as before, C

0

i

� C

0

j

is �xed completely independent of S

k

( for any k 2 [0::m]). And hence the

probability is at most 2

�n

.

Thus, the disjunction (1) or (2) holds with probability at most 2(m+ 1) � 2

�n

.

Now, we consider the case i = 0, i.e. C

0

0

6= C

0

= N

0

. We show that with high probability, for all

j 2 [1::m], C

0

0

6= N

j

. We consider the individual event N

j

= C

0

0

, or S

j

= C

0

0

� C

j

. Since, N

0

; N

1

; :::N

m

are independent of S

j

, the whole of C is independent of S

j

, and hence C

0

is also independent of S

j

.

Thus, S

j

= C

0

0

�C

j

holds with probability 2

�n

. Thus, with probability at most m � 2

�n

, there exists a

j 2 [1::m] such that C

0

0

(= N

0

0

) = N

j

.
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Thus, M

0

0

= G(N

0

0

) is a random variable independent of all previous variables. This implies, that

with high probability, IV

0

1

; :::IV

0

t

are random and independent variables, independent of all previous

variables r; IV

1

; :::IV

t

; N

0

; N

1

; :::N

m

. Thus, with high probability N

0

1

6= N

1

, and now the previous case

applies.

Thus, we have that with high probability, there is an i 2 [1::m � 1] such that

(1) 8j; j 2 [0::m] : N

0

i

6= N

j

and (2) 8j; j 2 [0::m]; j 6= i : N

0

i

6= N

0

j

Thus,M

0

i

= G(N

0

i

) is a random variable independent of all of r; r

0

; IV

1

; IV

0

1

; :::IV

t

; IV

0

t

; N

0

; N

0

0

; :::N

m

; N

0

m

,

and also independent of P

1

; P

2

; :::P

m�1

, and all M

0

j

(j 6= i).

Now,

P

0

m

=

m�1

X

j=1

P

0

j

=

m�1

X

j=1

(M

0

j

�N

j�1

) and MDC(P ) =

m�1

X

j=1

P

j

Thus, the event we are interested in is

M

0

i

=

m�1

X

j=1

(P

j

�N

j�1

)�

X

j 6=i

M

0

j

The LHS being independent of RHS, the probability of the event is 2

�n

.

For the case when the lengths of C and C

0

are di�erent, we just remind the reader that a designated

set S

0

is used in the last block. 2

6. Lower bound

In this section we show that the logm additional cryptographic operations in the IACBC scheme

are essentially the least one has to do to assure message integrity along with message secrecy.

We consider the following model. We assume a �xed block size n for a block cipher (or random

permutations or length preserving random functions). Any application of one of these will constitute

one application of a cryptographic operation. The only other operations allowed are linear operations

over (GF2)

n

, i.e. bit-wise exclusive-or. Of course, operations of testing whether an n bit quantity is

zero is also allowed. Since, the scheme could be probabilistic, as IACBC is, we also allow v blocks of

randomness, r

1

; :::; r

v

.

Let, the message to be encrypted be of size m blocks, i.e. mn bits. Call the input blocks

P

1

; :::; P

m

. Let there be m + k invocations of random functions, and let the inputs to these func-
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tions be M

1

;M

2

; :::;M

m+k

. Similarly, let the outputs of these random functions be N

1

; N

2

; :::; N

m+k

.

Let, C = C

1

; C

2

; :::C

m+t

be a linear function of P 's, r's, M 's and N 's. Here 0 � t � k.

Our aim is to show that either the scheme is not secrecy secure, or it is not message integrity secure,

or it is not invertible, or k + v= 
(logn). More formally, we would like the scheme to behave as a

random function from mn bits to (m + t)n bits. The scheme is not secrecy secure if an adversary can

distinguish the scheme from such a random function with probability � 1� 2

�n

.

For message integrity, let there be u > 0 MDC functions D

1

;D

2

; :::;D

u

. Without loss of generality

(see below), assume that these are linear functions of r's,M 's andN 's, and they are linearly independent.

The scheme is not message integrity secure, if given P and C, an adversary can produce a C

0

6= C, such

that on inversion, all the MDC functions evaluate to zero with high probability.

For invertibility, we assume the scheme has the following structure: There is a subset of N 's which

can be written as linear functions of just the C's. The correspondingM 's then may lead to determination

of some moreM 's, and hence N 's. Using, these newM 's and N 's, a second subset of N 's can be written

as a linear combination of previously determined M 's, N 's and C, and so on. We are forced to take

this approach, as by just allowing a system of equations with unique inverse is not enough. The unique

inverse may exist but may not be e�ciently computable. For example, C

1

= M

1

� N

1

, may have a

unique inverse, but may be intractable to compute.

Due to the fact that C is completely determined by r's, M 's, N 's and P 's, it follows from the above

characterization that C can be expressed as linear expressions in only N 's, M 's and r's. For otherwise,

the scheme is not secrecy secure (i.e. there is a linear relationship between only C's and P 's). Similarly,

P can be expressed as linear expressions in only N 's, M 's and r's. This justi�es the above restriction

on MDCs.

The proof of the lower bound is given in appendix A.
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Appendix A

Here, we prove the lower bound on the number of block encryptions required in a scheme as modeled

in Section 6.

Let

D

i

=

m+k

X

j=1

(a

i

j

�M

j

)�

m+k

X

j=1

(b

i

j

�N

j

)�

v

X

j=1

(c

i

j

� r

j

)

We say that N

i

and N

j

resolve if N

i

� N

j

can be written as a linear combination of only the C's

and the P 's. Similarly, for M

i

and M

j

.

Suppose there exists a pair i; j; i 6= j; i; j 2 [1::m+ k] such that

1. N

i

and N

j

resolve

2. M

i

and M

j

resolve

3. For all x 2 [1::u], a

x

i

� a

x

j

= 0, and b

x

i

� b

x

j

= 0

Then, we show that an adversary can produce a new C

0

6= C, such that all the MDC functions

evaluate to zero. Note that, if there exists a C

0

such that

� N

0

i

= N

j

� N

0

j

= N

i

� for all other x, N

0

x

= N

x

then, we have a similar set of relations forM , and hence given (3), all the MDC functions would evaluate

to zero.

Since C can be expressed only in terms of N 's, M 's and r's it is not di�cult to come up with such

a C

0

. Moreover, we have also assumed in our schemes, that a C

0

uniquely determines N

0

, and M

0

.

Finally, we show that if k+ v is not 
(log n), then there exists a pair i; j satisfying (1), (2) and (3).

Let

[P

1

:::P

m

r

1

:::r

v

N

1

:::N

m+k

] �B = [C

1

:::C

m

]

The rank of the matrix B is m. For a �xed P , let the resulting matrix be B

0

, i.e.

[r

1

:::r

v

N

1

:::N

m+k

] �B

0

= [C

1

:::C

m

]
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The rank of the new matrix B

0

is still m, for otherwise we have a non-trivial linear relationship between

C and P , and hence the scheme is not random. This implies that

[r

1

:::r

v

N

1

:::N

m+k

] = [f(C)] + (GF2)

n

� V

1

+ :::+ (GF2)

n

� V

k+v

where f(C) is a set of linear functions of C's, and V

i

are linearly-independent binary row-vectors. For a

subset of N 's with indices a set J � [1::m+k] to be pair-wise independent thus requires k+ v � log jJ j.

In other words, there exists i; j 2 J; i 6= j, N

i

and N

j

resolve if k+ v < log jJ j. Stated di�erently, there

is a set of size jJ j = (m+k)=2

k+v

in which all pairs of N 's resolve with each other. A similar statement

holds for M 's. Thus, there is a set of size jJ j = (m+ k)=2

2(k+v)

in which all pairs of N 's resolve with

each other, and all pairs of M 's resolve with each other.

Similarly, a set of size jJ j = (m+ k)=2

u

has

8k 2 [1::u]; 8i; j 2 J : a

k

i

� a

k

j

= 0

Combining these arguments, we get that there exists a pair satisfying (1), (2) and (3) if 2u+2(k+v) <

log n.

To complete the proof, we show that (k + v) � u. We can write P 's and D's as linear functions of

r's, M 's and C's (as discussed earlier N 's can be replaced by r's, M 's and C's). Thus, we have a matrix

A such that

[C

1

:::C

m

r

1

:::r

v

M

1

:::M

m+k

] �A = [P

1

:::P

m

D

1

:::D

u

]

The matrix A has rank at least m + u, for otherwise one would get a non-trivial linear relationship

between D's and P 's. In fact, for a �xed C, the rank of the resulting matrix A

0

is still at least

m+ u, for otherwise we would get a non-trivial linear relationship between D's, P 's and C's. However,

on a valid encryption, D's evaluate to zero. Thus, for valid encryptions we have a non-trivial linear

relationship between the P 's and the C's, which renders the encryption distinguishable from random.

Thus, m+ k + v � m+ u.

2

Appendix B

A new mode of operation for combining con�dentiality and authentication was recently described in

[13]. The mode of operation is called IA-PCBC (Integrity Aware Plaintext Ciphertext Block Chaining).

It was however shown by the author that the scheme is not secure for message integrity. We just remark

here that the scheme was essentially as described in the model in Section 6. To encrypt a m blocks, only

m + 2 block encryptions are employed in IA-PCBC. The claimed security came from mixing addition

14



over integers modulo 2

n

, with exclusive-or operations. However, one can be approximated in terms of

others= with reasonably high probability, and then the attack follows by the lower bound in Section 6.
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